Under review as a conference paper at ICLR 2026

CoKYV: OPTIMIZING LLLM INFERENCE WITH GAME-
THEORETIC ADAPTIVE KV CACHE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved remarkable success in various
aspects of human life. However, one of the major challenges in deploying these
models is the substantial memory consumption required to store key-value pairs
(KV), which imposes significant resource demands. Recent research has focused on
KV cache budget allocation, with several approaches proposing head-level budget
distribution by evaluating the importance of individual attention heads. These
methods, however, assess the importance of heads independently, overlooking
their cooperative contributions within the model, which may result in a deviation
from their true impact on model performance. In light of this limitation, we
propose CoKYV, a novel method that models the cooperation between heads in
model inference as a cooperative game. By attributing the contribution of each head
within the model, CoKV can more effectively allocate the cache budget in KV cache
techniques such as eviction and quantization. Extensive experiments demonstrate
the effectiveness of CoKV on long-context benchmarks (e.g., LongBench, NIAH,
and RULER) and mathematical reasoning benchmarks (e.g., GSM8K and MATH)
across multiple model families, including Qwen, Llama, and Mistral. Code is
provided in |https://anonymous.4open.science/r/CoKV-40AC.

1 INTRODUCTION

Large language models (LLMs) are widely applied across various domains, including content genera-
tion (Li et al.| 20244), automated services (Chen et al.,|2024a)), and decision support systems (Hager
et al.| 2024). With the widespread application of large language models (LLMs), reducing the cost of
inference services has become increasingly important. LLMs consist of multiple transformer blocks
that store key and value states (KV) during inference. KV cache allows efficient decoding in token
generation without recomputing key and value states by using previously cached KV pairs. However,
the KV cache becomes excessively large when processing long sequences or a large number of inputs,
inevitably straining GPU memory, thereby substantially raising deployment costs and hardware
requirements for large-scale applications.

To address this challenge, research efforts have advanced on several fronts. Some studies have
explored methods for ranking the importance of tokens within a single attention head, retaining
only the top k most significant ones. For example, H20 (Zhang et al., 2023b)) evaluates token
importance using the sum of attention weights. Streamingl.LM (Xiao et al.,[2024) directly removes
KV from the middle segment of the cache to reduce the cache size as they incorporate less information.
SnapKV (Li et al.| 2024b) calculates token scores by pooling the attention weights between tokens in
the local window and those in the cache. In parallel, several studies have also investigated strategies
for optimizing KV quantization to reduce KV cache costs, such as Kvquant (Hooper et al.| [2024)
and OTT (Su et al., 2025). Recently, some studies have recognized that the importance of each
attention head varies, enabling methods like AdaKV (Feng et al.| 2025)), HeadKV (Fu et al.,|2025)) and
DuoAttention (Xiao et al.,[2025b). AdaKV improves budget utilization by adaptively allocating the
overall budget across different attention heads based on their varied concentration degrees. HeadKV
evaluates the retrieval-reasoning scores of different heads and allocates a larger cache size to those
with higher scores. DuoAttention uses a reinforcement learning-based algorithm with synthetic data
to identify retrieval heads.

https://anonymous.4open.science/r/CoKV-40AC

Under review as a conference paper at ICLR 2026

While prior work on head importance evaluation has made significant advancements in adaptive KV
cache management, we observe that several challenges remain unresolved in current approaches.
Some existing methods evaluate attention head importance independently. For example, AdaKV
evaluates the concentration degrees of heads while HeadK'V assesses the retrieval-reasoning capability
of each head in isolation as a measure of importance. However, these approaches treat heads as
isolated units, overlooking the fact that their true importance emerges from their cooperation rather
than individual capabilities. As a result, independently assessing head importance may lead to
suboptimal allocation. DuoAttention frames each attention head as an agent within a reinforcement
learning framework, thereby incorporating interactions among heads. However, this approach suffers
from unstable policy convergence, which can hinder its practical application. Based on these insights,
we propose CoKYV (Cooperation-based Key-Value Cache), a method that evaluates the contribution
of all attention heads in their cooperation within the model based on game-theoretic utilities and
dynamically allocates cache budgets based on their contribution.

CoKYV is inspired by the Shapley value (Shapleyl |1953)), a seminal concept in cooperative game
theory that offers a mathematically rigorous framework for fair contribution allocation. The Shapley
value of a player p; measures the expected marginal contribution that p; provides to a coalition of
players. In this work, each attention head can be treated as a player, with its importance assessed via
its Shapley value. The marginal contribution is defined as U (S U {p; }) — U(S) where S is a coalition
of players excluding 7 and U/ is the utility function. A simple intuition for computing the Shapley
value of each head in LLMs is to define ¢/ as the model performance metric. This is a #P-hard (Deng
& Papadimitriou} |1994)) problem as there are an exponential number of coalitions and corresponding
marginal contributions, thus requiring an enormous number of model inferences. Although many
studies (Jia et al., 2019; Mitchell et al., 2022) have explored approximating the Shapley value to
reduce computational costs, the process of applying these methods to evaluate the importance of
heads in LLMs remains prohibitively expensive.

The computational bottleneck in calculating the Shapley value arises from the fact that each sample
of the marginal contribution can only be applied to a single player. Fortunately, Shapley value can be
expressed as the expectation of the weighted complementary contribution, defined as U (S) —U(N\S),
where N represents the set of all players (Zhang et al.| [2023a). Complementary contribution has an
advantage over the marginal contribution in that i/ (S) — U(N '\ S) can be used to update the Shapley
values for all players in S. By expressing the Shapley value in terms of complementary contributions,
we can interpret it as an expectation over these contributions computed at different coalition sizes |S|.
However, in the LLM setting, the cost of computing the complementary contributions in all coalition
sizes is still prohibitively high. We observe that the average complementary contribution of a single
player at different coalition sizes exhibits a strong correlation in Appendix Section[E.4] This insight
allows us to approximate attention head importance by computing complementary contributions at
only a few selected coalition sizes, rather than evaluating all possible sizes (i.e., from 1 to |A|). By
focusing on a few representative coalition sizes, we can significantly reduce the computational cost
of estimating the contributions of heads. Additionally, we provide a theoretical error bound of this
approach and demonstrate its efficiency.

CoKYV is a simple-yet-effective method and can integrate well with other inference optimization
techniques. We integrate CoKV with widely used methods, including FlashAttention (Dao et al.,[2022)
and group query attention (GQA) (Ainslie et al., [2023). CoKV achieves state-of-the-art performance
in LongBench (Bai et al.| | 2024) using Qwen3-32B, Llama-3-8B-Instruct (Dubey et al.,|2024)) and
Mistral-7B [Jiang et al.|(2023) models. Results from the Llama-3-8B-Instruct model show that when
each KV cache retains an average of 128 KV pairs (1.6% of the full cache), it achieves 97.29% of
the performance of the full KV cache. Furthermore, when each cache retains just 512 tokens on
average, CoKV outperforms the full KV cache in terms of average accuracy. This demonstrates that
CoKYV not only reduces computational costs but also improves inference performance by identifying
which heads benefit from cache retention and which may have a detrimental effect. For Qwen3-
32B, CoKV achieve 98.83% of the performance of the full KV when retains an average of 1024KV
pairs(12.8%). Additionally, we evaluate all methods within the token range up to 61k in the Needle-in-
a-Haystack test and the RULER dataset (Hsieh et al.|[2024)), which are widely recognized benchmarks
for evaluating long-text processing capabilities of LLMs, where CoKV also demonstrated the best
performance. Experiments on mathematical reasoning datasets also demonstrate that CoKV possesses
strong cross-task capabilities.

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

In this section, we first formalize the key-value caching and compression mechanism in multi-head
attention. We then present the Shapley value framework as a principled approach for quantifying the
importance of individual attention heads.

2.1 KEY-VALUE CACHING AND COMPRESSION

In Multi-Head Attention (MHA), for each attention head h; in one layer, the embedded input
X = {x1,29,...,2,} € RM*dn of m tokens is mapped into different subspaces using query

W&, key W/, and value WY € Réms*dn matrices:
Qi = XWE K; = XWE V, = XWY e Rm»dn
where d}, is the dimension of attention heads, dj, = d/7, and 7 is the number of heads in one layer.

All the computed KV for the input sequence are cached to avoid recalculating them during the
subsequent decoding stages. Assume there is a new input token z € R *mei _then it will be mapped
to a new query, key, and value as follows,

q = xWiQ, ki = aWE v, = aWY € R,

The KV cache is updated by adding the new key and value pair
Kq; = Cat[Ki, kl], Vh = Cat[Vi, Ui].

The attention output is computed as follows O; = A;V; where A; = softmax(q; K} /v/dp). The
final output yy € R!*?me js obtained through a linear transformation

y = Cat[Oy,---,0,]W©°
where WO € R¥*dmowl gutput weight matrix.

Due to space limitations, we present the introduction of KV cache eviction and KV cache quantization
in Appendix Section [C]

2.2 SHAPLEY VALUE

Consider a set of players N' = {p1,...,pn}. A coalition S is a subset of A/ that cooperates to
complete a task. A utility function U(S) (S C N) is the utility of coalition S for the task. The
marginal contribution of player p; with respect to a coalition S is U(S U {p;}) — U(S). The Shapley
value measures the expectation of marginal contribution of player p; in all possible coalitions. That is

svi— Ly USU) -US)
" SCA(pi) (IS)

ey

According to Equation [I] it is evident that computing the exact Shapley value requires enumerating
the utilities for all possible subsets of players and each marginal contribution can only be used to
update the Shapley value of a single player. Therefore, the computational complexity of exactly
calculating the Shapley value is exponential. Recently, the Shapley value of player p; is proven to be
equal to the weighted complementary contributions (Zhang et al., 2023a)) as follows,

ol 3 USUNS
" scA{pi} (i)

(@)

U(S) —UN \ S) is called complementary contribution which has an advantage that can be reused
to update Shapley value estimation for all players in S. In the context of KV caches, attention heads
are treated as players for evaluating their importance to each specific task. U/(S) is defined as the
model accuracy when the attention heads in A/ \ S are masked, we retain only the KV pairs within
the local window for masked heads.

Under review as a conference paper at ICLR 2026

3 IMPORTANCE-AWARE KV CACHE COMPRESSION VIA SLICED SHAPLEY
VALUE

Our method consists of two phases. First, we precompute the importance scores for each attention
head. Second, these scores are utilized for KV cache compression during inference. The overview of
our approach is illustrated in Figure [T

: Sample 1 Sample Sample M i
:9 [2,M-1] D Masked Head i
HAC XX '
! % [:] Unmasked Head |
e LAy TS]

Evicted KV

@m
00a
080
008
008
000
00a
00a@
0040
080
000

@
C] Cached KV
O

Local Window

| 4 -=080008e00ed

Layers Layer 3

Figure 1: Overview of our proposed method: (1) Head Importance Evaluation (Upper Part): For
a 4-layer x 4-head model, We measure head importance using the Sliced Shapley Value (SSV). To
approximate SSV, we sample M different sets of masked heads and compute their complementary
contributions. The average complementary contribution of each head is its estimated SSV. (2) KV
Cache Compression (Lower Part): Using the 4 heads in Layer 3 and the KV cache eviction method
as an example, each head stores KV pairs for a small local window of recent tokens. Heads with
higher SSV (represented by darker areas in the heatmap) are allocated more cache size to retain KV
pairs prior to the local window. For adaptive KV cache quantization, we can assign heads with higher
SSV more bits, while heads with lower SSV receive fewer bits.

3.1 HEAD IMPORTANCE EVALUATION

Although the complementary contribution helps in increasing efficiency when approximating the
Shapley value, it is still computationally costly, especially in the LLM setting. Given a set of
players N' = {p1,...,pn}, a coalition of j players (1 < j < n) is called a j-coalition. Moreover,
for a player p; (1 < i < n), a j-coalition that contains p; is called a (i, j)-coalition. Denote by
Si; = {SU{pi}|S SN\ {pi},|S| = j — 1} the set of (4, j)-coalitions, and by SV, ; the expected
complementary contributions of (i, j)-coalitions. That is,

v, = 3 U -UWS)

SeG; ; (?:11)

3

It is clear that SV; = % Z?:I SV; ;. Computing the Shapley value needs to calculate SV; ; for j
ranging from 1 to n, which becomes costly when n is large.

We observe that the expected complementary contributions of j-coalitions for heads in LLMs follow
a similar distribution across different j values, as shown in Appendix Section[E.4] This suggests
that the contributions of heads can be effectively captured using a subset of j-coalitions. Based
on this insight, we propose assessing the importance of heads using the expected complementary
contribution of several j-coalitions, which can significantly reduce the computation cost while
maintaining effectiveness. Formally, we introduce a new definition called the Sliced Shapley value .

Definition 1 (Sliced Shapley Value) Let % C {1,--- ,n} denote the selected set of j-coalitions,
representing a specific slice of the coalition size space. The Sliced Shapley value of head h; with

4

AW N =

1

=

12

13

Under review as a conference paper at ICLR 2026

respect to H is defined as:

1 n
Ho_ Z [H|
j=1

where]I;{ is an indicator function, which is 1 if j is the element in A and O otherwise.

