
Bellman Diffusion Models for Offline Reinforcement
Learning

Liam Schramm
Department of Computer Science

Rutgers Universty
New Brunswick, NJ

liam.schramm@rutgers.edu

Abdeslam Boularias
Department of Computer Science

Rutgers Universty
New Brunswick, NJ

boularias@gmail.com

Abstract

The state occupancy measure and successor state measure are important theoreti-
cal tools in reinforcement learning that represent the distribution of future states.
However, while these tools see extensive use in theory and theoretically-motivated
algorithms, they have not seen significant use in practical settings because existing
algorithms for learning SOM and SSM are high-variance or unstable in practice.
To address this, we explore using diffusion models as a representation for the
state successor measure. We find that enforcing the Bellman flow constraints on
a diffusion model leads to a temporal difference update on the predicted noise,
similar to the standard TD-learning update on the predicted reward. As a result,
our method has the expressive power of a diffusion model, and a low variance that
is comparable to that of TD-learning. To demonstrate this method’s practicality,
we propose a simple reinforcement learning algorithm based on regularizing the
learned SSM. We test the proposed method on an array of offline RL problems,
and find it has the highest average performance of all methods in the literature, as
well as achieving state-of-the-art performance on several environments.

1 Introduction

The state occupancy measure (SOM) and successor state measure (SSM) are common objects of
study in reinforcement learning (RL). A common statement of the objective is to find a policy that
induces the SOM with the highest expected reward [13, 12, 15, 14, 16]. The SOM has also received
considerable attention in the RL theory community, as a number of provably efficient exploration
schemes revolve around regularizing the SOM [2, 11, 23]. The successor state measure (SSM) is
a closely related concept, which describes the distribution over future states, given that the agent is
currently at state s and takes action a.

These tools have been of particular interest in offline RL, where a central problem is keeping the
future state distribution of a policy within the support of the dataset. For this reason, a large number
of works have formulated the learning problem as an attempt to imitate the state distribution of the
dataset [12, 14, 7]. However, it is difficult to implement this expression of the problem as a learning
objective directly, for a number of reasons. If we learn a generative model of the state distribution,
it is not clear how to extract the optimal policy from the model. Learning the probability of a given

18th European Workshop on Reinforcement Learning (EWRL 2025).

state by regression is challenging, because the learned function does not typically integrate to 1
and so is not a valid probability distribution. For this reason, most other works are forced to use a
heavy set of mathematical tricks, based on Fenchel convex dual functions for example, to arrive at
a learnable objective. This adds a great deal of technical overhead when adapting the problem to
new settings [14, 17]. Additionally, these dual formulations struggle to match the performance of
the primal formulations, when primal formulations are possible.

We propose Bellman Diffusion Models (BDM), the first SSM estimator that meets the following
desideratum.

1. The proposed SSM estimator is off-policy, so it can be learned for arbitrary policies offline.
2. The proposed SSM estimator is generative, so it can be sampled from.
3. An upper bound on the KL divergence between the proposed SSM estimator and arbitrary

continuous distributions is easy to calculate.

The combination of these three factors means that it can be calculated and used as part of a regu-
larization term for the primal RL problem, without needing to derive a Fenchel dual formulation,
which considerably simplifies its use. We also theoretically analyze this approach, and provide
similar convergence guarantees to those that exist for deep Q-learning algorithms.

We present our algorithm for learning the Bellman Diffusion Model (BDM). We then additionally
propose an offline RL algorithm called ReBRAC with State Behavior Cloning (ReBRAC-SBC).
ReBRAC-SBC starts with ReBRAC (A variant of TD3-BC based on TD3 + a behavior cloning
term), then learns a Bellman Diffusion Model and uses it to regularize the divergence between the
SSM of the policy and the future trajectory of the state. This effectively encourages the agent to
clone the state distribution as well as the action distribution, preventing distribution shift. We find
that this method achieves state-of-the-art results on several offline RL tasks and also has the highest
average performance of any method in the literature. To summarize, our contributions are as follows:

1. We present Bellman Diffusion Models (BDM), a successor state measure estimator that
makes it possible to solve the simpler primal formulation of offline RL problems, instead
of the more challenging dual formulation

2. We show that BDMs have the correct distribution as a fixed point of their update rule, which
is the same guarantee given for common deep value-learning algorithms

3. We propose an offline RL algorithms based on regularizing the successor state measure,
and show it achieves state of the art results.

In addition to our empirical results, we hope that this work lays the foundation for future work based
on explicit regularization of the successor state measure and helps to bridge the gap between more
traditional RL algorithms and works focused on state occupancy.

