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Abstract

We introduce meta-learning algorithms that perform zero-shot weight-space adaptation of
neural network models to unseen tasks. Our methods repurpose the popular generative
image synthesis techniques of natural language guidance and diffusion models to generate
neural network weights adapted for tasks. We first train an unconditional generative
hypernetwork model to produce neural network weights; then we train a second “guidance”
model that, given a natural language task description, traverses the hypernetwork latent
space to find high-performance task-adapted weights in a zero-shot manner. We explore two
alternative approaches for latent space guidance: “HyperCLIP”-based classifier guidance
and a conditional Hypernetwork Latent Diffusion Model (“HyperLDM”), which we show to
benefit from the classifier-free guidance technique common in image generation. Finally, we
demonstrate that our approaches outperform existing multi-task and meta-learning methods
in a series of zero-shot learning experiments on our Meta-VQA dataset.

1 Introduction

State-of-the-art machine learning algorithms often lack the ability to generalize in a sample efficient manner
to new unseen tasks. In contrast, humans show remarkable capabilities in leveraging previous knowledge for
learning a new task from just a few examples. Often, not even a single example is needed, as all relevant
task information can be conveyed in the form of natural language instructions. Indeed, humans can solve
novel tasks when prompted by a variety of different interaction modalities such as visual task observations
or natural language prompts. In this work, we present new meta-learning techniques that allow models to
perform a similar kind of multi-modal task inference and adaptation in the weight space of neural network
models. In particular, we present two different approaches (HyperCLIP guidance and HyperLDM) that
utilize natural language task descriptors for zero-shot task adaptation.

The development of deep learning models that “Learn to learn“ is the focus of the field of meta-learning.
Meta-learning can be defined as a bi-level optimization problem, a trend stemming from the success of
Model-Agnostic Meta-Learning (Finn et al., 2017, MAML): an outer loop meta-model is trained with the
goal of improving the performance of a base model when fine-tuned on a variety of related tasks. MAML
was specifically introduced as a gradient-based method to find a network initialization with high few-shot
performance over an entire set of tasks. Recent progress in large-scale transformer networks is however
challenging this explicit meta-learning framework grounded in optimization over model weights. Large
models trained on huge, rich, and diverse data sets have been shown to possess surprisingly good few-shot
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Figure 1: Given a task Ti and a network
initialization W 0, with few-shot task data
Di one can use traditional gradient descent
to perform task adaptation and obtain
fine-tuned weights WT . This adaptation
requires that at every step t the gradi-
ent ∇WL(Di) is computed. Our methods
(green) instead do not require few-shot
data Di, but use natural language descrip-
tors ti to generate a surrogate adaptation
towards WT in a zero-shot manner. In
the Figure, we summarize this adaptation
step as ϵ(W, ti), which depends only on ti
and not on Di, which may be unavailable.

learning capabilities through in-context learning (Brown et al., 2020). Moreover, large-scale pre-training and
fine-tuning often outperforms explicit meta-learning procedures (Mandi et al., 2022). Brown et al. (2020)
dispense with the bi-level optimization formulation and use the word “Meta-Learning” to generally describe
problem settings with an inner-loop/outer-loop structure, and use the words “zero-shot”, “one-shot”, or
“few-shot” depending on how many demonstrations are provided in-context at inference time.1

These developments in transformer networks prompted us to develop alternative methods for meta-learning
in weight-space which natively benefit from rich and multi-modal data like in-context learning. Inspired
by recent advances in conditional image generation (Ramesh et al., 2022; Rombach et al., 2022), we recast
meta-learning as a multi-modal generative modeling problem such that, given a task, few-shot data and
natural language descriptions are considered equivalent conditioning modalities for adaptation (Figure 1).
What we show is that popular techniques for the image domain, such as CLIP-based guidance (Gal et al., 2021;
Patashnik et al., 2021), denoising diffusion models (Ho et al., 2020), and classifier-free guidance (Dhariwal &
Nichol, 2021; Ho & Salimans, 2021; Nichol et al., 2022) can be repurposed for the meta-learning setting to
generate adapted neural network weights. Using multi-step adaptation instead of traditionally conditioning
the model on the natural language task information allows our models to achieve higher performance on each
task by breaking down computations into multiple steps.

We approach the generation of neural network weights in two separate phases. In the unconditional pre-training
phase, we train a generative hypernetwork (Ha et al., 2016; Schürholt et al., 2022) to map from its latent
space to the weight space of a base model (Figure 2.A). In the guidance phase, we learn language-conditioned
models that can be used to traverse the hypernetwork latent space and find zero-shot adapted weights with
high performance on our task (Figure 2.B and 2.C). Our methods can thus benefit from large scale data
through the pre-training phase, even when natural language descriptions are not available for all tasks.

We summarise our contributions as follows:

1) We introduce HyperCLIP, a contrastive learning method equivalent to Contrastive Language-Image
Pre-training (CLIP) (Radford et al., 2021), producing CLIP embeddings of fine-tuned neural network weights.
Using HyperCLIP as a guidance model then allows us to find task-adapted networks in the latent space of a
hypernetwork model (Figure 2.B).

2) We introduce Hypernetwork Latent Diffusion Models (HyperLDM) as a costlier but more powerful alter-
native to pure HyperCLIP guidance to find task-adapted networks within the latent space of a hypernetwork
model (Figure 2.C). We show how combining this approach with classifier-free guidance (Ho & Salimans,
2021) improves the performance of generated base networks.

1See the footnote in page 4 of Brown et al. (2020).
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Figure 2: Schematic of the three main components
of our proposed meta-learning approach. A. A task-
unconditional variational autoencoder (VAE) mod-
els the latent space of adapted weights W for the
network f trained on data (xij , yij). Its generator hy-
pernetwork h producing the weights (highlighted in
gray) can be re-used in the task-conditional setting
with our guidance techniques. B. Our HyperCLIP
encoder CLIPH is contrastively trained to map net-
work weights W to the space of CLIP embeddings ei.
Then, given a new task with descriptor ti, we can use
CLIP guidance to find a VAE latent vector zi with
embedding e(H)

i that has a high cosine similarity to
a given task embedding e(T )

i . C. Alternatively, our
Hypernetwork Latent Diffusion Model (HyperLDM)
learns, conditional on the task embedding ei, to iter-
atively denoise a VAE latent vector zTi , . . . , z0

i over
T iterations.

3) We demonstrate the usefulness of our methods on Meta-VQA, our modification of the VQA v2.0
dataset (Goyal et al., 2017) built to reflect the multi-task setting with natural language task descriptors. We
show how our guidance methods outperform traditional multi-task and meta-learning techniques for zero-shot
learning on this dataset.

2 Meta-Learning with Multi-Modal Task Embeddings

The setting we investigate is similar to the classic meta-learning framework, where we operate within a
distribution of tasks Ti ∼ p(T ), each associated with a loss function LTi

. Using a set of training tasks drawn
from this distribution, our goal is to train a model such that it generally performs well on new unseen tasks
drawn from p(T ).