Theorem 1 Assume SV; ; € [a,b] for all j, and let R = b — a. Then, for any § € (0,1), with

SV —SSVH| <R W Furthermore, the established

bound implies that the error |SV; — SSVI| is O (\/ 1/|’H|) The proof is provided in Appendi
Section[D.1)

probability at least 1 — 9,

Algorithm 1: Evaluating Head Importance in LLMs.

input :Heads A" = {hq,..., h,} and sampling number M > 0

output : approximate Sliced Shapley value SSVZ{ for each head h; (1 <i <n)
SV« 0(1<i<n);SVij,mi;+0(1<i,j<n);

for k=1 to M do

let 7% be a random permutation of {1,...,n};
let ¢ be a randomly selected element from the set H;
S {rF),..., 7@}
NN\S {7k +1),...,7%(n)};
// U(S) is the model performance when heads in N \ S are masked and vice versa for U(N \ S).
uUS)—UWN\S);
for j=1toido
SVﬂ.k(]—)’i—‘r = u;
Mar (it = 13

fori=1tondo
L SSVI = 4,307 8Vij/mi;

return SSV¥, ... SSVX.

Algorithm Description. The detailed steps of approximating SS VZ" are shown in Algorithm (1} In
each iteration, sample a random permutation 7% of the heads {h1,...,h,}, which defines a random
ordering of the heads. Randomly select a split point and create a set S of selected heads. Mask heads
in the set N\ S, and evaluate the model accuracy after masking, which is denoted as ¢/ (S). Similarly,
calculate U (N \ 8) by masking heads in S (Lines 3-6). For each head in S, update SV i (jy,i and
count matrix m« ;) ; (Lines 7-10). After M iterations are completed, calculate the approximated
Sliced Shapley value for each head by averaging the complementary contributions.

Theorem 2 Algorithm returns an (e, 0)-approximation of Sliced Shapley value with time complexity

T|H|in 224 . . . I o
O(%) where T is the time cost of evaluating a complementary contribution which is the

time to inference on the validation dataset of each task in our setting. In contrast, Shapley value
Tnln
€2

2n
5

requires the time complexity of O() to achieve an (¢, d)-approximation. The proof is provided

in Appendix Section|D.2]

3.2 KV CACHE COMPRESSION

In this section, we present how our proposed head importance evaluation method can be effectively
applied to KV cache compression. We demonstrate its application in two primary directions, KV
cache eviction and KV cache quantization. While our main focus and contributions lie in the eviction-
based approach, we also show that the sameimportance scores can be seamlessly integrated into
quantization frameworks to achieve superior performance compared to existing methods.

Under review as a conference paper at ICLR 2026

Algorithm 2: Token Eviction Using CoK'V.

input :Shared budget size B’, local window size s, tokens in local window X %" € Rs*4 KV
in local window { K*™" V¥ } KV outside local window { K2, Veut}

output : Retained KV Cache { K, V;}

Q;mn — Xwin WiQ;

// Compute attention weights of queries in local window and prefix Keys.

A; = softmax(QV"KT);

A; = A;.maxpooling(dim = 1).mean(dim = 0);

// Calculate token scores outside the local window.

Get ¢; using Algorithm|l|and Equation

indices = A;.topk(c;).indices;

Select {K;, V;} from { K", V:2“*} according indices;
{K;,Vi} = Cat({K;, V;}, { K™, Vi by

// Keep top c; KV pairs in the cache.

return Retained KV Cache {K;, V;}.

KV Cache Eviction Budget Allocation. An intuitive approach suggests that the least important
heads, which contribute minimally or even negatively to the model performance, may not require
cache allocation. Let « represent the number of such heads, which serves as the sole hyperparameter
in our allocation scheme. For the remaining n — « heads, we employ a normalization method to
normalize their importance scores and allocate the cache size proportionally based on their normalized
scores.

Specifically, we normalize their contributions using min-max normalization for the n — « heads:

SSV — min®(SSYH)

" max(SSVH) — min®(SSVH)

where min®(-) and max(-) extract the a-th smallest and maximum value, respectively. For the «
heads with the smallest Sliced Shapley values, we set the normalized score as 0. This ensures that all
normalized scores lie in the range [0, 1].

Next, the cache size c; allocated to head h; is determined by the local window size s and linearly
distributing the remaining shared cache size B based on the normalized scores:

NSVH

R e S . 5
Z}’:lNSV}i +s (5)

C; =

Algorithm Description. The detailed KV cache eviction steps for a single head are outlined in
Algorithm 2] First, we allocate the KV cache size for each head based on their normalized Sliced
Shapley values. Next, we rank the importance of KV pairs within each head following SnapKV.
Specifically, the most recent tokens within local windows guide the KV cache selection. Attention
scores from these local windows to the remaining tokens are aggregated via pooling, with higher-
scoring tokens retained in the cache for each head.

Remark on KV Cache Quantization. The head importance scores derived by our method are
not limited to eviction and can be directly applied to guide non-uniform quantization strategies.
Specifically, our scores enable an adaptive bit allocation scheme where more important heads are
assigned higher precision. This principle can complement advanced quantization techniques like
Kvquant (Hooper et al.|[2024), allowing for a head-aware quantization policy that operates on top of
their sophisticated per-channel methods.

In our experiments, we demonstrate that a simple integration, which allocates bits proportionally
to our importance scores, consistently outperforms baselines that use alternative head importance
metrics under the same average bit-width. This validates the general utility of our cooperation-based
evaluation framework across different compression paradigms.

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

In this section, we present the evaluation results of our method on the LongBench benchmark. Due
to space limitations, detailed results are provided in the appendix, including an ablation study on
coalition sizes (Appendix Section [E.Z)), the precomputation cost analysis of CoKV (Section[E.3),
evaluations on GSM8K and MATH (Section [E.6)), an analysis of CoKV’s general ability (Section[E.7}
the Needle-in-a-Haystack test (Section [E.§)), and experiments on the RULER dataset (Section [E.9).

4.1 EXPERIMENT SETTINGS

Datasets. Details of all experimental datasets are provided in Appendix Section

Baselines and Settings. We compare CoKV with four strong KV cache compression methods. All
methods keep the same total cache size for fair comparison. Besides, we implement all methods with
GQA |Ainslie et al.|(2023)) and FlashAttention Dao et al.| (2022) for efficient computation.

* SnapKYV |Li et al.[(2024Db)) uses the last several tokens as local windows. Attention scores from
these windows to the remaining tokens are pooled to guid the KV selection in each head.

* PyramidKYV [Cai et al.| (2024)) allocates more KV cache to lower layers to retain key information
while reducing the budget for higher layers where information is already aggregated.

* Ada-KYV Feng et al.[(2025) dynamically allocates budgets to heads within each layer based on their
concentration degrees, and can be combined with SnapKV or PyramidKV. Ada-SnapKYV is used as
the baseline due to its superior performance over Ada-PyramidKV.

* HeadKV-R2 Fu et al.| (2025) allocate budgets to heads based on their retrieval-reasoning score,
and it uses SnapKV to rank the importance of KV pairs in each head.

We evaluate CoKV on the Qwen3-32B, Llama-3-8B-Instruct and Mistral-7B-Instruct-v(0.2 models.
Due to the page limit, the Mistral-7B-Instruct-v0.2 results are provided in[Appendix] For test data that
exceeds the maximum input length of Llama-3-8B-Instruct, we adopt the approach of HeadKV by
utilizing the first 4k tokens and the last 4k tokens. Following standard practices in Ada and HeadKYV,
we perform cache eviction after the prefilling phase of each layer for consistent comparison. In GQA,
a group of heads shares the same KV cache. We treat each cache within a group as a player in the
cooperative game, evaluating their Sliced Shapley value to determine their importance scores. For
HeadKV-R2, we calculate the importance score of each group by averaging the retrieval-reasoning
scores of the heads within the group. This adaptation ensures compatibility with GQA, as HeadKV
is implemented with MHA in the original paper. The context length for headkv score detection
was configured to the maximum capacity of an H100 96G GPU for computing the head scores in
Qwen-3-32B. For the Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2 models, we adopted the
scores reported by the authors. In CoKV, we use for coalition sizes H = {32,64, 96, 128} for
Llama-3-8B-Instruct and Mistral-7B-Instruct-v(.2 which have 256 groups(32 layers, 8 groups in each
layer), and only one coalition size H = {256} for Qwen3-32B (64 layers, 8 groups in each layer).
Our ablation experiment of H show that CoKV with only one coalition size works well, but more
slices will enhance CoKV. Following HeadKV-R2, we set the local window size to 8. We randomly
split each dataset into a very small validation dataset and a test dataset. For Llama-3-8B-Instruct
and Mistral-7B-Instruct-v0.2, we construct validation sets of 30 data tuples, with the remaining data
used as the test set. For Qwen3-32B, due to its significantly higher inference cost, we use a smaller
validation set of 20 data tuples. The hyperparameter « is selected from {1, 5,10, 15,20, 30,40}
based on the Sliced Shapley value computed on the corresponding validation set. We do not compare
with DuoAttention (Xiao et al.,[2025a) because its requirement for certain attention heads to retain
the full key-value cache exceeds the total budget constraint of our eviction policy.

4.2 HYPERPARAMETER FREE RESULTS.

Since both HeadKV-R2 and CoKV provide importance scores for each group, we conduct an
experiment to compare their effectiveness without introducing any additional hyperparameters. In this
experiment, we mask the caches of groups based on the importance scores assigned by each algorithm.
This experiment can be viewed as a specific case of adaptive KV quantization that switches between 0
bits and 16 bits. Specifically, we mask the caches of both the highest-ranked (top) and lowest-ranked
groups (low). The complete results are shown in Tables [I6] [I7]and [T8]in the appendix. We include a

Under review as a conference paper at ICLR 2026

Table 1: Comprehensive Masking Top Important Heads Results on LongBench

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg
2 2,
Yo G Tm, T T T %, % T T Ty %, R e
7 % 9 N T, % T, 4, W O T G,
% p«] © %y ? , v D
Masking Top 16 heads with Llama-3-8B-Instruct model
Full Cache 24.12 3124 3985 4523 3456 21.09 2838 2324 2652 74.12 90.96 4237 455 7176 58.10 51.64 41.73
Random 20.93 2848 33.69 4493 20.01 20.6 2843 237 26.67 74.12 91.07 41.12 426 71.76 49.83 40.55 38.76
HeadKV-R2(top) 19.45 1297 27.75 342 17.33 1432 19.74 2276 22.05 67.06 8791 3553 471 6849 2662 2653 31.71
CoKV(top) 6.55 946 947 10.19 1227 5.67 573 1696 4.47 4353 7121 2377 391 3498 11.58 17.18 17.93
Masking Top 64 heads with Qwen3-32B model
Full Cache 37.14 4551 49.17 582 5474 3836 329 2372 25.08 7278 7257 3795 17.78 100 62.72 70.08 49.92
Random 30.13 44.81 50.07 56.51 54.06 39.24 27.33 2332 2482 7278 71.12 3772 1294 100.0 22.71 2379 4321
HeadKV-R2(top) 28.38 34.55 32.15 47.25 4526 2533 20.14 22.17 1398 5556 56.69 21.18 8.69 9833 1444 1847 3391
CoKV(top) 28.85 2855 1891 25.1 19.78 12.69 1348 2297 238 3556 2643 1041 8.04 1722 52 505 18.88

simplified table for the results of masking groups of Qwen3-32B and Llama-3-8B-Instruct model
in Table[I] The results show that when masking the top-ranked groups identified by each method,
the performance of CoKV degrades more significantly than that of HeadK'V-R2. This suggests that
CoKYV is more effective at ranking group importance, as it better distinguishes between critical and
non-critical caches. Conversely, the results in the full tables show that when masking the unimportant
groups (low), the performance of CoKV declines more gradually than HeadKV-R2. When masking
the 64 most important heads of Qwen3-32B, CoKV achieves an average accuracy of only 18.88%,
while HeadKV maintains 33.91%. This demonstrates that CoKV more accurately identifies critical
heads, as its performance drops more significantly when they are removed. Suprisingly, the results
of masking 16 most unimportant groups in Table [16] and [T8] outperformed the FullKV approach.
This further demonstrates that CoKV can identify groups that have a negative impact on the model.
By removing the KV pairs from these groups, the model inference not only optimizes storage and
decoding speed but also enhances overall performance.

