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Abstract

Speech language models (LMs) are promising001
for high-quality speech synthesis through in-002
context learning. A typical speech LM takes003
discrete semantic units as content and a short004
utterance as prompt, and synthesizes speech005
which preserves the content’s semantics but006
mimics the prompt’s style. However, there is007
no systematic understanding on how the syn-008
thesized audio is controlled by the prompt and009
content. In this work, we conduct an empirical010
study of the widely used autoregressive (AR)011
and non-autoregressive (NAR) speech LMs and012
provide insights into the prompt design and con-013
tent semantic units. Our analysis reveals that014
heterogeneous and nonstationary prompts hurt015
the audio quality in contrast to the previous find-016
ing that longer prompts always lead to better017
synthesis. Moreover, we find that the speaker018
style of the synthesized audio is also affected by019
the content in addition to the prompt. We fur-020
ther show that semantic units carry rich acous-021
tic information such as pitch, tempo, volume022
and speech emphasis, which might be leaked023
from the content to the synthesized audio.024

1 Introduction025

Language models (LMs) have showcased strong026

in-context learning capabilities in natural language027

processing (Brown et al., 2020a; Chowdhery et al.,028

2022; Touvron et al., 2023a). Recent advances in029

audio quantization (Zeghidour et al., 2022; Défos-030

sez et al., 2022) have opened an opportunity to031

utilize autoregressive (AR) LMs to generate high-032

quality natural speech by modeling the distribution033

over discrete speech units (Borsos et al., 2023a;034

Wang et al., 2023a; Zhang et al., 2023b). Another035

line of work directly models the distribution over036

continuous features such as Mel spectrograms or037

quantized features with non-autoregressive (NAR)038

models (Le et al., 2023; Shen et al., 2023). These039

speech LMs, trained on large amounts of speech040

data, demonstrate state-of-the-art (SOTA) perfor- 041

mance in zero-shot conditional speech synthesis 042

tasks, where the desired content is represented as a 043

sequence of discrete units and the desired style is 044

provided by a speech prompt of a few seconds. 045

Despite numerous studies on model architec- 046

tures, training methods and downstream appli- 047

cations, there is no systematic understanding of 048

how the prompt and content affect the synthesized 049

speech in vocal style, emotion and prosody. It is un- 050

clear which attributes can be manipulated through 051

prompts. For example, can we adapt the speech 052

rate of the content to match that of the prompt by 053

using a speech LM? Does it work for both AR and 054

NAR LMs? Should we deduplicate content units 055

to remove the original duration? Addressing these 056

questions provides insights into the true capabili- 057

ties of speech LMs, consequently offering valuable 058

guidance for enhancing their performance. 059

This work aims to address the following ques- 060

tions for both AR and NAR speech LMs through 061

quantitative analysis. We will publicly release the 062

code for empirical evaluation. 063

Prior studies show that longer prompts yield bet- 064

ter speech style transfer results (Wang et al., 2023a; 065

Shen et al., 2023; Le et al., 2023). However, this 066

implicitly assumes that the prompt always has con- 067

sistent vocal style and speaker emotion regardless 068

of its length. In practice, longer prompts can be- 069

come heterogeneous or nonstationary, which might 070

adversely affect the synthesized speech. We ad- 071

dress the following two questions in Section 3.2: 072

Q1.1: How does a heterogeneous prompt contain- 073

ing multiple vocal styles from different speakers 074

affect the generated speech? 075

Q1.2: How does a nonstationary prompt contain- 076

ing mixed emotions affect the generated speech? 077

Recent studies (Borsos et al., 2023a,b; Huang 078

et al., 2023; Dong et al., 2023) represent the con- 079

tent of an utterance with semantic units from Hu- 080

BERT (Hsu et al., 2021) or w2v-BERT (Chung 081
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et al., 2021), assuming these units mostly contain082

