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Abstract

Diffusion language models, especially masked discrete diffusion models, have
achieved great success recently. While there are some theoretical and primary
empirical results showing the advantages of latent reasoning with looped trans-
formers or continuous chain-of-thoughts, continuous diffusion models typically
underperform their discrete counterparts. In this paper, we argue that diffusion
language models do not necessarily need to be in the discrete space. In partic-
ular, we prove that continuous diffusion models have stronger expressivity than
discrete diffusions and looped transformers. We attribute the contradiction between
the theoretical expressiveness and empirical performance to their practical train-
ability: while continuous diffusion provides intermediate supervision that looped
transformers lack, they introduce additional difficulty decoding tokens into the
discrete token space from the continuous representation space. We therefore pro-
pose Coevolutionary Continuous Discrete Diffusion (CCDD), which defines a joint
multimodal diffusion process on the union of a continuous representation space
and a discrete token space, leveraging a single model to simultaneously denoise
in the joint space. By combining two modalities, CCDD is expressive with rich
semantics in the latent space, as well as good trainability and sample quality with
the help of explicit discrete tokens. We also propose effective architectures and
advanced training/sampling techniques for CCDD, which reveals strong empirical
performance in extensive language modeling experiments on real-world tasks.

1 Introduction

Recent years have seen great success of autoregressive (AR) large language models (LLMs) [Achiam
et al., 2023, Yang et al., 2024b, Liu et al., 2024], especially their significant improvement in complex
reasoning [Guo et al., 2025, Comanici et al., 2025]. However, the discrete and left-to-right nature
of these models still poses some fundamental difficulties. It is a known result in computation
complexity theory that the expressivity of transformers – the architectural foundations of modern
LLMs, are restricted in the class TC0 even with logarithmic Chain-of-Thought (CoT) steps [Merrill
and Sabharwal, 2025]. This suggests that transformers cannot accurately address problems outside
the TC0 class such as recognizing formal language which measures state tracking capabilities, and
graph connectivity that captures multistep reasoning ability, under standard complexity conjectures.
Empirically, even state-of-the-art LLMs often struggle in a wide range of complex tasks requiring
strong planning, parallel searching, and backtracking capabilities, such as Sudoku. To overcome these
challenges, researchers have been working to develop new language modeling paradigms.
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Figure 1: Comparison of theoretical expressiveness and practical trainability of: discrete diffusion
(left), continuous diffusion with optional continuous noise (middle), and looped transformer (right).

On the one hand, LLMs are shown to be benefit from latent reasoning through various ways, including
looped transformers (LT) [Giannou et al., 2023] or continuous CoT [Hao et al., 2024]. One line of
research on looped transformers or universal transformers [Dehghani et al., 2018a] theoretically
demonstrates that when a block of middle layers of a fixed transformer model is repeated for a variable
number of times, its expressivity can be significantly improved [Saunshi et al., 2025, Merrill and
Sabharwal, 2025, Fan et al., 2024]. For example, Merrill and Sabharwal [2025] proves that a looped
transformer with depth Θ(logn) are in TC1 and thus solve regular language recognition and graph
connectivity problems with input context length n, which are intractable by LLMs with logarithmic
CoT steps. Intuitively, LTs do not decode latents into discrete tokens until the last loop time, enabling
implicit conduction of complex reasoning such as planning and searching in the continuous latent
space and efficient storage of these meaningful intermediate information efficiently for later loops.
Taking advantage of a powerful latent space, scaling the looped depth of the model (even with uniform
parameters) can be a more effective way for test-time scaling compared to increasing the length of
reasoning steps with explicit CoT in the discrete, finite token space. Unfortunately, despite their
strong theoretical expressive power, the LT scheme is not widely adopted in mainstream LLMs due
to the limited practical performance. We attribute this to the lack of supervision on intermediate
states – looping is an inference-time trick and the intermediate rollouts are not supervised at all in
training. Therefore, when applied to practical LLMs at scale, looped transformers could encounter
severe out-of-distribution (OOD) issues.

On the other hand, diffusion language models (DLMs) [Gong et al., 2024, Nie et al., 2025, Ye et al.,
2025] have received considerable attention from researchers in recent years. The non-autoregressive
nature of DLMs enables any-order generation, self-correction, and parallel decoding capabilities,
leading to potentials in stronger expressiveness and superior generation efficiency. State-of-the-art
DLMs outperform LLMs in complex or structured reasoning tasks such as Sudoku [Kim et al., 2025]
and coding [Gong et al., 2025]. There are two main families of DLMs: continuous diffusion models
(CDMs) based on SDE or PF–ODE [Gong et al., 2022, Li et al., 2022, Sahoo et al., 2025], and
discrete diffusion models (DDMs) based on the continuous-time Markov chain (CTMC) [Austin
et al., 2021, Lou et al., 2023, Sahoo et al., 2024, Shi et al., 2024]. Continuous DLMs, performing
iterative denoising in either embedding space or probability space, emerged earlier but fell far behind
AR LLMs in practical performance, until the recent success of discrete DLMs. Intriguingly, discrete
diffusions with masked noises tend to outperform those with uniform noises [Amin et al., 2025], at
the cost of losing self-correction capabilities. Analogously to LLMs, discrete DLMs also reason in
the explicit token space and may partially lose information of previous decoding steps.

In this paper, we conceptually connect all the aforementioned models and algorithms, and propose a
new language modeling paradigm that combines the advantages of previous methods. In Section 3, we
systematically compare these models from the perspective of theoretical expressivity and practical
trainability (Figure 1). We first show in Section 3.1 that: (i) continuous DLMs are more powerful
than their discrete counterparts; (ii) continuous diffusion generalizes looped transformer, which is
already partially more expressive than CoT. However, previous heuristics in performance seem to
contradict the theoretical expressiveness, which we try to elucidate in Section 3.2 from the perspective
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of practical trainability. We argue that looped transformers face OOD issues in inference due to lack
of intermediate supervision, while diffusion models supervise states in the whole probability path.
We then attribute the insufficient trainability of continuous DLMs to the large decision space, the
deficient and low-quality embeddings, and combinatorial complexity in decoding latents to tokens.

Based on these insights, in Section 4 we propose a new language modeling paradigm termed
Coevolutionary Continuous Discrete Diffusion (CCDD), which combines the advantages of both
continuous and discrete diffusion while eliminating the shortcomings via their complementarity.
CCDD defines a joint diffusion process on both the discrete state space through CTMC and the
continuous probability or embedding space through SDE (Section 4.1). In the reverse process, one
denoising model taking the partially noised tokens of both modalities as inputs learns to predict
the data distribution in both spaces. Inspired by DiT [Peebles and Xie, 2023], MM-DiT [Esser
et al., 2024], and MoE [Shazeer et al., 2017], we design several architectures for joint denoising
with various parameter and computation efficiency (Section 4.2). In implementation, we adopt
the contextualized embedding space from concurrent pretrained text embedding models such as
Qwen3-Embedding [Zhang et al., 2025], which provides rich semnatics modeling joint distributions
and injects knowledge from pretrained LMs via implicit representation guidance. CCDD further
benefits from advanced training techniques such as asynchronous noises, and could adaptively balance
between sampling quality (through inference-time scaling with SDE) and efficiency (through few-step
sampling with ODE), thanks to improved sampling algorithms including representation classifier-
free guidance (CFG) and consistency-based decoding. To summarize, CCDD features both the
strong expressive power of continuous diffusion and the good trainability of discrete diffusion. We
experimentally validate the effectiveness of CCDD through extensive text modeling tasks, showing
that CCDD reduces over 25% compared with baselines of the same scale on LM1B dataset.

2 Preliminary

Notation. Let Ω = {1, . . . , V } be a vocabulary (|Ω| = V ) and L the sequence length. Suppose we
have the discrete sequence data x0 ∈ ΩL. A fixed encoder E maps tokens to continuous embeddings
z0 = E(x0) ∈ RL×d, which can be either one-hot on the simplex ∆V−1 := {p ∈ RV

≥0 : 1⊤p = 1}
(namely d = V ) or representations of any pretrained model / LLM – hence, we may use the
terms “logits” and “representations” interchangeably. We write t ∈ [0, 1] for continuous time or
t ∈ {1, . . . , T} for discrete steps, where the latter can also be converted to discretized t̃ ∈ [0, 1].
Denote corrupted variables as zt and xt, and in Gaussian settings ϵt ∼ N (0, I) denotes the standard
noise used to synthesize zt. A single time–conditioned network fθ(·, t, cond) (typically a transformer-
based model) is called at every step/instant, where cond is the optional condition (often omitted).

Continuous diffusion. The forward/noising dynamics for continuous data zt ∈ RL×d are

dzt = at(zt) dt + gt dWt, (1)

with drift at(·), scalar (or matrix) diffusion gt≥ 0, and Wiener process Wt. The marginals qt(zt)
satisfy the Fokker–Planck PDE ∂tqt = −∇· (atqt) + 1

2g
2
t∆qt. A standard instance is the variance

preserving (VP) schedule: dzt = − 1
2βtzt dt+

√
βt dWt, yielding a closed-form forward marginals:

zt = αt z0 + σt ϵt, ϵt ∼ N (0, I), αt = exp
(
− 1

2

∫ t

0

βτ dτ
)
, σt =

√
1− α2

t . (2)

The reverse process is based on the reverse SDE in equation 3 or the PF–ODE in equation 4:

dzt =
(
at(zt)− g2t sθ(zt, t)

)
dt + gt dW̄t, (3)

żt = at(zt)− 1
2g

2
t sθ(zt, t). (4)

where sθ(·, t) ≈ ∇z log qt(·) is produced by fθ (up to a known scaling). Under equation 2, we have
closed form sampling update rules as in DDPM [Ho et al., 2020] and DDIM [Song et al., 2020]. In
practice, common equivalent heads include ϵ-pred: ϵθ(zt, t), x0-pred: ẑ0,θ(zt, t), v-pred: vθ(zt, t),
which are equivalent up to linear transformations. A typical VP training loss with ϵ-prediction and
time-dependent weight λcont(t) is

Lcont = Et,z0,ϵ

[
λcont(t) ∥ϵ− ϵθ(αtz0 + σtϵ, t)∥2

]
. (5)
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Discrete diffusion. For a single token (L = 1 for notation), let qt ∈ ∆V−1 be the column vector
of token marginals. In the forward process, a time-inhomogeneous continuous-time Markov chain
(CTMC) with generator Gt ∈ RV×V evolves as follows (T the normalizing constant):

q̇t = Gt qt, Ps→t = T exp
( ∫ t

s

Gτ dτ
)
, qt = P0→tq0. (6)

Some common choices of Gt include: (i) Uniform noise (USDM), where state j jumps to any i ̸= j
uniformly at rate ut, resulting in (Gt)ij = ut

V−1 (i ̸= j), (Gt)jj = −ut; (ii) Masked (absorbing)
noise, where we Augment Ω with a mask state [MASK]. For any j ̸= [MASK], it jumps to the mask state
with rate ut, leading to (Gt)[MASK],j = ut, (Gt)jj = −ut, (Gt)·,[MASK] = 0. The marginal of both
processes can be expressed by an interpolation between the clean data and a noise distribution πt,

qt(xt|x0) = Cat(ηtx0 + (1− ηt)πt) (7)

where πt = m the one-hot vector for [MASK] for the absorbing noise, and πt =
1
V 1 for the uniform

noise. For sequences of length L, corruptions are exerted independently per-position.