4.3 KV CACHE EVICTION RESULTS

Benchmark Results. The complete benchmark results are presented in Tables|14]and |15]in the
appendix. We include a simplified table (Table[2)), showing the performance of Llama-3-8B-Instruct
and Qwen3-32B when keeping 64 KV pairs on average for Llama-3-8B-Instruct and 128 KV pairs on
average for Qwen3-32B. The results demonstrate that CoK'V consistently outperforms all baseline

methods. The superior performance of CoKV arises from its ability to effectively evaluate the
Table 2: Comprehensive KV Cache Eviction Results on LongBench
Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg
< .. <& A A
/L”Q, O"%@ %e,) %foo % 47%5-) %, % “, 7'?’&0 Y Uy, % %,
el (4 ()
Q7 47(27 % 00’, K 0% Qy (/,,) «
Llama-3-8B-Instruct model with KV size=64
Full Cache 24.12 3124 39.85 4523 34.56 21.09 2838 2324 2652 74.12 9096 4237 455 7176 58.1 51.64 41.73
SnapKV 1994 1321 2891 4006 2858 18.12 17.29 2171 17.05 4941 89.00 3548 3.99 71.57 5435 5042 34.94
Pyramid 2011 1654 32.67 4025 2771 17.54 18.67 2237 20.03 62.55 89.89 36.63 4.30 7176 5427 5096 36.64
Ada-SnapKV 2040 1446 32.62 4239 3148 17.58 1857 22.18 1871 58.82 90.13 3525 441 7157 5402 51.68 36.52
HeadKV-R2 2030 1676 3596 38.08 26.41 17.98 18.68 21.75 20.58 67.06 88.19 37.30 321 7176 5620 5449 37.17
CoKV 2077 19.67 35.11 44.37 3436 17.83 17.89 22.33 1855 71.76 90.73 38.51 471 7176 5545 5582 38.73
Qwen3-32B model with KV size=128
Full Cache 37.14 4551 49.17 582 5474 3836 329 2372 2508 7278 7257 37.95 1778 1000 6272 70.08 49.92
SnapKV 30.18 3254 4196 552 47.04 3431 2274 2119 190 4722 67.89 3677 1722 9889 58.52 5048 42.65
Pyramid 2717 32.11 4093 30.13 372 3443 2201 2095 1871 38.1 6843 3555 952 1000 5648 5129 40.19
Ada-SnapKV 2274 3211 4002 3242 4044 27.97 2343 21.67 1898 46.67 68.43 3893 952 1000 57.9 4971 39.43
HeadKV-R2 2978 3339 4151 51.85 5206 36.17 24.17 21.04 19.03 48.89 67.98 3644 18.02 99.44 56.88 5247 43.07
CoKV 2873 3756 44.80 5348 53.07 3517 23.89 2134 1928 5444 69.35 3823 1922 1000 S57.13 56.87 44.53
importance of each cache within a group while considering the cooperation among all groups. It is

not only capable of identifying which groups are important but also able to recognize those groups
that do not contribute or even have a negative contribution. By optimizing the cache size to enhance
overall cooperation, CoKV ensures efficient and high-quality inference.

Under review as a conference paper at ICLR 2026

Decoding Latency and Memory Usage We conduct experiments using the Qwen3-32B model,
which supports a maximum context window of 128k tokens with YaRN (Peng et al.), with FlashAt-
tention enabled as the default setting. All methods except FullKV, were executed on a single H100
96G GPU. The FullKV method alone necessitated the use of two H100 96G GPUs. We design two
key experiments with the average KV cache size set to 128 tokens for all KV cache eviction methods.

Peak Memory Usage Decoding Latency

5 B K & &
8 5 38 8 8
+
oz
z
328
<2 4h
%
2
3
Az
2
%
-
%
2

Peak GPU Memory (GB)
©
8

@
g

64k 1206 1 128 256 1024
Generation Length

16K 32
Context Length

Figure 2: Results of Peak Memory Usage and Decoding Latency.

Peak Memory Usage Under fixed generation length (1 token), we measure the peak GPU
memory usage (including model parameters and runtime states) across varying input contexts
(1k/8k/16k/32k/64k/120k tokens). As shown in the Peak Memory Usage of Figure[2] CoKV reduces
memory usage by 38.4% compared to FullKV baseline at 120k input length. Notably, CoKV can
accommodate 120k inputs on a single H100 GPU, in contrast to FullK'V, which supports under 60k.

Decoding Latency With a fixed input context length of 120k tokens, we measure decoding latency
(including both the pre-filling time and the decoding time) across different generation lengths
(1/128/256/512/1024/2048 tokens). As shown in the Decoding Latency of Figure[2] CoKV achieves
less than 25.14% of the total latency compared to the FullKV baseline, with negligible differences
observed between the other baselines(comparative experiments showed less than 2% variation across
64/256/512/1024 tokens).

4.4 KV CACHE QUANTIZATION RESULTS

To evaluate the effectiveness of CoKV, we conducted comparative experiments under a KV cache
quantization setting. Specifically, we compared CoKV against HeadKV-R2 using an adaptive
quantization strategy with two bit-widths. The more important half of the attention heads were
quantized to 8 bits, and the remaining half to 4 bits. The results are presented in Table[3] We also
conduct KV quantization with Qwen model which is shown in Table[I9]in the appendix.

Table 3: Llama-3-8B Instruct Model with 8-4 Bits Quantization

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg
< . Ry 2 A
R T T N U A T T Y
£l o % B U % G Y o 0, B,
kA 0«7 % s, 7 %

HeadKV-R2 2123 31.86 3533 4351 3444 17.05 17.19 1544 1523 7353 746 31.83 7.14 3571 5886 4329 3477
CoKV 2258 3262 3836 4491 3453 21.61 169 1735 1568 7529 82.14 31.02 7.14 3571 6029 42.64 36.17

5 CONCLUSION

Large language models (LLMs) face significant challenges in inference cost due to the excessive
memory and latency overhead associated with the growing size of the KV cache. To this end, we
introduce CoKYV, a novel method designed to evaluate the collaborative importance of attention
heads and dynamically allocate cache sizes based on Sliced Shapley value. Our experimental results
demonstrate that CoKV achieves state-of-the-art performance across 16 LongBench datasets, as well
as on the NIAH, RULER, and math reasoning benchmarks. CoKV provides a scalable and practical
solution for enhancing the efficiency of LLMs in real-world applications.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study uses only public benchmark datasets and open-source models. No personal data or
sensitive attributes are involved, and use follows the original dataset terms. The research does not
involve any personal, private, or sensitive data. The proposed methods are intended for research
purposes, and we have conducted a review which identified no foreseeable ethical concerns.

REPRODUCIBILITY STATEMENT

All datasets and models used in this study are publicly accessible online. The experimental details
are described in the Experiment section, and the code for reproducing all results is available in our
anonymous repository.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head checkpoints.
In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023. URL
https://openreview.net/forum?id=hmOwOZWzYE.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 3119-3137, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-1long.172/.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling, 2024. URL https://arxiv.org/abs/2406.02069.

Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu, Gangwei Jiang, Yuanhao Pu, Yuxuan
Lei, Xiaolong Chen, Xingmei Wang, Kai Zheng, Defu Lian, and Enhong Chen. When large
language models meet personalization: perspectives of challenges and opportunities. World Wide
Web (WWW), 27(4):42, 2024a. doi: 10.1007/S11280-024-01276-1. URL https://doi.org/10,
1007/s11280-024-01276-1.

Renze Chen, Zhuofeng Wang, Beiquan Cao, Tong Wu, Size Zheng, Xiuhong Li, Xuechao Wei, Shen-
gen Yan, Meng Li, and Yun Liang. Arkvale: Efficient generative LLM inference with recallable key-
value eviction. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet,
Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing Systems
38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024, 2024b. URL http://papers.nips.cc/paper_files/
paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html.

Yaofo Chen, Zeng You, Shuhai Zhang, Haokun Li, Yirui Li, Yaowei Wang, and Mingkui Tan. Core
context aware transformers for long context language modeling. arXiv preprint arXiv:2412.12465,
2024c.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pp. 493-507, 1952.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

10

https://openreview.net/forum?id=hmOwOZWzYE
https://aclanthology.org/2024.acl-long.172/
https://arxiv.org/abs/2406.02069
https://doi.org/10.1007/s11280-024-01276-1
https://doi.org/10.1007/s11280-024-01276-1
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html

Under review as a conference paper at ICLR 2026

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Re. Flashattention: Fast and
memory-efficient exact attention with IO-awareness. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=H4DqfPSibmx.

Xiaotie Deng and Christos H. Papadimitriou. On the complexity of cooperative solution concepts.
Math. Oper: Res., 19(2):257-266, 1994. doi: 10.1287/MOOR.19.2.257. URL https://doi.org/
10.1287/moor.19.2.257.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024.
doi: 10.48550/ARX1IV.2407.21783. URL https://doi.org/10.48550/arXiv.2407.21783.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference, 2025. URL |https://arxiv.
org/abs/2407.11550.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads
matter: A head-level KV cache compression method with integrated retrieval and reasoning.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=FJFVmeXusW.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
uNrFpDPMyo.

Paul Hager, Friederike Jungmann, Robbie Holland, Kunal Bhagat, Inga Hubrecht, Manuel Knauer,
Jakob Vielhauer, Marcus Makowski, Rickmer Braren, Georgios Kaissis, et al. Evaluation and
mitigation of the limitations of large language models in clinical decision-making. Nature medicine,

30(9):2613-2622, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270-1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Giirel,
Bo Li, Ce Zhang, Dawn Song, and Costas J. Spanos. Towards efficient data valuation based
on the shapley value. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of the
Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89 of
Proceedings of Machine Learning Research, pp. 1167-1176. PMLR, 16-18 Apr 2019. URL
https://proceedings.mlr.press/v89/jial9a.html.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/
abs/2310.06825.

11

https://openreview.net/forum?id=H4DqfPSibmx
https://doi.org/10.1287/moor.19.2.257
https://doi.org/10.1287/moor.19.2.257
https://doi.org/10.48550/arXiv.2407.21783
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://proceedings.mlr.press/v89/jia19a.html
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

Under review as a conference paper at ICLR 2026

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pre-trained language
models for text generation: A survey. ACM Comput. Surv., 56(9):230:1-230:39, 2024a. doi:
10.1145/3649449. URL https://doi.org/10.1145/3649449.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024b. URL https://openreview.net/forum?id=poE54G0qg21.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for LLM KV cache compression at test time. In Thirty-seventh Conference on Neural In-
formation Processing Systems, 2023. URL |https://openreview.net/forum?id=JZfgbwGi6g.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL |https://openreview.net/forum?id=L@57s2Rq80.

Rory Mitchell, Joshua Cooper, Eibe Frank, and Geoffrey Holmes. Sampling permutations for shapley
value estimation. J. Mach. Learn. Res., 23:43:1-43:46, 2022. URL https://jmlr.org/papers/
v23/21-0439.html.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models, 2023. URL https://arxiv. org/abs/2309.00071.

Robert J Serfling. Probability inequalities for the sum in sampling without replacement. The Annals
of Statistics, pp. 39-48, 1974.

Lloyd S Shapley. A value for n-person games. Contribution to the Theory of Games, 2, 1953.

Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019. URL https:
//arxiv.org/abs/1911.02150.

Yi Su, Yuechi Zhou, Quantong Qiu, Juntao Li, Qingrong Xia, Ping Li, Xinyu Duan, Zhefeng Wang,
and Min Zhang. Accurate KV cache quantization with outlier tokens tracing. In Wanxiang Che,
Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2025, Vienna, Austria, July 27 - August 1, 2025, pp. 12895-12915. Association for Computational
Linguistics, 2025. URL https://aclanthology.org/2025.acl-1long.631/.

Qiheng Sun, Jiayao Zhang, Jinfei Liu, Li Xiong, Jian Pei, and Kui Ren. Shapley value approximation
based on complementary contribution. IEEE Transactions on Knowledge and Data Engineering,
36(12):9263-9281, 2024. doi: 10.1109/TKDE.2024.3438213.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Danning Ke, Yiwu Yao, and Gongyi
Wang. Razorattention: Efficient KV cache compression through retrieval heads. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=tkiZQIlL0Q4w.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanisti-
cally explains long-context factuality. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=EytBpUGB1Z.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, junxian guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context LLM inference with retrieval and streaming
heads. In The Thirteenth International Conference on Learning Representations, 2025a. URL
https://openreview.net/forum?id=cFu7ze7xUm.

12

https://doi.org/10.1145/3649449
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=L057s2Rq8O
https://jmlr.org/papers/v23/21-0439.html
https://jmlr.org/papers/v23/21-0439.html
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://aclanthology.org/2025.acl-long.631/
https://openreview.net/forum?id=tkiZQlL04w
https://openreview.net/forum?id=tkiZQlL04w
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=cFu7ze7xUm

Under review as a conference paper at ICLR 2026

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Shang Yang, Haotian Tang, Yao Fu, Song Han, et al.
Duoattention: Efficient long-context 1lm inference with retrieval and streaming heads. In The
Thirteenth International Conference on Learning Representations, 2025b.

June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable KV cache compression via
importance-aware mixed precision quantization. CoRR, abs/2402.18096, 2024. doi: 10.48550/
ARXIV.2402.18096. URL https://doi.org/1@.48550/arXiv.2402.18096.

Jiayao Zhang, Qiheng Sun, Jinfei Liu, Li Xiong, Jian Pei, and Kui Ren. Efficient sampling approaches
to shapley value approximation. Proc. ACM Manag. Data, 1(1), May 2023a. doi: 10.1145/3588728.
URL https://doi.org/10.1145/3588728,

Shuhai Zhang, Zeng You, Yaofo Chen, Zhiquan Wen, Qianyue Wang, Zhijie Qiu, Yuanqging Li, and
Mingkui Tan. Curse of high dimensionality issue in transformer for long context modeling. In
Forty-second International Conference on Machine Learning, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen.
H2o0: Heavy-hitter oracle for efficient generative inference of large language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023b. URL https:
//openreview.net/forum?id=RkRrPp7GKO.