semantic information only. But HuBERT units do083

contain other information (Lin et al., 2022).084

Q2.1: Will other information in the content units be085

leaked to the synthesized speech? See Section 3.3.086

Q2.2: How do prompt and content control acoustic087

features of synthesized speech, like pitch, speech088

rate, volume and emphasis? See Section 3.4.089

2 Related Work090

Table 1 compares recent speech LMs from various091

aspects. In this section, we provide a brief summary092

of the key aspects. More details are in Appendix A.093

Speech units. There has been a lot of progress on094

discrete speech representations including seman-095

tic units which mainly capture semantic informa-096

tion (Hsu et al., 2021) and acoustic units which con-097

tain rich acoustic features (Défossez et al., 2022).098

Initialization. Speech LMs can be initialized with099

pre-trained text LMs to improve performance (Has-100

sid et al., 2023; Rubenstein et al., 2023).101

AR vs NAR LMs. Figure 1b shows the inference of102

AR LMs. We study the VALL-E style model (Wang103

et al., 2023a) and consider two variants of AR LMs:104

one with duplicate semantic units and the other105

with deduplicated semantic units. Figure 1c illus-106

trates NAR LMs. We analyze Voicebox (Le et al.,107

2023) as it achieves SOTA performance in various108

conditional speech synthesis tasks.109

3 Experiments110

We analyze both AR and NAR LMs on conditional111

speech synthesis (see Figure 1a), which is one of112

the primary tasks of speech LMs. Specifically, a113

speech LM takes as input a pair of prompt and con-114

tent utterances, and synthesizes a new utterance115

that mimics the style of the prompt but preserves116

the semantic meaning of the content. This task is117

also referred to as voice conversion or style transfer.118

Following recent studies (Borsos et al., 2023a,b;119

Dong et al., 2023), we represent content with Hu-120

BERT units (Hsu et al., 2021).121

3.1 Experimental setups122

Training data. We use 60k-hour English speech123

as training data of Speech LMs.124

Evaluation data. We create various analysis data125

using emotional English speech with transcriptions.126

The speech is collected from multiple emotions in-127

cluding neutral, amused, sleepy, angry and disgust.128

We also prepare some samples for emphasis analy- 129

sis. We will discuss more about data preparation in 130

corresponding sections. 131

Evaluation of speaker style similarity. We em- 132

ploy a WavLM (Chen et al., 2022) based speaker 133

style encoder to generate the speaker style em- 134

bedding for a given utterance. We then calculate 135

the cosine similarity between a pair of speaker 136

style embeddings as the speaker style similarity. 137

This is a standard evaluation metric used in prior 138

work (Wang et al., 2023a; Le et al., 2023). 139

Speech tokenizers. Semantic units are derived 140

from HuBERT (Hsu et al., 2021) and acoustic units 141

are extracted from EnCodec (Défossez et al., 2022) 142

with 8 codebooks. Both are trained on VoxPop- 143

uli (Wang et al., 2021) with 50Hz unit rate. 144

Speech LMs. We use fairseq (Ott et al., 2019) for 145

implementation. The training details are provided 146

in Appendix B.1. 147

(1) AR LM with duplicate semantic units. We 148

follow VALL-E (Wang et al., 2023a) but replace its 149

text condition with semantic units. The AR LM is 150

a 24-layer Transformer decoder with embedding di- 151

mension 1024 and feed-forward dimension 4096.1 152

(2) AR LM with deduplicated semantic units. 153

The model is the same as (1), but semantic units are 154

deduplicated to remove some duration information. 155

(3) NAR LM. We follow Voicebox (Le et al., 156

2023) but replace the text condition with semantic 157

units. It has 24 Transformer layers with embedding 158

dimension 1024 and feed-forward dimension 4096. 159

3.2 Effect of heterogeneous and nonstationary 160

prompts 161

Previous studies (Wang et al., 2023a; Shen et al., 162

2023; Le et al., 2023) show that a longer prompt 163

consistently improves synthesis. In practice, a 164

longer prompt is more likely to become inconsis- 165

tent in vocal style and emotion. Hence, we con- 166

sider two properties of the prompt and examine 167

their impacts on conditional speech synthesis: (1) 168

heterogeneity, where a prompt contains multiple 169

styles of different speakers, and (2) nonstationar- 170

ity, where a prompt is from the same speaker style 171

but mixed by different emotions. 172

Heterogeneity. We concatenate audios of two 173

speaker styles in the emotional data to form het- 174

erogeneous prompts. As a controlled study, the 175

semantic contents (transcriptions) of both prompt 176

1The AR LM predicts 1st EnCodec stream conditioned on
semantic units. Similar to VALL-E, a secondary NAR LM of
the same size is trained to predict the remaining streams.
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Name Speech representation Model type Initialization Supported tasks