In the reverse process, the denoising network predicts the clean data distribution xθ := π̂θ(x0|xt, t) =
softmax(ℓθ(xt, t)) where ℓθ the output logits. A Bayesian form of posterior is

pθ(xs|xt) = qt|s(xt|xs)
qs(xs|π̂θ)

qt(xt|π̂θ)
(8)

The training loss is usually calculated as with weights λdisc(t, xt, x0) derived from Rao-Blackwellized
likelihood bounds and would be zero for unmasked token in masked diffusion:

Ldisc = Et,x0

[
− λdisc(t, xt, x0) log⟨π̂θ(xt, t), x0⟩

]
(9)

Looped transformer. In the standard setting of looped transformer, a single n-layer transformer
(Φθ) block with shared parameters θ is rolled out adaptive T steps. Let hk ∈ RL×d be the hidden
state after k steps.

hk+1 = Φθ

(
hk

)
, k = 0, . . . , T − 1. (10)

The transformer layers can be either encoder-based (bidirectional attention) or decoder-based (causal
attention) with residual connections. A readout R(hT ) : RL×d → RL×V yields logits ℓθ,T = R(hT )
and token samples xT ∼ Cat(softmax(ℓθ,T )). Traditionally, looped transformers receive supervision
on the final outputs using standard cross-entropy loss.

3 Theoretical Expressivity and Practical Trainability Analysis

3.1 Theoretical Expressivity Analysis

In this subsection, we analyze the theoretical expressivity of CDM, DDM and LT. Throughout
the paper, for expressiveness comparison we assume the same architectures and parameter counts
in networks with finite capacity as in common practice. By default, we consider Transformers
(TF) [Vaswani et al., 2017] and Diffusion Transformers (DiT) [Peebles and Xie, 2023], up to slight
differences in the first encoding layer and the last decoding layer. Proofs are available in Appendix B.

Continuous diffusion dominates discrete diffusion. We first compare the families of trajectory
laws and terminal distributions induced by CDM on Z := RL×d and DDM on X := ΩL embedded
into Z via a bijective encoder E . Denote the distribution induced from the reverse SDE (equation 3)
as pt(zt) ∈ P(Z), and pt(xt) ∈ P(X ) produced by the posterior of CTMC (equation 8).
Definition 1 (Trajectory families and embedded discrete family). Define the trajectory family
of continuous diffusion Fcont(θ), discrete diffusion Fdisc(θ), and the embedded discrete family
F̃disc(θ) ⊂ P(Z) (the pushforward by the fixed encoder E) as follows:

Fcont(θ) :=
{
{pt(zt)}t∈[0,1]

}
, Fdisc(θ) :=

{
{pt(xt)}t∈[0,1]

}
, F̃disc(θ) := E♯Fdisc(θ) (11)

Theorem 1 (Strict trajectory-level gap). At any fixed t ∈ [0, 1], we have the following strict inclusion

F̃disc(θ) ⊊ Fcont(θ) ⊆ P(Z) (12)
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The key insight here is the fact that the input of denoising network in DDM is always discrete and
supported on a finite set (Lemma 3), while the Fokker-Planck equation in CDM would yield absolutely
continuous marginals (Lemma 4). The inclusion holds for the entire sampling trajectories so as the
terminal distributions. Intuitively, considering both two models operating on the probability simplex –
analogously for other embedding spaces given the encoder bijective. The “logits→sample→embed”
operation in discrete diffusion sampling loop quantizes the cross-step memory into a single token per
step, losing access to the full logits. However, the “logits→logits" procedure in continuous diffusion
propagates a continuous state, retaining fine-grained uncertainty and historical memory. The discrete
scheme imposes a hard finite-support bottleneck with information loss at every step (Lemma 6),
making it strictly dominated by the continuous counterpart producing non-atomic outputs.
Remark 1 (“Finite-combination” viewpoint). Discrete diffusion operates over convex combinations
of finitely many basis states in ∆V−1. This is a strict subset of the continuous family, which admits
general smooth/multimodal densities via equation 1. Lemma 6 further shows that per-step token
sampling discards the full logit geometry, whereas continuous samplers propagate full zt (ODE
deterministically or SDE stochastically) without compulsory quantization at intermediate times.

Continuous diffusion generalizes looped transformer. It is known that looped transformers are
already partially more expressive than CoT [Saunshi et al., 2025, Merrill and Sabharwal, 2025, Fan
et al., 2024]. We now further show that a continuous diffusion, in principle, can simulate any looped
transformer with the same architecture and parameter count, hence is at least as expressive as the
powerful looped transformer (and potentially even more expressive).
Proposition 2 (Continuous diffusion sampler can simulate looped rollouts). Fix any looped trans-
former Φθ and any roll out times T ∈ N, there exists a continuous diffusion sampler for the reverse
PF–ODE by the explicit Euler method with step size 1/T that exactly reproduces the looped rollout.

The crucial intuition is one can always construct a reverse PF–ODE with grid outpoints matching the
looped transformer roll outs, and is realizable with a denoising network with the same architecture
and parameter budget as the looped transformer. The contrary does not hold: a deterministic looped
rollout cannot simulate any non-degenerate stochastic path produced by a continuous diffusion with
gt > 0 in the reverse SDE, more details refer to Theorem 9. In addition, Xu and Sato [2024] proves
that timestep embeddings improve expressiveness, while standard looped transformers tend to discard.

3.2 Empirical Performance and Practical Trainability

Figure 2: Comparison of validation
losses when using representations from
different layers of Qwen3-Embedding-
0.6B as the latent spaces for CDMs.

Intriguingly, despite their strong theoretical expressive-
ness, previous looped transformers tend to exhibit lim-
ited empirical performance compared with SOTA LLMs.
Meanwhile, continuous DLMs typically underperform
their discrete counterparts, contradicting to the expressiv-
ity inclusion. In this subsection, we analyze these empir-
ical observations through the lens of practical trainability.

Advantages of intermediate supervision. We point out
a drawback in classical looped transformer training: they
are typically trained as standard transformers (i.e., depth
T = 1), or trained with a fixed depth and only supervised
on the last roll out. Consequently, LT would encounter
out-of-distribution (OOD) problems when rolled out with
a different time from training, since supervisions on the
intermediate states of these depths are never received.

Fortunately, continuous diffusion models naturally address this problem. During training, all contin-
uous time instances (or sufficiently dense discrete timesteps) would be sampled and supervised by
denoising loss, so the model is able to model all intermediate timesteps along the probability path.
The progressively denoising parameterization also enables flexible number of function evaluations
(NFEs) and the sampling timesteps in inference, which is hard for looped transformers without
sophisticated special design for this purpose. Combining the advantage brought by intermediate
supervision and the theoretical expressivity inclusion in Proposition 2, we conclude that instead of
LTs, one can actually train CDMs which are expressive and easier to optimize.
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Table 1: Comparison between generation space of continuous diffusion.

Simplex ∆V −1 Token-wise Rd Contextualized Rd

Dimensionality V − 1 (high) d ≤ V (often ≪ V ) d ≤ V (often ≪ V )
Geometry Constrained manifold Euclidean; codebook cells Euclidean; contextual manifold
Target smoothness Low (near vertices) Atomic, non-smooth Higher (good embedding models)
Calibration Natural Requires decoder Requires decoder (context)
Expressivity (terminal) Baseline ≯ simplex (Prop. 17) ≥ simplex if decoder strong
Decoding ambiguity Low Medium (NN/energy) High if not sufficient
Optimization Hard (constraints) Boundary brittle Complex but smoother targets

Limitations in trainability of continuous diffusion. While theoretically expressive, previous
CDMs typically underperform their discrete counterparts and AR LLMs in practice, necessitating us
to rethink the reasons behind. In addition to the gap in engineering efforts, we argue that there are
some fundamental challenges of existing continuous diffusion, including the larger decision space,
the ambiguity and combinatorial complexity in decoding, and the deficient generation space.

We summarize three generation spaces for CDMs in Table 1 and leave more detailed discussions
to Appendix E. In fact, all of them adhere larger decision spaces compared with DDMs, which
brings (perhaps in fact marginal) expressiveness gain yet incur harder optimization. In particular, the
probability simplex adopted by Han et al. [2022], Sahoo et al. [2025] is usually high-dimensional
with hard constraints for valid distributions. Token-wise embedding space is the most common choice
of early CDMs [Gong et al., 2022, Li et al., 2022], which we argue is a deficient representation
space as it is not more expressive than the simplex with dimension d ≤ V (Proposition 17). Moreover,
the generation target is the atomic codebook representations (essentially a set in Rd, such as the
first embedding layer of a LM), posing difficulty for a continuous diffusion to generate. By contrast,
contextualized embeddings (where the token embeddings depends on the contexts in the sequence,
such as hidden features in LLMs) provide more semantic information of the contexts and serve as a
smoother generation target – especially for those high-quality representations from well-pretrained
LLMs. However, the complicated and ambiguous contextualized embeddings in turns present more
difficulties in decoding featuring combinatorial complexity. The analysis above is supported
by quantitative experimental results demonstrated in Figure 2: utilizing the 0-th layer of Qwen3-
Embedding as the generation space (which produces essentially token-wise embeddings) results
in the smallest cross-entropy but the largest generation MSE, while the 28-th layer (which gives
contextualized embeddings) lead to moderately small MSE and larger classification loss.