2.1 Background on Model-Agnostic Meta-Learning

In Zintgraf et al. (2019)’s version of MAML, a model g is composed of context parameters ϕ that are adapted
to individual tasks, and shared parameters θ that are meta-trained and shared across tasks. MAML and its
variants focus on the few-shot setting, which aims to learn an initialization for these parameters such that
the model g(·, θ, ϕ) generalizes well on new tasks after fine-tuning ϕ on a few data points from that task. To
train such a model, we sample training data Di from each task Ti and split it into a support set Ds

i and a
query set Dq

i . The MAML objective aims to optimize the validation score evaluated on the query set when
fine-tuning ϕ on the support set:

min
θ,ϕ

E
Ti

 1
|Dq

i |
∑

(x,y)∈Dq
i

LTi (g(x, θ,ATi(Ds
i , θ, ϕ)), y)

 , (1)

where ATi is some differentiable algorithm, typically implementing a variant of few-step gradient descent on
the loss computed on the support set, e.g., in the case of one-step gradient descent:

ATi
(Ds

i , θ, ϕ) = ϕ− η
1

|Ds
i |

∑
(x′,y′)∈Ds

i

∇ϕLTi
(g(x′, θ, ϕ), y′) (2)

with some learning rate η. The objective from Eq. 1 is itself solved with gradient descent. This is done by
iteratively optimizing the parameters ϕ in the inner loop on the support set of a sampled task, and updating
θ and the initialization of ϕ with their gradient with respect to the training process of the entire inner loop,
averaged over batches of tasks.
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2.2 Natural Language Task Embeddings

At test time, MAML-based meta-learning requires few-shot data Ds
i from test tasks to adapt its unconditioned

network parameters through gradient descent. In contrast, in this work, to perform zero-shot task adaptation,
we utilize an additional high-level context embedding ei for each task Ti. In practice, such embeddings can
come from a natural language description ti of the task, which can be encoded into a task embedding using
pre-trained language models.

A simple baseline for incorporating task embeddings into a model during training is by augmenting the input
of the network, concatenating such input with the task embedding during the forward pass, or using custom
conditioning layers such as FiLM (Perez et al., 2017). We instead consider the use of hypernetworks (Ha
et al., 2016; Zhao et al., 2020), a network that generates the weights of another network given a conditioning
input.

Hypernetworks introduce multiplicative interactions between neural network model weights, similar to how
the attention mechanism in transformer models allows for the efficient mixing and propagation of information
across self-attention layers. In fact, transformers can be viewed as a composition of small hypernetworks. The
key difference between adopting transformers for in-context learning and our approach is that we deliberately
fix the architecture of our small base model f , and use a hypernetwork to sample such models. Effectively,
we decouple the multiplicative hypernetwork mechanism from the downstream network specialized for a task.

2.3 Meta-Learning and Hypernetworks

Given a neural network f(·,W ) parametrized by a weight vector W , we reparametrize the model by introducing
a hypernetwork h. The hypernetwork h is parametrized by θ, and generates weights h(z, θ) = W from an
embedding z. The overall model is then defined as f(·, h(z, θ)). In the multi-task setting, one can use a
“task-conditioned” hypernetwork, in which the input embedding z directly depends on the task Ti (e.g. z = ei).
In this work, we will also consider “unconditional” hypernetworks, trained as generative models (see Section 3),
with input embeddings z that don’t depend on the task, but may for example be normally distributed.

Before introducing our new zero-shot techniques, we construct a hypernetwork-based baseline by rewriting
the MAML objective (Eq. 1) with respect to the hypernetwork weight θ as

min
θ

E
Ti

 1
|Dq

i |
∑

(x,y)∈Dq
i

LTi
(f(x, h(ATi

(Ds
i , θ, z), θ))), y)

 . (3)

Forcing ATi
(Ds

i , θ, z) = ei, we recover the simple multi-task objective of a task-conditioned hypernetwork
optimizing for zero-shot performance, taking ei directly as input. When ATi

is instead the gradient descent
algorithm on z, the objective corresponds to a variant of MAML, optimizing the few-shot performance of h
when only adapting the embedding in the inner loop, initialized at z. For more details related to the baselines,
see Appendix A.6.

3 Hypernetworks as Generative Models

A rich literature exists on hypernetworks interpreted as generative models of base network weights (see
Section 7). Our work builds upon this interpretation to adapt multi-modal generative modeling techniques to
the meta-learning domain.

In generative modeling, we aim to learn the distribution p(x) over a high dimensional data domain X , such as
images, given samples from the distribution. To do so, we resort to techniques such as variational inference,
adversarial training, or diffusion models. Our meta-learning setting can analogously be framed as modeling a
distribution of diverse high-dimensional base network weights W . In the Bayesian setting, this distribution is
made explicit as we seek to model the posterior p(W |D) given data D. However, the framework is still useful
even when no explicit posterior distribution is assumed, as it is the case for deep ensembles. In the present
work, we indeed avoid explicit Bayesian inference: for each training task Ti, we fine-tune the base model
f(x,W ) = y on it, and use the resulting Wi as a sample to train a generative model of network weights.
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The fundamental building block of our unconditional generative model is the hypernetwork h(z, θ) = W that
we can train in two ways: 1. HVAE: We define a Hypernetwork VAE (Figure 2.A), which, given samples of
fine-tuned base network weights Wi, learns a low-dimensional normally distributed latent representation zi.
The encoder d(Wi, ω) = (µzi

,Σzi
) with parameters ω maps base network weights to means and variances

used to sample a latent vector zi, while the decoder (or generator) is a classic hypernetwork h(zi, θ) = Wi

which reconstructs the network weights from the latent vector (See Appendix A.7.1). This VAE setup is
analogous to that proposed in recent work on hyper-representations (Schürholt et al., 2022). 2. HNet: Using
MAML, we learn both an initialization embedding z and hypernetwork weights θ such that, when fine-tuning
only the embedding z on each task Ti, we obtain high-performing base networks with weights Wi = h(zi, θ).
Concretely, we optimize θ and the initialization of z following the objective in Eq. 3 (see Section 2.3).

Up to this point, we trained an unconditional hypernetwork generative model of neural network weights,
comprising the unconditional pre-training phase of our meta-learning approach. This gives us a powerful
generator h(z, θ) = W , which maps from its latent space to the weight space of our base network. In the
next Section, we investigate how to then perform task-conditional guidance within this latent space, finding
adapted latent embeddings zi for our test tasks in a zero-shot manner.

4 HyperCLIP: Training a CLIP Encoder for the “Model-Parameters Modality”

The first of our two meta-learning guidance techniques, HyperCLIP Guidance, consists of these steps:

1. We train an unconditional generative hypernetwork h(z, θ) = W over a family of training tasks (as in
Section 3).

2. We train a HyperCLIP encoder, mapping fine-tuned neural network weights Wi for tasks Ti to
multi-modal CLIP embeddings e(H)

i .

3. Given a new task Ti, we use HyperCLIP guidance to guide the exploration of the hypernetwork
latent space, in order to find base model weights Wi with high zero-shot performance for the task.