GSLM (Lakhotia et al., 2021) SSL units AR LM - Speech continuation
pGSLM (Kharitonov et al., 2022) SSL units, F0, duration AR LM - Speech continuation
AudioLM (Borsos et al., 2023a) SSL units, codec units AR LM - Speech continuation

TWIST (Hassid et al., 2023) SSL units AR LM Text LM Speech continuation
VALL-E (Wang et al., 2023a) Codec units AR LM, NAR LM - TTS

VALL-E X (Zhang et al., 2023b) Codec units AR LM, NAR LM - TTS
VioLA (Wang et al., 2023b) Codec units AR LM, NAR LM - ASR, MT, ST, TTS, S2ST

MusicGen (Copet et al., 2023) Codec units AR LM - Music generation
AudioPaLM (Rubenstein et al., 2023) SSL/ASR units, codec units AR LM, NAR LM Text LM ASR, MT, ST, TTS, S2ST

SpeechX (Wang et al., 2023c) Codec units AR LM, NAR LM VALL-E
TTS, denoising, speech removal,

target speaker extraction, speech editing
VoxtLM (Maiti et al., 2023a) SSL units AR LM Text LM ASR, TTS, speech and text continuation

SoundStorm (Borsos et al., 2023b) SSL units, codec units NAR LM - Speech continuation
NaturalSpeech 2 (Shen et al., 2023) Continuous features NAR diffusion - TTS

Voicebox (Le et al., 2023) Continuous features NAR normalizing flow - TTS, noise removal, content editing, style conversion

Table 1: Summary of recent studies about speech LMs. More discussions are presented in Appendix A.

Speech LM

content semantic units

speech prompt

generated speech

(a) Conditional speech synthesis

AR LM

prompt
semantic units

content
semantic units

prompt 
acoustic unitsSOS

EOS
generated 

acoustic units

(b) Inference of AR LM

prompt
continuous features

generated
continuous features

content
semantic units

prompt
semantic units

NAR LM

(c) Inference of NAR LM

Figure 1: Overview of the primary task of speech LMs and inference procedures of AR and NAR LMs.

Prompt used for synthesis P1 P1+P2
Reference audio P1 P2 P1 P2

AR w/ dup units 0.332 0.036 0.080 0.135
AR w/ dedup units 0.345 0.054 0.098 0.163

NAR 0.455 0.062 0.105 0.285

Table 2: Speaker style similarity (↑) between the synthe-
sized audio and each prompt audio for heterogeneous
prompts. P1 and P2 are prompts from different speaker
styles. P1+P2 is the concatenation of P1 and P2. Results
are averaged over 400 evaluation samples.

and content audios are identical, and their emotions177

are also the same (i.e., neutral). The evaluation set178

has 400 samples. To evaluate synthesized audios,179

we report their speaker similarity w.r.t. the two180

prompt audios respectively. For comparison, we181

also synthesize audios with a single prompt and182

the same content audio used in the multi-prompt183

experiments. This can reflect the difference be-184

tween single-speaker-style and multi-speaker-style185

prompts. As shown in Table 2, multi-speaker-style186

prompt hurts the speaker style similarity. More187

discussions are in Appendix B.2.188

Nonstationarity. We concatenate audios from the189

same speaker style (i.e., vocal style) but with dif-190

ferent emotions (e.g., amused and sleepy) to form191

nonstationary prompts, resulting in totally 400 eval-192

uation samples. Table 3 shows that mixed-emotion193

Prompt used for synthesis P1 P1+P2
Reference audio P1 P2 P1 P2

AR w/ dup units 0.257 0.073 0.133 0.156
AR w/ dedup units 0.256 0.073 0.140 0.165

NAR 0.392 0.160 0.222 0.336

Table 3: Speaker style similarity (↑) between the syn-
thesized audio and prompt audio for nonstationary
prompts. P1 and P2 are in the same style but different
emotions. P1+P2 is the concatenation of P1 and P2.
Results are averaged over 400 samples.