4 Coevolutionary Continuous Discrete Diffusion

Based on the insights in Section 3, we aim to bridge the gap between expressivity and learnability.
It is natural to ask: can we overcome the dilemma so that one could leverage the powerful embedding
space while keep it decodable? In this section, we give a positive answer by combining the continuous
representation space with discrete diffusion. Remarkably, the discrete state reduces the uncertainty and
complexity of input space, making continuous space easier to optimize and decode. The continuous
space enlarges expressivity upper bound, and those representations from well-pretrained LLMs
significantly improve the generation quality.

4.1 Joint Continuous-Discrete Diffusion

Now we introduce Coevolutionary Continuous Discrete Diffusion (CCDD), a diffusion model on the
joint of discrete and continuous space X ×Z (Figure 3). In particular, we consider a joint corruption
process (xt, zt) ∈ X ×Z that applies noise individually to each component, and a denoising process
that conditions on both (xt, zt) but updates each component with its own modality-specific rule, i.e.,
both forward and backward process are parametrically factored.

Forward process. Let the forward law be the product of a CTMC on X and an SDE on Z , both
possibly time-inhomogeneous, and independent conditional on (x0, z0), which gives the factored
conditional forward kernels:

qt(xt, zt | x0, z0) = qdisct (xt | x0) q
cont
t (zt | z0). (13)
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Figure 3: Framework of Coevolutionary Continuous Discrete Diffusion.

For instance, considering the representative forward process for continuous diffusion in equation 2
and discrete diffusion in equation 7, the corresponding (xt, zt) follows:

zt ∼ N (αtz0, σ
2
t I), xt ∼ Cat(ηtx0 + (1− ηt)πt). (14)

Reverse process. A single time–conditioned network fθ(·, t) receives inputs (xt, zt) and outputs
modality-specific heads. We adopt the following factored reverse update at a time step t→ s (s < t),
conditioned on the multimodal pair (xt, zt):

pθ(xs, zs | xt, zt) = pdiscθ (xs | xt, zt) pcontθ (zs | xt, zt). (15)

For simplicity, we illustrate with x0-prediction, while other standard parameterizations such as
ϵ-prediction and v-prediction are equivalent. While the estimation for each modality depends on
both states, i.e., x̂0,θ = x̂0,θ(xt, zt, t), ẑ0,θ = ẑ0,θ(xt, zt, t), the following updates are carried on
separately based on the original rules such as DDPM (equation 3) or DDIM (equation 4) for zt and
the Bayes posterior (equation 8) for xt; see Algorithm 2 for algorithmic description.

Intuitively, this reverse process combines the radical discrete decoder with high confidence, and
the conservative continuous decoder with full uncertainty information. Thanks to the continuous
component, CCDD is able to preserve full semantics in previous denoising steps and later leverage
these historical information, which would mostly be discarded by masked DDM. CCDD is also
capable of striking the balance between inference efficiency through few-step ODE sampling, and
generation quality through test-time scaling with SDE.

Based on the established ELBOs for continuous and discrete diffusion, we calculate the loss for two
modalities according to equation 5 and equation 9, respectively. As illustrated in Algorithm 1, the
CCDD training loss is a (weighted) sum of two losses:

LCCDD = γcont · Lcont + γdisc · Ldisc (16)

Remark 2 (Conditioning vs. factorization). Although equation 15 factorizes the kernel at each step,
each factor is allowed to depend on both inputs (xt, zt). Thus cross-modal coupling is injected via
conditioning: x-updates see zt and vice versa. In other words, the factorization provides an efficient
parameterization without making xt and zt to be independent in the reverse process. In fact, the
factored forward processes admit semigroups (Theorem 11), and the factored reverse kernels with
sufficiently small steps yield aymptotically the same expressivity as fully coupled kernels (Theorem 12).

4.2 Implementation Techniques

Architecture design. Based on DiT [Peebles and Xie, 2023], MM-DiT [Esser et al., 2024], and
MoE [Shazeer et al., 2017], we design several effective architectures (termed MDiT, MMDiT, and
MoEDiT) for joint denoising with various parameter and computation efficiency (Figure 4). More
details are available in Appendix C.2.

Selection of continuous space: representation learning perspective. Based on the above analysis,
we select contextualized embedding space obtained from well-pretrained LLM-based text encoders,
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Table 2: Validation perplexity on LM1B. We use Qwen3-Embedding-0.6B as the continuous genera-
tion space for CCDD, and reimplement the baselines with the same Qwen-2 tokenizer. The numbers
of trained tokens and non-embedding parameter counts are also reported for fair comparison. CCDD
with the same number of parameters significantly outperforms the discrete-only MDLM baseline.

Model Train. toks. # params. Validation PPL (↓)

MDLM [Sahoo et al., 2024] (reimpl.) 33B 92.1M ≤ 39.17
CCDD-MDiT w/ Qwen3 (ours) 33B 92.1M ≤ 29.22
CCDD-MMDiT w/ Qwen3 (ours) 33B 216.2M ≤ 25.76

such as Qwen3-Embedding [Zhang et al., 2025]. The contextualized embeddings provides rich
sequence-level semantics and is easier to generate, while the discrete diffusion helps in decoding.
Moreover, from a representation learning perspective, the high-quality latents serve as representation
regularization that accelerates the convergence of training [Yu et al., 2024, Wang et al., 2025], and
also the high-level conditioning or guidance in inference [Li et al., 2024a, Kouzelis et al., 2025].
The procedure of continuous diffusion learning to reconstruct the high-quality representations in
pretrained LLMs can also be viewed as a sort of knowledge distillation.

Classifier-free guidance. The representation-enhanced diffusion training perspective views the
continuous representations as the self-generated guidance for the discrete token generation. Then
anologously to classifier-free guidance (CFG) [Ho and Salimans, 2022], we treat the dual-modality
forward as the conditional model (whose output is written as logitsc), and the discrete-only forward
as the unconditional model (whose output is denoted as logitsϕ). In training, we randomly drop
continuous embeddings with probability pdrop by zero-in and zero-out all continuous tokens within
the sample, so that the model forward with only discrete states. At inference time, the logits per-step
with CFG are computed as logits = w · logitsc + (1− w) · logitsϕ with the guidance scale w.

Asynchronous noise schedule. In addition to approximately synchronous signal-noise ratios in
two modalities by adjusting the coefficients αt and ηt, we propose asynchronous noise schedules of
the forward process in light of the “representation guidance” spirit. We set the information decay rate
in continuous space slower than the discrete modality, so that in the reverse process the model would
generate the latent representations faster (playing the role of implicit planning and reasoning), which
serve as the high-level guidance for token decoding. More details are available in Appendix B.2.2.

To summarize, CCDD is a novel language modeling regime that combines multimodal spaces to
generate unimodal texts. CCDD generalizes CDM, DDM and LT, featuring high expressivity. The
learnability is also improved through synergy: the discrete component actually provides auxiliary
capabilities for decoding, and the continuous components also have practical engineering benefits
from the representation learning and knowledge distillation perspective.

5 Experiments

Table 3: Generative NLLs of CCDD
with Qwen3-Embedding using inference-
time CFG after pretraining on OWT with
Qwen-2 tokenizer.

Model w Gen. NLL (↓)

MDLM - 9.19
CCDD-MoEDiT 0.0 9.06
CCDD-MoEDiT 1.0 8.38
CCDD-MoEDiT 1.5 8.25

Experimental Setup. We pretrain our models on the
widely used One Billion Words Dataset (LM1B) [Chelba
et al., 2013] and OpenWebText (OWT) [Gokaslan and
Cohen, 2019] dataset, following most settings in prior
work [von Rütte et al., 2025, Shi et al., 2024, Lou et al.,
2023, Sahoo et al., 2024]. For LM1B, we use the standard
split, and train models using sequence length L = 128
with sentence packing. For OWT, following Sahoo et al.
[2024], von Rütte et al. [2025], we reserve the last 100K
documents as the validation set, and adopt sequence length
L = 512 with sentence packing. Instead of bert-base-
uncased tokenizer on LM1B and GPT-2 [Radford et al., 2019] tokenizer on OWT, for both datasets we
use GPT-2 tokenizer when train CCDD with RoBERTa, and use Qwen-2 [Yang et al., 2024a] tokenizer
(also adopted by Qwen-3 series of models) when leverage Qwen3-Embedding [Zhang et al., 2025]
representations. Notably, perplexity calculated with different vocabulary sizes are not comparable:
Qwen-2 tokenizer has approximately 3× vocabulary size compared with GPT-2, naturally resulting in
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Table 4: Validation perplexity on OWT with GPT-2 tokenizer or Qwen-2 tokenizer (marked with
∗). CCDD is trained with RoBERTa-base or Qwen3-Embedding-0.6B embeddings. The numbers of
trained tokens and non-embedding parameter counts are also reported for fair comparison.

Model Train. toks. # params. Validation PPL (↓)

GPT2 [Radford et al., 2019]† unk. 117M 23.40
Llama110M (retrain.)† 262B 110M 16.11

SEDD [Lou et al., 2023]† 262B 92.1M ≤ 24.10

MDLM [Sahoo et al., 2024] (reimpl.) 131B 92.1M ≤ 27.39

GIDD+ [von Rütte et al., 2025] (reimpl.) 131B 92.1M ≤ 25.82

CCDD-MoEDiT w/RoBERTa (ours) 131B 104.0M ≤ 24.56

MDLM (reimpl.) ∗ 131B 92.1M ≤ 33.78

CCDD-MMDiT w/Qwen3 (ours) ∗ 131B 216.2M ≤ 27.24

larger ELBO and perplexity – we thus reproduce the baselines with the same tokenizer. We develop
our transformer architectures MDiT, MMDiT, and MoEDiT (detailed in Appendix C.2) based on Lou
et al. [2023] with the same configurations when plausible, which augments DiT [Peebles and Xie,
2023] with rotary embeddings [Su et al., 2024]. All models are trained for 1M steps with batch size
512 on both datasets, corresponding to 33B tokens on LM1B and 131B tokens on OWT. More details
and additional results are deferred to Appendix D.

Main results. The results on LM1B are reported in Table 2. With the help of the powerful Qwen3-
Embedding representations, CCDD reduces validation perplexity by over 25% compared with MDLM
baseline using the same number of parameters. Scaling the number of parameters via architectural
improvement further enhances the performance effectively.