To define HyperCLIP guidance, we borrow from the field of multi-modal contrastive learning. More
specifically, we build on top of Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021), a
popular method for joint learning of language and image embeddings with applications to zero-shot and
few-shot classification.

In the original CLIP formulation, separate text and image encoders are trained such that, given a bi-modal
sample (xi, ti) of an image and its corresponding language caption, their representations (CLIPI(xi) = e

(I)
i and

CLIPT (ti) = e
(T )
i ) are aligned across modalities. Specifically, the formulation maximizes the cosine similarity

e
(I)⊤
i e

(T )
j /∥e(I)

i ∥∥e(T )
j ∥ for pair-wise matches (i = j) and minimizes the cosine similarity for non-matches

(i ̸= j). Beyond the original language-image setting, the CLIP approach can be easily adapted to include
additional modalities, aligning the representation of more than two encoders at a time. Existing works such
as AudioCLIP (Guzhov et al., 2022) demonstrate the possibility of training an encoder for an additional
modality such as audio on the side of the pre-trained frozen CLIP language-image encoders.

4.1 Contrastive Learning on Neural Network Weights

In our work, we consider multi-modal representations of meta-learning tasks Ti. A descriptor of a task may
come from the language modality (ti), but potentially also from image, video, or audio modalities. When we
fine-tune a base machine learning model f(x,Wi) = y for task Ti, we then also consider the fine-tuned base
model weights Wi as being part of an alternative model-parameters modality that describes task Ti. Fine-tuned
network weights from the model-parameters modality can then be paired in contrastive learning with the
other multi-modal descriptions of Ti. We thus define our new HyperCLIP encoder CLIPH(Wi) = e

(H)
i ,

taking fine-tuned neural network weights Wi as input, and outputting a CLIP embedding e(H)
i optimized for

high cosine similarity with the CLIP embedding for the textual (or image, audio, etc.) descriptor of the task.
Figure 3 and Algorithm 1 illustrate the approach.
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Figure 3: A. Our HyperCLIP encoder CLIPH is contrastively trained to map neural network weights W
to the latent space of a pre-trained language encoder CLIPT , which we use to embed the natural language
questions associated to the tasks. B. To perform task inference given an already fine-tuned network one can
encode all candidate task questions using the language CLIP encoder. C. We encode the fine-tuned network
weights with HyperCLIP, and finally infer the correct task with a softmax operation over cosine similarities
between HyperCLIP and language CLIP embeddings.

Algorithm 1 HyperCLIP Training
sample a batch of tasks Ti=1,...,N with loss functions LTi , training data Dtrain

i and text ti
define two N -sized arrays of d-dimensional embeddings T ∈ RN×d and H ∈ RN×d

for i = 1, . . . , N do
T [i] = CLIPT (ti) / ∥CLIPT (ti)∥
Fine-tune Wi: minW

∑
(x′,y′)∈Dtrain

i
LTi

(f(x′,W ), y′)
H[i] = CLIPH(Wi) / ∥CLIPH(Wi)∥

end for
loss =

(
Lcross-entropy(TH⊤) + Lcross-entropy(HT⊤)

)
/ 2

Update weights of CLIPH(.) using ∇loss

4.2 Classifier-Guided Meta-Learning

On their own, CLIP encoders are not capable of data generation. Recent popular image synthesis techniques,
however, use CLIP encoders or other classifiers to guide generation from pre-trained unconditional generative
models. Classifier guidance or CLIP guidance (Gal et al., 2021; Patashnik et al., 2021) use gradients with
respect to a classifier or CLIP encoder to traverse a generative model’s latent space.

In this work, we introduce HyperCLIP guidance, the first algorithm for classifier guidance in the meta-
learning setting (Figure 2.B). Given a previously unseen validation task Ti and an unconditional generative
hypernetwork model h(z, θ) = W , we use a trained HyperCLIP encoder CLIPH(W ) = e(H) to guide the
exploration of the hypernetwork’s latent space and find a set of base weights Wi with high zero-shot
performance for Ti. Specifically, as long as we are given a starting hypernetwork latent vector z0 and a
textual description ti of the task, we can update z0 with gradient descent over the guidance loss

Lg(z) = − CLIPH (h(z, θ))⊤ CLIPT (ti)
∥CLIPH (h(z, θ)) ∥∥CLIPT (ti)∥

+ λ∥z − z0∥, (4)

and then run the optimized latent vectors ẑi through the generative hypernetwork to find adapted zero-shot
base network weights h(ẑi, θ) = Ŵi that perform well for the task.
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5 HyperLDM: Task-conditional Diffusion of Hypernetwork Latents

Due to rapid innovation in the image synthesis community, simple CLIP guidance has been largely overcome
in favor of applying classifier guidance and classifier-free guidance during the sampling process of a Diffusion
Model (Dhariwal & Nichol, 2021; Ho & Salimans, 2021; Kim et al., 2022; Crowson, 2022; Nichol et al., 2022;
Rombach et al., 2022). To investigate whether these advances also apply to our meta-learning setting, we
introduce HyperLDM, a diffusion-based technique as an alternative to the previously introduced HyperCLIP
guidance.

In summary, our HyperLDM technique for network parameter generation consists of the following steps:

1. We train an unconditional generative hypernetwork h(z, θ) = W over a family of training tasks (as in
Section 3).

2. We train a conditional HyperLDM model, able to sample latent vectors ẑi for high-performing base
model neural networks, conditioned on the task embedding ei for a task Ti.

3. To further improve the generative quality of our HyperLDM model, we use Classifier-free Guidance
during conditional sampling.

5.1 (Latent) Diffusion Models

Denoising Diffusion Probabilistic Models (Sohl-Dickstein et al., 2015; Ho et al., 2020, DDPM) are a powerful
class of generative models designed to learn a data distribution p(x). They do so by learning the inverse of a
forward diffusion process in which samples x0 of the data distribution are slowly corrupted with additive
Gaussian noise over T steps with a variance schedule β1, . . . , βT , resulting in the Markov Chain

q(xt|xt−1) = N (xt;
√

1 − βtx
t−1, βtI) (5)

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1). (6)

A property of such a process is that we can directly sample each intermediate step from x0 as xt =√
ᾱtx

0 + (
√

1 − ᾱt)ϵ given ϵ ∼ N (0, I), αt = 1 − βt and ᾱt =
∏t
s=1 αt. Then, to learn the reverse process

pψ(xt−1|xt), we parametrize the timestep-dependent noise function ϵψ(xt, t) with a neural network and learn
it by optimizing a simplified version of the variational lower bound on p(x)

LDM(ψ) = Ex,ϵ∼N (0,1),t
[
∥ϵ− ϵψ(xt, t)∥2

2
]

. (7)

Sampling from the reverse process can then be done with

xt−1 = 1
√
αt

(
xt − βt√

1 − ᾱt
ϵψ(xt, t)

)
+ σtξ, (8)

with ξ ∼ N (0, I) and σt chosen between βt and βt/
√

1 − ᾱt. Sampling from the learned diffusion model can
be seen as an analog to Langevin Dynamics, a connection explicitly made in works exploring the diffusion
technique from the “score matching” perspective (Song & Ermon, 2019; Song et al., 2020).