Style of content audio F2 M1 M2
Reference audio Prompt Content Prompt Content Prompt Content

AR w/ dup units 0.535 0.179 0.488 0.125 0.489 0.046
AR w/ dedup units 0.536 0.151 0.474 0.118 0.489 0.038

NAR 0.584 0.222 0.534 0.148 0.529 0.106

Table 4: Speaker style similarity (↑) between the syn-
thesized audio and the prompt or content audio. The
prompt is fixed as the female speaker style F1, while the
content style is changed among F2 (female), M1 (male),
and M2 (male). We can observe that the content speaker
style also affects the synthesized style.

prompt also hurts the speaker style similarity. More 194

discussions are in Appendix B.3. 195

3.3 Effect of content audio’s speaker styles 196

Although existing studies use prompt audio to con- 197

trol synthesized vocal style (Borsos et al., 2023b; 198

Huang et al., 2023), it remains unexplored how 199
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Changed prosody feature Pitch Tempo Volume
Changed audio Prompt Content Prompt Content Prompt Content

AR w/ dup units 0.293 -0.037 0.054 0.822 0.987 0.025
AR w/ dedup units 0.136 0.001 -0.023 0.388 0.982 0.053

NAR 0.476 0.135 0.000 0.999 0.997 0.217

Table 5: Pearson correlation of prosody changes be-
tween the synthesized audio and either the prompt or
content audio. Each experiment only changes one fea-
ture of either prompt or content.

much content audio affects the vocal style in speech200

synthesis. To investigate this, we prepare an eval-201

uation set of 200 samples using emotional speech202

data, where we fix the speaker style of prompt au-203

dios as a female speaker, F1, but change the speaker204

style of content audios among another female F2205

and two male speaker styles M1 and M2. The206

synthesized audios are compared with the prompt207

and content audios respectively in terms of speaker208

style similarity. In Table 4, it is found that the209

change of content speaker style results in different210

voices, indicating that semantic units like HuBERT211

carry more acoustic information than expected. Ap-212

pendix B.4 includes more discussions.213

3.4 Analysis of prosody information214

Our analyses so far focus on voice and style transfer215

based on a coarse-grained metric, speaker style sim-216

ilarity. Now we look deeper into fine-grained acous-217

tic features including pitch, speech rate (tempo),218

loudness (volume) and emphasis. A set of 200 au-219

dio samples is selected from the emotional data for220

such prosody analysis. We first use the same audio221

as prompt and content to synthesize a set of audios222

with speech LMs, which serves as the reference223

set since no manipulation is performed. Then, we224

manually manipulate the acoustic characteristics of225

either prompt or content audios. The Pearson corre-226

lation of acoustic changes between prompt/content227

and generated audios is reported in Table 5. Please228

refer to Appendix B.5 for more discussions.229

Pitch. We use torchaudio pitch extractor2 to230

extract pitch. We observe that AR LMs capture231

pitch information mostly from its prompt. NAR232

LMs are affected by the pitch of both prompt and233

content, which also indicates that content semantic234

units carry some pitch information.235

Speech rate. We measure the number of sylla-236

bles3 spoken per second. We find that the speech237

2https://pytorch.org/audio/2.0.1/tutorials/au
dio_feature_extractions_tutorial.html#pitch

3Python syllable estimator: https://pypi.org/project
/syllables/.