13

https://doi.org/10.48550/arXiv.2402.18096
https://doi.org/10.1145/3588728
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO

Under review as a conference paper at ICLR 2026

APPENDIX

A USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR policy on large language model usage, we report the use of LLMs in
the preparation of this manuscript. We used GPT-5 as a writing assistance tool to improve grammar
and clarity. We also used Cursor for code completion and debugging. The authors reviewed and
tested all code. LLMs did not contribute to the design of any methods or the implementation of core
algorithms. The LLM was not used for research ideation or the design of methods. All scientific
ideas, experimental designs, theoretical results, and conclusions presented in this paper are entirely
the work of the authors.

B RELATED WORKS

KV Cache Compression The memory overhead of storing key-value (KV) pairs for LLM has
motivated extensive research on KV cache compression. StreamingL.LLM [Xiao et al.|(2024) preserves
the initial and recent tokens, which empirically exhibit higher informativeness during generation.
Similarly, Scissorhands|Liu et al.| (2023)) proposes the persistence of importance to identify and retain
pivotal tokens. H20 [Zhang et al.| (2023b) employs a heavy-hitter oracle to drop tokens with low
attention scores.SnapKV [Li et al.| (2024b) uses the attention scores of the recent tokens to retain
critical tokens. CCA-LLM |Chen et al.[(2024c) groups input tokens, compressing each group into a
core token, which are then combined with recent tokens for attention computation. DGA-LLM |Zhang
et al.| (2025) aggregates less important tokens while preserving important tokens. While these
methods reduce memory usage and accelerate inference, they implicitly assume uniform importance
across attention heads, limiting their applicability. Recent works address head diversity through
layer-wise and head-wise optimizations. PyramidKV |Cai et al.[(2024) implements a hierarchical
allocation strategy, assigning larger cache budgets to lower layers based on the observed attention
patterns across layers. FastGen |Ge et al.[(2024) is an adaptive KV cache compression method that
reduces LLMs’ memory usage by profiling attention modules and constructing caches adaptively.
RazorAttention [Tang et al.| (2025) and Duoattention Xiao et al.[(2025a)) divide attention heads into
retrieval heads(critical for long-context processing [Wu et al.|(2025))) and non-retrieval heads, apply
full KV cache to retrieval heads and compressed KV cache to non-retrieval heads. ArkVale|Chen
et al.| (2024b)) proposes a page-based KV cache manager that asynchronously copies filled pages
into external memory (e.g., CPU memory) as a backup and supports the recall of important tokens
that were previously evicted. AdaKV Feng et al.| (2025) dynamically adjusts cache budgets across
heads based on their concentration degrees and HeadKV [Fu et al.| (2025)) calculates head importance
scores to allocate cache budget before inference. However, these methods assess heads in isolation,
neglecting their collaborative interactions. For example, the standalone score of a head may not
reflect its true contribution when working synergistically with others. Additionally, these approaches
overlook the task-dependent variations in head importance. Our approach tackles these limitations by
modeling head interactions as a cooperative game, dynamically allocating cache resources based on
the varying complementary contributions of heads across different tasks.

In addition to KV cache eviction methods, KV cache quantization is also one of the mainstream
approaches for KV cache compression Yang et al.| (2024); |Liu et al. (2024). However, while eviction
methods can be used to retain less than 1% of the cache, KV cache compression cannot be applied to
such an extent because it must preserve at least 1 bit. Nevertheless, the combination of these two
methods is an interesting direction for future research.

Model Architecture and Computation Optimization Modern LLMs employ architectural op-
timizations to balance efficiency and performance. Multi Query Attention (MQA) [Shazeer| (2019)
shares a single key-value pair across all attention heads, drastically reducing memory usage but
potentially sacrificing performance. Group Query Attention (GQA) |Ainslie et al.| (2023) strikes
a balance by grouping heads to share key-value pairs, preserving performance while maintaining
memory efficiency, which is widely adopted in recent LLMs like Llama Dubey et al.| (2024) and
Mistral Jiang et al.| (2023). Concurrently, Flash Attention Dao et al.| (2022)) optimizes hardware
utilization by minimizing memory reads/writes during attention computation, significantly accelerat-

14

Under review as a conference paper at ICLR 2026

ing inference. Notably, our approach is fully compatible with GQA and Flash Attention, ensuring
seamless integration with current LLMs.

Cooperative Game Theory Cooperative game theory offers a principled framework for understand-
ing how multiple players can jointly contribute to overall system performance. Shapley value Shapley
(1953), a classic solution in cooperative game theory, provides a method for fairly allocating joint
benefits based on the marginal contribution of each player. However, traditional Shapley value
computation methods allow each sample to be used to calculate the marginal contribution of only a
single player. Recent works Zhang et al.|(2023a)); |Sun et al.| (2024) address this limitation through
complementary contributions that enable simultaneous estimation of multiple players’ contributions.
In the context of LLMs, these methods still encounter scalability issues, as the cost of computing
complementary contributions across all coalition sizes remains prohibitively high. We propose
the Sliced Shapley value, which samples only a subset of coalition sizes. This approach not only
accelerates the computation but also accurately reflects the contributions of different heads.

C SUPLEMENTARY OF PRELIMINARIES

C.1 KV CACHE EVICTION

KV cache eviction methods can be employed to discard unimportant KV cache entries while pre-
serving model performance. As the attention heads process more tokens, the KV cache can grow
in size, which results in increased memory usage and computation costs. To address this, selective
eviction methods can be introduced to remove KV pairs that contribute less to the final attention
results. Typically, the eviction is based on criteria such as the relevance of key-value pairs (e.g., low
activation values or relevance scores) or certain pruning strategies based on model performance.

For each head h;, the compressed KV cache is reduced to K; € R¥* and V; € R5*% where
some unimportant KV pairs are evicted, and s < m, resulting in a significant improvement in
computational efficiency and memory usage. This compression is typically done by selecting the
most relevant KV pairs and discarding the rest. The process is often repeated over multiple layers or
tokens, progressively reducing the size of the KV cache while maintaining performance.

Specifically, the compressed KV cache is updated by appending the new key and value pair:
[A(,; = Cat[f(i, k’l], ‘77 = Cat[f/i,vi].

The attention output for each head h; is computed using the compressed KV cache by 0, = AV,
where the attention weights A; are calculated as:

A; = softmax(q¢; KT //dy).

By selectively discarding less relevant KV pairs, the model can maintain a more efficient cache,
reducing memory and computation overhead. The effectiveness of this method depends on how well
the eviction process retains the most important KV pairs for accurate attention calculation, ensuring
that the overall model performance remains optimal despite the reduced cache size.

C.2 KV CACHE QUANTIZATION

The uniform quantization to the KV cache process is shown as follows. For each head group h; with
bit-width b;, and for each token position ¢, we compute a per-token dynamic range along the head
dimension. Define the integer range as:

gmax (bg) = max (1,2bi71 — 1) , bi>1

and the scale as:
max |K; 4| max |V ¢|
Sit =77~ UWit= "7
Qmax(bi)

Gmax (bz) ’

15

Under review as a conference paper at ICLR 2026

Uniform quantization maps float element K; ; ;(1 < dp,) to integers via:

K+ j = clip (round (z,t,J> —Gmax (D7), Gmax (bs))

and for values:

Vi, = clip (round (lt’J) —Qmax (0:), Gmax (b;))

The dequantization process restores the values by:

Kirj=Kirg X sit, Vieg=Vigj X iy

Specifically, the compressed KV cache is updated by appending the new key and value pair:
f(i = Cat[f(i, k‘z], ‘N/z = Cat[f/i,vi].

The attention output for each head h; is computed using the compressed KV cache by O; = AV,
where the attention weights A; are calculated as:

A; = softmax(q; KX /\/dy).

Since we only cache the quantized matrices K ; and Vg which use b; bits for storing each element, it
can significantly reduce memory usage during model inference.

D PROOF

D.1 PROOF OF THEOREM[I]

Let N' = {1,2,...,n} be the set of coalition sizes, and let Z; = SVi, j} for j € N, where SV; ;
denotes the expected complementary contribution for coalition size j. Assume Z; € [a, b] for all j,
and define R = b — a. The true Shapley value is the population mean:

1 n
=—Y Z; =58V
nj:1

For a randomly sampled subset # C N of size |#| drawn without replacement, the Sliced Shapley
value is the sample mean:

Z =2 Zj =SSV
‘H‘ JEH
To bound the error |Z — p|, we apply Hoeffding’s inequality for sampling without replacement.
Consider a random permutation 7 of A/, and let X; = =@y fori =1,... |H|. The sample sum is
Zml X;. By Serfling’s result (Serfling, [1974]), the moment generating function satisfies:

N |H|R? n >

Blexp(0(5 —) < exp (2LAE 2

Applying the Chernoff bound (Chernoff} [1952), for any ¢ > 0:
P(S = > 1) < min Elexp(A(S — 1))] exp(—A).
>

Substituting the Serfling’s bound:

2| H|R? n
PS—pu>t) < —)
(5 =20 < pigorn (Mo - v)

16

Under review as a conference paper at ICLR 2026

The expression on the right is minimized by choosing A = \7—14|§%2 "_‘i”“. Plugging this value in
yields:
2t? n
PS—pu>t)<exp|-— .
(s =020 <o (i)

By symmetry,

2t2 n

Substituting ¢t = |H|e yields:

PUS - Ml > [H]e) = P(S — (Ml > [H]e) < 2exp ~FIE__ 1
K| = €) = m = €) < 2exp RZ n—H|+1 .

Setting the right-hand side to ¢ and solving for e:

2|H|e? n B
2 exp (R n— |’H|+1> =9

2|H|€e? n
In(2) —
n(2) R?2 n—|H|+1

= In(d),

R? 2
2 _ _ Z
€ —2‘7_”(71 |H|—|—1)1n<5>.

Thus, with probability at least 1 — ¢:

(n—|H|+1)In(2/9)
2|H|n '

|SV; — SSVH| < R\/

It is clear that w < 1asH > 1. Therefore, we have

In(2/0)
2MH]

|SV; =SSV <R

By omitting the constants, we obtain the asymptotic error bound O(|SV; — SSV*|). This completes
the proof.

D.2 PROOF OF THEOREM [Z]

In this section, we give the proof of Theorem Denote H the selected coalition sizes. The
approximation of SV; ;(1 < 4,j < n) is unbiased, which can be proven following Corollary 1 in|Sun
et al.[(2024). So it is evident that SSV;, being the weighted average of SV; ;, serves as an unbiased
estimator of SSV;. Hence, we have

PSSV — SSVI| > €) <P() " [8Vi; — SVij| > €)
JEH
< Z P(|SV,; — SV | >
JEH

€

@)

17

Under review as a conference paper at ICLR 2026

Then,we have

> P(ISVi; - SVijl > €) < 2] exp(2)’)
1,7 il = T4 = -
= [#] S by — aj)?
2(5)?
< o] exp(~ 2

[#H]

according to Hoeffding’s inequality where (a;, b;) denotes the range of complementary contribution
of j-coalitions, and r is max(b; — a1,--- ,b; — a;). . Since we want the right hand side to be at

222 . o .
most §, we have M > HT;; 5. Thus, Alogorithm (1| returns an (e, §)-approximation of Sliced

2|H
T|Hun%)
62

Shapley value with time complexity O(where T is the time cost of evaluating each
complementary contribution. The analysis of the time complexity of approximating Shapley value
starts from P(|SV1 — SVi| > €) <P(307_, [SVi; — SV ;| > €) Following similar steps, we can

proof that the time complexity of approximating Shapley value is O(T"ZLZT). Thus, we complete

the proof.

E SUPPLEMENTARY EXPERIMENTS

E.1 DATASETS

LongBench (Bai et al., 2023) is a multitask benchmark for long context understanding and exhibits a
wide range of average input lengths, spanning from 1,235 to 18,409 tokens. We introduce the detailed
information of LongBench in Table] including the task types, evaluation metrics, average length,
languages, and the number of samples for each task. .

Table 4: Details of 16 Datasets in LongBench

Label Task Type Eval metric Avg Language Sample
len Num
NrtvQA Single-Doc. QA F1 18,409 EN 200
Qasper Single-Doc. QA F1 3,619 EN 200
MF-en Single-Doc. QA F1 4,559 EN 150
HotpotQA Multi-Doc. QA F1 9,151 EN 200
2WikiMQA Multi-Doc. QA Fl1 4,887 EN 200
Musique Multi-Doc. QA F1 11,214 EN 200
GovReport ~ Summarization Rouge-L 8,734 EN 200
QMSum Summarization Rouge-L 10,614 EN 200
MultiNews ~ Summarization Rouge-L 2,113 EN 200
TREC Few-shot Learning Accuracy 5,177 EN 200
TriviaQA Few-shot Learning F1 8,209 EN 200
SAMSum Few-shot Learning Rouge-L 6,258 EN 200
PCount Synthetic Accuracy 11,141 EN 200
PRe Synthetic Accuracy 9,280 EN 200
Lec Code EditSim 1,235 3%‘;’% 500
RB-P Code EditSim 4206 DYMOV 509
Java

NIAH (Needle In A Haystack) is a test specifically designed to evaluate a model’s ability to locate
and recall a small piece of critical information (the "needle") hidden within a very long, irrelevant
text (the "haystack"). It systematically measures retrieval accuracy as the document length increases,
directly probing the limits of a model’s context window.