In our meta-learning setting, we aim to train a diffusion model which generates adapted zero-shot base
network weights Ŵi that perform well for task Ti. Thus, our diffusion model has to be conditional on a
task embedding ei. Moreover, in order to speed up training and leverage our previously trained generative
hypernetwork h(z, θ), we define the diffusion process on latent vectors instead of doing so in weight space,
emulating the Latent Diffusion technique from Rombach et al. (2022).

We then propose a Hypernetwork Latent Diffusion Model (HyperLDM), which learns to sample from the
conditional distribution of fine-tuned latent vectors p(z0|ei) given a language CLIP embedding corresponding
to the task. The HyperLDM neural network fits the noise function ϵψ(zt, t, ei), and is learned by optimizing
the reweighted variational lower bound, which in this setting is

LLDM(ψ) = ETi,d(Wi),ϵ∼N (0,1),t
[
∥ϵ− ϵψ(zt, t, ei)∥2

2
]

. (9)
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5.2 Classifier-Free Guidance for Meta-Learning

To improve the quality of sampled networks, the classifier guidance technique presented in Section 4.2 can
be also combined together with diffusion models. The gradient of an auxiliary classifier (or CLIP encoder)
can be added during sampling to induce an effect similar to GAN truncation (Brock et al., 2018), producing
samples that are less diverse but of higher quality.

The classifier-free guidance technique (Ho & Salimans, 2021; Nichol et al., 2022) allows us to leverage a
conditional diffusion model to obtain the same effect as above, without the auxiliary classifier. To do so, we
train the conditional network ϵψ(zt, t, ei) to also model the unconditional case ϵψ(zt, t). One way of doing
this is with conditioning dropout, simply dropping the conditional input ei for a certain percentage of training
samples, and inputting zeros instead. We can then sample at each diffusion iteration with

ϵ̃ψ(zt, t, ei) = (1 − γ) ϵψ(zt, t, 0) + γϵψ(zt, t, ei). (10)

For γ = 0, this recovers the unconditional diffusion model, while for γ = 1 it recovers the standard task-
conditional model. For γ > 1, we instead obtain the classifier-free guidance effect, which we show results
in the sampling of latent vectors ẑi corresponding to higher-performing task-conditional network weights
h(ẑi, ψ) = Ŵi. We point to a more in-depth discussion on classifier-free guidance and its connection to score
matching in Appendix A.1.

6 Experimental Setup and Results

In this section, we demonstrate the competitiveness of our two approaches in zero-shot image classification
experiments against a series of traditional meta-learning techniques. Throughout our experiments, we fix the
choice of base network model f to a CLIP-Adapter model (see Appendix A.2), only varying the meta-learning
techniques employed to obtain adapted base model weights. The CLIP-Adapter base model makes use of
pre-trained CLIP encoders to obtain high base performance on image classification with textual labels while
maintaining a relatively small trainable parameter count. It should not be confused with the usage of CLIP
encoders to produce task embeddings, or to train HyperCLIP, all of which happens at the meta-level. Our
base model f effectively performs classification in the same way that CLIP (Radford et al., 2021) does, by
using natural language labels as opposed to a one-hot vector for classes, then encoding both image and
answers with CLIP encoders, and scoring each answer using a dot product between its embedding and the
image embedding.

6.1 The Meta-VQA Dataset

To evaluate the performance of our methods, we utilize a dataset that reflects the setting of meta-learning with
multi-modal task descriptors. Existing meta-learning benchmarks such as MiniImagenet (Ravi & Larochelle,
2016) or CIFAR-FS (Bertinetto et al., 2018) are unsuitable, as they are built for the traditional few-shot
learning setting, in which the task Ti is not associated with task descriptors but is meant to be inferred
through exposure to the support set Ds

i . We thus introduce our own Meta-VQA dataset, a modification
of the VQA v2.0 dataset (Goyal et al., 2017) for Visual-Question-Answering. The dataset is composed of
training and test tasks Ti, each associated with a natural language question ti and a mini image classification
dataset (xij , yij) ∈ Di. We refer to Appendix A.5 for a more in-depth discussion, and to Figure 4 for an
illustrative example of a task from the dataset.

6.2 Zero-Shot Task Adaptation Experiments

In Table 1 we show how our methods compare to a series of baselines when tested on the Meta-VQA dataset
in the zero-shot setting. For each training task Ti, the algorithms are given access to the full support and
query sets Ds

i , D
q
i , together with the question (task descriptor) ti. At test time, in the zero-shot setting, only

the task descriptors ti are given, and the algorithms are tasked with predicting the correct labels of images in
the query set Dq

i .
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Figure 4: Example classifica-
tion task from Meta-VQA,
adapted from VQA v2 (Goyal
et al., 2017). A task Ti is as-
sociated to a single question
ti and multiple image-answer
tuples (xij , yij).

Table 1: Zero-shot accuracy (mean ± s.d.) averaged over Meta-VQA test tasks. Results should be interpreted
as relative to a performance ceiling of 60.24% obtainable when task data is available (few-shot learning), and
with our fixed choice of base model (see Appendix A.8). The columns separate the setting in which only
half of task descriptors/questions are given (50% Q.), and that in which all of the task descriptors are given
(100% Q.). (* ours)

Method Zero-shot (50% Q.) Zero-Shot (100% Q.)
CLIP as Base Model 44.99
Uncond. Multitask 53.75 (± 0.36)
Uncond. MNet-MAML 53.04 (± 0.69)
Uncond. MNet-FOMAML 53.04 (± 0.42)
Uncond. HNet-MAML 53.37 (± 0.29)
Cond. Multitask 51.68 (± 0.33) 54.12 (± 0.80)
Cond. Multitask FiLM 51.60 (± 0.56) 53.84 (± 0.61)
Cond. HNet-MAML 51.54 (± 0.63) 53.02 (± 0.20)
* HNet + HyperCLIP guidance 53.51 (± 0.22) 53.98 (± 0.54)
* HVAE + HyperCLIP guidance 53.82 (± 0.07) 53.91 (± 0.08)
* HNet + HyperLDM γ = 1 53.66 (± 0.25) 54.06 (± 0.21)
* HNet + HyperLDM γ = 1.5 54.08 (± 0.11) 54.30 (± 0.27)
* HVAE + HyperLDM γ = 1 54.72 (± 0.23) 55.03 (± 0.32)
* HVAE + HyperLDM γ = 1.5 54.84 (± 0.24) 55.10 (± 0.08)

In addition, we also simulate a setting in which we possess a larger “unconditional” pre-training dataset. Our
two-phased approach, which separates generative model pre-training and guidance, benefits from unconditional
data: tasks without language descriptors can still be used to learn the unconditional HNet/HVAE model.
To test this, we conduct additional runs in which we train our model while only keeping a fraction of task
descriptors from the Meta-VQA dataset.