Shown in Table 4 are the results on OWT, which demonstrate that even simple RoBERTa embeddings
could benefit CCDD training. By switching to the well-pretrained Qwen3-Embedding space and
scaling the parameters, CCDD reveals larger advantages. Remarkably, results trained with Qwen-2
tokenizer (marked with ∗) are not directly comparable to those with GPT-2 tokenizer.

To measure the inference-time flexibility, we report the generative NLLs of CCDD samples with
inference-time CFG in Table 3. We generate 256 samples with sequence length 512 using 512
denoising steps parameterized by DDPM and MDLM reverse process. We use GPT2-Large as the
reference model, and the generative perplexity is calculated as the exponential function of the NLL.
With either discrete-only forward (guidance scale w = 1) or standard joint forward (w = 0), CCDD
has superior performance, while CFG further improves the quality, verifying the advantages of latent
reasoning.

Ablation studies. As shown in Figure 2, we compare the validation losses when using representa-
tions from different layers of Qwen3-Embedding-0.6B as the latent spaces for continuous diffusion
models. The losses consist of two components: (i) the representation MSE loss, which we use to
measure the difficulty in generating the target representations; and (ii) the token decoding cross-
entropy loss, which measures the difficulty in decoding the generated latents into discrete tokens.
All the representations are normalized, with a hidden dimension of 32. All models leverage the DiT
architectures and are trained on LM1B for 500k steps with same configurations. The results validate
our hypothesis: the 0-th layer (token-wise) corresponds to the smallest token loss but the largest
representation loss, while the 28-th layer (contextualized) admits moderate losses, striking a balance
between the generativity and decodability. We refer readers to Appendix D for more ablation studies.

6 Conclusion

The contributions of the paper are sumarized as follows. Theoretically, we systematically analyze
mainstream language modeling regimes through the lens of expressivity and trainability. We conclude
that under same computation conjecture continuous diffusion dominates discrete diffusion, while
being able to simulate looped transformer. However, although CLM overcomes the OOD problem of
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LT, it still lacks trainability due to several fundamental limitations. Methodologically, we introduce
Coevolutionary Continuous Discrete Diffusion (CCDD), which defines a joint diffusion process
on both continuous and discrete space and levarages a single model to jointly denoise. CCDD is
a novel language modeling scheme that retains both strong expressivity and trainability. We also
present effective architectures as well as advanced training and sampling techniques. Experimentally,
pretrained CCDD on real-world datasets LM1B and OWT reveals significantly lower validation
perplexity compared with baselines.
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A Related Work

Looped transformers and latent CoT. Recent research has explored how enable a model with a
fixed number of layers to think deeper about problems through architectural design or specialized
training, effectively simulating a deeper transformer [Zhu et al., 2025b]. A fundamental strategy in
this direction involves loop-based architectures [Dehghani et al., 2018b, Mohtashami et al., 2023,
Bae et al., 2024]. For instance, Fan et al. [2024] show that standard fixed-depth transformers struggle
in length generalization which can be significantly improved by looped transformers. Saunshi et al.
[2025] first proves that a T -depth looped transformer can implicitly generate latent thoughts and can
simulate T steps of CoT reasoning under mild assumptions. Furthermore, Merrill and Sabharwal
[2025] shows that a looped transformer with depth Θ(log n) can solve regular language recognition
and graph connectivity with arbitrary input context length n, which is intractable by LLMs with
logarithmic CoT steps. Mixture of Recursion [Bae et al., 2025] is the recent looped transformer that
practically works, which adaptively adjust the looping depth for tokens.

In contrast to architectural recurrence, which necessitates explicit structural changes, an alterna-
tive known as continuous chain-of-thought (continuous CoT) achieves comparable computational
advantages through specialized training of standard transformer models [Hao et al., 2024, Shen
et al., 2025, Cheng and Van Durme, 2024, Wang et al., 2024]. A representative is COCONUT [Hao
et al., 2024], which operates on the continuous token space instead of using recurrent parameters.
COCONUT directly treats the last hidden state of previous tokens as reasoning tokens for CoT
reasoning, allowing them to explore multiple reasoning paths simultaneously, akin to breadth-first
search, without being constrained to natural language tokens [Gozeten et al., 2025, Zhu et al., 2025a].
Continuous CoT outperforms standard discrete CoT in certain reasoning tasks demanding parallel
searching and multiple reasoning paths, yet still falls behind in general tasks. Notably, latent CoT
could be simulated by continuous diffusion with diffusion forcing [Chen et al., 2024], and we focus
on looped transformer in the main context for clarity.

Diffusion language models. Diffusion language models emerge as a new paradigm that reformu-
lates text generation as an iterative denoising process, enabling complex reasoning by leveraging
full-sequence context. This paradigm primarily includes Masked Diffusion Models (MDMs), which
are a type of DDMs, and Embedding-based Diffusion Models (EDMs), a subset of CDMs.

MDMs operate on discrete tokens, starting from a masked sequence and refining tokens simultane-
ously using bidirectional context. Early foundational work includes D3PM [Austin et al., 2021] and
SEDD [Lou et al., 2023], which introduced discrete transition processes and score matching losses.
Subsequent methods [Ou et al., 2024, Sahoo et al., 2024, Shi et al., 2024] streamlined training through
hybrid masked losses, facilitating the conversion of encoder models like BERT into generative reason-
ers. The iterative unmasking process inherent in MDMs supports sophisticated reasoning capabilities,
such as iterative refinement [Du et al., 2024] and reverse-order reasoning [Nie et al., 2025]. The
framework has also been integrated with chain-of-thought reasoning [Ye et al., 2024], demonstrating
strong performance in tasks requiring parallel context and systematic refinement. Similar algorithms
are proposed from the flow matching perspective [Gat et al., 2024]. Additional to mask noises,
some work try to leverage uniform noises which tend to have worse performance [von Rütte et al.,
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2025, Shaul et al., 2024]. Another series of work extend intermediate states by introducing partially
noised states in between mask and clean tokens [Zhou et al., 2025, Chao et al., 2025], for example,
HDLM [Zhou et al., 2025] leverages hierarchies of semantics for each token, where lower-level
detailed tokens are noised into higher-level abstract tokens (such as cluster tokens) in the forward
process, and the model progressively denoises by predicting the next semantic scale in the reverse
process. MDM-Prime Chao et al. [2025] extends the masking state by converting each word token
into several subtokens and gradually mask the subtokens. Notably, these methods still operate in the
discrete state spaces.

In contrast, EDMs perform diffusion in a continuous embedding space. EDM research focused on
controllable generation [Li et al., 2022] and sequence-to-sequence tasks [Dieleman et al., 2022, Ma-
habadi et al., 2023, Gong et al., 2022], with Plaid [Gulrajani and Hashimoto, 2023] later establishing
empirical scaling laws that significantly narrowed the efficiency gap with autoregressive models. The
framework was further extended by DoT-Plaid [Ye et al., 2024], which generalized chain-of-thought
reasoning to EDMs, leveraging iterative latent refinement for improved coherence and mathematical
reasoning. There are also a few continuous diffusion models operating on the logit space Han et al.
[2022], Sahoo et al. [2025].

Some previous work have noticed the potential of multimodal generation integrating continuous and
discrete diffusion, with applications to text-image joint generation [Rojas et al., 2025] and protein
sequence-structure co-design [Campbell et al., 2024]. DUO [Sahoo et al., 2025] tries to connect two
types of diffusion models via marginal matching, and apply distillation tricks for continuous diffusion
to discrete text diffusion. In comparison, our work generalize their results and provide systematic
analysis on expressiveness and trainability, while practically combine continuous and discrete models
to benefit each other.

Representation learning for diffusion models. Recent advances in representation-enhanced
diffusion model training show that high-quality representations from pretrained models could benefit
the training efficiency and sampling quality of diffusion models through flexible ways [Li et al.,
2024a,b, Yu et al., 2024, Wang et al., 2025, Kouzelis et al., 2025]. In particular, RCG [Li et al.,
2024a] and GeoRCG [Li et al., 2024b] adopt two-stage generation processes where a representation
generator first samples high-level features which serve as the conditions for the second-stage image
or molecule generation. In contrast, REPA [Yu et al., 2024] is a training-time technique that aligns the
internal features of diffusion models with external pretrained representations, thereby accelerating the
training procedure. REED [Wang et al., 2025] unifies RCG and REPA from a theoretical perspective,
and generalizes these methods by leveraging multi-modal representations and improved training
curriculum. Furthermore, ReDi [Kouzelis et al., 2025] demonstrates that generating images and their
representations at the same time also boosts generation quality of diffusion models.

B Omitted Proof

B.1 Theoretical Expressivity Analysis

This subsection provides proof for Section 3.1 in the main text and presents additional results. We
assume standard measurability/Lipschitz conditions when needed.

B.1.1 Continuous Diffusion Dominates Discrete Diffusion

Assumption 1 (Regularity for continuous diffusion). We assume gt > 0 on a set of times of positive
measure in [0, 1], and at is such that the Fokker–Planck equation is well-posed and yields absolutely
continuous marginals for t > 0 when starting from a distribution with a density or from any point
mass convolved with the Gaussian noise of equation 1.
Lemma 3 (Embedded discrete trajectories are finitely supported at each t). Fix any t ∈ [0, 1]. For
any {pt}t∈[0,1] ∈ Fdisc(θ), the embedded marginal qt := E♯pt ∈ F̃disc(θ) is supported on a finite set
in RL×d. In particular, if E is one-hot or any fixed finite codebook, then qt is a finite mixture of Dirac
masses in RL×d.

Proof. For any t, pt is a probability vector over the finite set X = ΩL (size V L). Hence supp(pt) ⊆
X is finite. The encoder E : X → RL×d maps each x ∈ X to a single point E(x), and thus the
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pushforward qt(B) = pt(E−1(B)) is supported on the finite set {E(x) : x ∈ X}. Therefore qt is a
finite atomic measure in RL×d.

Lemma 4 (Continuous diffusion produces absolutely continuous marginals). Under Assumption 1,
for any t > 0, the marginal qt ∈ P(RL×d) arising from equation 1 is absolutely continuous w.r.t. the
Lebesgue measure on RL×d. In the VP case equation 2, zt = αtz0 + σtϵ with σt > 0 implies qt is a
Gaussian smoothing of the law of z0, thus absolutely continuous.

