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ABSTRACT

Large language models (LLMs) have achieved remarkable success in various
aspects of human life. However, one of the major challenges in deploying these
models is the substantial memory consumption required to store key-value pairs
(KV), which imposes significant resource demands. Recent research has focused on
KV cache budget allocation, with several approaches proposing head-level budget
distribution by evaluating the importance of individual attention heads. These
methods, however, assess the importance of heads independently, overlooking
their cooperative contributions within the model, which may result in a deviation
from their true impact on model performance. In light of this limitation, we
propose CoKV, a novel method that models the cooperation between heads in
model inference as a cooperative game. By attributing the contribution of each head
within the model, CoKV can more effectively allocate the cache budget in KV cache
techniques such as eviction and quantization. Extensive experiments demonstrate
the effectiveness of CoKV on long-context benchmarks (e.g., LongBench, NIAH,
and RULER) and mathematical reasoning benchmarks (e.g., GSM8K and MATH)
across multiple model families, including Qwen, Llama, and Mistral. Code is
provided in https://anonymous.4open.science/r/CoKV-40AC.

1 INTRODUCTION

Large language models (LLMs) are widely applied across various domains, including content genera-
tion (Li et al., 2024a), automated services (Chen et al., 2024a), and decision support systems (Hager
et al., 2024). With the widespread application of large language models (LLMs), reducing the cost of
inference services has become increasingly important. LLMs consist of multiple transformer blocks
that store key and value states (KV) during inference. KV cache allows efficient decoding in token
generation without recomputing key and value states by using previously cached KV pairs. However,
the KV cache becomes excessively large when processing long sequences or a large number of inputs,
inevitably straining GPU memory, thereby substantially raising deployment costs and hardware
requirements for large-scale applications.

To address this challenge, research efforts have advanced on several fronts. Some studies have
explored methods for ranking the importance of tokens within a single attention head, retaining
only the top k most significant ones. For example, H2O (Zhang et al., 2023b) evaluates token
importance using the sum of attention weights. StreamingLLM (Xiao et al., 2024) directly removes
KV from the middle segment of the cache to reduce the cache size as they incorporate less information.
SnapKV (Li et al., 2024b) calculates token scores by pooling the attention weights between tokens in
the local window and those in the cache. In parallel, several studies have also investigated strategies
for optimizing KV quantization to reduce KV cache costs, such as Kvquant (Hooper et al., 2024)
and OTT (Su et al., 2025). Recently, some studies have recognized that the importance of each
attention head varies, enabling methods like AdaKV (Feng et al., 2025), HeadKV (Fu et al., 2025) and
DuoAttention (Xiao et al., 2025b). AdaKV improves budget utilization by adaptively allocating the
overall budget across different attention heads based on their varied concentration degrees. HeadKV
evaluates the retrieval-reasoning scores of different heads and allocates a larger cache size to those
with higher scores. DuoAttention uses a reinforcement learning-based algorithm with synthetic data
to identify retrieval heads.
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While prior work on head importance evaluation has made significant advancements in adaptive KV
cache management, we observe that several challenges remain unresolved in current approaches.
Some existing methods evaluate attention head importance independently. For example, AdaKV
evaluates the concentration degrees of heads while HeadKV assesses the retrieval-reasoning capability
of each head in isolation as a measure of importance. However, these approaches treat heads as
isolated units, overlooking the fact that their true importance emerges from their cooperation rather
than individual capabilities. As a result, independently assessing head importance may lead to
suboptimal allocation. DuoAttention frames each attention head as an agent within a reinforcement
learning framework, thereby incorporating interactions among heads. However, this approach suffers
from unstable policy convergence, which can hinder its practical application. Based on these insights,
we propose CoKV (Cooperation-based Key-Value Cache), a method that evaluates the contribution
of all attention heads in their cooperation within the model based on game-theoretic utilities and
dynamically allocates cache budgets based on their contribution.

CoKV is inspired by the Shapley value (Shapley, 1953), a seminal concept in cooperative game
theory that offers a mathematically rigorous framework for fair contribution allocation. The Shapley
value of a player pi measures the expected marginal contribution that pi provides to a coalition of
players. In this work, each attention head can be treated as a player, with its importance assessed via
its Shapley value. The marginal contribution is defined as U(S ∪{pi})−U(S) where S is a coalition
of players excluding i and U is the utility function. A simple intuition for computing the Shapley
value of each head in LLMs is to define U as the model performance metric. This is a #P-hard (Deng
& Papadimitriou, 1994) problem as there are an exponential number of coalitions and corresponding
marginal contributions, thus requiring an enormous number of model inferences. Although many
studies (Jia et al., 2019; Mitchell et al., 2022) have explored approximating the Shapley value to
reduce computational costs, the process of applying these methods to evaluate the importance of
heads in LLMs remains prohibitively expensive.

The computational bottleneck in calculating the Shapley value arises from the fact that each sample
of the marginal contribution can only be applied to a single player. Fortunately, Shapley value can be
expressed as the expectation of the weighted complementary contribution, defined as U(S)−U(N\S),
where N represents the set of all players (Zhang et al., 2023a). Complementary contribution has an
advantage over the marginal contribution in that U(S)−U(N \S) can be used to update the Shapley
values for all players in S . By expressing the Shapley value in terms of complementary contributions,
we can interpret it as an expectation over these contributions computed at different coalition sizes |S|.
However, in the LLM setting, the cost of computing the complementary contributions in all coalition
sizes is still prohibitively high. We observe that the average complementary contribution of a single
player at different coalition sizes exhibits a strong correlation in Appendix Section E.4. This insight
allows us to approximate attention head importance by computing complementary contributions at
only a few selected coalition sizes, rather than evaluating all possible sizes (i.e., from 1 to |N |). By
focusing on a few representative coalition sizes, we can significantly reduce the computational cost
of estimating the contributions of heads. Additionally, we provide a theoretical error bound of this
approach and demonstrate its efficiency.

CoKV is a simple-yet-effective method and can integrate well with other inference optimization
techniques. We integrate CoKV with widely used methods, including FlashAttention (Dao et al., 2022)
and group query attention (GQA) (Ainslie et al., 2023). CoKV achieves state-of-the-art performance
in LongBench (Bai et al., 2024) using Qwen3-32B, Llama-3-8B-Instruct (Dubey et al., 2024) and
Mistral-7B Jiang et al. (2023) models. Results from the Llama-3-8B-Instruct model show that when
each KV cache retains an average of 128 KV pairs (1.6% of the full cache), it achieves 97.29% of
the performance of the full KV cache. Furthermore, when each cache retains just 512 tokens on
average, CoKV outperforms the full KV cache in terms of average accuracy. This demonstrates that
CoKV not only reduces computational costs but also improves inference performance by identifying
which heads benefit from cache retention and which may have a detrimental effect. For Qwen3-
32B, CoKV achieve 98.83% of the performance of the full KV when retains an average of 1024KV
pairs(12.8%). Additionally, we evaluate all methods within the token range up to 61k in the Needle-in-
a-Haystack test and the RULER dataset (Hsieh et al., 2024), which are widely recognized benchmarks
for evaluating long-text processing capabilities of LLMs, where CoKV also demonstrated the best
performance. Experiments on mathematical reasoning datasets also demonstrate that CoKV possesses
strong cross-task capabilities.
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2 PRELIMINARIES

In this section, we first formalize the key-value caching and compression mechanism in multi-head
attention. We then present the Shapley value framework as a principled approach for quantifying the
importance of individual attention heads.