RULER is a comprehensive benchmark for evaluating the factual reasoning capabilities of large
language models over long contexts. It expands tasks from the popular "LAMA" probe into a

18

Under review as a conference paper at ICLR 2026

long-context setting, challenging models to maintain accuracy when factual knowledge is distributed
across thousands of tokens.

GSMBSK (Cobbe et al.| [2021]) is a dataset of diverse grade-school level math word problems. Each
problem requires a sequence of logical reasoning steps to solve, and the benchmark is primarily used
to evaluate a model’s fundamental mathematical reasoning and arithmetic capabilities.

MATH (Hendrycks et al.l [2021)) is a large-scale dataset containing challenging high-school
competition-level mathematics problems. It tests advanced reasoning by requiring solutions to
problems from various sub-fields like algebra, geometry, and calculus, often demanding step-by-step
derivations.

E.2 ABLATION STUDY

In this section, we analyze the number of coalition sizes in ‘H using the Llama-3-8B Instruct
model. We conducted experiments by masking the 32 most important attention heads (top) and
the 32 least important heads (low) based on their significance scores. This approach eliminates
the need for hyperparameter tuning, ensuring a fair comparison between CoKV and HeadKV by
removing potential fluctuations caused by parameter selection. We compare the results for H =
{32,64,96,128} with H = {128}. The results show that using the expected complementary
contribution of a single coalition size 128 in Llama-3-8B-Instruct still outperforms the baselines, and
CoKV is more effective with a larger number of coalition sizes. The results are shown in Table 5]

Table 5: Ablation Study on Llama-3-8B-Instruct models using LongBench

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg
%07 %, “, %.’oo Y, ", % “, '\"@o %,y %, R e B,
- @ © “y, 9% 2, “ © @, % K4
Ed ©, %) kl K4
Full Cache 2412 31.24 39.85 4523 3456 21.09 2838 2324 2652 7412 9096 4237 455 7176 58.10 51.64 41.73
Random 20.69 18.60 29.63 39.12 1850 6.94 2240 2233 2645 74.12 89.82 33.80 471 61.12 30.78 40.71 33.73
HeadKV-R2(top) 1733 698 937 1350 937 5.1 13.18 20.86 1524 4588 7530 2721 476 6621 1124 13.64 22.20
CoKV(top) 140 349 378 794 932 232 264 11.74 058 3471 2137 696 414 1693 354 517 850
CoKV(coalition 128)(top) 598 4.41 398 925 1302 280 5.16 1092 223 3358 24.15 887 736 1589 3.67 894 10.01
HeadKV-R2(low) 21.51 11.16 2533 19.52 1448 742 1673 2391 1458 74.12 89.09 40.69 4.66 70.09 33.13 3239 31.18
CoKV(low) 2245 33.06 3834 4582 39.62 20.18 2839 24.04 26.67 74.12 91.14 4170 471 7176 5224 6494 4245

CoKV(coalition 128)(low) 20.85 29.56 33.62 46.01 3527 18.80 27.93 22.18 23.57 74.12 91.08 4025 4.56 71.76 48.66 50.54 39.92

E.3 COMPUTATION EFFICIENCY

We further conduct experiments to evaluate the efficiency of approximating the Sliced Shapley value
(referred to as CoKV in our method) using the qasper dataset with the Qwen3-32B model. A subset
of 20 examples from the qasper dataset is used as the validation set for computing the Sliced Shapley
value which is the same as other experiments. The experiment is performed on a single H100 96GB
GPU, with a coalition size of 256, consistent with the settings in our other experiments.

Table 6: Overlap Ratio of Top 50% Important Heads

Sampling number 70 80 140 160 210 240

Time (hours) 4.97 5.71 9.64 1091 1432 17.08
Overlap Ratio (%) 64.45 68.75 74.60 77.73 84.37 90.18

To assess the stability of the approximation, we introduce a new metric, the overlap ratio of the top
50% important attention heads between two independent sampling runs. As shown in Table[6] when
the number of samples reaches 80, the overlap ratio exceeds two-thirds (68.75%), indicating that the
CoKYV importance scores are beginning to converge and can reliably identify the most influential
heads. We recommend performing two independent sampling runs when computing CoKV. Once the
overlap ratio of the top 50% important heads between the two runs exceeds two-thirds, the results can
be averaged and used as the final importance scores. At this point, COKV can effectively reflect the
relative contributions of attention heads.

Notably, even for a large model like Qwen3-32B, the precomputation of CoKV importance requires
only a few hours, a cost that is negligible compared to that of full training or fine-tuning. Once

19

Under review as a conference paper at ICLR 2026

computed, the importance scores can be stored and reused for long-term inference optimization, and
shared across users of the same model architecture, making CoKV a highly cost-effective approach.

E.4 DISTRIBUTION OF SLICED SHAPLEY VALUE

Figure [6] shows the distribution of Sliced Shapley values computed for the selected coalition size
H = 256 for Qwen3-32B on LongBench. Figures[7]and [§]illustrate the distribution for the selected
coalition sizes H = 32, 64, 96, 128 for Llama-3-8B-Instruct and Mistral-7B-v(.2, respectively.

We observe that the distributions of Sliced Shapley values exhibit significant differences across
datasets of different task categories, while showing relatively smaller variations within datasets
of the same domain type. In Figures 0] and [I0] we present the distributions of the expected
complementary contributions of heads in Llama-3-8B-Instruct model on the hotpotga dataset
(multi-document question answering) and the lcc dataset (code generation), with coalition sizes
of {32,64, 96,128,160, 192,224}. We observe strong correlations in the distributions across all
coalition sizes. Additionally, the distributions of the expected complementary contributions for
coalition sizes S and n — | S| are nearly identical, exhibiting symmetry around the size of 128. To
optimize computational efficiency, we restrict the calculation of complementary contributions to
coalitions with sizes below 128. These observations provide a justification for our approach of
computing complementary contributions using only a small subset of coalition sizes, as it effectively
captures the contributions of the heads.

As showing all the distribution of all datasets costs too much pages, we conduct additional experiment
analysis comparing the averaged complementary contributions of small coalitions (j=32,64,96) and
large coalitions (j=160,192,224) by measuring the overlap rate of top-contributing heads between
them in 16 datasets in LongBench. Specifically, we computed the percentage of shared heads in their
respective top-k lists (k=32,64,128). The results show consistently high overlap rates (averaging over
85%) across all 16 datasets and two different LLMs, confirming that the distributional similarity is
not model- or dataset-specific. This pattern suggests an underlying structural property of attention
heads in transformer-based LLMs, where the complementary contribution of heads remains stable
across different coalition scales. The results are shown in Tables [/land [§]

Table 7: Overlap Results of Llama-3-8B-Instruct

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg
< 2 2, < L £ <
%Q % pefo@ %@0 %{oo 1126 47‘(1,9 OOI;P 0470 /170////1/ 'f‘@ ’),//é '7% Q)% kN N ‘P@\A
’ Y Ty, e, T, G

Top 32 heads 081 0.66 081 091 0.84 081 062 066 050 084 084 059 097 097 081 075 077
Top 64 heads 077 0.81 088 088 091 091 067 072 066 0.8 077 080 098 098 083 086 0283
Top 128 heads 0.82 088 0.80 093 090 095 083 083 080 095 084 080 099 099 088 085 0.88

Table 8: Overlap Results of Mistral-7B-Instruct-v0.2

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg
1 Q Y % < Y = Q 4, % 2 @ 4 4 4 @
s, . . 0, 2, 2, % 9, ¢} 2 3
= Yy, T, %, /’f/@ ", 13%0 47‘% % % L’c?p 4@, %, ‘ ©
0'7 p«] N % 0"3» B K4

Top32heads 0.66 084 072 078 075 094 075 072 062 075 078 072 100 094 075 069 0.78
Top 64 heads 0.77 094 0.77 072 081 094 092 072 069 086 0.84 077 097 094 072 073 0.82
Top 128 heads 0.83 094 0.84 086 0.87 097 095 084 088 088 087 086 099 095 0.86 080 089

E.5 DECODING LATENCY AND MEMORY USAGE

We also conduct decoding latency and memory usage experiments using the Mistral-7B-Instruct-v(.2
model, which supports a maximum context window of 32k tokens, with FlashAttention enabled as
the default setting, on an A100 GPU with 40GB of memory. We design two key experiments with the
average KV cache size set to 128 tokens(comparative experiments showed less than 2% variation
across 64/256/512/1024 tokens).

20

Under review as a conference paper at ICLR 2026

Peak Memory Usage Decoding Latency

- Snapkv

1S

- SnapkV

Ada-SnapkV

Ada-SnapKV
HeadKV-R2

HeadKV-R2
, e COKV
- FullKV coees FUlKV

3

..
H
Times (s)
&
g

Peak GPU Memory (GB)

-
1

e

"
5
¥
H
1
1
1
1
i
1
|
°
%

16k 32k 1 512 1024 4096

2048
Generation Length

Figure 3: Results of Decoding Latency and Peak Memory Usage.

Peak Memory Usage Under fixed generation length (1 token), we measure the peak GPU
memory usage (including model parameters and runtime states) across varying input contexts
(1k/2k/4k/8k/16k/32k tokens). As shown in the Peak Memory Usage of Figure 3] CoKV reduces
memory usage by 64% compared to FullKV baseline at 32k input length.

Decoding Latency With a fixed input context length of 28k tokens, we measure decoding latency
(including both the pre-filling time and the decoding time) across different generation lengths
(1/512/1024/2048/4096 tokens). As shown in the Decoding Latency of Figure [3] CoKV achieves less
than 50% of the total latency compared to the FullKV baseline, with negligible differences observed
between the other baselines.

E.66 MATHEMATICAL REASONING EVALUATION

To assess the mathematical reasoning capability of CoKV, we evaluate it on the GSM8K and MATH
datasets using the Qwen3-32B model. The head importance scores are derived from the average
scores across all tasks in LongBench. We perform experiments involving both KV cache eviction and
head masking. We use 5 shots in all the experiments. The results are shown in Tables 9} [I0} [[TJand
12

Table 9: Qwen3-32B mode with KV size = 128 on GSM8K

Full Cache SnapKV Pyramid AdaKV HeadKV-R2 CoKV
93.47 70.71 69.56 68.69 79.44 82.10

Table 10: Mask Top Important Heads Results on GSMSK

16 heads 32heads 64 heads 96 heads

Random 92.24 91.73 89.57 88.15
HeadKV-R2 91.24 90.38 72.15 36.85
CoKV(top) 86.57 19.40 3.77 1.89

E.7 GENERALIZATION ANALYSIS

We first compute a general head importance score by averaging the scores across all tasks in Long-
Bench using Qwen3-32B. This general score is then applied uniformly in head masking experiments
for each individual task in LongBench. The results, summarized in Table[T7} indicate that although
CoKYV using this general score performs better than using task-specific scores, it evaluates head
importance across more tasks therefore leading to a more comprehensive assessment. Besides, the
experiments in Section [E.6|demonstrate that the head importance scores derived from LongBench
generalize effectively to mathematical reasoning tasks, confirming that CoKV captures a robust and
transferable notion of head importance.

21

Under review as a conference paper at ICLR 2026

Table 11: Qwen3-32B mode with KV size = 128 on MATH

Full Cache = SnapKV ~ Pyramid AdaKV HeadKV-R2 CoKV
52.53 39.10 37.58 41.02 43.65 46.17

Table 12: Mask Top Important Heads Results on MATH

16 heads 32 heads 64 heads 96 heads

Random 52.15 51.06 46.97 42.39
HeadKV-R2 51.41 36.54 32.83 10.61
CoKV(top) 45.45 21.37 292 1.70

To validate the generalization capability of our method, we also conduct cross-dataset evaluations on
two task categories: 1. Multi-Document QA including 2WikiMQA and Musique datasets. 2. Code
Processing including Lcc and RB-P datasets. Following Section 4.2, we mask top and low-ranked
attention heads but cross-apply head importance scores between datasets within the same task (e.g.,
mask 2WikiMQA using Musique-derived scores). As shown in Table [20]and Table 2T} our method
maintains superior accuracy over baselines across both models, confirming that learned importance
scores can generalize across datasets within shared task domains.