Using the original CLIP for zero-shot image classification (CLIP as Base Model) provides a 44.99%
floor for performance on Meta-VQA. All other techniques will use CLIP-Adapter as the base model, as
previously mentioned. We also obtained an approximate 60.24% performance ceiling from the best method
in the few-shot setting, in which models have also access to a data support set Ds

i for every test task (see
Appendix A.8). Our zero-shot techniques cannot surpass this ceiling while keeping the choice of base model
fixed. The zero-shot scores should then be judged within a range between 44.99% and 60.24% accuracy.

We then benchmark several unconditional and conditional methods, with only conditional methods having
access to language task descriptors. We apply MAML and its first-order variant FOMAML (Nichol et al.,
2018) directly to the base network (MNet-MAML, MNet-FOMAML), and to both an unconditional
hypernetwork (Uncond. HNet-MAML, as in Section 2.3) and a conditional one (Cond. HNet-MAML).
We also benchmark against standard multitask learning (Uncond. Multitask, Cond. Multitask) on the
base model without hypernetworks, and conditional multitask learning with the classic FiLM layer (Perez
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Figure 5: A. Zero-shot performance of HyperLDM (mean ± s.d.) over different classifier-free guidance
parameters γ. For γ = 0 we sample from an unconditional latent diffusion model. For γ = 1 we sample with
classic conditioning. For γ > 1, we are in the classifier-free guidance regime. B. Zero-shot performance of
HyperLDM (mean ± s.d.) against baselines in the setting where only a fraction of natural language task
labels are given.

et al., 2017) (Cond. Multitask FiLM). Note that the multitask approach, at least in this setting, leads
to better zero-shot models than MAML, which instead optimizes for few-shot performance. We refer to
Appendix A.2 and A.6 for more details on each algorithm.

We then test out two approaches, HyperCLIP guidance and HyperLDM, when trained on top of
either a hypernetwork or a VAE generator (Section 3, see also Appendix A.2 and A.7 for more detail).
HyperCLIP guidance allows for faster sampling than HyperLDM but is generally less performant. Still,
HyperCLIP guidance performs on par with or slighly improves upon all other zero-shot baselines except
for Cond. Multitask. The best-performing model for the zero-shot setting is HVAE + HyperLDM,
and specifically for classifier-free guidance with γ = 1.5. As illustrated in Figure 5.A, to further show the
effectiveness of the classifier-free guidance technique, we run a different experiment sweeping over several
candidate γ parameters to find that the optimum occurs for γ > 1. As shown in Figure 5.B, when training
our model while only keeping 50% or 10% of task descriptors, traditional Cond. Multitask learning
heavily overfits, while HyperLDM is almost not affected due to its two-phased training regime based on an
unconditional VAE. The gap between the multitask baseline and our HyperLDM technique is particularly
striking in this setting.

7 Related Work

Hypernetworks By introducing multiplicative interactions within neural networks (Jayakumar et al.,
2019), hypernetworks (Ha et al., 2016) have been shown to allow the modeling of diverse target network
weights in, e.g., continual learning, even in the compressive regime (von Oswald et al., 2021a; 2020) without
loss of performance. For a given supervised problem, hypernetworks have been used to model the complex
Bayesian posterior of the weights in conjunction with variational inference (Henning et al., 2018; Krueger
et al., 2018). Similar approaches have been used for continual learning (Henning et al., 2021). Another vein
of work consists in using hypernetworks to distill ensembles of diverse networks (Wang et al., 2018; Ratzlaff
& Fuxin, 2020; von Oswald et al., 2021a). Recent work also explored the properties of hypernetworks as
autoencoder generative models of network weights (Schürholt et al., 2022).

Meta Learning In the context of meta-learning, hypernetworks have been successfully used in combination
with popular gradient-based meta-learning methods (Finn et al., 2017; Zintgraf et al., 2019; Zhao et al.,
2020; Flennerhag et al., 2020). More generally, related works have shown the usefulness of learning a low
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dimensional manifold in which to perform task-specific gradient-based adaptation at meta test-time (Rusu
et al., 2018; von Oswald et al., 2021b; Lee & Choi, 2018), instead of directly adapting in weight space. Recent
works bypass the formal bi-level formulation of meta-learning (Brown et al., 2020) by, e.g., using transformers
to directly map the few-shot examples to the weights of the target network (Zhmoginov et al., 2022).

Generative Modeling and Classifier(-free) Guidance A plethora of techniques have been proposed
for the generation of samples from high-dimensional domains such as images, such as Generative Adversarial
Networks (Goodfellow et al., 2014; Brock et al., 2018, GANs) and Variational Autoencoders (Kingma &
Welling, 2014, VAEs). Denoising Diffusion Probabilistic Models (Sohl-Dickstein et al., 2015; Ho et al., 2020,
DDPM) overcome common issues in generative modeling using a simple likelihood-based reconstruction
loss for iterative denoising and have been shown to achieve state-of-the-art results in high-resolution image
generation (Dhariwal & Nichol, 2021; Rombach et al., 2022). Several techniques have been proposed for
effective conditional sampling in generative and diffusion models, such as classifier/CLIP guidance (Dhariwal
& Nichol, 2021; Gal et al., 2021; Patashnik et al., 2021) and classifier-free guidance (Ho & Salimans, 2021;
Crowson, 2022; Nichol et al., 2022). Diffusion models with classifier-free guidance have also been successfully
applied in non-visual domains, such as audio generation (Kim et al., 2022) and robotic planning (Janner
et al., 2022).

Zero-shot Learning There exists a large literature on zero-shot learning, including both established
benchmarks and well-known methods (Han et al., 2021; Su et al., 2022; Gupta et al., 2021). While these
zero-shot learning works consider the zero-shot performance on unseen class labels within a single classification
task, our setting considers that of the zero-shot performance where test tasks themselves are unseen, thus
raising the zero-shot problem to the task level.

8 Conclusion

In this work, we introduced a framework that re-interprets meta-learning as a multi-modal generative
modeling problem. Our HyperCLIP guidance and HyperLDM methods leverage this insight to generate
task-adapted neural network weights in a zero-shot manner given natural language instructions and constitute
the first application of the CLIP guidance and classifier-free guidance techniques from image generation to
the meta-learning domain. Our experiments show that our methods successfully make use of external task
descriptors to produce high-performance adapted networks in the zero-shot setting.
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A Appendix

A.1 Classifier-Free Guidance

We hereby provide a rationale for the use of classifier guidance and classifier-free guidance during diffusion
model sampling. As per the “score matching” interpretation of diffusion models, we assume that our
trained noise network approximates the score function of the true conditional latent distribution p(z|ei) as
ϵψ(zt, t, ei) ≈ −σt∇zt log p(zt|ei). For classifier guidance, we can perturb our diffusion sampling by adding
the gradient of the log-likelihood of our CLIP encoder pψ(ei|zt) to the diffusion score as follows

ϵ̃ψ(zt, t, ei) = ϵψ(zt, t, ei) − ησt∇zt log pψ(ei|zt) ≈ −σt∇zt

[
log p(zt|ei) + η log pψ(ei|zt)

]
. (11)

We can rewrite this as classifier guidance on the unconditional score ∇zt log p(zt) with

−σt∇zt

[
log p(zt) + γ log p(ei|zt)

]
with γ = 1 + η (12)

using Bayes’ rule, as log p(zt|ei) = log p(ei|zt) + log p(zt) − log p(ei), and thus ∇zt log p(zt|ei) =
∇zt log p(ei|zt) + ∇zt log p(zt).