rate (tempo) is mainly determined by content units 238

for both AR and NAR LMs. The AR LM with 239

deduplicated units has a lower correlation, suggest- 240

ing that it can generate more flexible or diverse 241

speech rates. However, the speech rate cannot be 242

controlled by prompts in current speech LMs. 243

Loudness. We use pyloudnorm (Steinmetz and 244

Reiss, 2021) to measure loudness. We observe that 245

the volume of synthesized audio is mainly deter- 246

mined by prompt, while the NAR LM also transfers 247

loudness of the content to its synthesized audio. 248

Finally, we analyze how speech emphasis is 249

affected by the prompt or content audio. To ex- 250

amine word emphasis, we take 50 audio sample 251

pairs. Each pair of prompt and content audios has 252

the same semantic meaning and is spoken in the 253

same speaker style. The difference is that some 254

words are emphasized in the content audio while 255

the prompt does not have any speech emphasis. We 256

aim to study whether the emphasis is embedded in 257

the content semantic units and further transferred 258

to synthesized audio. 259

Two annotators are asked to check whether the 260

synthesized speech has the same emphasis as the 261

content audio and go through annotations together 262

to resolve disagreements. The percentages of syn- 263

thesize audios preserving content emphasis are 264

96%, 80% and 98% for AR LM w/ dup units, AR 265

w/ dedup units and NAR LM, respectively. It indi- 266

cates that content semantic units do carry emphasis 267

information which is further leaked to synthesized 268

audios. Current speech LMs cannot directly con- 269

trol speech emphasis through prompts. 270

4 Conclusion 271

We conduct an empirical study of AR and NAR 272

speech LMs for speech synthesis conditioned on 273

prompt and semantic units. We reveal that hetero- 274

geneous and nonstationary prompts can hurt vocal 275

style transfer. We also find that content audio style 276

affects the synthesized vocal style through seman- 277

tic units. In particular, we show that semantic units 278

of content audio carry rich information like pitch, 279

tempo, volume and speech emphasis, which might 280

be leaked to the synthesized audio. These find- 281

ings indicate that contemporary speech LMs using 282

semantic units cannot achieve zero-shot style trans- 283

fer or controllable speech synthesis solely through 284

prompts. Future research can explore more disen- 285

tangled discrete speech representations and better 286

modeling algorithms. 287

4

https://pytorch.org/audio/2.0.1/tutorials/audio_feature_extractions_tutorial.html#pitch
https://pytorch.org/audio/2.0.1/tutorials/audio_feature_extractions_tutorial.html#pitch
https://pypi.org/project/syllables/
https://pypi.org/project/syllables/


5 Limitations288

Limitations. In this work, we designed a set of289

tasks to benchmark speech LMs in the task of con-290

ditional speech synthesis. The evaluation may not291

be comprehensive, and other metrics such as speech292

naturalness could be incorporated into future study.293

Ethical considerations. While we have docu-294

mented various evaluation deployed in our work,295

here are some additional points to highlight. While296

high-quality speech synthesis could improve real-297

world applications and facilitate communication,298

such access could also make groups with lower lev-299

els of digital literacy more vulnerable to misinfor-300

mation. An example of unintended use is that bad301

actors misappropriate our work for online scams.302
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A Literature Review of Speech LMs631