2.1 KEY-VALUE CACHING AND COMPRESSION

In Multi-Head Attention (MHA), for each attention head hi in one layer, the embedded input
X = {x1, x2, . . . , xm} ∈ Rm×dmodel of m tokens is mapped into different subspaces using query
WQ

i , key WK
i , and value WV

i ∈ Rdmodel×dh matrices:

Qi = XWQ
i ,Ki = XWK

i , Vi = XWV
i ∈ Rm×dh

where dh is the dimension of attention heads, dh = d/τ , and τ is the number of heads in one layer.

All the computed KV for the input sequence are cached to avoid recalculating them during the
subsequent decoding stages. Assume there is a new input token x ∈ R1×dmodel , then it will be mapped
to a new query, key, and value as follows,

qi = xWQ
i , ki = xWK

i , vi = xWV
i ∈ R1×dh .

The KV cache is updated by adding the new key and value pair

Ki = Cat[Ki, ki], Vh = Cat[Vi, vi].

The attention output is computed as follows Oi = AiVi where Ai = softmax(qiK
T
i /
√
dh). The

final output y ∈ R1×dmodel is obtained through a linear transformation

y = Cat[O1, · · · , Oτ ]W
O

where WO ∈ Rd×dmodel output weight matrix.

Due to space limitations, we present the introduction of KV cache eviction and KV cache quantization
in Appendix Section C.

2.2 SHAPLEY VALUE

Consider a set of players N = {p1, . . . , pn}. A coalition S is a subset of N that cooperates to
complete a task. A utility function U(S) (S ⊆ N ) is the utility of coalition S for the task. The
marginal contribution of player pi with respect to a coalition S is U(S ∪ {pi})− U(S). The Shapley
value measures the expectation of marginal contribution of player pi in all possible coalitions. That is

SVi =
1

n

∑
S⊆N\{pi}

U(S ∪ {pi})− U(S)(
n−1
|S|

) . (1)

According to Equation 1, it is evident that computing the exact Shapley value requires enumerating
the utilities for all possible subsets of players and each marginal contribution can only be used to
update the Shapley value of a single player. Therefore, the computational complexity of exactly
calculating the Shapley value is exponential. Recently, the Shapley value of player pi is proven to be
equal to the weighted complementary contributions (Zhang et al., 2023a) as follows,

SVi =
1

n

∑
S⊆N\{pi}

U(S)− U(N \ S)(
n−1
|S|

) . (2)

U(S)− U(N \ S) is called complementary contribution which has an advantage that can be reused
to update Shapley value estimation for all players in S . In the context of KV caches, attention heads
are treated as players for evaluating their importance to each specific task. U(S) is defined as the
model accuracy when the attention heads in N \ S are masked, we retain only the KV pairs within
the local window for masked heads.
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3 IMPORTANCE-AWARE KV CACHE COMPRESSION VIA SLICED SHAPLEY
VALUE

Our method consists of two phases. First, we precompute the importance scores for each attention
head. Second, these scores are utilized for KV cache compression during inference. The overview of
our approach is illustrated in Figure 1.

Figure 1: Overview of our proposed method: (1) Head Importance Evaluation (Upper Part): For
a 4-layer × 4-head model, We measure head importance using the Sliced Shapley Value (SSV). To
approximate SSV, we sample M different sets of masked heads and compute their complementary
contributions. The average complementary contribution of each head is its estimated SSV. (2) KV
Cache Compression (Lower Part): Using the 4 heads in Layer 3 and the KV cache eviction method
as an example, each head stores KV pairs for a small local window of recent tokens. Heads with
higher SSV (represented by darker areas in the heatmap) are allocated more cache size to retain KV
pairs prior to the local window. For adaptive KV cache quantization, we can assign heads with higher
SSV more bits, while heads with lower SSV receive fewer bits.

3.1 HEAD IMPORTANCE EVALUATION

Although the complementary contribution helps in increasing efficiency when approximating the
Shapley value, it is still computationally costly, especially in the LLM setting. Given a set of
players N = {p1, . . . , pn}, a coalition of j players (1 ≤ j ≤ n) is called a j-coalition. Moreover,
for a player pi (1 ≤ i ≤ n), a j-coalition that contains pi is called a (i, j)-coalition. Denote by
Si,j = {S ∪ {pi}|S ⊆ N \ {pi}, |S| = j − 1} the set of (i, j)-coalitions, and by SVi,j the expected
complementary contributions of (i, j)-coalitions. That is,

SVi,j =
∑

S∈Si,j

U(S)− U(N \ S)(
n−1
j−1

) . (3)

It is clear that SVi =
1
n

∑n
j=1 SVi,j . Computing the Shapley value needs to calculate SVi,j for j

ranging from 1 to n, which becomes costly when n is large.

We observe that the expected complementary contributions of j-coalitions for heads in LLMs follow
a similar distribution across different j values, as shown in Appendix Section E.4. This suggests
that the contributions of heads can be effectively captured using a subset of j-coalitions. Based
on this insight, we propose assessing the importance of heads using the expected complementary
contribution of several j-coalitions, which can significantly reduce the computation cost while
maintaining effectiveness. Formally, we introduce a new definition called the Sliced Shapley value .

Definition 1 (Sliced Shapley Value) Let H ⊆ {1, · · · , n} denote the selected set of j-coalitions,
representing a specific slice of the coalition size space. The Sliced Shapley value of head hi with

4
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respect toH is defined as:

SSVH
i =

1

|H|

n∑
j=1

SVi,j · I|H|
j , (4)

where IHj is an indicator function, which is 1 if j is the element inH and 0 otherwise.

Theorem 1 Assume SVi,j ∈ [a, b] for all j, and let R = b − a. Then, for any δ ∈ (0, 1), with

probability at least 1 − δ, |SVi − SSVH
i | ≤ R

√
(n−|H|+1) ln(2/δ)

2|H|n . Furthermore, the established

bound implies that the error |SVi − SSVH
i | is O

(√
1/|H|

)
. The proof is provided in Appendi

Section D.1.

Algorithm 1: Evaluating Head Importance in LLMs.
input :Heads N = {h1, . . . , hn} and sampling numberM > 0

output :approximate Sliced Shapley value SSVH
i for each head hi (1 ≤ i ≤ n)

1 SVH
i ← 0 (1 ≤ i ≤ n); SVi,j ,mi,j ← 0 (1 ≤ i, j ≤ n);

2 for k=1 toM do
3 let πk be a random permutation of {1, . . . , n};
4 let i be a randomly selected element from the setH;
5 S ← {πk(1), . . . , πk(i)};
6 N \ S ← {πk(i+ 1), . . . , πk(n)};

// U(S) is the model performance when heads in N \ S are masked and vice versa for U(N \ S).

7 u← U(S)− U(N \ S);
8 for j=1 to i do
9 SVπk(j),i+ = u;

10 mπk(j),i+ = 1;

11 for i = 1 to n do
12 SSVH

i = 1
H
∑n

j=1 SVi,j/mi,j ;

13 return SSVH
1 , . . . ,SSVH

n .