E.8 NEEDLE-IN-A-HAYSTACK TEST

To evaluate the performance of different KV cache compression methods in long-context retrieval
tasks, we conduct a Needle-in-a-Haystack benchmark test using the Mistral-7B-v0.2 model. With the
average KV cache size 128, we systematically insert target texts (needles) at ten equidistant positions
(11%, 22%, ..., 100%) across varying context lengths ranging from 1,000 to 31,000 tokens (in 1,000-
token increments). As shown in Figure[TT] CoKV outperforms other baseline methods, achieving an
average score of 95.89% - the closest performance to the uncompressed FullKV benchmark.

We further extend our evaluation to the Qwen3-32B model under the same KV cache budget (average
size = 128). We use the average head scores on LongBench as the key-value allocation score, which
demonstrates that CoKV provides a fair measure of the retrieval ability of each head across different
tasks. Needles are inserted at the same ten relative positions across context lengths ranging from 1,000
to 61,000 tokens (in 4,000-token increments). As illustrated in Figure @ CoKYV again demonstrates
superior performance, attaining an average accuracy of 73.86%—the highest among all compressed
methods and the closest to the FullKV benchmark.

E.9 RULER

RULER generates synthetic examples to evaluate long-context language models with configurable
sequence length and task complexity. RULER includes four task categories, and we select the
representative task from each category for our assessment. Following the experimental setup described
in Section4.2] we set the masking group size to 64 and test performance across various context
lengths (4k, 8k, 16k, and 31k). We compare CoKV with HeadKV-R2 because HeadKV-R2 is not
only the strongest baseline method but also provides per-head importance scores. We use mistral-7B-
v0.2-instruct model in this experiment, which supports a 32k-token context window. Notably, the
Llama3-8B instruct model is omitted due to its limited 8k context length. As shown in Table 22} our
method shows significant advantages over baseline approaches: masking less important groups (low)
results in less performance degradation, while masking critical groups (top) leads to substantially
larger drops in performance compared with other methods.

22

Under review as a conference paper at ICLR 2026

Table 13: Benchmark Results of Llama-3-8B-Instruct

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg
< [} 2 2. & L 2
%O«, Q, 47'?@ ‘%,oo %, 47,,% g 04@/ 1, N R W
N % /O 1, % Y % 3 0'7 %, Y
Y % ‘er 2

Full Cache 24.12 3124 39.85 4523 3456 21.09 2838 2324 2652 74.12 9096 4237 455 7176 581 51.64 41.73
KYV size=64

SnapKV 19.94 1321 2891 40.06 28.58 18.12 1729 21.71 17.05 49.41 89.00 3548 3.99 71.57 5435 5042 3494

Pyramid 20.11 16.54 32.67 4025 27.71 17.54 18.67 2237 20.03 62.55 89.89 36.63 430 7176 54.27 50.96 36.64

Ada-SnapKV 2040 14.46 3262 4239 3148 17.58 1857 22.18 1871 5882 90.13 3525 441 7157 54.02 51.68 36.52

HeadKV-R2 2030 16.76 3596 38.08 2641 1798 18.68 21.75 20.58 67.06 88.19 37.30 321 7176 56.20 54.49 37.17

CoKV 20.77 19.67 35.11 4437 3436 17.83 17.89 2233 1855 71.76 90.73 3851 471 71.76 5545 5582 38.73
KYV size=128

SnapKV 2037 1473 3424 4332 2894 1974 19.68 22.15 20.68 64.71 90.69 39.03 4.41 71.76 5848 5170 37.39

Pyramid 20.32 19.28 33.81 41.13 2821 1994 19.70 2297 21.11 67.65 89.89 37.77 430 71.76 5593 5130 37.82

Ada-SnapKV 20.86 18.14 35.17 45.12 30.39 2043 1993 21.84 2125 6941 9029 38.08 4.75 71.76 5799 53.16 38.66

HeadKV-R2 21.30 21.28 39.85 42.07 2991 19.92 20.18 22.54 22.87 71.18 90.63 38.58 446 7176 60.75 57.17 39.65

CoKV 20.40 2325 3893 4511 37.60 2040 19.78 23.16 21.14 7359 91.21 4096 4.71 71.76 5834 59.37 40.61
KY size=256

SnapKV 2298 21.02 3627 4424 31.02 19.72 2090 22.63 2245 69.41 90.77 39.64 426 71.76 59.44 5435 39.43

Pyramid 22.18 22.83 3595 41.85 31.74 21.14 2127 22.65 22.83 71.18 90.83 40.50 4.35 71.37 57.69 5149 39.37

Ada-SnapKV 2358 23.76 35.65 43.83 32.24 20.50 2126 22.77 22.69 71.76 90.87 4036 421 7176 58.79 54.70 39.92

HeadKV-R2 23.13 2555 3997 43.60 31.12 21.26 22.02 22.68 2447 71.76 90.63 3832 5.13 71.08 6181 59.25 40.74

CoKV 22.69 28.23 4234 46.32 3638 21.17 21.17 23.64 23.08 7294 9093 42.07 471 7176 6240 6192 4198
KV size=512

SnapKV 2292 22.86 39.33 43.89 32.70 20.87 2224 2239 2397 71.18 90.87 41.14 454 71.76 59.98 55.00 40.35

Pyramid 2359 2570 3821 4434 3248 2059 2294 2249 24.07 7235 90.87 40.92 475 7176 5822 52.54 40.36

Ada-SnapKV 2347 2841 39.02 4487 32.77 20.52 23.14 2296 2447 7212 9093 39.85 471 7176 5859 54.65 40.77

HeadKV-R2 22.52 29.32 40.34 45.64 3452 20.53 2392 22.61 2573 7235 9093 39.28 441 7176 61.59 59.22 4154

CoKV 2456 29.18 40.60 46.11 37.53 21.33 23.02 23.51 2477 7294 91.09 4129 476 71.50 63.06 63.55 42.44
KYV size=1024

SnapKV 2395 2695 37.81 44.03 30.88 2093 2426 23.09 2579 7235 90.87 4143 431 71.76 5929 5491 40.79

Pyramid 23.62 2676 3944 4579 3341 19.87 23.57 2298 25.13 73.02 9093 40.86 4.71 7176 58.43 53.67 40.87

Ada-SnapKV 2352 2833 40.39 4520 3295 20.11 24.55 2333 2537 7353 90.87 4138 4.46 71.76 58.88 54.65 41.21

HeadKV-R2 23.35 29.60 40.09 4582 35.81 21.39 2557 2332 2630 74.12 90.77 4027 4.19 71.76 61.58 59.03 42.06

CoKV 2401 31.70 40.64 48.13 37.89 20.64 23.02 23.89 2571 74.12 91.01 42.02 471 7120 6333 63.74 42.86

Table 14: Benchmark Results of Qwen3-32B
Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg
Yoo e b S G 9 o B 9 A A L
T N ey ey T, T, e Ty Ty S, R
7% 7 i 7%

Full Cache 37.14 4551 49.17 582 5474 3836 329 2372 2508 7278 72.57 37.95 1778 100 6272 70.08 49.92
KYV size=64

SnapKV 2897 30.05 41.1 29.74 41.62 35.03 1657 19.56 16.86 3333 6743 323 9.52 9524 50.67 47.05 37.19

Pyramid 19.74 30.56 36.64 32.77 40.62 3556 17.62 2129 16.53 33.33 67.43 36.61 9.52 100.0 5533 4895 37.66

Ada-SnapKV 31.71 3231 37.52 3272 4253 37.32 17.17 21.89 17.1 3333 7143 3235 952 100.0 53.24 47.19 3858

HeadKV-R2 ~ 29.1 3246 39.89 5095 44.62 3342 18.04 20.01 1727 4141 66.06 32.37 182 9899 550 50.87 40.54

CoKV 29.37 3352 43.15 52.83 4837 37.1 18.18 19.96 18.72 4444 68.77 32.67 1921 98.99 5508 514 41.99
KYV size=128

SnapKV 30.18 32.54 4196 552 47.04 3431 2274 21.19 19.0 4722 67.89 36.77 1722 98.89 5852 50.48 42.65

Pyramid 27.17 32.11 4093 30.13 372 3443 2201 2095 1871 381 6843 3555 9.52 100.0 5648 5129 40.19

Ada-SnapKV 22.74 3211 40.02 3242 4044 2797 2343 21.67 1898 46.67 6743 3893 952 100.0 579 49.71 39.43

HeadKV-R2 29.78 3339 41.51 51.85 52.06 36.17 24.17 21.04 19.03 48.89 6798 36.44 18.02 99.44 56.88 5247 43.07

CoKV 2873 37.56 44.80 5348 53.07 35.17 23.89 21.34 19.28 5444 69.35 3823 1922 100 57.13 56.87 44.53
KYV size=256

SnapKV 3296 3746 46.19 382 47.63 3821 2504 2229 20.88 4286 6843 4441 952 100.0 62.05 52.62 43.05

Pyramid 29.13 31.77 47.74 31.19 4027 26.84 2497 2275 2097 38.1 6843 37.85 952 100.0 5838 550 40.18

Ada-SnapKV 3026 37.95 48.05 37.54 48.17 4259 2533 239 21.15 4762 6893 4195 952 100.0 640 53.14 4376

HeadKV-R2 33.0 38.69 47.01 5198 572 3836 2601 22.17 21.83 4949 68.15 38.79 18.18 100.0 5835 55.72 4531

CoKV 33.07 41.66 47.5 5598 59.15 38.88 2584 22.79 2141 56.57 6898 38.65 17.17 100.0 59.42 5576 46.43
KYV size=1024

SnapKV 3375 4359 4697 4574 5652 38.19 28.10 2296 24.18 619 6925 4512 9.52 1000 60.86 67.1 47.11

Ada-SnapKV 3492 4487 47.18 4645 56.21 37.19 27.74 2356 2442 619 69.52 4054 952 1000 61.71 63.38 46.82

HeadKV-R2 36.27 44.14 50.83 54.07 62.96 37.72 2829 23779 24.63 64.65 6848 39.07 18.28 100.0 61.29 6491 48.71

CoKV 35.82 4523 5145 5731 61.37 3734 2878 24.41 2479 68.69 68.96 39.01 18.18 100.0 62.52 65.62 49.34

23

Under review as a conference paper at ICLR 2026

Table 15: Results of Mistral-7B-Instruct-v0.2

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg
Y6 %, Y 6, 0 B b N, e
o T o h Ry %, T, %, W, o Th, g %, e R
=% o ° e &4 2
Full Cache 2640 31.07 4938 37.60 26.07 17.81 31.87 23.16 27.15 70.59 8573 4326 1.52 5852 55.10 4945 39.67
KV size=64
SnapKV 16.99 1826 3829 29.51 2324 1346 1824 2048 18.05 4882 8145 36.18 2.54 4379 46.13 39.30 30.92
Pyramid 17.51 18.60 40.49 31.92 22.08 13.81 18.68 20.94 18.80 57.06 81.71 37.42 1.68 46.23 46.05 40.03 32.06
Ada-SnapKV 17.93 18.68 40.03 29.99 22.67 1492 18.84 20.87 1853 54.12 8143 3725 230 4520 46.84 39.37 31.81
HeadKV-R2 22.75 2537 4536 36.52 2539 13.82 2045 22.06 21.48 6529 8356 37.95 243 50.78 47.76 42.86 35.24
CoKV 21.07 2141 4287 37.74 2893 1560 18.03 21.08 19.70 67.65 86.52 39.54 3.68 54.22 4920 42.13 35.59
KYV size=128
SnapKV 23.02 20.73 4191 3139 22.88 1455 2092 21.83 21.25 6235 8321 3899 3.14 51.16 49.94 43.61 3443
Pyramid 22.06 21.82 43.73 3233 24.12 1380 20.27 21.65 21.34 6529 83.78 3837 2.63 5359 4921 42.69 3479
Ada-SnapKV 22.32 2271 4440 32.63 2329 1379 21.15 2250 21.77 6647 8428 39.68 3.04 51.87 49.57 44.84 3527
HeadKV-R2 24.81 27.66 4829 36.87 26.66 14.75 2330 22.88 2326 67.65 84.93 39.75 250 49.31 50.79 4557 36.81
CoKV 2442 24.12 4695 3828 28.85 17.18 21.11 2191 22.02 6882 86.14 4048 4.21 54.12 51.08 4625 37.25
KYV size=256
SnapKV 23.01 2347 4538 33.15 24.12 1393 22.80 22.89 2285 67.65 84.62 4039 236 59.18 51.34 46.74 36.49
Pyramid 2298 25.66 46.12 3447 2581 1398 2286 2254 2288 6890 85.07 4092 239 58.74 53.13 46.59 37.07
Ada-SnapKV 2354 26.02 45.92 3445 26.09 14.12 2279 22.64 2332 6882 8532 4193 204 58.62 52.10 47.70 37.21
HeadKV-R2 2540 27.42 47.05 3798 2557 17.08 2531 2272 25.03 69.41 8493 4024 258 5294 5348 4921 37.90
CoKV 2570 26.10 4843 3896 30.06 17.33 2342 2255 2373 70.00 86.19 4235 3.65 5637 5397 48.79 38.60
KV size=512
SnapKV 2524 2630 47.85 37.16 25.07 1457 2443 2298 2461 6882 8572 43.04 2.00 58.63 54.06 49.03 38.09
Pyramid 2443 27.09 4849 37.57 2535 1620 2440 2285 24.16 68.82 85.81 4207 1.87 56.93 53.05 4822 37.96
Ada-SnapKV 25.01 26.76 49.10 37.12 26.68 15.63 2442 2294 24.61 6941 8556 41.88 187 5793 54.09 4894 3825
HeadKV-R2 25.80 28.73 4834 3743 27.03 17.28 2822 2322 26.65 70.59 8572 40.15 2.69 56.15 5324 49.22 38.78
CoKV 2525 28.13 4991 3887 3233 1827 25.00 23.08 2550 70.59 86.37 4346 3.06 59.20 55.54 49.38 39.62
KV size=1024
SnapKV 26.38 29.70 48.13 37.36 25.52 16.88 27.31 22.63 26.10 69.41 8572 4243 1.54 56.87 55.05 49.33 38.77
Pyramid 25.09 28.59 47.78 37.74 25.83 17.53 25.88 23.05 2591 6824 8595 4277 1.59 57.82 5447 4885 38.57
Ada-SnapKV 25.70 29.95 47.50 37.68 26.18 17.10 26.63 2293 26.10 70.00 85.72 43.16 1.68 56.28 54.52 49.10 38.76
HeadKV-R2 2748 29.94 4949 3749 2645 18.69 30.73 2331 26.74 70.59 8592 42.05 3.15 56.37 5473 4930 39.53
CoKV 26.15 29.82 49.47 3854 3439 1798 27.76 23.33 2649 7059 86.23 4354 248 5932 5547 49.92 40.09
- Llama-3-8B-Instruct Mistral-7B-Instruct-v0.2
a2 “
41 38
g g
o 40 o
@]
o 39 © 36
o o
L. —e— SnapkV o —e— SnapkV
g —=— Pyramid N —s— Pyramid
<37 Ada-Snapkv < Ada-SnapKV
HeadKV-R2 HeadKV-R2
36 —— CoKV 32 —— CoKV
35 « Fullkv « Fullkv
6 128 256 s12 1024 6 128 256 s12 1024
KV size KV size
Figure 4: Results for varying KV cache sizes (64, 128, 256, 512, 1024) in the LongBench benchmark.