The remarkable achievements of large language632

models (LLMs) in natural language processing633

(NLP) (Brown et al., 2020b; Chowdhery et al.,634

2022; Zhang et al., 2022; Touvron et al., 2023a,b;635

OpenAI, 2023) have served as a powerful impetus636

for the advancement of foundational models in the637

realm of speech (Radford et al., 2023; Zhang et al.,638

2023a; Pratap et al., 2023; Communication et al.,639

2023; Peng et al., 2023), including the emergence640

and evolution of speech language models (Lakhotia641

et al., 2021; Kharitonov et al., 2022; Borsos et al.,642

2023a; Maiti et al., 2023b; Wang et al., 2023a;643

Zhang et al., 2023b; Rubenstein et al., 2023; Wang644

et al., 2023c; Le et al., 2023; Maiti et al., 2023a).645

Table 1 compares recent studies about speech646

LMs from four aspects: speech representation,647

model architecture, initialization method, and sup-648

ported tasks. We provide more details in the fol-649

lowing sections.650

A.1 Speech representation651

Speech signals can be represented as continuous652

features or discrete units. Continuous features in-653

clude spectrograms and neural codec hidden vec-654

tors. Discrete units can be further categorized655

into two types: semantic units and acoustic units.656

Semantic units are derived from self-supervised657

learning (SSL) or automatic speech recognition658

(ASR) models through clustering. They are found659

to mainly capture the linguistic content (Borsos660

et al., 2023a), and can thus be used interchangeably661

with normal text tokens. Acoustic units are pro-662

duced by audio codec models through residual vec-663

tor quantization (RVQ). They capture rich acoustic664

information like speaker style, emotion, and acous-665

tic environment, making them especially suitable666

for high-quality speech synthesis. But they are667

more difficult to model due to the multiple streams668

from RVQ.669

A.2 Supported tasks670

Conditional speech synthesis is the primary task671

of speech LMs. As illustrated in Figure 1a, given672

semantic units extracted from a content audio, it673

aims to generate high-quality speech that mimics674

the style of a short prompt. Our study focuses on675

this primary task, since other speech generation676

tasks can be incorporated into this framework.677

A.3 AR vs NAR LMs 678

Autoregressive (AR) speech LMs are conditional 679

LMs which predict a sequence of acoustic units 680

given a sequence of semantic units. Figure 1b il- 681

lustrates this inference procedure. Both semantic 682

and acoustic units are derived in an unsupervised 683

manner. Hence, these LMs can be trained on audio- 684

only data without human annotation. Since acous- 685

tic units consist of multiple streams, we follow 686

VALL-E (Wang et al., 2023a) to predict only the 687

first stream in the AR LM and employ an addi- 688

tional NAR LM to predict the remaining streams. 689

This formulation has been widely used in recent 690

studies (Wang et al., 2023a; Zhang et al., 2023b; 691

Wang et al., 2023b; Dong et al., 2023; Wang et al., 692

2023c). We also consider two variants of AR LMs: 693

one with duplicate semantic units and the other 694

with deduplicated semantic units. The former uses 695

the raw semantic units without extra preprocessing, 696

which leads to a fixed alignment between semantic 697

and acoustic units and thus reduces the length diver- 698

sity of the synthesized speech. The latter removes 699

consecutive repetitions in semantic units, allowing 700

the AR LM to learn duration information. 701

Non-autoregressive (NAR) speech LMs predict 702

an entire sequence of continuous features or acous- 703

tic units given the corresponding semantic units. 704

Figure 1c illustrates the inference procedure. Sim- 705

ilar to AR LMs, this formulation does not need 706

human annotation and these models can be trained 707

on audio-only data. NaturalSpeech 2 (Shen et al., 708

2023) and Voicebox (Le et al., 2023) are two repre- 709

sentative NAR LMs. NaturalSpeech 2 learns latent 710

features of a neural codec using a diffusion model, 711

which are converted to waveform with a codec de- 712

coder. Voicebox predicts Mel spectrograms us- 713

ing flow matching with the optimal transport path 714

and further synthesizes audios with a HiFi-GAN 715

vocoder (Kong et al., 2020). We analyze Voice- 716

box as it shows SOTA performance in a variety of 717

conditional speech synthesis tasks. 718

A.4 Analysis of speech LMs 719

AudioLM (Borsos et al., 2023a) conducts prelim- 720

inary experiments on its AR LM and finds that 721

semantic content and prosodic features are mostly 722

captured by semantic units, while speaker style 723

and recording conditions are from acoustic units.4 724

More recent studies (Borsos et al., 2023b; Huang 725

4It performs quantitative analysis of semantics and speaker
style and qualitative analysis of prosody features.
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et al., 2023; Dong et al., 2023) propose various726