Proof. With gt > 0 on a set of positive measure and standard regularity on at, the Fokker–Planck
operator is (hypo)elliptic on RL×d. Starting from any initial distribution with a density (or from a
point mass, which immediately becomes smooth by Gaussian convolution when gt > 0), the solution
qt admits a density for any t > 0. In the VP instance equation 2, zt is an affine transformation of z0
plus independent Gaussian noise with variance σ2

t I , hence qt is the convolution of the law of αtz0
with a non-degenerate Gaussian, which is absolutely continuous.

Theorem 5 (Strict trajectory-level gap, Theorem 1 in main text). At any fixed t ∈ (0, 1], we have the
following strict inclusion

F̃disc(θ) ⊊ Fcont(θ) as subsets of P(RL×d) (17)

Proof. By Lemma 3, each qt ∈ F̃disc(θ) is supported on a finite set in RL×d. By Lemma 4, there
exist (indeed, generically) qt ∈ Fcont(θ) that are absolutely continuous and thus non-atomic. No
absolutely continuous distribution can be a finite atomic measure; hence F̃disc(θ) ⊊ Fcont(θ) as sets
of possible marginals at time t. The strictness holds for any t > 0 with gt > 0 on a set of positive
measure before t.

However, notice that the actual gap may be small, and discrete models with sufficient capacities
(such as LLMs) can still approximate distributions pretty well given sufficient vocabulary size,
sequence length and training data. Thus in additional to the (marginal) expressivity gain, utilization
of continuous representations is also a practical consideration for improving empirical performance:
the well-pretrained representations could facilitate the diffusion model training via representation
alignment and guidance [Li et al., 2024a, Yu et al., 2024, Wang et al., 2025, Kouzelis et al., 2025].

Lemma 6 (Information loss from token sampling in discrete reverse steps). Let ℓθ(xt, t) ∈ RV

denote the logits predicted at a discrete reverse step, and let the next input be the sampled token xt− ∼
Cat(softmax(ℓθ)). Assume ℓθ is a continuous random vector with a non-degenerate distribution
(e.g., due to data randomness). Then

I(ℓθ; xt−) ≤ H(xt−) ≤ log V < h(ℓθ),

hence the mapping ℓθ 7→ xt− is information-losing, and the full logit geometry is not preserved along
the trajectory.

Proof. By data processing inequality for the Markov chain ℓθ → softmax(ℓθ) → xt− (followed
by categorical sampling), I(ℓθ;xt−) ≤ I(ℓθ; softmax(ℓθ)) ≤ H(xt−). Since xt− takes values in a
finite set of size V , H(xt−) ≤ log V . Meanwhile ℓθ is continuous/non-degenerate, so its (differential)
entropy h(ℓθ) can be arbitrarily large, and the discrete entropy H(⌊ℓθ⌋) is also unbounded with
quantization fineness; in particular, H(ℓθ) is not bounded by log V . Therefore I(ℓθ;xt−) < H(ℓθ);
the mapping is many-to-one and loses information about ℓθ beyond what is encoded in the sampled
index.

B.1.2 Continuous Diffusion Generalizes Looped Transformer

Assumption 2 (Mild regularity for numerical integration). Assume the reverse PF–ODE equation 4
uses a vector field vθ(z, t) := at(z) − 1

2g
2
t sθ(z, t) that is globally Lipschitz in z and piecewise

continuous in t. Let {tk}Tk=0 be a partition of [0, 1] with ∆tk = tk+1 − tk and a standard one-step
method Ψ∆tk(z, tk) (e.g., explicit Euler) that is consistent of order ≥ 1.
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Proposition 7 (Continuous diffusion sampler can simulate looped rollouts, Proposition 2 in main
text). Fix any looped transformer Φθ and any T ∈ N. Define the (deterministic) sampler for the
reverse PF–ODE by the explicit Euler method with step size 1/T and choose the vector field on grid
points by

vθ(z, tk) := Φθ(z)− z, k = 0, . . . , T − 1.

Then the sampler update is

ztk+1
= ztk + ∆t vθ(ztk , tk) = Φθ(ztk),

which exactly reproduces the looped rollout hk+1 = Φθ(hk) when we identify hk = ztk .

Proof. By construction, with ∆t = 1/T and the explicit Euler method,

ztk+1
= ztk +∆t vθ(ztk , tk) = ztk + 1

T

(
Φθ(ztk)− ztk

)
.

If we instead scale the vector field as v(scaled)θ (z, tk) := T
(
Φθ(z) − z

)
while keeping ∆t = 1/T ,

then
ztk+1

= ztk +∆t v
(scaled)
θ (ztk , tk) = ztk + 1

T · T
(
Φθ(ztk)− ztk

)
= Φθ(ztk).

Thus each sampler step equals one looped-transformer application. Since the construction uses the
same network θ inside Φθ (embedded into vθ through the formula above) and a time index via tk, the
equality holds step by step.

Proposition 8 (Looped transformer can emulate diffusion ODE terminal maps with timestep embed-
dings and residual connections). Let the reverse sampler integrate the PF–ODE equation 4 with a
one-step method Ψ∆tk under Assumption 2. Define a looped transformer Φode

θ (·; k) that, at step k,
applies the numerical increment

Φode
θ (z; k) := Ψ∆tk(z, tk) = z + ∆tk vθ(z, tk) + O(∆t2k),

where vθ(·, tk) is computed by the same fθ(·, tk) (time-conditioned). Then unrolling T steps computes
the same discrete trajectory as the ODE sampler up to the integrator’s local truncation error; as
T →∞ (mesh size maxk ∆tk → 0), the terminal error vanishes by standard numerical ODE theory.

Proof. At each step k, the looped transformer block applies the map z 7→ Ψ∆tk(z, tk) using fθ(·, tk)
to evaluate vθ. Hence

hk+1 = Φode
θ (hk; k) = Ψ∆tk(hk, tk).

This matches the sampler’s numerical update. The global error after T steps is bounded by
Cmaxk ∆tk for a Lipschitz vector field (by Grönwall-type stability bounds and order-1 consis-
tency). Taking the mesh to zero drives the terminal error to zero.

Remark 3 (Stochastic paths and determinism). If gt > 0, the reverse equation 3 yields a distribution
over trajectories. A purely deterministic looped rollout hk+1 = Φθ(hk), given fixed initial h0, cannot
match a non-degenerate stochastic path law. If one augments the looped transformer with exogenous
randomness (e.g., u ∼ N (0, I) at initialization or fresh per-step noise) and allows conditioning on u
at each step, terminal distributions can be matched in principle by pushing u through the unrolled
network.

Theorem 9 (Strictness vs. parity: diffusion vs. looped transformer). Under the same parameter
budget and the “single time-conditioned network” protocol:

(i) (Deterministic ODE samplers) If the reverse uses the PF–ODE (equation 4 with gt ≡ 0) and
is implemented by a standard one-step method, then continuous diffusion is not strictly more
expressive in terms of terminal distributions: by Propositions 2 and 8, each can simulate the
other’s discrete rollout (up to vanishing numerical error).

(ii) (Stochastic path laws) If gt > 0 and the looped transformer is deterministic (no exogenous
noise), continuous diffusion is strictly more expressive at the trajectory level (cannot match
the non-degenerate stochastic path law with a deterministic map).
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Proof. (i) Proposition 2 shows a diffusion ODE sampler with Euler steps can exactly recover a looped
rollout (by choosing v

(scaled)
θ (z, tk) = T (Φθ(z) − z)). Conversely, Proposition 8 shows a looped

transformer can emulate the numerical ODE integrator step map Ψ∆tk ; standard numerical analysis
ensures convergence of the terminal state as the mesh refines.

(ii) Suppose the diffusion reverse is an SDE with gt > 0 on a set of positive measure. Then
the terminal random variable Z0 has a non-degenerate conditional distribution given Z1 (and the
Brownian path). A deterministic looped rollout hk+1 = Φθ(hk) with fixed h0 is a measurable
function of h0 only and thus produces a Dirac path law; it cannot match a non-degenerate distribution
over trajectories. Hence diffusion is strictly more expressive pathwise.

Notably, if the looped model is allowed an auxiliary noise input u (initial or per-step) and time
conditioning, then the unrolled map can be written as HT = Γθ(u) for some measurable Γθ. For any
target terminal law with a Borel probability measure on RL×d, there exists a pushforward of a simple
noise (e.g., Gaussian) that realizes it; with sufficient capacity, the looped model can approximate such
a map. Thus terminal parity is achievable in principle.
Remark 4 (Timestep embeddings and intermediate supervision). As shown in [Xu and Sato, 2024],
timestep embeddings provably improve the expressiveness of looped transformers, though the gain
might be marginal in practice. Supervising intermediate diffusion steps (multi-t losses) does not
change the representable set either; it improves optimization and inductive bias. Stochastic SDE
sampling (gt > 0) enlarges the path distribution class (Remark 3) but does not imply a strict
advantage on terminal laws once exogenous noise is also allowed in looped rollouts.

We conclude this subsection (corresponding to Section 3.1 in the main text) by summarizing the
comparison in expressivity as follows.

• Discrete vs. Continuous Diffusion: By Theorem 1, continuous diffusion strictly dominates
discrete diffusion at the trajectory level in RL×d (non-atomic intermediate marginals vs.
finite-atomic). Lemma 6 shows discrete per-step token sampling loses full logit information,
whereas continuous samplers preserve all coordinates without mandatory quantization.

• Continuous Diffusion vs. Looped Transformer: Continuous diffusion samplers can
simulate looped rollouts (Proposition 2); looped rollouts can emulate ODE samplers (Propo-
sition 8). Diffusion with gt > 0 is strictly more expressive pathwise than deterministic
looped rollouts (Theorem 9(ii)).

B.2 Analysis of CCDD

This subsection corresponds to Section 4 in the main text, providing theoretical results and more
analysis of CCDD.

B.2.1 Expressivity of CCDD

Expressivity comparison. We now compare the joint model against (i) continuous diffusion alone
(on Z) and (ii) choices of reverse parameterization.
Theorem 10 (Expressivity vs. continuous-only diffusion: joint law and marginals). Consider the
hypothesis classes of terminal laws Hjoint := { laws of (x0, z0) produced by the joint model } and
Hcont := { laws of z0 produced by continuous diffusion alone }. Then:

(i) On the joint space X ×Z ,Hjoint strictly extends continuous-only modeling (which does not
produce x0 at all); i.e., the joint model is strictly more expressive if the target includes the
discrete marginal.