Algorithm Description. The detailed steps of approximating SSVH
i are shown in Algorithm 1. In

each iteration, sample a random permutation πk of the heads {h1, . . . , hn}, which defines a random
ordering of the heads. Randomly select a split point and create a set S of selected heads. Mask heads
in the setN \S , and evaluate the model accuracy after masking, which is denoted as U(S). Similarly,
calculate U(N \ S) by masking heads in S (Lines 3-6). For each head in S, update SVπk(j),i and
count matrix mπk(j),i (Lines 7-10). AfterM iterations are completed, calculate the approximated
Sliced Shapley value for each head by averaging the complementary contributions.

Theorem 2 Algorithm 1 returns an (ϵ, δ)-approximation of Sliced Shapley value with time complexity

O(T |H|ln 2|H|
δ

ϵ2 ) where T is the time cost of evaluating a complementary contribution which is the
time to inference on the validation dataset of each task in our setting. In contrast, Shapley value
requires the time complexity of O(Tnln 2n

δ

ϵ2 ) to achieve an (ϵ, δ)-approximation. The proof is provided
in Appendix Section D.2.

3.2 KV CACHE COMPRESSION

In this section, we present how our proposed head importance evaluation method can be effectively
applied to KV cache compression. We demonstrate its application in two primary directions, KV
cache eviction and KV cache quantization. While our main focus and contributions lie in the eviction-
based approach, we also show that the sameimportance scores can be seamlessly integrated into
quantization frameworks to achieve superior performance compared to existing methods.
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Algorithm 2: Token Eviction Using CoKV.

input :Shared budget size B, local window size s, tokens in local window Xwin ∈ Rs×d, KV
in local window {Kwin

i , V win
i }, KV outside local window {Kout

i , V out
i }

output :Retained KV Cache {K̂i, V̂i}
1 Qwin

i = XwinWQ
i ;

// Compute attention weights of queries in local window and prefix Keys.

2 Ai = softmax(Qwin
i KT

i );
3 Ai = Ai.maxpooling(dim = 1).mean(dim = 0);

// Calculate token scores outside the local window.

4 Get ci using Algorithm 1 and Equation 5;
5 indices = Ai.topk(ci).indices;
6 Select {K̂i, V̂i} from {Kout

i , V out
i } according indices;

7 {K̂i, V̂i} = Cat({K̂i, V̂i}, {Kwin
i , V win

i });
// Keep top ci KV pairs in the cache.

8 return Retained KV Cache {K̂i, V̂i}.

KV Cache Eviction Budget Allocation. An intuitive approach suggests that the least important
heads, which contribute minimally or even negatively to the model performance, may not require
cache allocation. Let α represent the number of such heads, which serves as the sole hyperparameter
in our allocation scheme. For the remaining n − α heads, we employ a normalization method to
normalize their importance scores and allocate the cache size proportionally based on their normalized
scores.

Specifically, we normalize their contributions using min-max normalization for the n− α heads:

NSVH
i =

SSVH
i −minα(SSVH)

max(SSVH)−minα(SSVH)
,

where minα(·) and max(·) extract the α-th smallest and maximum value, respectively. For the α
heads with the smallest Sliced Shapley values, we set the normalized score as 0. This ensures that all
normalized scores lie in the range [0, 1].

Next, the cache size ci allocated to head hi is determined by the local window size s and linearly
distributing the remaining shared cache size B based on the normalized scores:

ci = B · NSVH
i∑n

j=1NSV
H
j

+ s. (5)

Algorithm Description. The detailed KV cache eviction steps for a single head are outlined in
Algorithm 2. First, we allocate the KV cache size for each head based on their normalized Sliced
Shapley values. Next, we rank the importance of KV pairs within each head following SnapKV.
Specifically, the most recent tokens within local windows guide the KV cache selection. Attention
scores from these local windows to the remaining tokens are aggregated via pooling, with higher-
scoring tokens retained in the cache for each head.

Remark on KV Cache Quantization. The head importance scores derived by our method are
not limited to eviction and can be directly applied to guide non-uniform quantization strategies.
Specifically, our scores enable an adaptive bit allocation scheme where more important heads are
assigned higher precision. This principle can complement advanced quantization techniques like
Kvquant (Hooper et al., 2024), allowing for a head-aware quantization policy that operates on top of
their sophisticated per-channel methods.

In our experiments, we demonstrate that a simple integration, which allocates bits proportionally
to our importance scores, consistently outperforms baselines that use alternative head importance
metrics under the same average bit-width. This validates the general utility of our cooperation-based
evaluation framework across different compression paradigms.

6
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4 EXPERIMENTS

In this section, we present the evaluation results of our method on the LongBench benchmark. Due
to space limitations, detailed results are provided in the appendix, including an ablation study on
coalition sizes (Appendix Section E.2), the precomputation cost analysis of CoKV (Section E.3),
evaluations on GSM8K and MATH (Section E.6), an analysis of CoKV’s general ability (Section E.7,
the Needle-in-a-Haystack test (Section E.8), and experiments on the RULER dataset (Section E.9).

4.1 EXPERIMENT SETTINGS

Datasets. Details of all experimental datasets are provided in Appendix Section E.1.

Baselines and Settings. We compare CoKV with four strong KV cache compression methods. All
methods keep the same total cache size for fair comparison. Besides, we implement all methods with
GQA Ainslie et al. (2023) and FlashAttention Dao et al. (2022) for efficient computation.

• SnapKV Li et al. (2024b) uses the last several tokens as local windows. Attention scores from
these windows to the remaining tokens are pooled to guid the KV selection in each head.

• PyramidKV Cai et al. (2024) allocates more KV cache to lower layers to retain key information
while reducing the budget for higher layers where information is already aggregated.

• Ada-KV Feng et al. (2025) dynamically allocates budgets to heads within each layer based on their
concentration degrees, and can be combined with SnapKV or PyramidKV. Ada-SnapKV is used as
the baseline due to its superior performance over Ada-PyramidKV.

• HeadKV-R2 Fu et al. (2025) allocate budgets to heads based on their retrieval-reasoning score,
and it uses SnapKV to rank the importance of KV pairs in each head.

We evaluate CoKV on the Qwen3-32B, Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2 models.
Due to the page limit, the Mistral-7B-Instruct-v0.2 results are provided in Appendix. For test data that
exceeds the maximum input length of Llama-3-8B-Instruct, we adopt the approach of HeadKV by
utilizing the first 4k tokens and the last 4k tokens. Following standard practices in Ada and HeadKV,
we perform cache eviction after the prefilling phase of each layer for consistent comparison. In GQA,
a group of heads shares the same KV cache. We treat each cache within a group as a player in the
cooperative game, evaluating their Sliced Shapley value to determine their importance scores. For
HeadKV-R2, we calculate the importance score of each group by averaging the retrieval-reasoning
scores of the heads within the group. This adaptation ensures compatibility with GQA, as HeadKV
is implemented with MHA in the original paper. The context length for headkv score detection
was configured to the maximum capacity of an H100 96G GPU for computing the head scores in
Qwen-3-32B. For the Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2 models, we adopted the
scores reported by the authors. In CoKV, we use for coalition sizes H = {32, 64, 96, 128} for
Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2 which have 256 groups(32 layers, 8 groups in each
layer), and only one coalition size H = {256} for Qwen3-32B (64 layers, 8 groups in each layer).
Our ablation experiment of H show that CoKV with only one coalition size works well, but more
slices will enhance CoKV. Following HeadKV-R2, we set the local window size to 8. We randomly
split each dataset into a very small validation dataset and a test dataset. For Llama-3-8B-Instruct
and Mistral-7B-Instruct-v0.2, we construct validation sets of 30 data tuples, with the remaining data
used as the test set. For Qwen3-32B, due to its significantly higher inference cost, we use a smaller
validation set of 20 data tuples. The hyperparameter α is selected from {1, 5, 10, 15, 20, 30, 40}
based on the Sliced Shapley value computed on the corresponding validation set. We do not compare
with DuoAttention (Xiao et al., 2025a) because its requirement for certain attention heads to retain
the full key-value cache exceeds the total budget constraint of our eviction policy.