2 Background

Diffusion models are a form of generative model that has shown significant success in image gener-
ation [8]. In our work, we are primarily concerned with the loss function of diffusion models, and
how it can be used to derive a Bellman update. For this reason, we begin with a review of diffusion
models and the derivation of the standard diffusion model loss. Diffusion models are trained using a
forward process and a backward process. In the forward process, noise is gradually added to a data
point until only noise remains, and the data point is distributed as a multivariate unit Gaussian. If
the noise is added successively over K steps, then this produces a sequence of increasingly random
points from x0 (a random point from the dataset D) to xK . Let D be a dataset and x0 be a data point
in D. The probability of a sequence of noised points x0:K is then

q(x0:K) = q(x0)

K∏
i=1

q(xi|xi−1, x0),

q(x0) is defined to be 1
|D| for each point in D and 0 for all other x0. For all other time steps, the

forward process probabilities are

q(xi|xi−1) = N (
√

1− βixi−1, βiI),

2

where βi is the forward variance at the ith step. An advantage of the use of Gaussian noise is that
it allows a closed form solution for the distribution after i steps, because the sum of all of additive
Gaussian noises up to step i is also Gaussian. If we define αi = 1− βi and ᾱi =

∏i
j=0 αj , then

q(xi|x0) = N (
√
ᾱix0, (1− ᾱi)I)

In the reverse process, a neural network parameterized by weights θ outputs a Gaussian distribution
with mean ϵθ, predicting the noise that was added during the forward process. The backward process
samples a predicted noise from this distribution and this noise is subtracted from the data point. This
process repeats for the same number of steps as the forward process. The probability of a sequence
of points x0:K in the reverse diffusion process is

p(x0:K |θ) = p(xK)

K∏
i=1

p(xi−1|xi, θ).

The diffusion model is trained to minimize the evidence lower bound. DDPM derives the following
loss as an upper bound to the negative log probability of the data [8].1

Ex∼D[−log(pθ(x))] ≤ (K − 1)Exi

[
1

2β2
i

||µ̃(xi, x0)− µθ(xi, i)||2
]

This can be reparameterized as follows, so that the neural network outputs ϵθ, an estimate of the
noise ϵ added to the original sample.

Ex∼D[−log(pθ(x))] ≤ (K − 1)Ei,x0,ϵ

[
1

2αi(1− ᾱi)
||ϵ− ϵθ(

√
ᾱix0 +

√
1− ᾱiϵ, i)||2

]

3 Related work

Diffusion models. Diffusion models have seen significant success as a class of generative models for
image synthesis [8, 4]. More recently, there has been a growing interest in using diffusion models for
imitation learning and reinforcement learning, especially to represent policies. Diffusion planners
propose a model in which denoising is analogous to planning, and perform trajectory optimization by
denoising [9]. Diffusion Policies extend this approach to behavior cloning [1]. Diffusion Q-learning
proposes using diffusion models as an expressive class of policies for offline learning [21].

Learned successor state measures. Successor representations learn the distribution of future states,
given the current state and action [3]. γ-models generalize this idea to continuous state distributions
by learning a generative representation of future states [10]. Our method differs from γ-models in
that γ-models only permit a low-variance score matching loss under special circumstances, when
the log probability of the future state distribution can be directly calculated under the model, such as
normalizing flows, and the environment dynamics are deterministic. By contrast, our method per-
mits this kind of low-variance backup works for stochastic environments and for diffusion models,
which are much more expressive than normalizing flows.

In contemporaneous work, [5] describe a similar learning rule which they call TD2 −DD. They
evaluate this rule for future state prediction, but do not explore its application to offline RL or try
regularizing this distribution.

Successor state measure and state occupancy measure in imitation learning and offline re-
inforcement learning. GAIL frames the problem of imitation learning as a problem of state-
occupancy matching. It then solves this problem by learning a cost function that maximally sep-
arates the real data from the policy data. Minimizing this cost causes the policy to imitate the
expert [7]. Unlike some other methods, GAIL is online and assumes that the agent has access to the
environment. Another approach to state occupancy matching in imitation learning and offline rein-
forcement learning is the DICE family of algorithms. AlgaeDICE poses the offline reinforcement

1Unlike DDPM, we assume the forward and backward process variances are the same.

3

learning problem as finding the state occupancy measure with the highest expected reward [17]. It
solves this by first applying a Fenchel transform, and then solving the dual problem. In practice, this
results in a value estimation problem, with weighted behavior cloning for the policy. SMODICE
takes a similar approach to offline imitation learning, applying a Fenchel transform, learning a value
function, and using the value function to produce a weighted behavior cloning method [14]

4 Derivation

We derive a temporal difference (TD) update for diffusion models representing the successor state
measure. Just as Q-learning enables off-policy training of the value function, this update rule makes
it possible to learn the successor measure of arbitrary policies from a fixed data set.

Our derivation consists of two main steps. First, we find an upper bound for the KL divergence
between two diffusion models. This result may also be of independent interest. And second, we
derive an update rule by minimizing the KL divergence between the successor state measure and its
Bellman update, analogous to minimizing the Bellman error in value learning.

4.1 KL Divergence between Diffusion Models

Lemma. Let q and p be K-step diffusion models with noise schedule βi, parameterized by neural
networks with outputs ϵq and ϵp, respectively. Let qi and pi be the distribution of the samples
generated by the first K − i steps of the forward process of q and p, respectively. Then

KL(q0||p0) ≤ (K − 1)Ei∼[1,K],xi∼qi

[
1

2αi(1− ᾱi)
||ϵq(xi, i)− ϵp(xi, i)||2

]
Proof. By Jensen’s inequality,

KL(q0||p0) ≤ KL(q0:K ||p0:K)

Now recall the chain rule for KL divergences of joint distributions,

KL(q0:K ||p0:K) = KL(q(xK)||p(xK))︸ ︷︷ ︸
=0

+(T − 1)Ei∼[1,K],xi∼qi [KL(q(xi−1|xi)||p(xi−1|xi))]

= (K − 1)Ei∼[1,K],xi∼qi [KL(q(xi−1|xi)||p(xi−1|xi))]

Since q(xi−1|xi) and p(xi−1|xi) are both normal distributions with variance β2
i and means µq and

µp respectively, this expression has the closed form solution

(K − 1)Ei∼[1,K],xi∼qi

[
1

2β2
i

||µq(xi, i)− µp(xi, i)||2
]
.