For classifier-free guidance, we aim to perform the above sampling without access to a classifier, as long
we possess a conditional diffusion model ϵψ(zt, t, ei) that doubles as an unconditional model ϵψ(zt, t, 0), as
illustrated in Section 5.2.

Using Bayes’ rule again, we can see that ∇zt log p(ei|zt) = ∇zt log p(zt|ei) − ∇zt log p(zt). If we substitute
this into Eq. 12 we obtain

− σt∇zt

[
log p(zt) + γ

(
log p(zt|ei) − log p(zt)

)]
, (13)

− σt∇zt

[
(1 − γ) log p(zt) + γ log p(zt|ei)

]
, (14)

which can be implemented with our conditional network as

ϵ̃ψ(zt, t, ei) = (1 − γ) ϵψ(zt, t, 0) + γϵψ(zt, t, ei). (15)

A.2 Network architectures

Base Network (f) Our choice for a base model is a CLIP-Adapter (Gao et al., 2021), which consists of
a frozen CLIP image encoder (Radford et al., 2021) with added learned fully-connected layers refining the
output embedding. Specifically, we use the ViT-L/14@336px CLIP encoder type with an embedding size of
768, and for the adapter we use an MLP with one hidden layer of 256 units, which are followed by a rectified
linear activation, and a new linear output layer of size 768. The advantages of this model choice lie in its
combination of high base performance (due to pre-trained knowledge contained in the CLIP component) and
relatively small parameter count, enabling agile medium-small scale experiments. This base CLIP-Adapter
network purely works as a base model and is not to be confused with HyperCLIP, which is employed at the
meta-level. In Section 6.2, when benchmarking the base model alone in the zero-shot setting (CLIP as Base
Model), we drop the Adapter and use pre-trained zero-shot CLIP.

Hypernetwork (h) For the hypernetworks used in our baseline as well as the generative model, we use
an MLP with one hidden layer of 256 units, which are followed by a rectified linear activation. For the
unconditioned hypernetwork, the embedding to the hypernetwork is a vector of dimension 64, while for the
conditioned counterpart, the task embedding is used. In order to ensure that the generated weights are properly
normalized at initialization, we use the Kaiming initialization (He et al., 2015) for the hypernetwork weights,
initialize the embedding as a sample from a multivariate standard Gaussian distribution (for unconditioned
models), and use the NTK parametrization (Jacot et al., 2020) for the target network.
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Variational Autoencoder The variational autoencoder in our unconditioned generative model uses as
decoder an MLP of 2 hidden layers of size 512 and 256, each followed by the rectified linear non-linearity.
We chose 32 as the latent code dimension. We use the same architecture for the decoder, except for the
dimensionality of the 2 hidden layers being swapped. We use the Kaiming initialization (He et al., 2015) to
initialize the weight of both the encoder and decoder.

HyperCLIP We parametrize our HyperCLIP model as a fully-connected MLP with a single hidden layer
of dimension 256, taking as input the flattened weight of the base network and outputting the corresponding
CLIP encoding. We chose the tangent hyperbolic function as the activation function in the hidden layer.

HyperLDM While the original LDM makes use of a time-conditional UNet (Ronneberger et al., 2015)
to parametrize the noise network, we are unfortunately unable to make use of spatial information and
convolutions due to the non-spatial nature of our latent space. We parametrize our HyperLDM as a fully-
connected network with residual connections and squeeze-and-excitation layers (Hu et al., 2018). The time
index t is embedded into a vector with a 150-dimensional sinusoidal positional embedding and is concatenated
together with the task-conditional embedding ei at the input layer and at intermediate activations. Hidden
layer dimensions are 8192, 16384, and 8192.

A.3 Notes and Limitations

While optimal parameter counts for the task-conditional techniques vary between our techniques, as well
as between our techniques and the baselines, all of the investigated approaches ultimately produce adapted
weights for the same base network f , with the same architecture. The average performance of this base
network with this fixed architecture when adapted and deployed on each individual test task is what allows
us to fairly compare all meta-learning and multi-task algorithms. We acknowledge that, as a limitation of our
work, the comparisons hold up when comparing relatively small fixed base networks f , and our approach
might not be scalable to compete with massively pre-trained large-scale multi-task models. In any case, we
believe that the weight space generation of compact models can be useful in a variety of contexts, such as
when the adapted base model needs to be deployed in embedded systems and other domains with limited
compute resources. The scaling behavior of our techniques is still an open problem, which can be of interest
for future research.

A.4 Fairness and Bias

While our overall proposed methods belong to the realm of general-purpose techniques, their specific
application may inadvertently raise issues related to gender and racial bias. As our MetaVQA dataset
is a simple modification of VQA v2 (Goyal et al., 2017), it straightforwardly inherits gender and racial
bias problems that have been found to exist within this dataset (Hirota et al., 2022). For example, answer
distributions have been found to be different for the same question when the subject is a man or a woman.
Such imbalances will necessarily exactly transfer to our MetaVQA dataset. Moreover, question-answer pairs
have been found that express gender stereotypes. In any case, these problems are dataset-specific and can be
ameliorated by future work on the source material from which MetaVQA is constructed, or by taking gender
bias issues into account when constructing a new dataset from scratch.

A.5 The Meta-VQA Dataset

The original VQA problem is about choosing a suitable natural language answer yk when prompted with both
a natural language question tk and an image xk. Our observation is that the VQA problem can then easily
be reformulated as a meta-learning image classification problem with natural language task descriptions:
given question-image-answer triples (tk, xk, yk) ∈ D, we can group the data by unique questions ti (which
will serve as task descriptor), each of which can then be associated with supervised image classification tuples
(xij , yij) ∈ Di. To make sure the designed tasks are meaningful, we filter out question-answer pairs with
questions in a choice format, e.g., “A or B?” or "yes/no" answers. From the remaining questions, we keep the
ones that appear at least 20 times throughout the dataset, such that each task contains enough samples. In
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the end, our Meta-VQA dataset is composed of 1234 unique tasks (questions), split into 870 training tasks
and 373 test tasks, for a total of 104112 image-answer pairs. There are on average 9.13 answer choices per
question/task. The average size of the support set is 57.85 examples, while the average size of the query set
is 25.9 examples.

Figure 6: UMAP projection for CLIP embeddings of MetaVQA questions (using the ViT-L/14@336px CLIP
encoder). Clusters of similar questions exist in the dataset, similarly to how they exist in VQA v2.

A.6 Baseline methods

We detail an overview of the baseline methods we benchmark in table 2, together with algorithm tables
detailing each baseline method.