4.2 HYPERPARAMETER FREE RESULTS.

Since both HeadKV-R2 and CoKV provide importance scores for each group, we conduct an
experiment to compare their effectiveness without introducing any additional hyperparameters. In this
experiment, we mask the caches of groups based on the importance scores assigned by each algorithm.
This experiment can be viewed as a specific case of adaptive KV quantization that switches between 0
bits and 16 bits. Specifically, we mask the caches of both the highest-ranked (top) and lowest-ranked
groups (low). The complete results are shown in Tables 16, 17 and 18 in the appendix. We include a
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Table 1: Comprehensive Masking Top Important Heads Results on LongBench

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Masking Top 16 heads with Llama-3-8B-Instruct model

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.10 51.64 41.73
Random 20.93 28.48 33.69 44.93 20.01 20.6 28.43 23.7 26.67 74.12 91.07 41.12 4.26 71.76 49.83 40.55 38.76
HeadKV-R2(top) 19.45 12.97 27.75 34.2 17.33 14.32 19.74 22.76 22.05 67.06 87.91 35.53 4.71 68.49 26.62 26.53 31.71
CoKV(top) 6.55 9.46 9.47 10.19 12.27 5.67 5.73 16.96 4.47 43.53 71.21 23.77 3.91 34.98 11.58 17.18 17.93

Masking Top 64 heads with Qwen3-32B model

Full Cache 37.14 45.51 49.17 58.2 54.74 38.36 32.9 23.72 25.08 72.78 72.57 37.95 17.78 100 62.72 70.08 49.92
Random 30.13 44.81 50.07 56.51 54.06 39.24 27.33 23.32 24.82 72.78 71.12 37.72 12.94 100.0 22.71 23.79 43.21
HeadKV-R2(top) 28.38 34.55 32.15 47.25 45.26 25.33 20.14 22.17 13.98 55.56 56.69 21.18 8.69 98.33 14.44 18.47 33.91
CoKV(top) 28.85 28.55 18.91 25.1 19.78 12.69 13.48 22.97 23.8 35.56 26.43 10.41 8.04 17.22 5.2 5.05 18.88

simplified table for the results of masking groups of Qwen3-32B and Llama-3-8B-Instruct model
in Table 1. The results show that when masking the top-ranked groups identified by each method,
the performance of CoKV degrades more significantly than that of HeadKV-R2. This suggests that
CoKV is more effective at ranking group importance, as it better distinguishes between critical and
non-critical caches. Conversely, the results in the full tables show that when masking the unimportant
groups (low), the performance of CoKV declines more gradually than HeadKV-R2. When masking
the 64 most important heads of Qwen3-32B, CoKV achieves an average accuracy of only 18.88%,
while HeadKV maintains 33.91%. This demonstrates that CoKV more accurately identifies critical
heads, as its performance drops more significantly when they are removed. Suprisingly, the results
of masking 16 most unimportant groups in Table 16 and 18 outperformed the FullKV approach.
This further demonstrates that CoKV can identify groups that have a negative impact on the model.
By removing the KV pairs from these groups, the model inference not only optimizes storage and
decoding speed but also enhances overall performance.

4.3 KV CACHE EVICTION RESULTS

Benchmark Results. The complete benchmark results are presented in Tables 14 and 15 in the
appendix. We include a simplified table (Table 2), showing the performance of Llama-3-8B-Instruct
and Qwen3-32B when keeping 64 KV pairs on average for Llama-3-8B-Instruct and 128 KV pairs on
average for Qwen3-32B. The results demonstrate that CoKV consistently outperforms all baseline
methods. The superior performance of CoKV arises from its ability to effectively evaluate the

Table 2: Comprehensive KV Cache Eviction Results on LongBench

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Llama-3-8B-Instruct model with KV size=64

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.1 51.64 41.73
SnapKV 19.94 13.21 28.91 40.06 28.58 18.12 17.29 21.71 17.05 49.41 89.00 35.48 3.99 71.57 54.35 50.42 34.94
Pyramid 20.11 16.54 32.67 40.25 27.71 17.54 18.67 22.37 20.03 62.55 89.89 36.63 4.30 71.76 54.27 50.96 36.64
Ada-SnapKV 20.40 14.46 32.62 42.39 31.48 17.58 18.57 22.18 18.71 58.82 90.13 35.25 4.41 71.57 54.02 51.68 36.52
HeadKV-R2 20.30 16.76 35.96 38.08 26.41 17.98 18.68 21.75 20.58 67.06 88.19 37.30 3.21 71.76 56.20 54.49 37.17
CoKV 20.77 19.67 35.11 44.37 34.36 17.83 17.89 22.33 18.55 71.76 90.73 38.51 4.71 71.76 55.45 55.82 38.73

Qwen3-32B model with KV size=128

Full Cache 37.14 45.51 49.17 58.2 54.74 38.36 32.9 23.72 25.08 72.78 72.57 37.95 17.78 100.0 62.72 70.08 49.92
SnapKV 30.18 32.54 41.96 55.2 47.04 34.31 22.74 21.19 19.0 47.22 67.89 36.77 17.22 98.89 58.52 50.48 42.65
Pyramid 27.17 32.11 40.93 30.13 37.2 34.43 22.01 20.95 18.71 38.1 68.43 35.55 9.52 100.0 56.48 51.29 40.19
Ada-SnapKV 22.74 32.11 40.02 32.42 40.44 27.97 23.43 21.67 18.98 46.67 68.43 38.93 9.52 100.0 57.9 49.71 39.43
HeadKV-R2 29.78 33.39 41.51 51.85 52.06 36.17 24.17 21.04 19.03 48.89 67.98 36.44 18.02 99.44 56.88 52.47 43.07
CoKV 28.73 37.56 44.80 53.48 53.07 35.17 23.89 21.34 19.28 54.44 69.35 38.23 19.22 100.0 57.13 56.87 44.53

importance of each cache within a group while considering the cooperation among all groups. It is
not only capable of identifying which groups are important but also able to recognize those groups
that do not contribute or even have a negative contribution. By optimizing the cache size to enhance
overall cooperation, CoKV ensures efficient and high-quality inference.
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Decoding Latency and Memory Usage We conduct experiments using the Qwen3-32B model,
which supports a maximum context window of 128k tokens with YaRN (Peng et al.), with FlashAt-
tention enabled as the default setting. All methods except FullKV, were executed on a single H100
96G GPU. The FullKV method alone necessitated the use of two H100 96G GPUs. We design two
key experiments with the average KV cache size set to 128 tokens for all KV cache eviction methods.

Figure 2: Results of Peak Memory Usage and Decoding Latency.

Peak Memory Usage Under fixed generation length (1 token), we measure the peak GPU
memory usage (including model parameters and runtime states) across varying input contexts
(1k/8k/16k/32k/64k/120k tokens). As shown in the Peak Memory Usage of Figure 2, CoKV reduces
memory usage by 38.4% compared to FullKV baseline at 120k input length. Notably, CoKV can
accommodate 120k inputs on a single H100 GPU, in contrast to FullKV, which supports under 60k.