Using the reparameterization from DDPM, we may rewrite this in terms of networks that predict the
expected noise [8].

(K − 1)Ei∼[1,K],xi∼qi

[
1

2αi(1− ᾱi)
||ϵq(xi, i)− ϵp(xi, i)||2

]

4.2 Bellman Update

Let M be a Markov Decision Process with state space S, action space A, transition distribution T ,
reward function R, and discount rate γ.

We consider the successor measure of a state and action dπ(sf |s, a), where sf is some future state.
This describes the probability that an agent following the policy π will stop at the state sf if it
begins in state s, takes action a, and has a (1 − γ) chance of stopping after taking each action.
The action-conditioned value function Qπ(s, a) is the expected reward of the distribution dπ(·|s, a),

4

1
1−γEsf∼dπ(·|s,a) [R(sf)]. The successor measure of a given policy is the unique probability distri-
bution satisfying the Bellman flow constraints. These constraints are as follows:

dπ(sf |s, a) = (1− γ)T (s′ = sf |s, a) + γEa′∼π(s′),s′∼T (·|s,a)[d
π(sf |s′, a′)]

We aim to learn a diffusion model dπθ (sf |s, a), which is the distribution obtained by performing
the forward diffusion process using the network ϵθ(sf , s, a, i). We do this by deriving an upper
bound on the KL divergence between the left and right-hand sides of the Bellman flow equation, and
then minimizing it by gradient descent. As is standard for deep RL, we will use a target network
ϵtarget(sf , s, a, i) for the right hand side of the Bellman equation.

KLBellman = KL(dπθ (sf |s, a)||(1− γ)T (s′ = sf |s, a) + γEa′∼π(s′),s′∼T (·|s,a)[d
π
target(sf |s′, a′)])

First, we note that the KL divergence is convex in both arguments. Then by Jensen’s inequality,
KLBellman = KL(dπθ (sf |s, a)||(1− γ)T (s′ = sf |s, a) + γEa′∼π(s′),s′∼T (·|s,a)[d

π
target(sf |s′, a′)])

≤ (1− γ)KL(dπθ (sf |s, a)||T (s′ = sf |s, a)) + γKL(dπθ (sf |s, a)||Ea′∼π(s′),s′∼T (·|s,a)[d
π
target(sf |s′, a′)])

≤ (1− γ)KL(dπθ (sf |s, a)||T (s′ = sf |s, a)) + γEa′∼π(s′),s′∼T (·|s,a)[KL(dπθ (sf |s, a)||dπtarget(sf |s′, a′))].

Now, recall that for two distributions p and q, KL(p||q) = −Ex∼q[log(p(x))]−H(q). Then,
KLBellman ≤(1− γ)Es′∼T (·|s,a)[−log(dπθ (s′|s, a))]

+ γEa′∼π(s′),s′∼T (·|s,a)[KL(dπθ (sf |s, a)||dπtarget(sf |s′, a′))]−H(T (·|s, a))

We can now apply the standard diffusion inequality to the first term, and Lemma 1 to the second.
Let s′i =

√
ᾱis

′ +
√
1− ᾱiϵ and sfi =

√
ᾱisf +

√
1− ᾱiϵ.

KLBellman ≤Ei,ϵ,s′∼T (·|s,a)[
1

2αi(1− ᾱi)
[(1− γ)||ϵ− ϵθ(s

′
i, s, a, i)||2

+ γEa′∼π(s′),sf∼dπ
target(·|s,a)[||ϵθ(sfi , s, a, i)− ϵtarget(sfi , s

′, a′, i)||2]]]−H(T (·|s, a))

Since−H(T (·|s, a)) does not depend on the parameters of the network, it will not affect the gradient
and can be ignored. By dropping this term, we obtain the loss for the Bellman Diffusion Model.

LBDM =Ei,ϵ,s′∼T (·|s,a)[
1

2αi(1− ᾱi)
[(1− γ) ||ϵ− ϵθ(s

′
i, i)||2︸ ︷︷ ︸

Standard diffusion loss

+ γ Ea′∼π(s′),sf∼dπ
target(·|s,a)[||ϵθ(sfi , s, ai)− ϵtarget(sfi , s

′, a′, i)||2]︸ ︷︷ ︸
Bellman backup loss

]]

The final loss contains two terms: a normal diffusion loss which attempts to make the network
predict s′, and a Bellman consistency term that attempts to make states that are probable under
dπtarget(·|s′, a′) also be probable under dπθ (·|s, a)

As with DDPM [8], we note that the coefficient 1
2αi(1−ᾱi)

does not affect the fixed point of the
gradient update, so it may be removed during training without changing the optimal solution.