speech LMs in order to achieve zero-shot transfer727

of vocal styles or speaker emotions. In this work,728

we present a systematic investigation of prompt729

conditioned synthesis based on speech LMs via730

quantitative analysis, revealing insights into prompt731

design and unit information which are generaliz-732

able to different LM architectures.733

B Experiments734

B.1 Speech LM training735

We follow TWIST (Hassid et al., 2023) to initialize736

the AR LM with OPT 350M (Zhang et al., 2022).737

Our NAR LM is trained from scratch, which is738

consistent with Voicebox (Le et al., 2023). AR LMs739

are trained using the Adam optimizer (Kingma and740

Ba, 2015) with a peak learning rate of 0.0002. They741

are updated for 200k steps with 20k warmup steps.742

The NAR LM, Voicebox, is trained for 500k steps743

with a learning rate of 0.0001 and 5k warmup steps.744

B.2 Effect of heterogeneous prompts745

Table 2 shows the speaker style similarity be-746

tween the synthesized audio and each prompt audio.747

When a single prompt P1 is used, the synthesized748

audio has a high similarity w.r.t. P1, meaning that749

the speaker style is well preserved. When a multi-750

speaker-style prompt (P1+P2) is used, the speaker751

style similarity decreases drastically, indicating that752

a heterogeneous prompt hurts speech synthesis. It753

is interesting to see that the synthesized audio has754

a higher speaker style similarity w.r.t. the second755

prompt segment P2 than the first segment P1, likely756

because P2 is spatially closer to the generated au-757

dio during inference as illustrated in Figure 1b and758

Figure 1c. This reveals that speech LMs tend to759

generate locally coherent audio.760

B.3 Effect of nonstationary prompts761

Table 3 shows the speaker style similarity results.762

When a single prompt P1 is used, the synthesized763

audio has a high speaker style similarity w.r.t. the764

prompt, indicating that the speaker style is well765

preserved. When a multi-style prompt (P1+P2) is766

used, the speaker style similarity decreases clearly,767

showing that despite from the same speaker style,768

multi-emotion prompts adversely affect the preser-769

vation of speaker style similarity. This indicates770

that speaker styles and emotions are entangled to771

some extent. The nonstationary nature in prompts772

distracts speech LMs from capturing speaker style773

information. We also observe that synthesized au- 774

dios are more similar to the second prompt segment 775

in terms of speaking style, which is consistent with 776

the previous multi-speaker-style case. This reveals 777

that speech LMs are better at capturing local con- 778

text than long-range dependencies. 779

B.4 Effect of content audio’s speaker styles 780

When content audios are from F2 who is also fe- 781

male, synthesized audios have the highest similarity 782

w.r.t. the prompt female speaker style F1. When the 783

content speaker style is changed to male speaker 784

styles M1 and M2, synthesized audios demon- 785

strate lower speaker style similarity w.r.t. the same 786

prompt. This reflects that the content audio, repre- 787

sented by semantic units, is also a non-negligible 788

source of speaker style information when speech 789

LMs synthesize audios. This further suggests that 790

semantic units such as HuBERT units carry more 791

acoustic information than expected, which might 792

interfere with style transfer. 793

B.5 Analysis of prosody information 794

We manipulate the acoustic charateristics of prompt 795

or content audios. For example, to study how 796

the prompt’s pitch affects speech synthesis, we 797

increase or decrease the pitch of prompt audios, 798

and synthesize a new set of audios with the new 799

prompts. Then, we compute the pitch changes in 800

prompt and generated audios compared to the ref- 801

erence set, and calculate the Pearson correlation 802

between their changes. If the correlation is high, 803

we can infer that the prompt audio is an important 804

source of pitch information. Similarly, we manip- 805

ulate the speech rate by speeding up or slowing 806

down the prompt/content audios, and manipulate 807

loudness by changing the audio volume with tor- 808

chaudio5. 809

More discussions on speech rate. We find 810

that the unit duration has a strong control over 811

the speech rate. For AR LM with duplicate units 812

and NAR LM, the duration information has been 813

pre-determined and embedded in the sequence of 814

content semantic units. The AR LM with dedupli- 815

cated units has some flexibility to change the dura- 816

tion, thus mitigating its correlation with the content 817

tempo. However, the correlation w.r.t. the prompt 818

tempo is close to zero for all speech LMs, meaning 819

that the speech rate cannot be controlled through 820

prompts in current speech LMs. We note that 821

5https://pytorch.org/audio/stable/sox_effects
.html
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none of these models is equipped with explicit du-822

ration prediction based on prompt, which is a likely823

reason of their incapability of capturing prompt’s824

tempo in speech synthesis.825
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