Decoding Latency With a fixed input context length of 120k tokens, we measure decoding latency
(including both the pre-filling time and the decoding time) across different generation lengths
(1/128/256/512/1024/2048 tokens). As shown in the Decoding Latency of Figure 2, CoKV achieves
less than 25.14% of the total latency compared to the FullKV baseline, with negligible differences
observed between the other baselines(comparative experiments showed less than 2% variation across
64/256/512/1024 tokens).

4.4 KV CACHE QUANTIZATION RESULTS

To evaluate the effectiveness of CoKV, we conducted comparative experiments under a KV cache
quantization setting. Specifically, we compared CoKV against HeadKV-R2 using an adaptive
quantization strategy with two bit-widths. The more important half of the attention heads were
quantized to 8 bits, and the remaining half to 4 bits. The results are presented in Table 3. We also
conduct KV quantization with Qwen model which is shown in Table 19 in the appendix.

Table 3: Llama-3-8B Instruct Model with 8-4 Bits Quantization

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

HeadKV-R2 21.23 31.86 35.33 43.51 34.44 17.05 17.19 15.44 15.23 73.53 74.6 31.83 7.14 35.71 58.86 43.29 34.77
CoKV 22.58 32.62 38.36 44.91 34.53 21.61 16.9 17.35 15.68 75.29 82.14 31.02 7.14 35.71 60.29 42.64 36.17

5 CONCLUSION

Large language models (LLMs) face significant challenges in inference cost due to the excessive
memory and latency overhead associated with the growing size of the KV cache. To this end, we
introduce CoKV, a novel method designed to evaluate the collaborative importance of attention
heads and dynamically allocate cache sizes based on Sliced Shapley value. Our experimental results
demonstrate that CoKV achieves state-of-the-art performance across 16 LongBench datasets, as well
as on the NIAH, RULER, and math reasoning benchmarks. CoKV provides a scalable and practical
solution for enhancing the efficiency of LLMs in real-world applications.
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APPENDIX

A USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR policy on large language model usage, we report the use of LLMs in
the preparation of this manuscript. We used GPT-5 as a writing assistance tool to improve grammar
and clarity. We also used Cursor for code completion and debugging. The authors reviewed and
tested all code. LLMs did not contribute to the design of any methods or the implementation of core
algorithms. The LLM was not used for research ideation or the design of methods. All scientific
ideas, experimental designs, theoretical results, and conclusions presented in this paper are entirely
the work of the authors.

B RELATED WORKS

KV Cache Compression The memory overhead of storing key-value (KV) pairs for LLM has
motivated extensive research on KV cache compression. StreamingLLM Xiao et al. (2024) preserves
the initial and recent tokens, which empirically exhibit higher informativeness during generation.
Similarly, Scissorhands Liu et al. (2023) proposes the persistence of importance to identify and retain
pivotal tokens. H2O Zhang et al. (2023b) employs a heavy-hitter oracle to drop tokens with low
attention scores.SnapKV Li et al. (2024b) uses the attention scores of the recent tokens to retain
critical tokens. CCA-LLM Chen et al. (2024c) groups input tokens, compressing each group into a
core token, which are then combined with recent tokens for attention computation. DGA-LLM Zhang
et al. (2025) aggregates less important tokens while preserving important tokens. While these
methods reduce memory usage and accelerate inference, they implicitly assume uniform importance
across attention heads, limiting their applicability. Recent works address head diversity through
layer-wise and head-wise optimizations. PyramidKV Cai et al. (2024) implements a hierarchical
allocation strategy, assigning larger cache budgets to lower layers based on the observed attention
patterns across layers. FastGen Ge et al. (2024) is an adaptive KV cache compression method that
reduces LLMs’ memory usage by profiling attention modules and constructing caches adaptively.
RazorAttention Tang et al. (2025) and Duoattention Xiao et al. (2025a) divide attention heads into
retrieval heads(critical for long-context processing Wu et al. (2025)) and non-retrieval heads, apply
full KV cache to retrieval heads and compressed KV cache to non-retrieval heads. ArkVale Chen
et al. (2024b) proposes a page-based KV cache manager that asynchronously copies filled pages
into external memory (e.g., CPU memory) as a backup and supports the recall of important tokens
that were previously evicted. AdaKV Feng et al. (2025) dynamically adjusts cache budgets across
heads based on their concentration degrees and HeadKV Fu et al. (2025) calculates head importance
scores to allocate cache budget before inference. However, these methods assess heads in isolation,
neglecting their collaborative interactions. For example, the standalone score of a head may not
reflect its true contribution when working synergistically with others. Additionally, these approaches
overlook the task-dependent variations in head importance. Our approach tackles these limitations by
modeling head interactions as a cooperative game, dynamically allocating cache resources based on
the varying complementary contributions of heads across different tasks.

In addition to KV cache eviction methods, KV cache quantization is also one of the mainstream
approaches for KV cache compression Yang et al. (2024); Liu et al. (2024). However, while eviction
methods can be used to retain less than 1% of the cache, KV cache compression cannot be applied to
such an extent because it must preserve at least 1 bit. Nevertheless, the combination of these two
methods is an interesting direction for future research.

Model Architecture and Computation Optimization Modern LLMs employ architectural op-
timizations to balance efficiency and performance. Multi Query Attention (MQA) Shazeer (2019)
shares a single key-value pair across all attention heads, drastically reducing memory usage but
potentially sacrificing performance. Group Query Attention (GQA) Ainslie et al. (2023) strikes
a balance by grouping heads to share key-value pairs, preserving performance while maintaining
memory efficiency, which is widely adopted in recent LLMs like Llama Dubey et al. (2024) and
Mistral Jiang et al. (2023). Concurrently, Flash Attention Dao et al. (2022) optimizes hardware
utilization by minimizing memory reads/writes during attention computation, significantly accelerat-
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ing inference. Notably, our approach is fully compatible with GQA and Flash Attention, ensuring
seamless integration with current LLMs.

Cooperative Game Theory Cooperative game theory offers a principled framework for understand-
ing how multiple players can jointly contribute to overall system performance. Shapley value Shapley
(1953), a classic solution in cooperative game theory, provides a method for fairly allocating joint
benefits based on the marginal contribution of each player. However, traditional Shapley value
computation methods allow each sample to be used to calculate the marginal contribution of only a
single player. Recent works Zhang et al. (2023a); Sun et al. (2024) address this limitation through
complementary contributions that enable simultaneous estimation of multiple players’ contributions.
In the context of LLMs, these methods still encounter scalability issues, as the cost of computing
complementary contributions across all coalition sizes remains prohibitively high. We propose
the Sliced Shapley value, which samples only a subset of coalition sizes. This approach not only
accelerates the computation but also accurately reflects the contributions of different heads.

C SUPLEMENTARY OF PRELIMINARIES

C.1 KV CACHE EVICTION

KV cache eviction methods can be employed to discard unimportant KV cache entries while pre-
serving model performance. As the attention heads process more tokens, the KV cache can grow
in size, which results in increased memory usage and computation costs. To address this, selective
eviction methods can be introduced to remove KV pairs that contribute less to the final attention
results. Typically, the eviction is based on criteria such as the relevance of key-value pairs (e.g., low
activation values or relevance scores) or certain pruning strategies based on model performance.

