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Abstract
In medical risk prediction scenarios, machine
learning methods have demonstrated an ability to
learn complex and predictive relationships among
rich feature sets. However, in practice, when
faced with new patients, we may not have access
all information expected by a trained risk model.
We propose a framework to simultaneously pro-
vide flexible risk estimates for samples with miss-
ing features, as well as context-dependent feature
recommendations to identify what piece of infor-
mation may be most valuable to collect next. Our
approach uses a fixed prediction model, a local
feature explainer, and ensembles of imputed sam-
ples to generate risk prediction intervals and fea-
ture recommendations. Applied to a myocardial
infarction risk prediction task in the UK Biobank
dataset, we find that our approach can more effi-
ciently predict risk of a heart attack with fewer
observed features than traditional fixed imputa-
tion and global feature selection methods.

1. Introduction
In many medical decision-making scenarios, there is a trade-
off between collecting more features at a cost, versus mak-
ing a decision about a patient based on what is currently
known. In general, observing more information about the
person can lead to more accurate and confident predictions,
and current machine learning (ML) prediction models often
expect a rich feature set, which may not be available at all
times in practice. To that end, previous work has focused on
designing models that can efficiently choose features dynam-
ically, tailored to the context of a specific sample; however,
they often rely on specific modeling/architecture innova-
tions (e.g, decision trees (Xu et al., 2014; Viola & Jones,
2004)). Another line of research has involved sensitivity-
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based approaches that aim to select features based on the
unknown features’ influence on model predictions (Early
et al., 2016b;a; Kachuee et al., 2019); however, these ap-
proaches have also tended rely on a specific class of model
(linear models or autoencoders (Ma et al., 2019)). For a
fixed supervised ML model (about which we make minimal
assumptions), we propose a general framework to simulta-
neously provide both flexible risk estimates for individuals
with missing features and personalized feature recommen-
dations to identify which missing features may be most
informative to select next given the context.

Our approach (Figure 1) relies on three main components:
(1) a conditional feature imputer for sampling possible val-
ues of missing features given the observed ones, (2) a fixed
supervised ML model, and (3) local feature explainer for
the model. Empirically, we find that an approach using
KNN-based imputation, an XGBoost model, and a SHAP
explainer is able to more efficiently predict 10-year risk for
myocardial infarction than traditional single value imputa-
tion and fixed (global) feature selection.

2. Methods
For our approach, given an individual with partially ob-
served features (e.g., a sparsely populated medical record),
we stochastically impute their missing features–ideally,
drawing from the conditional distribution of their missing
features given observed ones–to generate examples of a
complete record given the currently available information.
We then use this “ensemble” of imputations to: (1) provide a
risk interval (rather than just a single point estimate) around
the adverse event, and (2) select a feature to collect next,
guided by model explanations, which may best help reduce
uncertainty with respect to the model’s prediction. Such
an approach may enable clinicians to make better informed
decisions by providing them with flexible risk intervals (re-
gardless of how much information is already known about
the patient) and suggesting follow-up tests to improve their
understanding of a patient’s risk profile. Our approach is
model agnostic, and relies on three main components:

(1) A conditional feature imputer for generating ensembles
of imputed samples. Our goal for the stochastic imputer
is to conditionally sample missing features given observed
ones such that, by sampling an “ensemble” of multiple im-
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Figure 1. Overview of our approach. (a) Our method relies on a fixed conditional feature imputer and risk prediction model fit to a training
set. (b) For each incomplete sample at test time, we generate an ensemble of imputed samples and use the prediction model to produce a
risk interval (left). The next feature is dynamically selected based on model explanations, and if observed, the process may be repeated.