This learning rule offers two main advantages compared to directly using the cross entropy from the
future state distribution. Firstly, the bound from Lemma 1 is lower variance than directly estimating
the cross entropy. In the standard DDPM loss, the target value for a given xi depends on the original
unnoised value x0. Since different values of x0 can noise to the same xi, this means the target values
for xi are random. By contrast, the target values of the loss derived in Lemma 1 are deterministic
and depend only on xi. Since we set γ = 0.99 in our experiments, this means that we eliminate
about 99% of the target value variance from our training objective. This is effectively the same
tradeoff made in using TD learning for the value function – we exchange an unbiased, high-variance
estimator for a potentially biased but low-variance estimator. Given the success of TD learning in
deep RL, we should expect this to be a very good tradeoff.

Second, the policy from which a′ is sampled does not need to be the same policy used to gather
the dataset. This means we can train the Bellman Diffusion Model off-policy by using the target
network to generate samples, and then using the above loss to learn to generate those samples.

5

4.3 Algorithm

We now present an algorithm for learning dπθ .

Algorithm 1 Calculate dπ Loss

Have: Networks ϵθ, ϵtarget number of diffusion steps K, policy π;
Input: (s, a, s′)
Sample a′ ∼ π(s′)
Sample i ∼ Uniform([1,K])
Sample ϵ ∼ N (0, 1)
sf ∼ dπtarget(·|s′, a′)
s′i =

√
ᾱis

′ +
√
1− ᾱiϵ

sfi =
√
ᾱisf +

√
1− ᾱiϵ

L1 = ||ϵ− ϵθ(s
′
i, s, a, i)||2

L2 = ||ϵtarget(sfi , s′, a′, i)− ϵθ(sfi , s, a, i)||2
L = (1− γ)L1 + γL2

return L;

This is a simple change to the standard diffusion loss. Once we sample a state, action, next state
tuple, we additionally find the next action a′, and use it to sample a future state sf from our target
network. Then, we noise both the next state s′ and the future state sf . We find the squared error for
both, using the normal diffusion target ϵ for the network at s′i and the TD target ϵtarget(sfi , s

′, a′, i)
for the network at s′fi . Finally, we weight the losses by γ and 1 − γ respectively, and return their
sum.

5 Theoretical analysis

A number of questions can now be asked about the proposed method, but perhaps the most pressing
is whether this learns the correct distribution of future states. Since this method is related to Deep
TD, full guarantees are not generally possible, as this family of methods can diverge in some cases
[22]. However, it is possible to show that the optimal dπθ is a fixed point of the update operator,
which is the same guarantee typically given for deep TD algorithms. We present the proof of this
below.

Because we update ϵθ by gradient descent, there is a fixed point when the gradient is zero. Thus, to
show that the fixed point of a Bellman diffusion model is the same as the normal diffusion model,
we begin with the normal diffusion model, and show that if the gradient of the standard diffusion
loss is zero and dπθ = dπtarget = dπ , then the gradient of the Bellman diffusion loss is also zero.

Proposition. Let LDDPM = Ex0∼dπ [||x0−xθ(xi, s
′, π(s′), i)||2]. Suppose dπθ = dπtarget = dπ and

xtarget(s, a, i) = E[x0|xi, si, ai, i]. Then ∇θLDDPM = 0 if and only∇θLBDM = 0.

Proof:

For convenience, we use the form of both losses that predicts x0, rather than the version that predicts
ϵ. The proof is possible either way, but this form avoids needless calculation.

It is clear from the standard DDPM loss that the loss-minimizing value for the xθ is E[x0|xi, s, a, i].

Observe that

6

LDDPM (i, s, a) = Ex0∼dπ(·|s,a)[||x0 − xθ(xi, s, a, i)||2]
= Ex0∼dπ(·|s,a)[||x0 − xθ(xi, s, a, i)||2]]
= (1− γ)Ex0∼T (|s,a)[||x0 − xθ(xi, s, a, i)||2]
+ γEx0∼dπ

θ (·|s′,a′),a′∼π(s′),s′∼T (|s,a)[||x0 − xθ(xi, s, a, i)||2]
(Total Expectation) = (1− γ)Ex0∼T (|s,a)[||x0 − xθ(xi, s, a, i)||2]

+ γExi [Ex0 [||x0 − xθ(xi, s, a, i)||2|xi, s
′, a′, i]]

(Bias-variance decomposition) = (1− γ)Ex0∼T (|s,a)[||x0 − xθ(xi, s, a, i)||2]
+ γExi

[||E[x0|xi, s
′, a′, i]− xθ(xi, s, a, i)||2 + V ar(x0|xi, s

′, a′, i)]

(Optimality of xtarget) = (1− γ)Ex0∼T (|s,a)[||x0 − xθ(xi, s, a, i)||2]
+ γExi

[||xtarget(xi, s
′, a′, i)− xθ(xi, s, a, i)||2 + V ar(x0|xi, s

′, a′, i)]

= LBDM + γV ar(x0|xi, s
′, a′, i)

As we can see, the DDPM loss decomposes to the Bellman Diffusion loss, plus a variance term
when xtarget(s, a, i) = E[x0|xi, si, ai, i]. We can see then that not only does BDM have the correct
value as a fixed point, but it is a lower-variance estimator than standard DDPM.