For each head hi, the compressed KV cache is reduced to K̂i ∈ Rs×dh and V̂i ∈ Rs×dh , where
some unimportant KV pairs are evicted, and s ≪ m, resulting in a significant improvement in
computational efficiency and memory usage. This compression is typically done by selecting the
most relevant KV pairs and discarding the rest. The process is often repeated over multiple layers or
tokens, progressively reducing the size of the KV cache while maintaining performance.

Specifically, the compressed KV cache is updated by appending the new key and value pair:

K̂i = Cat[K̂i, ki], V̂i = Cat[V̂i, vi].

The attention output for each head hi is computed using the compressed KV cache by Ôi = ÂiV̂i,
where the attention weights Âi are calculated as:

Âi = softmax(qiK̂T
i /

√
dh).

By selectively discarding less relevant KV pairs, the model can maintain a more efficient cache,
reducing memory and computation overhead. The effectiveness of this method depends on how well
the eviction process retains the most important KV pairs for accurate attention calculation, ensuring
that the overall model performance remains optimal despite the reduced cache size.

C.2 KV CACHE QUANTIZATION

The uniform quantization to the KV cache process is shown as follows. For each head group hi with
bit-width bi, and for each token position t, we compute a per-token dynamic range along the head
dimension. Define the integer range as:

qmax(bg) = max
(
1, 2bi−1 − 1

)
, bi > 1

and the scale as:

si,t =
max |Ki,t|
qmax(bi)

, ui,t =
max |Vi,t|
qmax(bi)
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Uniform quantization maps float element Ki,t,j(1 ≤ j ≤ dh) to integers via:

Ki,t,j = clip
(

round
(
Ki,t,j

si,t

)
,−qmax(bi), qmax(bi)

)
and for values:

V i,t,j = clip
(

round
(
Vi,t,j

ui,t

)
,−qmax(bi), qmax(bi)

)
The dequantization process restores the values by:

K̃i,t,j = Ki,t,j × si,t, Ṽi,t,j = V i,t,j × ui,t

Specifically, the compressed KV cache is updated by appending the new key and value pair:

K̃i = Cat[K̃i, ki], Ṽi = Cat[Ṽi, vi].

The attention output for each head hi is computed using the compressed KV cache by Õi = ÃiṼi,
where the attention weights Ãi are calculated as:

Ãi = softmax(qiK̃T
i /

√
dh).

Since we only cache the quantized matrices Ki and V g which use bi bits for storing each element, it
can significantly reduce memory usage during model inference.

D PROOF

D.1 PROOF OF THEOREM 1

Let N = {1, 2, . . . , n} be the set of coalition sizes, and let Zj = SV{i, j} for j ∈ N , where SVi,j

denotes the expected complementary contribution for coalition size j. Assume Zj ∈ [a, b] for all j,
and define R = b− a. The true Shapley value is the population mean:

µ =
1

n

n∑
j=1

Zj = SVi.

For a randomly sampled subsetH ⊆ N of size |H| drawn without replacement, the Sliced Shapley
value is the sample mean:

Z̄ =
1

|H|
∑
j∈H

Zj = SSVH
i .

To bound the error |Z̄ − µ|, we apply Hoeffding’s inequality for sampling without replacement.
Consider a random permutation π of N , and let Xi = Zπ(i) for i = 1, . . . , |H|. The sample sum is
S =

∑|H|
i=1 Xi. By Serfling’s result (Serfling, 1974), the moment generating function satisfies:

E[exp(λ(S − µ))] ≤ exp

(
λ2|H|R2

8

n

n− |H|+ 1

)
.

Applying the Chernoff bound (Chernoff, 1952), for any t > 0:

P (S − µ ≥ t) ≤ min
λ>0

E[exp(λ(S − µ))] exp(−λt).

Substituting the Serfling’s bound:

P (S − µ ≥ t) ≤ min
λ>0

exp

(
λ2|H|R2

8

n

n− |H|+ 1
− λt

)
.
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The expression on the right is minimized by choosing λ = 4t
|H|R2

n−|H|+1
n . Plugging this value in

yields:

P (S − µ ≥ t) ≤ exp

(
− 2t2

|H|R2

n

n− |H|+ 1

)
.

By symmetry,

P (|S − |H|µ| ≥ t) ≤ 2 exp

(
− 2t2

|H|R2

n

n− |H|+ 1

)
.

Substituting t = |H|ϵ yields:

P (|S − |H|µ| ≥ |H|ϵ) = P (|S − |H|µ| ≥ |H|ϵ) ≤ 2 exp

(
−|H|ϵ

2

R2

n

n− |H|+ 1

)
.

Setting the right-hand side to δ and solving for ϵ:

2 exp

(
−2|H|ϵ2

R2

n

n− |H|+ 1

)
= δ,

ln(2)− 2|H|ϵ2

R2

n

n− |H|+ 1
= ln(δ),

ϵ2 =
R2

2|H|
(n− |H|+ 1) ln

(
2

δ

)
.

Thus, with probability at least 1− δ:

|SVi − SSVH
i | ≤ R

√
(n− |H|+ 1) ln(2/δ)

2|H|n
.

It is clear that (n−H+1)
n ≤ 1 asH ≥ 1. Therefore, we have

|SVi − SSVH
i | ≤ R

√
ln(2/δ)

2|H|
.

By omitting the constants, we obtain the asymptotic error bound O(|SVi −SSVH
i |). This completes

the proof.

D.2 PROOF OF THEOREM 2

In this section, we give the proof of Theorem 2. Denote H the selected coalition sizes. The
approximation of SVi,j(1 ≤ i, j ≤ n) is unbiased, which can be proven following Corollary 1 in Sun
et al. (2024). So it is evident that SSVi, being the weighted average of SVi,j , serves as an unbiased
estimator of SSVi. Hence, we have

P(|SSVH
i − SSV

H
i | ≥ ϵ) ≤P(

∑
j∈H
|SVi,j − SVi,j | ≥ ϵ)

≤
∑
j∈H

P(|SVi,j − SVi,j | ≥
ϵ

|H|
)
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Then,we have ∑
j∈H

P(|SVi,j − SVi,j | ≥
ϵ

|H|
) ≤ 2|H| exp(−

2( ϵ
|H| )

2∑M/|H|
k=1 (bj − aj)2

)

≤ 2|H| exp(−
2( ϵ

H )2

Mr2

|H|
),

according to Hoeffding’s inequality where (aj , bj) denotes the range of complementary contribution
of j-coalitions, and r is max(b1 − a1, · · · , bj − aj). . Since we want the right hand side to be at

most δ, we have M ≥ Hr2ln 2H
δ

2ϵ2 . Thus, Alogorithm 1 returns an (ϵ, δ)-approximation of Sliced

Shapley value with time complexity O(T |H|ln 2|H|
δ

ϵ2 ) where T is the time cost of evaluating each
complementary contribution. The analysis of the time complexity of approximating Shapley value
starts from P(|SV1 − SVi| ≥ ϵ) ≤ P(

∑n
j=1 |SVi,j − SVi,j | ≥ ϵ) Following similar steps, we can

proof that the time complexity of approximating Shapley value is O(Tnln 2n
δ

ϵ2 ). Thus, we complete
the proof.

E SUPPLEMENTARY EXPERIMENTS

E.1 DATASETS

LongBench (Bai et al., 2023) is a multitask benchmark for long context understanding and exhibits a
wide range of average input lengths, spanning from 1,235 to 18,409 tokens. We introduce the detailed
information of LongBench in Table 4, including the task types, evaluation metrics, average length,
languages, and the number of samples for each task. .