putations for a given individual, we obtain a distribution
of possible complete samples for that person. These impu-
tation ensembles could then be fed into the predictor and
explainer to generate a distribution of predicted risk scores
and explanations conditioned on the observed context. In
practice, developing generative models for conditional im-
putation is challenging, and an area of active research (e.g.,
neural network methods such as GAIN(Yoon et al., 2018)
and GI(Kachuee et al., 2020)); however, we find that a sim-
ple approach of sampling nearest neighbors works well in
practice (see Results). (2) A supervised ML model. For
our approach, we assume that the model has already been
trained on a labeled dataset consisting of a fully observed
feature set and the clinical label of interest. We make min-
imal assumptions about the type of model used (for our
experiments, we use an XGBoost (Chen & Guestrin, 2016)
model), and only require that the model has an associated
(3) feature explainer, which can estimate each feature’s con-
tribution to the model’s prediction for a given sample (for
our experiments, we use SHAP (Lundberg & Lee, 2017)).

For our experiments, we used a fixed training set for all
components. However, we note that because the stochastic
imputer and prediction model are trained independently,
their training sets do not need to be identical. This may be
particularly advantageous if there are many more unlabeled
samples available (which may be used to train the imputer).

2.1. Putting it all together: Our approach

At test time (Figure 1b), from the imputation ensemble gen-
erated by the conditional feature imputer, we simply use

the risk model’s predictions to generate a risk distribution
(whose spread reflects variation in the model’s output with
respect to imputed features). We further propose using the
distributions of feature attributions to inform feature recom-
mendations. In particular, we hypothesize that using vari-
ance in SHAP values across the imputation ensemble will be
an effective metric for selecting the next feature. Intuitively,
large variations in SHAP values would indicate that the
model’s predictions are sensitive to our simulated variations
in the missing features. In contrast, if a feature has high vari-
ance in the imputed values but not SHAP values, that would
indicate that these variations are not relevant–according to
the prediction model–to risk. Similarly, a feature with high-
magnitude but low-variance SHAP values may also be a
poor choice, since given the current context, we are already
confident about how the unknown feature would impact the
model (for example, if we have two redundant features and
have already observed one of them).

2.2. Experiments

We first evaluate our approach on a toy dataset with a known
conditional distribution where we can compare feature se-
lection approaches independently of imputation methods.
We then apply our approach to data from the UK Biobank
(www.ukbiobank.ac.uk), a biomedical database con-
taining data from individuals across the UK, including hun-
dreds of features collected during an initial visit and detailed
long-term health outcomes. For our analyses, we focus on
a randomly selected subset of 100,000 samples, along with
252 features (described further in Appendix A.2), and we
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observe that about 2% of individuals have a reported myocar-
dial infarction within 10 years after their initial screening.

3. Results
In Appendix A.1, we show the advantages of our dynamic
feature selection approach on a synthetic dataset where we
directly impute missing features from a known conditional
distribution, and thus can evaluate our feature selection ap-
proach in isolation. As shown in Appendix Figure A.4, com-
pared with a fixed global ordering, our explanation-guided
dynamic feature selection strategy more efficiently identifies
relevant features given context from observed ones.

We now turn to the task of 10-year myocardial infarction
prediction in the UK Biobank (UKB) dataset. We first fit
a supervised ML model and imputer to our training set.
We then use a test set to simulate an interactive process
in which we alternate between (1) generating a prediction
given the current observed information, and (2) selecting the
next feature to un-mask. We then observe how the predic-
tion model’s average performance and prediction variation
progress as features are selected and observed.

3.1. Initial model training

Supervised risk model and explainer. For the 10-year my-
ocardial infarction prediction task, we fit an XGBoost model
to the training set to establish baseline performance expec-
tations for a complete feature set, for which we obtain test
AUROC and AP scores of 0.768 and 0.088, respectively
(Appendix Figure A.5). We use SHAP as our model’s ex-
plainer, and note that the top 20 features in the training
set ordered by mean absolute SHAP value (listed in Figure
3b and shown in Appendix Figure A.5c) cover a range of
feature types, from demographic features to medical lab
tests.