Training: The number of epochs each model is trained on, the learning rate lr of the optimization, as well
as the learning rate and number of steps of the adaptation algorithm used for each method can be found
in table 3. For all methods using an adaptation ATi , the dataset Di from a sampled task Ti is randomly
split into a support set Ds

i and a query set Dq
i during training. The support set is then used to perform the

adaptation, while the query set is used to compute the loss on which the meta-parameters are updated (see
Section 2.1). For baselines with no inner-loop adaptation ATi

, all the data Di from a sampled task Ti is used
in training. Unconditional methods do not have access to the task embedding ei, while conditional methods
do. When the percentage of available task descriptors is reduced, conditional baselines are trained only on
the tasks for which the descriptors are available, as they require such descriptors during training, unlike our
two-phased techniques.

Evaluation: For each held-out test task Ti from the Meta-VQA dataset, we perform a zero-shot model
evaluation on the fixed predefined query set Dq

i for the task. Zero-shot performance is evaluated before
applying any adaptation procedure ATi .
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Algorithm 2 Unconditional Multitask Training
Define the base network f with parameters W .
for epoch = 1, . . . , N do

Sample a training batch of image-answer pairs (xk, yk) from a mix of random training tasks Ti.
Update W with gradient descent computed with respect to the classification loss over the sampled

batch.
end for

Algorithm 3 Unconditional MNet-MAML Training
Define the base network f with parameters W .
for meta-epoch = 1, . . . , N do

Sample a training task Ti and data Di.
Randomly split Di into support set Ds

i and query set Dq
i .

Run inner-loop adaptation ATi using the support set Ds
i , fine-tuning W into task-adapted Wi = ATi(W ).

Use MAML gradient update to adapt W given the inner-loop adaptation.
end for

Algorithm 4 Unconditional HNet-MAML Training
Define the base network f with parameters W .
Define a hypernetwork h with meta-parameters θ, mapping a latent vector z0 to base network weights W .
for meta-epoch = 1, . . . , N do

Sample a training task Ti and data Di.
Randomly split Di into support set Ds

i and query set Dq
i .

Run inner-loop adaptation ATi using the support set Ds
i , fine-tuning z0 into task-adapted zi = ATi(z0).

Use MAML gradient update to adapt z0 and θ given the inner-loop adaptation.
end for

Algorithm 5 Conditional Multitask Training
Define the base network f with parameters W .
Define a hypernetwork h with meta-parameters θ, mapping the clip embedding ei of the language task
descriptor to base network weights Wi.
for epoch = 1, . . . , N do

Sample a training batch of task clip embedding, image and answer triples (ek, xk, yk) from a mix of
random training tasks Ti.

Update θ with gradient descent computed with respect to the classification loss over the sampled batch.
end for

Algorithm 6 Conditional Multitask FiLM Training
Define the base network f with parameters W .
Define a FiLM layer, mapping the clip embedding ei of the language task descriptor to modulation signals
for the hidden activation layer of f .
for meta-epoch = 1, . . . , N do

Sample a training batch of task clip embedding, image and answer triples (ek, xk, yk) from a mix of
random training tasks Ti.

Update θ with gradient descent computed with respect to the classification loss over the sampled batch.
end for
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Algorithm 7 Conditional HNet-MAML Training
Define the base network f with parameters W .
Define a hypernetwork h with meta-parameters θ, mapping the clip embedding ei of the language task
descriptor to base network weights Wi.
for meta-epoch = 1, . . . , N do

Sample a training task Ti, data Di and the clip embedding ei of the task descriptor.
Randomly split Di into support set Ds

i and query set Dq
i .

Run inner-loop adaptation ATi
using the support set Ds

i , fine-tuning ei into task-adapted ẽi = ATi
(ei).

Use MAML gradient update to adapt θ given the inner-loop adaptation.
end for

Table 2: Overview of the different methods trained on MetaVQA. The parameters are optimized via the
task loss evaluated on the output of the function, averaged over mini-batches of tasks. The adaptation ATi

implements a few-step gradient descent algorithm applied on the argument parameter, w.r.t the task loss
evaluated on the support set.

Method Function Parameters
Uncond. Multitask f(·,W ) W
Uncond. MNet-(FO)MAML f(·,ATi(W 0)) W 0

Uncond. HNet-MAML f(·, h(ATi
(z0), θ)) θ, z0

Cond. Multitask f(·, h(ei, θ)) θ
Cond. Multitask FiLM f(·, ei,W ) W
Cond. HNet-MAML f(·, h(ATi

(ei), θ)) θ

Table 3: Hyperparameters used for the baseline methods. All methods are trained with the Adam (Kingma &
Ba, 2017) optimizer, with a meta-batch size of 32 tasks. We use gradient norm clipping for all optimization,
with the maximum norm set to 10. Note that when the adaptation algorithm A has a range of possible steps,
the number of steps is sampled uniformly from the range for every adaptation.

Method epochs lr A-lr A-steps

Uncond. MNet-Multitask 300 0.0001 - -
Uncond. MNet-(FO)MAML 500 0.00003 0.01 0-10
Uncond. HNet-MAML 100 0.00003 0.1 0-10
Cond. Multitask 60 0.0001 - -
Cond. Multitask FiLM 300 0.0001 - -
Cond. HNet-MAML 200 0.00001 0.1 0-10

A.7 Guidance Models

A.7.1 Generative hypernetwork

To enable our guidance methods, we need to first train a generative hypernetwork h as in Section 3, either in
the form of an Unconditional Hypernetwork, or of a Hypernetwork VAE:

• For HNet + HyperCLIP guidance and HNet + HyperLDM, we meta-learned an unconditional
hypernetwork with the exact same hyperparameters as the baseline Uncond. HNet-MAML, and
used it as the generative hypernetwork.
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• For HVAE + HyperCLIP guidance and HVAE + HyperLDM, we trained a VAE on samples
of fine-tuned network weights Wi using the base network architecture specified in Appendix A.2.
We detail the procedure in Algorithm 8 and, as training samples Wi, we use adaptations over the
base network (initialized from a learned Uncond. MNet-MAML initialization), using 50-step
adaptation ATi

with learning rate 0.01 on randomly split support sets. We trained the VAE for 2000
epochs where each epoch is a single pass through all the tasks, with the Adam (Kingma & Ba, 2017)
optimizer and 0.0001 learning rate and batch size 32. We used gradient norm clipping independently
for both the encoder and decoder, with the maximum norm capped at 1000.

Algorithm 8 HVAE Training
Define the base network f with parameters W .
Define an encoder z = d(W,ω) with parameters ω and a hypernetwork decoder W = h(z, θ) with parameters
θ.
Obtain a previously learned base network initialization W 0 according to Uncond. MNet-MAML
(Algorithm 7).
for epoch = 1, . . . , N do

Create an empty batch B = {}.
for b = 1, . . . ,M do

Sample a training task Ti and data Di.
Randomly split Di into support set Ds

i and query set Dq
i .

Run inner-loop adaptation ATi
using the support set Ds

i , fine-tuning Wi = ATi
(W 0).