6 Offline Reinforcement Learning Algorithm

A central problem in offline RL is that, although it is possible to imitate the expert policy on the
dataset, errors take the policy away from the dataset to new states where it cannot recover. Typically,
it is difficult to control this future behavior because it is difficult to predict the future state occupancy
of the agent.

We propose a simple solution: rather than performing behavior cloning on the actions alone, we
perform behavior cloning on the actions and future states. Intuitively, this ensures that the future
distribution of states remains close to the dataset, minimizing distribution shift. We do this by
adding the cross entropy of the actual future state distribution and the Bellman Diffusion Model as
a regularization term on the loss. Since the BDM depends on the action given by the policy, this
loss can be backpropagated through the BDM to π. In Appendix A, we show that this regularization
scheme can be viewed as an upper bound to the KL divergence between the data distribution and the
policy’s state-action occupancy measure for ergodic MDPs.

We base our algorithm on ReBRAC, a state of the art method in offline reinforcement learning [20].
We propose modifying ReBRAC to include this imitation loss, in place of the standard behavior
cloning loss to encourage the policy to stay within the support of the dataset. We call this algorithm
ReBRAC-SBC. This method can also be adapted for imitation learning by simply removing the
value term and focusing on the imitation loss alone.

While other methods use a similar objective function, either in imitation learning or in offline rein-
forcement learning, it has not previously been possible to directly optimize this objective. Instead,
other methods take the convex or Fenchel dual of the problem and optimize that, which typically
results in a point-reweighting objective [7, 14, 16, 12, 15]. Unfortunately, many methods derived
by this method, such as the DICE family of methods, fail to achieve results competitive with stan-
dard actor critic methods [18]. Our method allows us to control the distribution shift encountered in
offline RL without abandoning the more performant primal problem.

7 Experiments

To evaluate ReBRAC-SBC, we compare its performance against ReBRAC with the standard behav-
ior cloning loss. We focus on three D4RL tasks: hopper, halfcheetah, and walker2d [6]. We evaluate
all methods on four datasets for each task.

1. One million data points from a partially-trained RL agent (medium)

7

Algorithm 2 ReBRAC-SBC policy loss

Have: Network ϵθ, state space with dimension dS , diffusion generation algorithm G, diffusion
model network ϵθ, Q-networks Qθ1 and Qθ2 , imitation loss weights ws(for states) and wa (for
actions)
Input: Training batch {(s, a, s′)}
{Calculate action imitation loss}
La = ||a−µθ(s)||

2σ2

{Calculate state imitation loss}
Sample future visited state sf from future trajectory of s
Sample i ∼ Uniform([1,K]), where K is the number of diffusion steps
Sample ϵ ∼ N (0, IdS

)
sfi ←

√
ᾱisf +

√
1− ᾱiϵ

aπ ∼ N (µθ(s), σ
2IdA

)
ηi = β2

i αi(1− αi)
Ls ← ηi||ϵ− ϵθ(sfi , s, aπ, i)||2
{Calculate value loss}
LQ ← min (Qθ2(s, aπ), Qθ2(s, aπ))
return L = LQ + wsLs + waLa;

Table 1: D4RL performance. Reported values are the last-iterate return averaged across all training
seeds. The± symbol represents the standard deviation across seeds. All results other than ReBRAC-
SBC are taken from [20] .

Table 2: D4RL performance
Task Name TD3+BC IQL CQL SAC-RND ReBRAC ReBRAC-SBC

halfcheetah-medium 54.7 ± 0.9 50.0 ± 0.2 46.9 ± 0.4 66.4 ± 1.4 65.6 ± 1.0 65.0 ± 0.8
halfcheetah-expert 93.4 ± 0.4 95.5 ± 2.1 97.3 ± 1.1 102.6 ± 4.2 105.9 ± 1.7 105.9 ± 0.7
halfcheetah-medium-expert 89.1± 5.6 92.7 ± 2.8 95.0 ± 1.4 108.1± 1.5 101.1 ± 5.2 105.8 ± 1.8
halfcheetah-medium-replay 45.0 ± 1.1 42.1 ± 3.6 45.3 ± 0.3 51.2 ± 3.2 51.0 ± 0.8 54.7 ± 0.5
hopper-medium 60.9 ± 7.6 65.2 ± 4.2 61.9 ± 6.4 91.1 ± 10.1 102.0 ± 1.0 101.6 ± 0.3
hopper-expert 109.6 ± 3.7 108.8 ± 3.1 106.5 ± 9.1 109.8 ± 0.5 100.1 ± 8.3 111.5 ± 0.7
hopper-medium-expert 87.8 ± 10.5 85.5 ± 29.7 96.9 ± 15.1 109.8 ± 0.6 107.0 ± 6.4 107.3 ± 2.7
hopper-medium-replay 55.1 ± 31.7 89.6 ± 13.2 86.3 ± 7.3 97.2 ± 9.0 98.1 ± 5.3 101.1 ± 1.2
walker2d-medium 77.7 ± 2.9 80.7 ± 3.4 79.5 ± 3.2 92.7 ± 1.2 82.5 ± 3.6 88.7 ± 1.5
walker2d-expert 110.0 ± 0.6 96.9 ± 32.3 109.3 ± 0.1 104.5 ± 22.8 112.3 ± 0.2 111.8 ± 0.1
walker2d-medium-expert 110.4 ± 0.6 112.1 ± 0.5 109.1 ± 0.2 104.6 ± 11.2 111.6 ± 0.3 110.7 ± 0.3
walker2d-medium-replay 68.0 ± 19.2 75.4 ± 9.3 76.8 ± 10.0 89.4 ± 3.8 77.3 ± 7.9 87.9 ± 3