Conditional feature imputation. As described in Methods,
our approach relies on a conditional feature imputer which
samples missing features conditioned on the observed ones.
We empirically find that a k-nearest neighbors (KNN)-based
approach, with an ensemble size of 100, works well in prac-
tice (Appendix A.3). Across different rates of induced miss-
ingness, we find that this approach leads to the most accu-
rate risk predictions (averaged across our XGBoost model’s
outputs for the ensemble of imputed samples) compared
with standard approaches such as mean-value imputation
and imputing from the marginal distribution, or recently
proposed deep learning imputation models (Kachuee et al.,
2020; Yoon et al., 2018) (Appendix Figure A.5b).

3.2. Iterative feature selection experiments

We now demonstrate the value of our approach for itera-
tively predicting risk intervals and dynamically selecting

Figure 2. Example of our approach for a single sample. (a) Distri-
bution of risk scores from imputation ensembles after observing
each feature. (b) At a specific time-point, examples of imputed
values vs. resulting SHAP values for candidate features. Cystatin
C is selected because it has the highest variance in SHAP value.

features. For each test sample, we run the following pro-
cedure (illustrated in Figure 2) beginning with 0 observed
features, until 20 features have been observed: (1) Generate
an ensemble of 100 imputed samples using the KNN-based
approach described above, (2) use the supervised risk model
to generate predictions for each of the 100 imputed samples,
resulting in a predicted “risk interval”, (3) apply SHAP to
obtain feature contribution scores for each feature across
each imputed sample, and finally, (4) choose the feature
with the highest SHAP value variance and uncover the true
value of that feature.

To illustrate the potential use of our approach in practice,
we show an example for a single participant in the UKB
study in Figure 2. In Figure 2a, we first demonstrate the
individual’s prediction interval evolves as each new feature
is collected (resulting in a new ensemble of imputations,
and subsequent risk scores). As more features are observed,
we see that the prediction intervals tend to shrink indicating
that uncertainty of the model predictions with respect to
missing features’ imputations is decreasing. In Figure 2b,
we show an example of imputed values vs. their contribu-
tion to the model’s risk scores (according to SHAP values)
after observing three initial features. In this particular exam-
ple, imputed values for Cystatin C have the highest-varying
impact on model predictions given the context at that point,
and is thus selected next. Our approach, as highlighted in
this example, provides an explanation-guided recommenda-
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Figure 3. (a) Comparison between our dynamic feature selection approach and global feature selection for 10-year myocardial infarction
prediction in the UKB dataset. (b) Overview of our feature selection orders compared with fixed global feature selection (in y-axis).

tion (based on ensembles of imputations) for features, and
thus may provide users with context-dependent insight into
why a feature may be useful to observe.

In Figure 3a, we report the performance of our approach,
aggregated across the test set, as features are iteratively se-
lected and observed. For comparison, we consider two base-
lines using fixed feature orderings provided by our global
feature ranking (based on mean absolute SHAP value; Ap-
pendix Figure A.5c). First, we consider the same procedure
described above, but replace the dynamic feature selection
strategy (steps 3 and 4) with simply choosing features in
the fixed global order. Second, a more traditional approach
of using global feature selection involves re-training the
prediction model on the selected features. Thus, we also
consider a collection of models trained with feature budget
(i.e., a single-feature model trained on age, a two-feature
model trained on age and sex, . . . , and a 20-feature model
trained on the top 20 features), as such a model is tailored
to the specific expected use-case.

From our experiments, we find that our approach more
efficiently prioritizes features than fixed global feature selec-
tion strategies, leading to improved prediction accuracy with
fewer features observed (Figure 3a). In Figure 3b, we show
that our approach does indeed lead to different feature or-
derings tailored to samples’ context of previously observed
features. We see that age is always selected first, but that
the participant’s age informs the choice of the second fea-
ture, whose value informs the next feature choice, and so on.
Appendix Figure A.6 provides a detailed view of feature
orderings across the test set. Anecdotally, we note that for
younger individuals, our approach tends to choose testos-
terone next; sex is often not selected till much later (perhaps
because sex can be easily inferred from the testosterone
values and thus would provide redundant information).