Table 4: Details of 16 Datasets in LongBench

Label Task Type Eval metric Avg
len

Language Sample
Num

NrtvQA Single-Doc. QA F1 18,409 EN 200
Qasper Single-Doc. QA F1 3,619 EN 200
MF-en Single-Doc. QA F1 4,559 EN 150
HotpotQA Multi-Doc. QA F1 9,151 EN 200
2WikiMQA Multi-Doc. QA F1 4,887 EN 200
Musique Multi-Doc. QA F1 11,214 EN 200
GovReport Summarization Rouge-L 8,734 EN 200
QMSum Summarization Rouge-L 10,614 EN 200
MultiNews Summarization Rouge-L 2,113 EN 200
TREC Few-shot Learning Accuracy 5,177 EN 200
TriviaQA Few-shot Learning F1 8,209 EN 200
SAMSum Few-shot Learning Rouge-L 6,258 EN 200
PCount Synthetic Accuracy 11,141 EN 200
PRe Synthetic Accuracy 9,289 EN 200

Lcc Code Edit Sim 1,235 Python/
C#/Java 500

RB-P Code Edit Sim 4,206 Python/
Java 500

NIAH (Needle In A Haystack) is a test specifically designed to evaluate a model’s ability to locate
and recall a small piece of critical information (the "needle") hidden within a very long, irrelevant
text (the "haystack"). It systematically measures retrieval accuracy as the document length increases,
directly probing the limits of a model’s context window.
RULER is a comprehensive benchmark for evaluating the factual reasoning capabilities of large
language models over long contexts. It expands tasks from the popular "LAMA" probe into a
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long-context setting, challenging models to maintain accuracy when factual knowledge is distributed
across thousands of tokens.
GSM8K (Cobbe et al., 2021) is a dataset of diverse grade-school level math word problems. Each
problem requires a sequence of logical reasoning steps to solve, and the benchmark is primarily used
to evaluate a model’s fundamental mathematical reasoning and arithmetic capabilities.
MATH (Hendrycks et al., 2021) is a large-scale dataset containing challenging high-school
competition-level mathematics problems. It tests advanced reasoning by requiring solutions to
problems from various sub-fields like algebra, geometry, and calculus, often demanding step-by-step
derivations.

E.2 ABLATION STUDY

In this section, we analyze the number of coalition sizes in H using the Llama-3-8B Instruct
model. We conducted experiments by masking the 32 most important attention heads (top) and
the 32 least important heads (low) based on their significance scores. This approach eliminates
the need for hyperparameter tuning, ensuring a fair comparison between CoKV and HeadKV by
removing potential fluctuations caused by parameter selection. We compare the results for H =
{32, 64, 96, 128} with H = {128}. The results show that using the expected complementary
contribution of a single coalition size 128 in Llama-3-8B-Instruct still outperforms the baselines, and
CoKV is more effective with a larger number of coalition sizes. The results are shown in Table 5.

Table 5: Ablation Study on Llama-3-8B-Instruct models using LongBench

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.10 51.64 41.73
Random 20.69 18.60 29.63 39.12 18.50 6.94 22.40 22.33 26.45 74.12 89.82 33.80 4.71 61.12 30.78 40.71 33.73
HeadKV-R2(top) 17.33 6.98 9.37 13.50 9.37 5.11 13.18 20.86 15.24 45.88 75.30 27.21 4.76 66.21 11.24 13.64 22.20
CoKV(top) 1.40 3.49 3.78 7.94 9.32 2.32 2.64 11.74 0.58 34.71 21.37 6.96 4.14 16.93 3.54 5.17 8.50
CoKV(coalition 128)(top) 5.98 4.41 3.98 9.25 13.02 2.80 5.16 10.92 2.23 33.58 24.15 8.87 7.36 15.89 3.67 8.94 10.01
HeadKV-R2(low) 21.51 11.16 25.33 19.52 14.48 7.42 16.73 23.91 14.58 74.12 89.09 40.69 4.66 70.09 33.13 32.39 31.18
CoKV(low) 22.45 33.06 38.34 45.82 39.62 20.18 28.39 24.04 26.67 74.12 91.14 41.70 4.71 71.76 52.24 64.94 42.45
CoKV(coalition 128)(low) 20.85 29.56 33.62 46.01 35.27 18.80 27.93 22.18 23.57 74.12 91.08 40.25 4.56 71.76 48.66 50.54 39.92

E.3 COMPUTATION EFFICIENCY

We further conduct experiments to evaluate the efficiency of approximating the Sliced Shapley value
(referred to as CoKV in our method) using the qasper dataset with the Qwen3-32B model. A subset
of 20 examples from the qasper dataset is used as the validation set for computing the Sliced Shapley
value which is the same as other experiments. The experiment is performed on a single H100 96GB
GPU, with a coalition size of 256, consistent with the settings in our other experiments.

Table 6: Overlap Ratio of Top 50% Important Heads

Sampling number 70 80 140 160 210 240

Time (hours) 4.97 5.71 9.64 10.91 14.32 17.08
Overlap Ratio (%) 64.45 68.75 74.60 77.73 84.37 90.18

To assess the stability of the approximation, we introduce a new metric, the overlap ratio of the top
50% important attention heads between two independent sampling runs. As shown in Table 6, when
the number of samples reaches 80, the overlap ratio exceeds two-thirds (68.75%), indicating that the
CoKV importance scores are beginning to converge and can reliably identify the most influential
heads. We recommend performing two independent sampling runs when computing CoKV. Once the
overlap ratio of the top 50% important heads between the two runs exceeds two-thirds, the results can
be averaged and used as the final importance scores. At this point, CoKV can effectively reflect the
relative contributions of attention heads.

Notably, even for a large model like Qwen3-32B, the precomputation of CoKV importance requires
only a few hours, a cost that is negligible compared to that of full training or fine-tuning. Once
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computed, the importance scores can be stored and reused for long-term inference optimization, and
shared across users of the same model architecture, making CoKV a highly cost-effective approach.

E.4 DISTRIBUTION OF SLICED SHAPLEY VALUE

Figure 6 shows the distribution of Sliced Shapley values computed for the selected coalition size
H = 256 for Qwen3-32B on LongBench. Figures 7 and 8 illustrate the distribution for the selected
coalition sizesH = 32, 64, 96, 128 for Llama-3-8B-Instruct and Mistral-7B-v0.2, respectively.

We observe that the distributions of Sliced Shapley values exhibit significant differences across
datasets of different task categories, while showing relatively smaller variations within datasets
of the same domain type. In Figures 9 and 10, we present the distributions of the expected
complementary contributions of heads in Llama-3-8B-Instruct model on the hotpotqa dataset
(multi-document question answering) and the lcc dataset (code generation), with coalition sizes
of {32, 64, 96, 128, 160, 192, 224}. We observe strong correlations in the distributions across all
coalition sizes. Additionally, the distributions of the expected complementary contributions for
coalition sizes S and n− |S| are nearly identical, exhibiting symmetry around the size of 128. To
optimize computational efficiency, we restrict the calculation of complementary contributions to
coalitions with sizes below 128. These observations provide a justification for our approach of
computing complementary contributions using only a small subset of coalition sizes, as it effectively
captures the contributions of the heads.