Add the fine-tuned weights to the batch: B = B ∪ {Wi}.
end for
Train the HVAE encoder and decoder using the VAE loss to reconstruct the weight batch B.

end for

A.7.2 HyperCLIP
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Figure 7: A comprehensive diagram of the steps involved for training and evaluating the HyperCLIP guidance
technique. (1) Training an unconditional HVAE over the training tasks. (2) Training the HyperCLIP model
according to the contrastive procedure described in Algorithm 1. (3) Exploring the latent space of the HVAE
with gradient descent over the HyperCLIP guidance loss, as described in Section 4.2.

Training To train the HyperCLIP model, we need samples of fine-tuned network weights Wi. We use
adaptations from Uncond. HNet-MAML, using 50-step adaptation ATi

with a learning rate 0.1, on
randomly split support sets. We trained our HyperCLIP model for 600 epochs with the Adam (Kingma &
Ba, 2017) optimizer, 0.0003 learning rate, and batch size 64 for all our experiments.
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Guidance We use 10 steps guidance with λ = 0.01 and learning rate 0.1, to perform guidance within either
the HNet or HVAE latent spaces.

Evaluation For each held-out test task Ti from the Meta-VQA dataset, we perform a zero-shot model
evaluation on the fixed predefined query set Dq

i for the task. Zero-shot performance is evaluated on the
output of the generative hypernetwork h after applying latent space guidance.

Algorithm 9 HNet + HyperCLIP Training
Learn an unconditional hypernetwork h(z0, θ) with the Uncond. HNet-MAML procedure from Algorithm
7.
Learn HyperCLIP network CLIPH(W ) using the HyperCLIP training procedure from Algorithm 1. For
sampling fine-tuned Wi, fine-tune the base network on training tasks.

Algorithm 10 HVAE + HyperCLIP Training
Learn an unconditional hypernetwork h(z, θ), as the decoder of a HVAE (Algorithm 8).
Learn HyperCLIP network CLIPH(W ) using the HyperCLIP training procedure from Algorithm 1. For
sampling fine-tuned Wi, fine-tune the base network on training tasks.

Algorithm 11 HyperCLIP guidance (Inference time)
Define a learned unconditional hypernetwork h(z, θ), as either a HNet h(z0, θ) (Algorithm 7) or the decoder
of a HVAE (Algorithm 8).
Define a learned HyperCLIP network CLIPH(W ).
Define an unseen task Ti with natural language task descriptor ti.
Randomly sample z ∼ N (0, I) if using the decoder of a HVAE, or set z = z0 where z0 is the meta-learned
embedding initialization of the Hnet.
Optimize z with gradient descent over Lguidance(z) (Eq. 4), obtaining guided zi.
Obtain guided base weights Wi = h(zi, θ).
Use adapted base network f with weights Wi to classify examples from the unseen task Ti.

A.7.3 HyperLDM

Training Similarly to HyperCLIP, to train HyperLDM we need samples of fine tuned network weights Wi,
for which we use adaptations from Uncond. HNet-MAML, using 50-step adaptation ATi with learning
rate 0.1, on randomly split support sets. We parametrize the diffusion process with a linear noise schedule, β
starting at 0.0001 and ending at 0.06, and 350 diffusion timesteps. For all our experiments, we train the
HyperLDM for 1000 epochs with the Adam optimizer, 0.00025 learning rate, and 128 epochs.

Evaluation Evaluation is performed as for HyperCLIP guidance, except for the fact that adaptation is
performed natively through sampling from the learned reversed diffusion process, with parameters derived
from the chosen β schedule. The guidance parameter γ > 0 can be tuned during inference to accentuate the
effect of classifier-free guidance.

Algorithm 12 HNet + HyperLDM Training
Learn an unconditional hypernetwork h(z0, θ) with the Uncond. HNet-MAML procedure from Algorithm
7.
Learn the HyperLDM network ϵψ(zt, t, ei) using the HyperLDM training procedure, optimizing reconstruc-
tion of z0

i with loss from Eq. 9. For sampling fine-tuned zi, fine-tune the base network on training tasks,
then encode the weights using the HNet.

22



Published in Transactions on Machine Learning Research (08/2023)

zi

h fw

xi
j

w

1 Hypernet

VAE

2

3 HyperLDM Sampling

yi
j

dfw

xi
j

yi
j

w

zi
0 zi

1 zi
T

...

HyperLDM Training

+Gaussian noise

zi
t

ei
LDM

CLIPT
Task
Desc.

train to inverse noise

eiCLIPT
Task
Desc.

zi
T-1

ei
LDM

zi
T

zi
t+1

zi
T-2

ei
LDM ...

zi
0

zi
0

h fw

xi
j

yi
j

w

Decode final
weights

Figure 8: A comprehensive diagram of the steps involved for training and evaluating the HyperLDM model.
(1) Training an unconditional HVAE over the training tasks. (2) Training the HyperLDM model as a
conditional reversed diffusion process as described in Section 5.1. (3) Sampling from the conditional diffusion
model.

Algorithm 13 HVAE + HyperLDM Training
Learn an unconditional hypernetwork h(z, θ), as the decoder of a HVAE (Algorithm 8).
Learn the HyperLDM network ϵψ(zt, t, ei) using the HyperLDM training procedure, optimizing reconstruc-
tion of z0

i with loss from Eq. 9. For sampling fine-tuned zi, fine-tune the base network on training tasks,
then encode the weights using the HVAE.

Algorithm 14 HyperLDM Inference
Define a learned unconditional hypernetwork h(z, θ), as either a HNet h(z0, θ) (Algorithm 7) or the decoder
of a HVAE (Algorithm 8).
Define a learned HyperLDM network ϵψ(zt, t, ei).
Define an unseen task Ti with natural language task descriptor ti, with clip embedding ei.
Randomly sample z ∼ N (0, I).
Iteratively modify z with diffusion sampling using the learned ϵψ network, obtaining guided zi.
Obtain guided base weights Wi = h(zi, θ).
Use adapted base network f with weights Wi to classify examples from the unseen task Ti.

Table 4: Few-Shot learning accuracy averaged over Meta-VQA test tasks. (* ours)

Method Few-Shot
CLIP as Base Model 54.93 (± 0.11)
Uncond. Multitask 55.53 (± 0.40)
Uncond. MNet-MAML 60.24 (± 0.84)
Uncond. MNet-FOMAML 60.03 (± 0.48)
Uncond. HNet-MAML 58.70 (± 0.10)
Cond. Multitask 59.46 (± 0.31)
Cond. HNet-MAML 59.48 (± 0.03)
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A.8 Few-Shot Learning

For completeness, we include in Table 4 the results for few-shot learning on the test split of Meta-VQA. Our
technique, unlike classic MAML, does not optimize specifically for the few-shot learning setting. Instead, the
few-shot learning results are meant to contextualize performance gains in the zero-shot setting: zero-shot
performance gains should be interpreted as relative to the few-shot accuracy ceiling of 60.24%, the maximum
attained with our fixed choice of the base model.

For few-shot learning at test time, all adaptation is performed on the support set of the test tasks. For
MAML baselines, we keep the same adaptation-time learning rate as during training, and we always adapt
for 50 steps. For each multitask baseline, we use the same adaptation scheme (steps, learning rate, adapting
parameters) as their MAML counterpart.
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