4. Discussion
In this work, we propose an approach to leverage conditional
imputation and explainability methods to provide flexible
health risk estimates and context-dependent feature recom-
mendations for a fixed ML prediction model. Applied to a
10-year myocardial infarction prediction task in the UKB
dataset, our approach (implemented with KNN-based impu-
tation, XGBoost, and SHAP) led to more efficient feature
prioritization compared with a static approach and single-
value imputation. One key consideration is that our method
relies on having a reliable way to conditionally impute miss-
ing features. While our KNN-based approach worked well
in practice, it is not guaranteed to be effective, and may
be particularly limited in the case of small datasets where
neighborhoods may be particularly sparse.

There are several natural extensions of our work to consider.
First, our feature selection strategy does not take into ac-
count the fact that those features tend to have varying costs.
One simple extension is to adjust our feature collection pol-
icy to balance our current metric (i.e., SHAP variance) with
the cost of the feature. Second, our experiments considered
collecting features over a fixed budget of 20 features. In
practice, it may be valuable to leverage some notion of un-
certainty (contained in risk prediction intervals) in a triage
setting, where we may allocate a feature budget unevenly
across samples (e.g., terminating a sample’s collection pro-
cedure once its risk interval is sufficiently narrow).

Although further experimentation is needed to validate our
method in a real-world setting alongside state-of-art meth-
ods, initial experiments demonstrate its potential to provide
flexible risk estimates despite incomplete medical informa-
tion, along with context-dependent feature recommenda-
tions which may aid clinicians in seeking additional clarity.
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A. Appendix
A.1. Toy dataset experiment

Figure A.4. A toy example illustrating the advantage of our method of dynamic feature selection over a fixed ordering. (a) Scatter plots
illustrating the relationships among features and a target variable in a simulated toy dataset. The feature set contains 3 pairs of correlated
features which are independent of other pairs. Our target feature is a function of all features, but relies most heavily on x1 and x2 and
least on x5 and x6. (b) Global feature importances for an XGBoost model trained to predict y on the simulated data shown in a. To
compute global feature importance, we consider both SHAP (where we compute the mean absolute SHAP value)(Lundberg & Lee, 2017)
and SAGE(Covert et al., 2020). (c) When simulating an interactive risk prediction and dynamic feature selection process on synthetic
data illustrated in a, we assess the average performance of our approach on samples (y-axis) when starting at 0 information and then
selecting a new feature at each time point (x-axis) with respect to both error (left) and ensembles’ prediction variation (right). Baselines:
“random” follows our multiple imputation and prediction procedure, but with the next feature selected randomly at each time point.
“Global: SHAP” and “Global: SAGE” follow our multiple imputation and prediction procedure, but features are acquired in order of
global feature importance as shown in b. “SHAP retrain” and “SAGE retrain” use the same global feature orderings from b, but we retrain
models at each feature budget.

A.1.1. DATA GENERATING PROCESS, AND CONDITIONAL IMPUTATION

We first consider an example with synthetic data where we can stochastically impute samples directly from a known
conditional distribution (thereby testing the dynamic feature selection model independently of the performance of an
imputer). As illustrated in Figure A.4, the toy dataset contains pairs of correlated features, and a prediction task y =
4(x1 + x2 + ϵ) + 2 ∗ (x3 + x4 + ϵ) + (x4 + x6 + ϵ) where ϵ ∼ N(0, 0.01) represents random noise. The six features are
normally distributed (mean 0, unit variance), and consist of three pairs of redundant features that are independent of the
other pairs (ρ = .9 between paired features, as illustrated in Figure A.4a). Thus, we have simulated a case in which we
have pairs of redundant features, where within each pair, the features contribute equally to y, and there’s a clear ranking of
importance between pairs.
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Given this data generating process, it’s then straightforward to randomly sample imputations from a partially observed
sample: for each correlated pair of features xa and xb, if xa is missing but xb was observed, we sample from the conditional
distribution xa|xb ∼ N(.9 ∗ xb, .19) (or vice versa). Otherwise, if both are missing for a given test sample, we randomly
sample from the marginal distribution xb ∼ N(0, 1), and then sample xa conditioned on xb as just described. Given a
dataset simulated with this data generating process, we can now mask features and use our approach above to directly
sample imputations for the masked features conditioned on the observed ones.