Average 80.1 82.9 84.2 94.0 92.9 96.0

2. The full medium dataset as well as one million datapoints from the agent’s replay buffer
(medium-replay)

3. One million datapoints from a fully-trained RL agent (expert)

4. Union of the medium and expert datasets (medium-expert)

All methods are trained for 106 steps. For the most part, hyperparameters are taken from ReBRAC.
However, the action behavior cloning weight, the state behavior cloning weight, and the actor and
diffusion model learning rates were tuned. We found that for some environments, adding state
behavior cloning allowed us to reduce the action behavior cloning weight, giving the model greater
freedom to pursue high rewards. Additionally, we found that the state behavior cloning loss could
still be too high variance for the policy, so we experimented with decreasing the actor learning rate
when this led to instability.

We find that ReBRAC-SBC outperforms all baselines on three environments (halfcheetah-medium-
replay, hopper-expert, and hopper-medium-replay) and ties with another method for a fourth
(halfcheetah-expert). For another five environments, ReBRAC-SBC has the second highest expected
reward of the group. As a result, ReBRAC-SBC has the highest average reward of the methods. Ad-

8

ditionally, ReBRAC-SBC’s reward has a substantially lower variance, which may indicate greater
stability as a result of better regularization.

8 Conclusion

Optimization of the state occupancy measure and successor state measure are topics of great interest
to offline reinforcement learning research, because they offer a valuable theoretical framework for
controlling distribution shift. However, methods based on this approach have typically been held
back by the difficulty of estimating these distributions. We propose a low-variance off-policy TD-
based learning algorithm for estimating the state successor measure, and show that it can be used
to regularize existing offline RL algorithms. This makes it possible to solve the primal problem by
directly optimizing the state occupancy measure, instead of resorting to the Fenchel dual problem
as many other methods do. This approach opens up a number of new possibilities for both online
and offline reinforcement learning, as state occupancy formulations can more easily be proposed,
experimented with, and combined with existing RL methods. Unlike GAIL or the DICE family of
algorithms, the method we propose can be used, modified, and extended without lengthy derivation
or extensive knowledge of convex analysis techiniques like convex duality [7, 17, 14]. Moreover, we
find that the proposed algorithm has strong performance on the D4RL offline reinforcement learning
dataset, and achieves new records on multiple environments.

References
[1] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:

Visuomotor policy learning via action diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

[2] C. Dann, C.-Y. Wei, and J. Zimmert. Best of both worlds policy optimization, 2023.

[3] P. Dayan. Improving generalization for temporal difference learning: The successor represen-
tation. Neural Computation, 5(4):613–624, 1993.

[4] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis, 2021.

[5] J. Farebrother, M. Pirotta, A. Tirinzoni, R. Munos, A. Lazaric, and A. Touati. Temporal differ-
ence flows, 2025.

[6] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning, 2021.

[7] J. Ho and S. Ermon. Generative adversarial imitation learning, 2016.

[8] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models, 2020.

[9] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis, 2022.

[10] M. Janner, I. Mordatch, and S. Levine. Generative temporal difference learning for infinite-
horizon prediction, 2021.

[11] T. Jin, J. Liu, and H. Luo. Improved best-of-both-worlds guarantees for multi-armed bandits:
Ftrl with general regularizers and multiple optimal arms, 2023.

[12] J. Lee, W. Jeon, B.-J. Lee, J. Pineau, and K.-E. Kim. Optidice: Offline policy optimization via
stationary distribution correction estimation, 2021.

[13] L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and R. Salakhutdinov. Efficient explo-
ration via state marginal matching, 2020.

[14] Y. J. Ma, A. Shen, D. Jayaraman, and O. Bastani. Versatile offline imitation from observations
and examples via regularized state-occupancy matching, 2022.

[15] Y. J. Ma, J. Yan, D. Jayaraman, and O. Bastani. How far i’ll go: Offline goal-conditioned
reinforcement learning via f -advantage regression, 2022.

9

[16] O. Nachum and B. Dai. Reinforcement learning via fenchel-rockafellar duality, 2020.

[17] O. Nachum, B. Dai, I. Kostrikov, Y. Chow, L. Li, and D. Schuurmans. Algaedice: Policy
gradient from arbitrary experience, 2019.

[18] S. Park, K. Frans, S. Levine, and A. Kumar. Is value learning really the main bottleneck in
offline rl?, 2024.

[19] Y. Sun. Offlinerl-kit: An elegant pytorch offline reinforcement learning library. https://
github.com/yihaosun1124/OfflineRL-Kit, 2023.

[20] D. Tarasov, V. Kurenkov, A. Nikulin, and S. Kolesnikov. Revisiting the minimalist approach
to offline reinforcement learning, 2023.