(ii) On the continuous marginal alone, the joint model does not enlarge the class of z0 laws
beyond a continuous diffusion with the same parameter budget and time-conditioning: for
any P ∈ Hjoint, its z-marginal PZ lies inHcont (up to decoder equivalence).

Proof. (i) Trivial: continuous-only models do not define a distribution on x0; the joint model does.

(ii) Let P ∈ Hjoint be realized by some reverse parameterization with fθ(xt, zt, t). Define a
continuous-only model with inputs (zt, t) whose network computes the same z-head as the joint
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model but with xt embedded by a deterministic encoder E predicted from (zt, t) (this is implementable
because the joint reverse factor pcontθ depends on (xt, zt, t) only through a measurable function).
Universal approximation guarantees allow the continuous-only network to approximate the composite
map (zt, t) 7→ pcontθ (· | xt, zt, t) after marginalizing out xt under qt(xt | zt) (which the network can
input as E[ϕ(xt) | zt, t] for a rich feature dictionary ϕ). Therefore the induced terminal z-law can be
matched. The decoder equivalence argument is standard: terminal classification/regression heads can
implement the same marginal law.

Remark 5. Theorem 10(ii) states a marginal parity: adding a discrete companion does not expand
the set of achievable z-marginals at the level of function classes (with time-conditioning and equal
total parameters). Practically it may ease optimization by providing an auxiliary target.

Semigroup structure and sufficient expressivity of factored parameterization. Let qt(x, z)
denote the joint forward marginal induced by equation 13. Then

∇z log qt(x, z) = ∇z log qt(z | x), ∆z log qt(x, z) = ∆z log qt(z | x), (18)

i.e., the continuous score depends on x only through the conditional qt(z | x). For the discrete part,
Bayes posteriors use qt(x | z) ∝ qt(x) qt(z | x).

Lemma 11 (Forward semigroup and Trotter factorization). Let {T (z)
t }t≥0 and {T (x)

t }t≥0 be the
Markov semigroups generated by the continuous FP operator L

(z)
t and the discrete generator

L
(x)
t (Kolmogorov forward) respectively, both time-inhomogeneous but piecewise constant in small

intervals. Then the joint forward semigroup on X × Z with independent corruption is Tt =

T
(x)
t T

(z)
t = T

(z)
t T

(x)
t and, for a partition 0 = t0 < · · · < tN = t with mesh maxk ∆tk → 0,

Tt = lim
max∆tk→0

N−1∏
k=0

(
T

(x)
∆tk

T
(z)
∆tk

)
= lim

max∆tk→0

N−1∏
k=0

(
T

(z)
∆tk

T
(x)
∆tk

)
.

Proof. Independence in equation 13 implies that the joint generator is the sum Lt = L
(z)
t + L

(x)
t

acting on functions f(x, z) by (Ltf)(x, z) = (L
(z)
t f)(x, z) + (L

(x)
t f)(x, z). For (piecewise) time-

constant generators the Chernoff–Lie–Trotter product formula yields the stated limits; commutativity
at the semigroup level follows from independence.

Theorem 12 (Effect of factored reverse kernels). Fix a time step t→ s and consider the family of
joint reverse kernels K = {K(xs, zs | xt, zt) }. Let

Kfact :=
{
K(xs, zs | xt, zt) = Kx(xs | xt, zt)Kz(zs | xt, zt)

}
be the factored family in equation 15. Then:

(a) Single-step limitation. Kfact is a strict subset of K: there exist joint kernels with within-step
couplings that cannot be written as a product independent of (xs, zs) cross-dependence.

(b) Splitting sufficiency (small steps). Suppose the target joint dynamics has generator Lt =

L
(z)
t + L

(x)
t (no cross-diffusion term), and the factored reverse uses conditionally coupled

factors Kx(· | xt, zt) and Kz(· | xt, zt). Then, by Lie–Trotter splitting, iterating factored
kernels at a small step size ∆t alternately (e.g., KzKx per micro-step) converges to the
same joint semigroup as any coupled kernel generated by Lt, hence there is no expressivity
loss at the trajectory level as ∆t→ 0.

Proof. (a) Consider X = {0, 1} and z ∈ R. Define a joint kernel that enforces xs = 1{zs > 0}
almost surely (hard constraint). This coupling cannot be expressed as Kx(xs | xt, zt)Kz(zs | xt, zt)
because any factorization leaves xs independent of zs given (xt, zt), contradicting the deterministic
relation between xs and zs.

(b) Under the assumed generator sum L
(z)
t + L

(x)
t , the exact joint semigroup over a small inter-

val ∆t equals e∆t(L
(z)
t +L

(x)
t ), while the alternating product e∆tL

(z)
t e∆tL

(x)
t (or the corresponding

Markov kernels KzKx) approximates it with first-order error O(∆t2). Over a partition with mesh
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max∆t → 0, the product converges to the exact semigroup (Chernoff–Lie–Trotter), hence the
factored parameterization with alternating micro-steps is sufficient to realize the same family of joint
laws.

Corollary 13 (Coupling via conditioning is enough in the small-step limit). Even though K(xs, zs |
xt, zt) does not condition on (xs, zs) jointly in one shot, allowing each factor to depend on both
(xt, zt) and alternating the updates yields asymptotically the same expressivity as a fully coupled
kernel driven by a sum-generator L(z)

t +L
(x)
t . However, the diffusion process design of our language

modeling task is flexible as long as it preserve the clean marginals, thus a factored process suffices.
Remark 6 (When factorization truly hurts). If the target joint generator includes cross terms that
cannot be written as L(z) + L(x) (e.g., a diffusion on RL×d whose drift or diffusion matrix depends
on future xs rather than xt, or a discrete jump rate at time t depending on zs), then any per-step
factorization that does not see (xs, zs) jointly will not reproduce such dynamics without further inner
iterations (e.g., Gibbs-within-step to sample zs and then xs conditioning on zs).

However, we can always construct a proper diffusion process without cross-terms as in the main
text (as long as it preserve the terminal marginals), hence the factored parameterization is expressive
enough for our language generation task.

B.2.2 Designs of Schedules

We now provide more discussions on the design space of noise schedules in CCDD.

Information theory perspective. We start with the tools in information theory.
Lemma 14 (Mutual information decay under factored corruption). Let It := I((x0, z0); (xt, zt))
denote the mutual information between data and the corrupted pair at time t. Under equation 13
with independent noises, It is non-increasing and satisfies

d

dt
It = E

[
d

dt
log

qt(xt, zt | x0, z0)

qt(xt, zt)

]
≤ 0,

with decomposition

d

dt
It =

d

dt
I
(
(x0, z0); zt | xt

)
+

d

dt
I
(
(x0, z0);xt | zt

)
.

In particular, for the VP SDE the continuous contribution equals the negative Fisher score power:

d

dt
I
(
(x0, z0); zt | xt

)
= −E

[
∥gt∇z log qt(zt | xt)∥2

]
,

and for the CTMC the discrete contribution equals (minus) a χ2-divergence–based entropy production
rate.

Proof. Data processing along a Markov chain (x0, z0) → (xt, zt) yields non-increasing mu-
tual information. The derivative formula follows from differentiating the KL defining mutual
information and the Kolmogorov forward equations; for diffusions the de Bruijn–Fisher iden-
tity gives the continuous term; for CTMCs one uses the standard entropy production formula
d
dtH(pt) = −

∑
i̸=j pt(j)(Gt)ij log

pt(i)
pt(j)

and the χ2 representation of conditional MI rates.

“Optimal” coupling via hyperparameter matching. It is natural to have the question: is there
an optimal way to couple the two modalities? We discuss the choice of forward hyperparameters
(diffusion rate βt for z, jump rate ut for x) and their coupling.
Definition 2 (Signal-to-noise and posterior conditioning). Define the continuous SNR at time t by
SNRz(t) := α2

t /σ
2
t (VP case), and the discrete SNR by the interpolation weight ηt in qt(xt | x0) =

Cat(ηtx0 + (1− ηt)πt) (USDM/masked). Define the joint conditioning strength

κt := I
(
(x0, z0); zt | xt

)
+ I

(
(x0, z0); xt | zt

)
,

which quantifies how informative each modality remains about its clean counterpart when condition-
ing on the other.
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Proposition 15 (Entropy/MI matching heuristic). (Informal) Let βt and ut be chosen so that the
rates of MI decay from Lemma 14 are balanced:

E
[
∥gt∇z log qt(zt | xt)∥2

]
≈ Ratex(t),

where Ratex(t) denotes the CTMC’s conditional MI decay rate (a χ2-type quantity). Then the
two posteriors q(x0 | xt, zt) and q(z0 | xt, zt) maintain comparable conditioning difficulty (well-
conditioned Bayes factors), which in turn stabilizes training losses for heads in the discrete modality.

Intuitively, training both heads amounts to estimating q(z0 | zt, xt) and q(x0 | xt, zt). If one
modality loses information much faster (e.g., SNRz ≪ SNRx), then one posterior becomes broad/ill-
conditioned relative to the other, causing gradient scale mismatch. Balancing the decay rates equalizes
expected Fisher information in the continuous head and the discrete information production, yielding
comparable curvature of the objectives (via de Bruijn/Fisher for z and entropy production for the
CTMC). This is a standard preconditioning argument based on matching Fisher blocks across
modalities.

Corollary 16 (Schedule matching guideline). A practical rule is to pick βt and ut such that the
monotone functions t 7→ SNRz(t) and t 7→ ηt/(1− ηt) have similar slopes on a log-scale, e.g.,

d

dt
log SNRz(t) ≈

d

dt
log

ηt
1− ηt

.

This equates the relative shrinkage of posterior variances (continuous) and odds (discrete), approxi-
mately stabilizing Bayes updates in xt.

Practical schedule designs. From a practical perspective, we could regard the continuous repre-
sentations as the guidance for the discrete part, the continuous schedule then should be ahead of the
discrete schedule (i.e., generated earlier in the reverse process) as useful high-level guidance. This
intuition is also validated by other work involving multiple modalities [Geffner et al., 2025]. We
adopt this strategy in most experiments, featuring linear schedule for discrete part (ηt = 1− t) and
concave schedule for continuous part (αt =

√
1− t).

We conclude this subsection by summarizing takeaway messages on CCDD.

• Formulation. The joint model formalizes a mixed SDE–CTMC system with independent
forward corruptions and a reverse denoiser that conditions on both (xt, zt) but factors the
per-step kernel across modalities.