~
&

Average Score
N
]

&

Llama-3-8B-Instruct

Fullkv

*, — Random
- HeadKV-R2(top)
%+ CoKV(top)
HeadKV-R2(low)
e, —— CoKV(low)

% 128

6
Masked Groups

Average Score
8 & 8

.
&

Mistral-7B-Instruct-v0.2

= Fullkv
—— Random
HeadKV-R2(top)
-+ CoKV(top)
HeadKV-R2(low)
............. —— CoKV(low)

% 128

6
Masked Groups

Figure 5: Results for varying masked groups (16,32,64,96,128) in the LongBench benchmark.

24

Under review as a conference paper at ICLR 2026

Table 16: Results of masking groups with Llama-3-8B-Instruct

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg
< 2 2, <& 2 2 <
/l;rp p‘%\ %@ %Q) l’?é %y/- 651,4) O”(p 47///,(§ '%\O ’}/,/ . '7,9 Q)(/ kA < é@\ »w
&l > 9 %, R 0, B,
9 Q U b, v %
Full Cache 24.12 3124 39.85 4523 3456 21.09 2838 2324 2652 7412 9096 4237 455 7176 58.10 51.64 41.73
Masking 16 groups
Random 2093 28.48 33.69 4493 2001 206 2843 237 26.67 7412 91.07 41.12 426 71.76 49.83 40.55 38.76
HeadKV-R2(top) 19.45 1297 27.75 342 17.33 1432 19.74 2276 2205 67.06 8791 3553 471 6849 2662 2653 31.71
CoKV(top) 6.55 946 947 10.19 1227 567 573 1696 447 4353 7121 2377 391 3498 11.58 17.18 17.93
HeadKV-R2(low) 21.83 14.36 33.34 31.37 27.23 1255 2729 23.82 2699 7412 91.03 42.18 4.12 7059 3735 3855 36.05
CoKV(low) 23.74 3376 41.71 4927 4048 19.99 29.13 2325 27.79 74.12 9145 4237 471 7055 63.38 6126 43.56
Masking 32 groups
Random 20.69 18.60 29.63 39.12 1850 6.94 2240 2233 2645 74.12 89.82 33.80 4.71 61.12 30.78 40.71 33.73
HeadKV-R2(top) 17.33 6.98 937 1350 9.37 511 13.18 20.86 1524 4588 7530 2721 476 6621 1124 13.64 2220
CoKV(top) 1.40 349 378 794 932 232 264 11.74 058 3471 2137 696 4.14 1693 354 517 850
HeadKV-R2(low) 21.51 11.16 2533 19.52 1448 742 1673 2391 1458 74.12 89.09 40.69 4.66 70.09 33.13 3239 31.18
CoKV(low) 2245 33.06 3834 4582 39.62 20.18 2839 24.04 26.67 74.12 91.14 41.70 471 7176 5224 6494 4245
Masking 64 groups
Random 1322 734 2057 2058 9.1 676 7.50 2122 19.18 7235 7192 36.09 471 5280 21.27 18.07 25.17
HeadKV-R2(top) 749 295 505 11.06 12.01 246 3.63 1443 506 3471 4892 8.05 397 70.67 2103 16.14 16.73
CoKV (top) 076 1.76 245 485 558 193 248 565 020 3412 333 734 316 1218 245 383 575
HeadKV-R2(low) 19.23 12.19 21.33 19.61 1421 6.63 645 20.17 6.16 71.76 7740 3152 441 5348 1600 14.58 24.70
CoKV(low) 21.98 29.85 3895 4421 36.65 17.71 28.04 2449 2592 7471 91.66 40.80 4.54 71.76 47.04 52.77 40.69
Masking 96 groups
Random 519 4.04 685 815 1033 508 221 1077 2.82 40.00 61.54 1338 4.64 5429 1537 9.81 1590
HeadKV-R2(top) 2.89 434 790 11.83 9.14 293 437 1321 380 3412 3032 846 478 71.76 1355 1476 14.89
CoKV(top) 136 1.14 182 3.66 379 148 120 4.63 013 3412 240 752 054 671 241 354 478
HeadKV-R2(low) 19.28 823 15.65 20.89 16.80 8.00 3.32 11.81 099 5882 5870 1572 4.71 61.88 10.56 11.05 20.40
CoKV(low) 20.24 1897 3528 41.37 30.02 13.87 19.95 1733 20.76 7471 84.08 41.23 471 6824 38.11 38.08 3543
Masking 128 groups
Random 334 250 533 1059 512 273 215 9.19 0.16 4412 3133 905 4.18 6674 1227 923 13.63
HeadKV-R2(top) 234 2.17 538 721 7.19 185 1.80 1034 031 3471 26.08 7.87 471 6692 1394 11.76 12.79
CoKV(top) 059 0.80 138 296 342 111 116 405 013 3412 289 7.17 1.09 752 291 355 4.68
HeadKV-R2(low) 12.02 7.97 892 1487 12.83 526 241 9.12 142 5588 4096 102 471 6842 10.14 6.03 1695
CoKV(low) 1531 12.15 2844 3535 2327 1067 293 1224 941 73.82 7632 3770 471 6824 2220 2493 286l
Table 17: Results of masking groups with Qwen3-32B
Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg
€, @) 4, 4, < 4, [[4, 2 2 4 &
,’Qy Y A %, %{/ %, : KR /%% 0/”/'!/ 'f’@O ’),,/é '74(? %, % @ fo N
> % 0 Y % o % % ©, G, %
£l ©, % iy kd 4
Full Cache 37.14 4551 49.17 582 5474 3836 329 2372 2508 7278 7257 3795 1778 100 62.72 70.08 49.92
Masking 16 groups
Random 36.53 4537 5432 5582 61.69 40.09 2643 2457 2504 69.7 6857 3743 2222 100.0 2251 2501 44.71
HeadKV-R2(top) 36.89 4522 54.08 56.57 61.02 38.12 24.08 22.58 24.69 68.43 6843 3528 19.19 57.05 26.50 28.61 41.67
CoKV(top) 32.16 35.64 38.05 35.18 2920 30.56 21.38 2392 24.67 38.61 37.57 27.02 19.57 3593 9.74 1243 2823
CoKV(top)-general 23.7 31.61 28.7 3291 2191 1586 22.12 20.73 13.58 404 3941 2496 19.19 15.15 16.07 17.75 24.00
Masking 32 groups
Random 3375 4374 5444 5397 6331 39.09 2501 2486 2531 69.7 67.56 3592 21.21 100.0 18.11 2576 43.86
HeadKV-R2(top) 36.52 46.09 53.75 56.14 60.98 3835 21.96 2396 24.67 68.69 63.8 34.09 21.21 100.0 21.13 22.77 43.38
CoKV(top) 3542 338 27.53 3242 2445 22.63 18.67 24.13 250 3636 29.67 20.87 19.19 2929 518 6.89 2447
CoKV(top)-general 17.59 23.02 13.13 2235 16.09 8.1 19.03 16.08 991 3636 26.18 1534 202 4141 10.86 16.55 19.51
Masking 64 groups
Random 30.13 4481 50.07 56.51 54.06 39.24 2733 2332 2482 7278 71.12 3772 12.94 100.0 22.71 23.79 4321
HeadKV-R2(top) 28.38 34.55 3215 4725 4526 2533 20.14 22.17 1398 5556 56.69 21.18 8.69 98.33 14.44 1847 3391
CoKV(top) 28.85 2855 1891 251 19.78 12.69 1348 2297 238 3556 2643 1041 8.04 1722 52 505 18.88
CoKV(top)-general 12.07 1696 7.72 19.81 16.13 472 1447 1214 472 3434 2201 858 14.14 101 1576 1437 13.68
Masking 96 groups
Random 36.07 452 5441 5749 60.17 4092 2267 2437 245 68.69 6346 21.53 21.21 9697 24.15 23.12 42381
HeadKV-R2(top) 22.16 2392 21.57 382 3823 2134 1585 17.13 7.72 3838 42.65 11.54 202 4646 623 1023 23.86
CoKV(top) 243 2202 13.6 1844 1494 1398 11.39 2244 16.66 3333 17.8 623 13.13 3.03 528 451 1507
CoKV(top)-general 84 11.81 7.76 156 1253 697 9.82 974 34 3333 2165 871 1414 00 13.68 925 11.67

25

Under review as a conference paper at ICLR 2026

Table 18: Results of masking groups with Mistral-7B-Instruct-v0.2

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg
Y O % w, % %, O e % Y, Y %R W
Y T, '/oo/o "6,‘,7 %’550 13?% /I{‘}% %, ", %O IL’?fQ % %, ¢ ¢ b
v o ° % % T
Full Cache 2640 31.07 49.38 37.60 26.07 17.81 31.87 23.16 27.15 7059 85.73 4326 1.52 5852 55.10 4945 39.67
Masking 16 groups
Random 2592 31.73 5029 37.84 27.19 17.83 2491 2192 27.04 7059 8593 43.8 322 53.82 5238 4824 38.92
HeadKV-R2(top) 23.38 16.66 37.13 3741 2276 1429 18.8 21.74 2323 54.12 8296 3522 4.12 21.76 39.49 35.66 30.55
CoKV(top) 16.1 2335 1849 1434 1339 7.89 205 1998 1725 3824 5251 2632 4.17 4085 246 1435 22.02
HeadKV-R2(low) 24.78 29.37 48.78 38.07 24.88 1693 3125 23.08 27.64 71.18 84.55 4252 2.1 5882 5422 494 39.22
CoKV(low) 26.57 323 4994 4038 340 19.11 3125 2297 2685 70.59 873 4439 329 58.03 56.6 50.74 40.89
Masking 32 groups
Random 22.62 31.72 4720 38.13 2255 11.92 25.64 2327 26.75 68.82 8455 4134 193 49.71 50.14 47.18 37.09
HeadKV-R2(top) 20.82 15.40 28.72 3431 20.31 1286 13.56 19.83 17.80 46.47 79.25 30.10 4.71 2431 33.41 3047 27.02
CoKV(top) 9.05 1538 7.61 9.88 807 638 059 11.72 470 35.88 2687 11.85 4.65 10.88 1523 11.14 11.87
HeadKV-R2(low) 23.76 27.40 44.80 32.85 2355 1328 2437 2271 28.09 71.18 79.24 4224 426 4990 52.89 48.85 36.84
CoKV(low) 2670 30.44 49.57 4041 3228 1833 3026 2327 2685 70.59 87.48 44.04 293 5627 56.34 50.38 40.38
Masking 64 groups
Random 1343 2446 3097 22.62 1693 1565 1407 22.16 19.86 5529 82.16 3585 4.12 3894 38.07 2839 2894
HeadKV-R2(top) 11.04 9.09 17.45 1857 13.79 8.07 9.83 1730 12.60 3529 5536 18.65 4.54 19.85 2625 21.23 18.68
CoKV(top) 328 350 4.65 430 342 255 079 466 108 3471 841 6.00 353 353 1122 11.57 6.70
HeadKV-R2(low) 18.81 21.42 35.18 18.03 1426 7.41 2256 2241 2024 57.65 7572 37.03 4.11 4546 3878 39.22 29.89
CoKV(low) 2687 2574 48.19 39.61 30.86 16.88 24.45 2284 2729 71.18 87.16 4343 334 50.18 5376 47.52 3871
Masking 96 groups
Random 484 633 1377 1200 1041 843 0.88 17.55 21.83 51.76 6348 2232 447 3419 2130 17.65 1945
HeadKV-R2(top) 9.21 7.05 11.34 1330 1422 399 7.67 1543 8.84 3471 29.87 997 444 30.16 17.73 1624 14.64
CoKV(top) 213 413 458 409 652 064 000 244 0.15 3471 216 440 412 294 7.6 839 554
HeadKV-R2(low) 8.17 10.62 18.76 13.07 10.10 544 3.75 1942 6.51 4647 50.84 2398 4.57 29.89 3495 3257 19.94
CoKV(low) 24.62 2471 48.04 38.72 3029 1637 1935 2284 27.18 70.59 7948 42.01 3.75 4829 50.78 43.53 36.91
Masking 128 groups
Random 415 845 973 838 7.80 207 051 13.19 340 4294 3404 882 385 353 2374 1834 1206
HeadKV-R2(top) 522 478 863 7.04 615 389 564 1459 564 3588 2598 836 382 1853 18.68 1852 11.96
CoKV(top) 133 943 1.03 424 554 141 0.09 078 001 3353 1.06 450 294 294 694 622 5.12
HeadKV-R2(low) 441 453 11.12 128 720 6.64 046 1048 061 47.65 31.61 1045 291 992 2409 2448 13.09
CoKV(low) 2043 19.12 44.82 3423 2331 1397 1422 2128 24.65 70.59 7398 39.73 4.10 4521 42.14 38.14 33.12
Table 19: Comprehensive KV Quantization Results on LongBench
Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg
< 2 2, <. 2 A
Yo, Y Ty M T B Y M R P T %, R e e,
7w Ty Y, Y, Yy Ty, R, O 9 Y, %
kA Qy O"/ [’Tp 7 K4
Qwen3-8B model with 8-4 bits quantization
HeadKV-R2 10.78 3324 3278 29.37 2596 7.93 13.17 2849 60.28 77.06 5197 26.1 9.88 79.41 6029 5547 37.64
CoKV 2043 4136 37.74 4844 2754 1653 1422 3658 60.18 7294 86.76 34.12 13.51 80.59 66.26 61.7 4493