A.1.2. FEATURE ACQUISITION EXPERIMENT

For the supervised prediction model, we train an XGBoost model (with default parameters) on a 10,000-sample simulated
training set. First, we apply SHAP (a local feature attribution method) (Lundberg & Lee, 2017) and SAGE (a global feature
attribution) (Covert et al., 2020) method to assess how an XGBoost predictor model relies on our simulated features to
generate predictions. Consistent with the data generation process, these methods both identify a clear ranking among the pairs
of features (Figure 3b), although the relative importance within pairs slightly differs. In a standard global feature acquisition
strategy, features would always be selected based on this global ranking (i.e., x1 → x2 → x4 → x3 → x5 → x6).

We now turn to the evaluation of our approach on this toy example. In Figure A.4c, we show the average performance
of our approach when simulating prediction and selection of features from no observed features until all features have
been observed. In particular, for each of 1,000 test samples, we repeat the following steps until all features have been
observed: (1) we sample 100 imputed samples conditioned on the features observed up until now, (2) we report the mean
and variance of the model predictions on these 100 imputations, (3) we then compute SHAP values for each of the imputed
examples and select the missing feature with the highest-variance SHAP value, (4) we un-mask the missing feature. In
Figure A.4c, we also show how global feature selection policies compare with our context-aware approach (while still
using stochastic imputation to generate prediction intervals). We additionally show results for “retrained” global selection
approaches because in practice, when using global feature selection, given that the order is fixed, it is reasonable to re-train
a prediction model with the subsets of features that would be used at test time (i.e., a 1-feature model containing the top
feature, a 2-feature model containing the top two features, etc.). In this toy example, we find that our dynamic feature
selection approach allows our method to more efficiently gather features at test time. By modeling the missing features
conditioned on the observed ones, our approach avoids collecting redundant features that would be unlikely to substantially
alter the model predictions, unlike global feature selection policies (Figure A.4c).

A.2. UK Biobank (UKB) data overview and preprocessing

UKB participants were enrolled between 2007-2014 from 21 assessment centers across England, Wales, and Scotland.
Our study includes all measurements taken during their initial visit, available on December 13th, 2021. During an initial
comprehensive visit, hundreds of features were collected, including information about sociodemographic and lifestyle
factors, health and medical history, cognitive testing, physical measures (such as composition and hearing tests), and lab
tests from biological samples (including blood and urine). We exclude (1) features that are missing in more than 80% of the
samples, and (2) highly correlated features with correlations greater than 0.98 (when such correlations existed, we kept just
one of the features and removed the others). After excluding features, our UKB dataset has 825 features from numerous
categories: demographics, blood assays, health and medical history, lifestyle and environment, physical measures, etc.

For our analyses, we initially considered seven health outcomes which are provided by the UKB database as “algorithmically-
defined outcomes,” meaning that they are outcomes linked to hospital admissions and death registries (https://biobank.
ndph.ox.ac.uk/showcase/label.cgi?id=42): chronic obstructive pulmonary disease, asthma, all-cause de-
mentia, end-stage renal disease, myocardial infarction, all-cause parkinsonism, and stroke. One of the most densely
annotated outcomes, and the focus of our analyses, are myocardial infarctions (also known as heart attacks; around 2%
incidence over 10 years). For our analyses, we use a ten-year follow-up period as our prediction goal. For each of these
conditions, we considered the individual to be a control case if they had no history of the condition during their intake visit
as well as no report of the condition within 10 years after the visit, and a positive case if they had no prior history of the
condition at their intake and subsequently had a reported incidence of the condition within the next ten years. For a given
condition, the label was considered to be unknown if they had a pre-existing report of the condition during their intake, or if
they had a report with an unknown time, and such samples were excluded from training our supervised models.