• Expressivity vs. continuous-only. Joint modeling is strictly more expressive on the joint
space; on the z-marginal, it does not enlarge the class beyond continuous diffusion with
comparable capacity (Theorem 10).

• Effect of factorization. A single-step factored kernel cannot represent arbitrary within-step
couplings (Theorem 12(a)), but alternating factored updates at small step sizes attains the
same semigroup when the target generator splits (Theorem 12(b), Corollary 13).

• Coupling/schedules. Matching information decay across modalities (Proposition 15, Corol-
lary 16) yields well-conditioned posteriors.

• Information-theoretic lens. The continuous score is ∇z log qt(z | x); MI decays addi-
tively across modalities under independence (Lemma 14). Balancing decay rates aligns
Fisher/entropy production and stabilizes learning.
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Algorithm 1 CCDD Training
Require: Dataset D of pairs (x0, z0) with z0 = E(x0); time sampler t ∼ U([0, 1]) or discrete grid
{tk}; VP schedule {αt, σt}; discrete schedule {ηt} and noise distribution {πt}; loss weights
λcont(t), λdisc(t).

1: Initialize parameters θ of a single time-conditioned model fθ(·, t) with two heads:

ϵθ(xt, zt, t) ∈ RL×d, ℓθ(xt, zt, t) ∈ RL×V .

2: for each minibatch {(x(b)
0 , z

(b)
0 )}Bb=1 ⊂ D do

3: Sample times {t(b)}Bb=1.
4: Forward corruption: Sample ϵ(b) ∼ N (0, I) and set

z
(b)
t ← αt(b) z

(b)
0 + σt(b) ϵ

(b), x
(b)
t ∼ Cat

(
ηt(b) ex(b)

0
+ (1− ηt(b))πt(b)

)
.

5: Model prediction:

ϵ
(b)
θ ← ϵθ

(
x
(b)
t , z

(b)
t , t(b)

)
, ℓ

(b)
θ ← ℓθ

(
x
(b)
t , z

(b)
t , t(b)

)
.

6: Continuous loss (VP, ϵ-pred MSE) and discrete loss (token CE on masked tokens):

Lcont ←
1

B

B∑
b=1

λcont(t
(b))

∥∥ϵ(b) − ϵ
(b)
θ

∥∥2
2
.

Ldisc ← − 1

B

B∑
b=1

λdisc(t
(b), x

(b)
0 , x

(b)
t ) log softmax

(
ℓ
(b)
θ

)
[x

(b)
0 ].

7: Total loss and update: L ← γcont · Lcont + γdisc · Ldisc

8: Update θ ← θ − η∇θL.
9: end for

C Implementation Details

C.1 Algorithm

We now give the algorithmic description of CCDD training in Algorithm 1 and sampling in Algo-
rithm 2 using DDPM / DDIM for the continuous example.
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Algorithm 2 CCDD Sampling
Require: Time grid 1 = t0 > t1 > · · · > tK = 0; forward schedules (αtk , σtk), (ηtk , πtk);

reverse kernels qtk|tk+1
for discrete; DDPM/DDIM choice for continuous with variance knob

ηddpm ∈ [0, 1].
1: Init: xt0 ∼ πt0 (uniform or [MASK] prior per token); zt0 ∼ N (0, I).
2: for k = 0 to K − 1 do
3: Model heads:

ϵθ ← ϵθ
(
xtk , ztk , tk

)
, ℓθ ← ℓθ

(
xtk , ztk , tk

)
, π̂θ = softmax(ℓθ).

4: (A) Discrete reverse (Bayes form):

pθ(xtk+1
| xtk , ztk) ∝ qtk|tk+1

(xtk | xtk+1
) π̂θ(xtk+1

| xtk , ztk , tk).

5: Sample (or take mode) xtk+1
∼ pθ(· | xtk , ztk).

6: (B) Continuous reverse (VP, ϵ-pred):

ẑ0,θ ←
ztk − σtk ϵθ

αtk

.

7: DDIM mean: mtk+1
← αtk+1

ẑ0,θ + σtk+1
ϵθ.

8: Stochastic DDPM step (optional): ztk+1
← mtk+1

+ ηddpm σtk|tk+1
ξ, ξ ∼ N (0, I).

9: DDIM step (deterministic): set ηddpm=0 to use ztk+1
← mtk+1

.
10: end for
11: Decode: Return tokens x̂0 ← xtK and/or logits from a decoder applied to ztK (if needed).

C.2 Architecture Design for CCDD

The architecture consists of basic diffusion transformer blocks. Optional timesteps conditioning is
embedded through adaLN. For standard DiT blocks, attention is followed by MLPs.

DiT. Standard DiT except that we mix continuous and discrete embeddings before the first DiT
block (through adding or concatenating), and decode both continuous and discrete tokens from the
output of the last DiT block. Therefore, the actual processed tokens are of shape [B,L, d] and the
attention complexity is O(L2).

MMDiT. Since MMDiT is naturally capable of processing multimodal generation, we opt it to
generate continuous and discrete tokens simultaneously. We also adopt a slightly different version that
stagger cross-attention blocks for modality interaction and self-attention blocks for single modalities,
respectively. The tokens are of shape [B, 2L, d] consequently, with the attention complexity O(2L2)
and parameters doubled.

DiT with MoE. To maximize the expressivity while keeping the number of parameters not doubled,
we choose to maintain representation for both continuous and discrete tokens, resulting [B, 2L, d]
representations. However, two modalities share the same attention parameters, and we compute self-
attention over the 2L tokens, resulting O(4L2) attention complexity without doubling the number of
parameters. To avoid modality collapse, we use different MLPs for discrete and continuous modality.
However, instead of hard separating MLPs, we use MoE architecture and let each token selects the
proportion of experts, keeping maximum expressivity for every token while allowing discrete and
continuous tokens to be processed differently according to their states. (For example, if the discrete
state is cleaner, then there might be a higher weight on the discrete MLPs, and vice versa.)

In our implementation, we may interpolate the cross-modal MMDiT blocks with unimodal self-
attention blocks and use their combinations. Our experiments aim to investigate the performance
with same parameter / computation conjectures, or studies the scaling w.r.t. parameters / FLOPs.
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Figure 4: Comparison of different denoising network architectures for CCDD.

D Experimental Details

We provide more experimental details and additional results in this section.

D.1 Experimental Configurations

Schedules. For the discrete process, we use masked noise by default with γt = 1− t as in most
discrete diffusion papers. For the continuous process, we use VP procedure as in DDPM [Ho et al.,
2020] or the (log-)linear schedule in most flow matching papers. Ablation study on the continuous
schedule are reported in Table 5.

Embedding spaces. Since Qwen3-Embedding enables flexible output dimensions down to 32, we
use the 32-dimensional last-layer embeddings without specification. This selection is consistent with
the analysis in the main text. Low-dimensional latent space is the standard setting in recent vision
diffusion models [Esser et al., 2024]. For RoBERTa-base embeddings, we use the full embedding
with hidden size 768. All representations are normalized.

Other hyper-parameters. We set pdrop = 0.15 as in the masked rate in BERT [Devlin et al., 2019]
training. Without specification, we set the loss weights λcont = λcont = 1 and use gradient clipping.
Following Sahoo et al. [2024], von Rütte et al. [2025], on LM1B we set a constant learning rate
3× 10−4 with 2500 warm-up steps, and a constant learning rate 5× 10−4 with 10000 warm-up steps
for OWT. We use AdamW optimizers with weight decay 0.02 and gradient norm 1.0.

Computation resources. All pretraining tasks are conducted with 8 NVIDIA H100 or A100 80GB
GPUs. As an example, pretraining on OWT with 8 H100 GPUs requires 135 hours for MDiT, 255
hours for MMDiT, and 226 hours for MoEDiT.

D.2 Discussion on Validation Perplexity

Recall the forward process of CCDD. Since we use masking process for the discrete component with
γt = 1 − t, the corresponding discrete loss is calculated as the mean of cross-entropy loss of the
masked tokens:

Ldisc = Et,xt

[
1xt=m · x⊤ logxθ

]
(19)

When calculating validation elbo, the model needs to predict the masked tokens. However, the model
actually also takes the partially noised continuous tokens as the input, which provide information of
the masked tokens that is unavailable in discrete diffusion, causing potential unfairness.

To address this issue, we use special methods to erase the related information in the continuous tokens
corresponding to the masked discrete ones. For RoBERTa, we sample z̃0 = E(xt) as the embedding
of xt (namely the partially masked sequence) instead of x0, so that the “clean” representations of
the masked tokens would not directly be determined by the oracle. For Qwen3-Embedding model
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Table 5: Validation ELBO of ablations on LM1B. We use Qwen3-Embedding-0.6B as the continuous
generation space for CCDD, and train all models for 33B tokens. The numbers non-embedding
parameter counts are also reported for fair comparison. “VP” refers to the variance preserving
schedule in DDPM, and “Linear” refers to the log-linear schedule in flow matching.

Base Model Architecture # params. Cont. Schedule Validation ELBO (↓)
CCDD MDiT 92.1M VP 2.338
CCDD MDiT 92.1M Linear 2.586
CCDD MMDiT 216.2M VP 2.311
CCDD MMDiT 216.2M Linear 2.518

which does not have a mask token, we set the embeddings corresponding to masked tokens of discrete
component in z0 = E(x0) to zeros in order to simulate the “masking” operation, leading to z̃0 which
also declines the direct information leakage. The continuous forward process then starts with z̃0
instead of the original z0. To let the model capable of doing inference with these perturbed inputs,
we also perform these masking operations with a certain probability pr during training, which is
stochastically sampled per-sequence within [0, 0.9].

Notably, evaluating ELBO with z̃0 actually makes the inference of CCDD harder than discrete only,
since the unmasked tokens in the discrete part are injected noise to their continuous representations,
while the purely discrete model only takes the clean inputs. In the main text, we always report
results with pr = 1, which are proper. Even if evaluated with a strictly harder metric, CCDD still
outperforms the baselines, which effectively validates the superiority of joint modeling.

D.3 Additional Ablations

We further study the effects of architecture and continuous schedules. We set pr = 0 for all models
during training and inference for simplicity. The validation perplexity is calculated as the exponential
function of ELBO. Table 5 validates that a continuous schedule ahead of the discrete part in inference
time (VP) yields better results. Scaling the number of parameters also consistently improves the
performance.
Table 6: Validation ELBO with pr = 0 on OWT. We use Qwen3-Embedding-0.6B as the continuous
generation space for CCDD, and train all models for 131B tokens.