[21] Z. Wang, J. J. Hunt, and M. Zhou. Diffusion policies as an expressive policy class for offline
reinforcement learning, 2023.

[22] R. J. Williams and L. C. Baird. Analysis of some incremental variants of policy iteration: First
steps toward understanding actor-cr. 1993.

[23] J. Zimmert and Y. Seldin. Tsallis-inf: An optimal algorithm for stochastic and adversarial
bandits, 2022.

10

A Additional Proofs

One contribution of this work is bridging the gap between traditional policy gradient methods and
DICE methods, which use a state occupancy objective. Here, we explore how our SSM regular-
ization term can be seen as an upper bound on the divergence between the dataset and the state
occupancy.

To do this, we begin by formally defining the state-action occupancy measure. Let ρπ be the state
occupancy measure of policy π, defined as

ρπ(sf) = Ea∼π(·|s)s∼q[d
π(sf |s, a)]

where q is the distribution of initial states. With a slight abuse of notation, we define

ρπ(s, a) = π(a|s)ρπ(s)

.

We then present an upper bound on the divergence between the data set and the state occupancy
measure.

KL(D(s, a)||ρπ(s, a)) = Es∼D[KL(D(a|s)||π(a|s))] +KL(D(s)||ρπ(s))

= Es∼D[KL(D(a|s)||π(a|s))] +KL(

∫
s0

D(sf |s0)q(s0)||
∫
s0

dπ(sf |s0)q(s0))]

(Jensen’s Inquality) ≤ Es∼D[KL(D(a|s)||π(a|s))] + Es0∼q[KL(D(sf |s0)||dπ(sf |s0))]
(Jensen’s Inquality) ≤ Es∼D[KL(D(a|s)||π(a|s))] + Es0∼q,a0∼π(·|s0)[KL(D(sf |s0)||dπ(sf |s0, a0))]

In the case that the MDP is ergodic, this can be simplified further. If this is the case, then the
occupancy measure for a sufficiently large γ approaches the same distribution regardless of the
starting state [?]. As a result, the above inequality is approximately true for any q, because the
choice of q does not affect the distribution of D or dπ . We choose q = D. Then,

KL(D(s, a)||ρπ(s, a)) ⪅ Es∼D[KL(D(a|s)||π(a|s))] + Es∼D,a∼π(·|s)[KL(D(sf |s)||dπ(sf |s, a))]
(1)

The left term is a standard behavior cloning loss. Recall that TD3 and ReBRAC both learn Gaussian
policies with a fixed variance σ2 and mean µθ [? 20]. Then if the action space has dimension dA,
we have

KL(D(a|s)||π(a|s)) = Ea∼D(·|s)[− log(π(a|s))]−H(D(a|s))

= Ea∼D(·|s)

[
||a− µθ(s)||2

2σ2

]
+ dA log(σ) +

dA
2

log(π)−H(D(a|s))

≤ Ea∼D(·|s)

[
||a− µθ(s)||2

2σ2

]
+ dA log(σ) +

dA
2

log(π)

We can see that this is identical to the TD3 behavior cloning loss, up to constant terms. 2

The right term of 1 is effectively a behavior cloning term on the state distribution. The KL di-
vergence for this right term can easily be upper bounded using the standard diffusion model loss.

2Note that the dA
2

log(π) term is referring to the mathematical constant π = 3.14..., not the policy π. This
term does not depend on the policy

11

As previously described, we learn a Bellman Diffusion Model to represent dπ(sf |s, a). We then
minimize the imitation loss, backpropagating through dπ(sf |s, a) to train the policy.

Combining these two results, we find

KL(D(s, a)||ρπ(s, a)) ⪅ Es∼D[Ea∼D(a|s)

[
||a− µθ(s)||2

2σ2

]
+ (K − 1)Ei,ϵ,sf∼D(sf |s),a∼π(·|s)[ηi||ϵ− ϵθ(sfi , s, aπ, i)||2]] + C

where C is a constant that does not depend on the policy.

This is the regularization loss used by ReBRAC-SBM, up to constants scaling the balance between
the action and state regularization losses.

B Experiment Details

All experiments were performed on an internal cluster, using a mixture of RTX A4500 and GeForce
RTX A4500 GPUs. Each training process was assigned 1 GPU, and took between 12 and 24 hours
to complete, requiring approximately 900 GPU hours total across all runs. Hyperparameter tuning
took a similar amount of compute. Additionally, several previous iterations of the algorithm were
tested, but the compute cost of these experiments was not tracked.

Our implementation was based on OfflineRLKit, and evaluated on the D4RL datasets [19, 6].

For the most part, we reused the hyperparameters from ReBRAC, which were found to work well.
We tuned ws, the state regularization weight, wa, the action regularization weight, and the actor
learning rate. We found that it was necessary to tune the actor and diffusion learning rates because
the gradient from the diffusion model is stochastic, unlike the gradient from the Q function and the
behavior cloning loss. Reducing the learning rate made convergence much more stable.

In order to reduce the number of hyperparameter search runs, we first turned off the value function
training, and did a grid search over ws, and the actor and diffusion model learning rates. The idea
was to first find the optimal mix of state and action regularization, and the learning rate needed for
that mix to be stable. Then, we searched for the optimal weighting of the value function, given a
fixed mixture of state and action regularization. Since we searched three values each for lr and state
regularization and five values for Q value weight, we reduced the number of runs needed from 3*3*5
= 45, to 3*3 + 5 = 14, a nearly 70% reduction.