For training and evaluating our models, we used a randomly selected sample of 100,000 individuals, which we divided
into training (64,000 individuals), validation (20,000), and test (16,000) splits. In order to train our models, we performed
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the following additional preprocessing steps: (1) We imputed missing features using MissForest (Stekhoven & Bühlmann,
2012), a nonparametric random forest-based multiple imputation method for mixed-type data, (2) we normalized features to
have 0 mean and unit-variance (which was necessary to compute distances for KNN-based imputation with similarly scaled
dimensions).

Finally, we generated a reduced feature set for our final models: for each of the seven conditions listed above, we trained a
separate XGBoost model to predict whether the condition occurred within 10 years based on the full 825 feature set. We
then applied SHAP to each of the seven models and found that many of the features played no significant role among any of
the models (SHAP values of 0 across all samples). Thus, to provide a more reasonable starting point for our models, we
chose a reduced feature set of 252 features consisting of all features that had a mean absolute SHAP value of at least 0.001
for at least one of seven outcome models. Our final data for the myocardial infarction risk prediction experiments consisted
of 62,444 training samples (from the initial 64,000 training samples, we excluded samples with unknown labels) with the
252 features described above, and 15,612 test samples which were used to evaluate the effectiveness of our approach. In
our experiments, the 62,444-sample training set is used for both fitting the XGBoost model, as well as the KNN-based
imputation approach.

A.3. UK Biobank experiment details

For our feature imputer, we use KNN-based imputation with an ensemble size of 100. In particular, we use an imputation
ensemble size of 100, meaning that for a given partially observed test sample, we identify the 100 nearest neighbors in the
training set (with distances computed in Euclidian space for normalized features based on the observed features only). We
then generate an ensemble of imputations where, for each sample in the ensemble, the observed features are kept as is, and
the remaining unobserved features are imputed from the record of the selected neighbor. For our XGBoost risk prediction
model, we used the implementation from Chen & Guestrin (2016) and used default hyperparameter settings. Once fit, this
trained model was used as the fixed supervised model across all feature collection strategies.
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Figure A.5. Summary of our 10-year myocardial infarction XGBoost model. (a) Test set performance when considering the full feature set
without missingness. (b) Simulating MCAR missingness at different rates, we compare the effectiveness of different imputation strategies.
For each strategy (except mean/mode), we generate an imputation ensemble for each sample (100 imputed samples for each real sample)
and consider the average of model predictions across the ensemble as our final risk estimate. For mean/mode imputation, we simply
impute missing features with the mean (for continuous features) or mode (for binary features). We also evaluate the following strategies:
marginal (uniformly sampling the feature’s value across the entire training set), GAIN (a neural network-based approach by Yoon et al.
(2018)), GI (a neural network based approach by Kachuee et al. (2020)), and KNN, our final selected approach of identifying nearest
neighbors in the training set based on observed features and directly using features observed in those neighbors. (c) SHAP summary plot
for the trained model: distribution of training set values vs. their impact on the model output (SHAP values). The features are sorted by
mean absolute SHAP value, and this ranking is used as our feature ordering for the fixed feature selection strategy.

9



Explanation-guided dynamic feature selection for medical risk prediction

Figure A.6. Feature orderings across all samples in the test set. In the top heat map, each column represents a sample in the test set, and
the cell color indicates the order in which features were collected (dark red for a sample’s first selected feature, dark blue for the 50th, and
white if the feature was selected after the top 50 features for that sample). Below the main heatmap, we also show each sample’s age and
sex for to highlight some possible relationships between collected features and the subsequent ordering of later features (e.g., for younger
subjects, our approach tends to select testosterone early instead of sex). To the right, we also show the global ranking of features which is
used for the fixed global feature ordering baseline.
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