Model Validation ELBO (↓) Validation PPL (↓)
CCDD-MDiT 2.457 11.67
CCDD-MMDiT 2.415 11.19

We also report the validation ELBO with pr = 0 (always starting diffusion process on the oracle
x0 and z0) in Table 6 for reference. The models are also trained with Qwen3-Embeddings on OWT
leveraging VP schedules. We observe that even a simple MDiT (which essentially shares the same
non-embedding parameters as standard DiT except the additional encoding layer and the decoding
head) could obtain super low ELBO.

E Discussion

E.1 Strengths of CCDD

We systematically summarize the advantages of CCDD as follows, which may inspire more future
extensions.

• Exhibits strong expressivity, retains full information on marginal distribution and rich
contextualized semantics.

• Ability to potentially conduct implicit reasoning, searching and planning in the latent space.
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• Combines a smooth and conservative decoder containing rich semantics with an aggressive
decoder modeling explicit tokens (which decomposes the process to a series of conditional
generation).

• Receives knowledge distillation from pretrained models, and representation learning accel-
erates diffusion model training.

• Flexible in few-step sampling and inference-time scaling while compatible with CFG.

E.2 Further Discussions on Generation Spaces of CDM

Let Etok : Ω → Rd be a token-wise embedding with a fixed codebook C = {e1, . . . , eV } ⊂ Rd

(typically d ≤ V , often d ≪ V ). Let Ectx : ΩL → Rd be a contextualized embedding at a given
position (depending on the entire sequence context), again with d ≤ V in practice. We analyze three
generation spaces for the continuous diffusion variable at a position:

(i) Z∆ = ∆V−1, (ii) Ztok = Rd (token-wise codebook), (iii) Zctx = Rd (contextualized).

For sequence length L, these apply positionwise with shared or tied encoders/decoders.

Probability simplex. Z∆ = ∆V−1 models calibration-ready probabilistic targets, and the score
functions may have clear information-geometry meanings (e.g., Fisher geometry on the simplex).
However, the high-dimensionality and the valid distribution constraints make it hard to be directly
generated (as the diffusion target). Furthermore, data are concentrated on simplex vertices (one-hots),
resulting highly non-smooth denoising targets.

Token-wise embedding with codebook. Training targets for token-wise embedding space are
codebook vectors z0 = ex0 ∈ C ⊂ Rd and diffusion evolves in Rd. Decoding can be nearest-
neighbor or softmax over codebook energies: p(x | z) ∝ exp{−∥z − ex∥2/τ} as in previous
work [Li et al., 2022]. When d≪ V , the lower dimensionality and the Euclidean geometry (naturally
suitable for Gaussian noises) enable easier diffusion optimization. Nevertheless, the optimization
target is still non-smooth due to the atomic codebook vectors and the naive decision boundaries. Most
importantly, we now show that Ztok is not more powerful than Z∆.

Proposition 17 (Representational power w.r.t. terminal classification). Any z-based classifier can
be emulated by modeling logits in RV and passing through a softmax with a learned final linear
layer whose columns are {ev}. Hence token-wise embeddings are not strictly more expressive than
simplex-based logits for terminal token prediction.

Proof. (Constructive.) Define logits ℓ(z) = W⊤z + b with columns of W equal to code vectors
(optionally re-centered); softmax(ℓ(z)) approximates any energy-based decoder over the codebook.

The construction is straightforward since Etok =

[
e1
. . .
eV

]
∈ RV×d is column full rank, thus any z could

be linearly reconstructed by a logit ℓ with the help of the codebook.

Remark 7 (Why training can still be harder). The regression target z0 ∈ C makes the conditional
expectation E[z0 | zt] a weighted average of code vectors, which lies between modes. Nearest-
neighbor decoding then introduces a quantization gap; gradients around Voronoi boundaries are
poorly conditioned, explaining larger prediction errors in practice.

Contextualized embedding. Here z0 = Ectx(x0; sequence context) depends on the whole se-
quence (and position). A decoder Dctx(z, context) → ∆V−1 maps the embedding back to token
probabilities. If Ectx is well-defined (which is true for state-of-the-art pretrained LLMs), the genera-
tion targets now contain rich information and themselves being smoother. Sequence-level information
and long-range dependencies are encoded into a compact space, facilitating diffusion generation. The
largest obstacle now becomes the decoding ambiguity, which could be tackled with the help of the
discrete component.
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Remark 8 (Sufficiency and decoding). If z0 = Ectx(x0, ctx) is (approximately) a sufficient statistic
for predicting x0 given context (i.e., p(x0 | ctx, z0) = p(x0 | ctx)), then there exists a decoder Dctx

achieving Bayes-optimal token prediction. In practice, approximate sufficiency improves sample
efficiency but is not guaranteed, leading to residual ambiguity.

F Generated Examples

We attach some generated examples of CCDD-MoEDiT trained with Qwen3-Embedding-0.6B on
OWT. The inference length and the number of denoising steps are both set to 512, with DDPM update
for continuous tokens and MDLM posteriors for discrete tokens. The CFG guidance scale is 1.5, and
the sampling temperature is 1.0 by default.

Her pancakes seemed to be far too bland, and it was clearly an amazing piece of cake. She
falls for the pieces like this, as she starts to take a look at how she had grown up with I mean,
this man’s and the whole life he has taught her in her life. Laughing at her for not being
representative of what she was never originally supposed to be given to that life, and that she
was not really as miserable as what she had grown up, because no matter what people said, she
did what she was supposed to be like to bring her onto her own world, the Land, but he keeps
treating her and she goes one by one and somehow spins around and begins something, tries to
play the extreme with the lives without generally treating her with what she was supposed to be
like too. But at the end of the day, she is not having any enjoyment of that life and she seems to
have the crap transition that should work for them. The poor state of their world between them
and her being something somewhat different.

That actually not only hurts her, it just make its villains really stupid about her, and even worse
than what they thought she was. That was simply a very normal combination of things, as she
was incorporating a few devices into her life where she could still do anything, anything for
a while, and she really was like she had to have a home. As I was lived along at that time, I
started knowing that she had a really, really really shitty home, that they’d had nothing like
interacting with me until her home was eventually taken over, and she was never physically or
even physically interacting with me, and all this in those moments, I was really accepting that I
was just doing what I was doing, and things did seem to don’t help me as she’d always have,
and she wasn’t the family that she was supposed to be home to until the moment, only now did
I know what I was doing, which was a really crappy home, and I was just given the task, unable
to get any benefit from her. She didn’t have such a role as as long as she finished, she had no
idea what to do, she just had a real, shitty home. What she could not have had when was the
current state of the home. My husband had been living with me to the point where his entire life
was going to be so completely acceptable to his home that meant he was going to just move
again, and just have all this fun in the home world.
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Back to farms, there was a lot of different stuff about it, especially about after the farm had
been changed and we had no idea what part of the culture and/or anything like it was, while
the people that seemed to argue towards us went and in a subsequent meeting of my farm was
worthless and I all realized that anyway it had been taken away since we had 90% of money
in direct sales and we had no interaction with any other farmers or the manager which was
what was actually happening for us. That’s when I noticed a lot of the business around me and
thought immediately, everything seemed very impersonal to the small restaurants it was on
both iterations were that were both profitable and varied but this was open sourced for them to
be innovative, I definitely would have seen something completely different than anyone else
on earth and most likely not much of the possibility they were trying to have to it were really
something that was available to them and not as innovative as we had ever dreamed of being,
with such a limited options and the race around was how it looked on the farm and we can’t
even remember how it was brought in deeper than the bones with their fresh clothes but when
anything turned a apart and it seemed to go further than how they went about the business, I
begin to compare only myself to this interconnected world rather than make me get to a point
where I would have reasonable concerns about anything like it. At first it seemed sort of seemed
like a new outpost was any sign of plans on existing or more of it and not much later, much later
it was so much that the front screen seemed to me very warped and just a sense of disgust his
face was due to his colors nothing was really very apt to present for me to see what they were
doing there all along and most of me that I had been getting into the community behind had
anything I was capable of producing. It was within the last couple of months that I’ve seen a lot
of poor people being able to rid themselves of this place, and all I keep mentioning is now since
the small farms were seemingly only established in the food shops that time it’s a question of
my priorities and not addressing something about the animals is something I can argue with, but
this years it’s been one of my priorities and lately like my boss have been distracted with very
rarely the moves that moved. I’ve once again seen another homeless restaurant that seemed to
be basically within the framework, several times and in the last few years has changed for the
community in Syracuse and the only one.

The world crop is evolving because it’s such a very different process and if it is never going to
be sustainable, that is something like that that is way too bad for the people. And that’s because
it is so obvious that there is a pretty major issue on the planet that that is linked to that and most
of the problems are a lot of that is happening on the roads, it is not happening for the plant, it is
not happening for the home and there is a whole lot of salt all over the Pacific oceans, and for
some of it that is done to the oceans, and why are they just looking at the government, seeing
all the roads and the lumber, and the sand beaches and stuff and all of those is happening every
day and everybody knows they aren’t going to do it but this is one of my feelings and I’m going
to reduce it to that abstract and it is the face of the globe that they said this as much as they are,
but the most important thing in that is that all of the existing plants, unlike the old progressive
reactors, are not just at a 100% temperature like our corn and the stuff is just endlessly growing
out, every single out one just because it is something that would be a problem so basically we
will be just putting it that people can use as a source of their resources. Some of those crops
can be cut off, we can have no irrigation, we can go back to farms, we can graft some of that
things and it makes NO sense as they are all the same. See, if we have both crops as though
they aren’t the same then there is no reason that would be a problem for us, we know each other,
but just because they are living different to each other and one thing that is a lot with those
crops or that is some of these weeds can come out of soil and eventually it will be replaced
with trees and so there will be a number of areas to which these plants would not have the
kind of characteristics or truly some different degrees of proportion that they are having and
others are nearly as effective that they are supposed to have. Of course, maybe that is where the
Pre-Christian Christian Church came from but that is not something that is so obvious and it is
extremely obvious but it is because the water in plants, that which belongs in the environment,
so all the seeds taken from water are not there and the material is not formed on planets. Those
parts are the good aspects of the process and are all we need, they can be enough.
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