We refer to ReBRAC’s parameters in the following way:

w0
a : Action regularization coefficient used by ReBRAC

lr0π : Actor learning rate used by ReBRAC

lr0Q : Critic learning rate used by ReBRAC

The values we searched for in the initial imitation learning runs were parameterized as follows:

ws/a : Relative state regularization coeffiecient

ω : Actor and diffusion model learning rate reduction factor

wa = w0
a : Our action regularization coefficient

ws = ws/aw
0
a : Our state regularization coefficient

lrπ =
lr0π
ω

: Our actor learning rate

lrπd =
lr0Q
ω

: Our diffusion model learning rate

12

Our hyperparameter search used values [1,10,100] for both ws/a and lr reduce. For ws/a, we found
that values less than 1 were small enough to have effectively no impact. For ω, we only explored
values greater than 1 because the use of the diffusion model increased variance, sometimes requiring
lower learning rates to maintain stability. Convergence was fast enough that we never needed to
increase learning rates.

For the offline RL portion, we used the following parameterizations:

wq : Regularization reduction factor

wa =
w0

a

wq
: Our action regularization coefficient

ws =
ws/aw

0
a

wq
: Our state regularization coefficient

We searched the values [1,2,4,10,100] for wq .

We found the following values to be optimal:

Table 3: Tuned hyperparameters for ReBRAC-SBC
Task Name ws/a ω wQ

halfcheetah-medium 100 10 1
halfcheetah-expert 1 1 1
halfcheetah-medium-expert 1 1 1
halfcheetah-medium-replay 10 10 10
hopper-medium 100 100 2
hopper-expert 1 10 1
hopper-medium-expert 100 100 1
hopper-medium-replay 100 100 10
walker2d-medium 1 100 2
walker2d-expert 10 100 1
walker2d-medium-expert 1 1 1
walker2d-medium-replay 100 100 4

In terms of the original hyperparameters, these reduce to:

Table 4: Final hyperparameters for ReBRAC-SBC
Task Name wa ws lrπ lrdiffusion

halfcheetah-medium 0.001 0.1 0.0001 0.0001
halfcheetah-expert 0.01 0.01 0.001 0.001
halfcheetah-medium-expert 0.01 0.01 0.001 0.001
halfcheetah-medium-replay 0.001 0.01 0.0001 0.0001
hopper-medium 0.005 0.5 1e-05 1e-05
hopper-expert 0.1 0.1 0.0001 0.0001
hopper-medium-expert 0.1 10.0 1e-05 1e-05
hopper-medium-replay 0.005 0.5 1e-05 1e-05
walker2d-medium 0.025 0.025 1e-05 1e-05
walker2d-expert 0.01 0.1 1e-05 1e-05
walker2d-medium-expert 0.01 0.01 0.001 0.001
walker2d-medium-replay 0.0125 1.25 1e-05 1e-05

C Additional Experimental Results

In addition to our offline learning experiments, we also tried removing the rewards and Q func-
tion, and comparing State Behavior Cloning (SBC) alone against ordinary behavior cloning and

13

SMODICE, an offline imitation learning algorithm [14]. We find that SBC shows strong perfor-
mance, outperforming BC and SMODICE on five of the twelve environments. Interestingly, SBC
appears to be more stable than SMODICE, which collapsed and achieved near-zero reward on 3
of the 4 walker environments, and even crashed on walker2d-medium-expert from numerical over-
flows.

Table 5: Imitation learning experimental results on the D4RL dataset. Reported values are the last-
iterate return averaged across all training seeds. The ± symbol represents the standard deviation
across seeds.

Task Name BC SMODICE SBC
halfcheetah-medium 42.51 ± 0.38 55.99 ± 4.19 42.21 ± 0.37
halfcheetah-expert 93.17 ± 0.11 94.10 ± 1.05 93.05 ± 0.20
halfcheetah-medium-expert 66.83 ± 7.08 81.96 ± 5.22 69.07 ± 7.88
halfcheetah-medium-replay 33.97 ± 4.84 88.45 ± 2.73 36.67 ± 2.06

hopper-medium 53.00 ± 0.57 57.01 ± 3.88 65.40 ± 7.88
hopper-expert 109.46 ± 1.80 111.12 ± 0.20 111.46 ± 0.51
hopper-medium-expert 56.20 ± 12.79 61.70 ± 7.91 86.10 ± 16.55
hopper-medium-replay 19.61 ± 2.63 69.18 ± 24.71 43.93 ± 25.58

walker2d-medium 71.72 ± 4.46 0.30 ± 0.53 73.73 ± 3.61
walker2d-expert 108.51 ± 0.43 107.62 ± 0.34 108.51 ± 0.06
walker2d-medium-expert 88.38 ± 14.41 crashed 95.55 ± 13.15
walker2d-medium-replay 33.20 ± 12.52 4.46 ± 4.97 33.11 ± 14.71

For these experiments, we used the same hyperparameters as the offline learning experiments, but
omitted the Q function from the policy loss. For SMODICE, we used the author’s original imple-
mentation with its original hyperparameters.

14