26

Under review as a conference paper at ICLR 2026

(5) 2WikiMQA (6) Musique (7) GovReport

(9) MultiNews (10) TREC (11) TriviaQA

(13) PCount (14) PRe (15) Lee (16) RB-P

Figure 6: Heatmap of Qwen3-32B.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(13) PCount

(14) PRe (15) Lec

Figure 7: Heatmap of Llama-3-8B-Instruct.

28

(16) RB-P

Under review as a conference paper at ICLR 2026

(7) GovReport (8) QMSum

Hestmap of samsum

(9) MultiNews (10) TREC (11) TriviaQA (12) SAMSum

(13) PCount (14) PRe (15) Lee (16) RB-P

Figure 8: Heatmap of Mistral-7B-Instruct-v0.2.

29

Under review as a conference paper at ICLR 2026

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582 H
1583

1584

1585

1586

1587 (5) Coalition size 160 (6) Coalition size 192 (7) Coalition size 224 (8) Average

1588

1589 Figure 9: The expected complementary contributions for the lcc dataset across different coalition
1500 sizes.

1591

1592

1593

1594

1595

1596 [—

Heatmap of lcc

..
-
-
o
P —
s

(2) Coalition size 64

Loy

Heatmap of lcc

00800
Loos7s

oosso

ooszs

00500

0475

ooss0

ooazs

]

“oos

Loyers

Loy

Grows.

Heatmap of hotpotga Heatmap of hotpotaa Heatmap of hotpotaa

o -
1597 .. -
.
.
1598 - s s
.
1599 , . - : -
i ; o
.
-
1600 - -
i .
1601 - -
-
- -
1602 =
.
R —
e

° 1 2 3 a4 5 e 7 © 1 o2 3 o4 o5 o6 3 © 1 2 3 & 5 5 7

1 603 Groups. ac vvvvv Groups.
1604 (1) Coalition size 32 (2) Coalition size 64 (3) Coalition size 96 (4) Coalition size 128

1605
1606 ———
1607 -
e
1608 - - =
o
1609 g - - " B
1610 o
-
1611 . .
o
.
161 2 00875 002
— R— R —— —
- - -

1613 A
1614 (5) Coalition size 160 (6) Coalition size 192 (7) Coalition size 224 (8) Average
1615
1616
1617
1618
1619

yers

u

Heatmap of hotpotaa Heatmap of hotpotaa Heatmap of hotpotaa

tayers
ayers

Figure 10: The expected complementary contributions for the hotpotqa dataset across different
coalition sizes.

30

Under review as a conference paper at ICLR 2026

Table 20: Generalization results of masking

groups with Llama3-8B-Instruct

Table 21: Generalization results of masking

groups with Mistral-7B-v0.2

Method Multi-Doc. QA Code Method Multi-Doc. QA Code
< <, <, <,
;%6 %A} . OO (&9\ 0 ;%6 %A} . OO (&9\ 0
b b
O’Y QY

Full Cache 3456 21.09 58.10 51.64 Full Cache 26.07 17.81 55.10 4945

Masking 16 groups Masking 16 groups
Random 20.01 20.6 49.83 40.55 Random 27.19 17.83 52.38 48.24
HeadKV-R2(top) 17.33 14.32 26.62 26.53 HeadKV-R2(top) 22.76 14.29 39.49 35.66
CoKV(top) 10.78 5.43 14.41 15.33 CoKV(top) 13.02 6.99 17.97 23.38
HeadKV-R2(low) 27.23 12.55 37.35 38.55 HeadKV-R2(low) 24.88 16.93 5422 494
CoKV(low) 39.92 209 64.04 61.22 CoKV(low) 26.25 18.18 54.58 50.03

Masking 32 groups Masking 32 groups
Random 18.50 6.94 30.78 40.71 Random 22.55 11.92 50.14 47.18
HeadKV-R2(top) 9.37 5.11 11.24 13.64 HeadKV-R2(top) 20.31 12.86 3341 3047
CoKV(top) 6.71 3.45 439 578 CoKV(top) 1023 5.16 11.8 13.64
HeadKV-R2(low) 1448 7.42 33.13 32.39 HeadKV-R2(low) 23.55 13.28 52.89 48.85
CoKV(low) 38.1 1822 64.75 58.28 CoKV(low) 26.61 17.62 55.35 49.92

Masking 64 groups Masking 64 groups
Random 9.11 6.76 21.27 18.07 Random 16.93 15.65 38.07 28.39
HeadKV-R2(top) 12.01 2.46 21.03 16.14 HeadKV-R2(top) 13.79 8.07 26.25 21.23
CoKV(top) 568 1.82 25 3.66 CoKV(top) 452 211 13.14 13.31
HeadKV-R2(low) 1421 6.63 16.00 14.58 HeadKV-R2(low) 14.26 7.41 38.78 39.22
CoKV(low) 3417 16.29 49.97 48.93 CoKV(low) 3311 16.97 52.68 49.54

Masking 96 groups Masking 96 groups
Random 10.33 5.08 1537 9.81 Random 1041 843 21.30 17.65
HeadKV-R2(top) 9.14 293 13.55 14.76 HeadKV-R2(top) 1422 3.99 17.73 16.24
CoKV(top) 438 1.28 274 3.07 CoKV(top) 2.09 3.04 1096 8.32
HeadKV-R2(low) 16.80 8.00 10.56 11.05 HeadKV-R2(low) 10.10 5.44 3495 3257
CoKV(low) 28.08 12.92 38.62 40.55 CoKV(low) 31.51 17.39 4771 4537

Masking 128 groups Masking 128 groups
Random 512 273 1227 9.23 Random 7.80 2.07 2374 18.34
HeadKV-R2(top) 7.19 1.85 13.94 11.76 HeadKV-R2(top) 6.15 3.89 18.68 18.52
CoKV(top) 293 094 248 3.84 CoKV(top) 1.19 342 9.81 6.0
HeadKV-R2(low) 12.83 5.26 10.14 6.03 HeadKV-R2(low) 7.20 6.64 24.09 24.48
CoKV(low) 2434 9.37 23.38 24.11 CoKV(low) 23.76 12.12 42.01 36.7

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Depth Percent Depth Percent

[EEEERE]

Depth Percent

3338ty

Depth Percent

Depth Percent

10

CELELE SIS SIS IIESTS
Context Length.

H

FESSLSEEE S,

H

100

[EEE R R

g

EELELEECEESTISEIEEEIEIEII IS
Context Length.

FullKV Average score: 99.65

09 n
2

E »
o7y fu
06§ 5%
L

»
04 ®

03 100

Pyramid Average score: 93.14

n

03 100

HeadKV-R2 Average score: 95.78

2
)

§ -
06 5
§o

n

04 w

03 100,

Figure 11: NIAH test results on Mistral-7B-v0

FullKV Average score: 100.0

5w
H

g

Score.
pth :

R A R
Context Length.

Pyramid Average score: 52.33

R A R
Context Length.

HeadKV-R2 Average score: 73.18

08
e
o1, £
06§ ra
H
05 e

0 100

R A A P i i A A
ContextLangtn

Figure 12: NIAH test results on Qwen3-32B

32

EELELESESSIEIEEESEIIEIIIITITS
Context Length

CELELE S ISEIESESSIEIEI IS
Context Length

SnapKV Average score: 92.38

Ada-SnapKV Average score: 93.2

CESELESESIEEITELESEES CELELEE IS IIEIESETEIEITIIIIEIS
Coment Lomgtn Conten Lnath

CoKV Average score: 95.89

.2 with average KV cache = 128

SnapKV Average score: 55.11

LSS PSS
oth

Context Lens

Ada-SnapKV Average score: 61.19

S i i A
Context Length

CoKV Average score: 73.86

FCFLEPLET IS TS
Contoxt Langtn

with average KV cache = 128

10
09
08
07

06§

04
03
02

Under review as a conference paper at ICLR 2026

Table 22: Evaluation results of masking 64 groups with Mistral-7B-Instruct-v0.2 across varying
context lengths in the RULER benchmark

Retrieval ~ Multi-hop Tracing Aggregation Question Answering

Method
niah vt fwe qal qa2
31k Context Length
Full Cache 100.0 86.08 89.2 71.4 53.4
Random 0.8 59.6 54.4 53.6 19.4
Headkv-R2(top) 0.0 0.48 0.0 28.6 13.8
CoKV(top) 0.0 0.12 0.0 12.8 7.0
Headkv-R2(low) 92.4 67.08 76.73 41.8 33.0
CoKV(low) 100 90.88 74.33 70.2 51.6
16k Context Length
Full Cache 100.0 90.44 94.73 76.8 54.6
Random 0.2 6.92 71.67 63.8 52.4
Headkv-R2(top) 0.0 0.56 0.0 29.2 17.0
CoKV(top) 0.0 0.76 0.27 154 7.2
Headkv-R2(low) 90.8 71.6 79.27 60.2 38.0
CoKV(low) 100.0 93.84 81.6 74.0 54.0
8k Context Length
Full Cache 100.0 96.32 78.2 82.6 61.6
Random 99.4 64.6 58.8 71.2 51.0
Headkv-R2(top) 0.0 0.48 0.0 31.8 18.2
CoKV(top) 0.0 1.08 0.13 20.0 9.0
Headkv-R2(low) 91.2 69.4 61.4 64.2 44.0
CoKV(low) 100.0 92.72 67.13 80.4 62.0
4k Context Length
Full Cache 100.0 99.32 84.6 85.0 63.0
Random 98.2 35.44 33.8 62.6 56.6
Headkv-R2(top) 0.0 0.16 0.0 304 20.0
CoKV(top) 0.0 1.16 0.27 20.8 8.4
Headkv-R2(low) 84.8 73.12 56.47 66.2 48.0
CoKV(low) 100.0 97.0 77.0 83.6 63.2

33

	Introduction
	Preliminaries
	Key-Value Caching and Compression
	Shapley Value

	Importance-Aware KV Cache Compression via Sliced Shapley Value
	Head Importance Evaluation
	KV Cache Compression

	Experiments
	Experiment Settings
	Hyperparameter Free Results.
	KV Cache Eviction Results
	KV Cache Quantization Results

	Conclusion
	Use of Large Language Models
	Related Works
	Suplementary of Preliminaries
	KV Cache Eviction
	KV Cache Quantization

	Proof
	Proof of Theorem 1
	Proof of Theorem 2

	Supplementary Experiments
	Datasets
	Ablation Study
	Computation Efficiency
	Distribution of Sliced Shapley Value
	Decoding Latency and Memory Usage
	Mathematical Reasoning Evaluation
	Generalization Analysis
	Needle-in-a-Haystack Test
	RULER