As showing all the distribution of all datasets costs too much pages, we conduct additional experiment
analysis comparing the averaged complementary contributions of small coalitions (j=32,64,96) and
large coalitions (j=160,192,224) by measuring the overlap rate of top-contributing heads between
them in 16 datasets in LongBench. Specifically, we computed the percentage of shared heads in their
respective top-k lists (k=32,64,128). The results show consistently high overlap rates (averaging over
85%) across all 16 datasets and two different LLMs, confirming that the distributional similarity is
not model- or dataset-specific. This pattern suggests an underlying structural property of attention
heads in transformer-based LLMs, where the complementary contribution of heads remains stable
across different coalition scales. The results are shown in Tables 7 and 8.

Table 7: Overlap Results of Llama-3-8B-Instruct

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Top 32 heads 0.81 0.66 0.81 0.91 0.84 0.81 0.62 0.66 0.50 0.84 0.84 0.59 0.97 0.97 0.81 0.75 0.77
Top 64 heads 0.77 0.81 0.88 0.88 0.91 0.91 0.67 0.72 0.66 0.88 0.77 0.80 0.98 0.98 0.83 0.86 0.83
Top 128 heads 0.82 0.88 0.80 0.93 0.90 0.95 0.83 0.83 0.80 0.95 0.84 0.80 0.99 0.99 0.88 0.85 0.88

Table 8: Overlap Results of Mistral-7B-Instruct-v0.2

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Top 32 heads 0.66 0.84 0.72 0.78 0.75 0.94 0.75 0.72 0.62 0.75 0.78 0.72 1.00 0.94 0.75 0.69 0.78
Top 64 heads 0.77 0.94 0.77 0.72 0.81 0.94 0.92 0.72 0.69 0.86 0.84 0.77 0.97 0.94 0.72 0.73 0.82
Top 128 heads 0.83 0.94 0.84 0.86 0.87 0.97 0.95 0.84 0.88 0.88 0.87 0.86 0.99 0.95 0.86 0.80 0.89

E.5 DECODING LATENCY AND MEMORY USAGE

We also conduct decoding latency and memory usage experiments using the Mistral-7B-Instruct-v0.2
model, which supports a maximum context window of 32k tokens, with FlashAttention enabled as
the default setting, on an A100 GPU with 40GB of memory. We design two key experiments with the
average KV cache size set to 128 tokens(comparative experiments showed less than 2% variation
across 64/256/512/1024 tokens).
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Figure 3: Results of Decoding Latency and Peak Memory Usage.

Peak Memory Usage Under fixed generation length (1 token), we measure the peak GPU
memory usage (including model parameters and runtime states) across varying input contexts
(1k/2k/4k/8k/16k/32k tokens). As shown in the Peak Memory Usage of Figure 3, CoKV reduces
memory usage by 64% compared to FullKV baseline at 32k input length.

Decoding Latency With a fixed input context length of 28k tokens, we measure decoding latency
(including both the pre-filling time and the decoding time) across different generation lengths
(1/512/1024/2048/4096 tokens). As shown in the Decoding Latency of Figure 3, CoKV achieves less
than 50% of the total latency compared to the FullKV baseline, with negligible differences observed
between the other baselines.

E.6 MATHEMATICAL REASONING EVALUATION

To assess the mathematical reasoning capability of CoKV, we evaluate it on the GSM8K and MATH
datasets using the Qwen3-32B model. The head importance scores are derived from the average
scores across all tasks in LongBench. We perform experiments involving both KV cache eviction and
head masking. We use 5 shots in all the experiments. The results are shown in Tables 9, 10, 11,and
12.

Table 9: Qwen3-32B mode with KV size = 128 on GSM8K

Full Cache SnapKV Pyramid AdaKV HeadKV-R2 CoKV

93.47 70.71 69.56 68.69 79.44 82.10

Table 10: Mask Top Important Heads Results on GSM8K

16 heads 32 heads 64 heads 96 heads

Random 92.24 91.73 89.57 88.15
HeadKV-R2 91.24 90.38 72.15 36.85
CoKV(top) 86.57 19.40 3.77 1.89

E.7 GENERALIZATION ANALYSIS

We first compute a general head importance score by averaging the scores across all tasks in Long-
Bench using Qwen3-32B. This general score is then applied uniformly in head masking experiments
for each individual task in LongBench. The results, summarized in Table 17, indicate that although
CoKV using this general score performs better than using task-specific scores, it evaluates head
importance across more tasks therefore leading to a more comprehensive assessment. Besides, the
experiments in Section E.6 demonstrate that the head importance scores derived from LongBench
generalize effectively to mathematical reasoning tasks, confirming that CoKV captures a robust and
transferable notion of head importance.
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Table 11: Qwen3-32B mode with KV size = 128 on MATH

Full Cache SnapKV Pyramid AdaKV HeadKV-R2 CoKV

52.53 39.10 37.58 41.02 43.65 46.17

Table 12: Mask Top Important Heads Results on MATH

16 heads 32 heads 64 heads 96 heads

Random 52.15 51.06 46.97 42.39
HeadKV-R2 51.41 36.54 32.83 10.61
CoKV(top) 45.45 21.37 2.92 1.70

To validate the generalization capability of our method, we also conduct cross-dataset evaluations on
two task categories: 1. Multi-Document QA including 2WikiMQA and Musique datasets. 2. Code
Processing including Lcc and RB-P datasets. Following Section 4.2, we mask top and low-ranked
attention heads but cross-apply head importance scores between datasets within the same task (e.g.,
mask 2WikiMQA using Musique-derived scores). As shown in Table 20 and Table 21, our method
maintains superior accuracy over baselines across both models, confirming that learned importance
scores can generalize across datasets within shared task domains.

E.8 NEEDLE-IN-A-HAYSTACK TEST

To evaluate the performance of different KV cache compression methods in long-context retrieval
tasks, we conduct a Needle-in-a-Haystack benchmark test using the Mistral-7B-v0.2 model. With the
average KV cache size 128, we systematically insert target texts (needles) at ten equidistant positions
(11%, 22%, ..., 100%) across varying context lengths ranging from 1,000 to 31,000 tokens (in 1,000-
token increments). As shown in Figure 11, CoKV outperforms other baseline methods, achieving an
average score of 95.89% - the closest performance to the uncompressed FullKV benchmark.

We further extend our evaluation to the Qwen3-32B model under the same KV cache budget (average
size = 128). We use the average head scores on LongBench as the key-value allocation score, which
demonstrates that CoKV provides a fair measure of the retrieval ability of each head across different
tasks. Needles are inserted at the same ten relative positions across context lengths ranging from 1,000
to 61,000 tokens (in 4,000-token increments). As illustrated in Figure 12, CoKV again demonstrates
superior performance, attaining an average accuracy of 73.86%—the highest among all compressed
methods and the closest to the FullKV benchmark.

E.9 RULER

RULER generates synthetic examples to evaluate long-context language models with configurable
sequence length and task complexity. RULER includes four task categories, and we select the
representative task from each category for our assessment. Following the experimental setup described
in Section 4.2, we set the masking group size to 64 and test performance across various context
lengths (4k, 8k, 16k, and 31k). We compare CoKV with HeadKV-R2 because HeadKV-R2 is not
only the strongest baseline method but also provides per-head importance scores. We use mistral-7B-
v0.2-instruct model in this experiment, which supports a 32k-token context window. Notably, the
Llama3-8B instruct model is omitted due to its limited 8k context length. As shown in Table 22, our
method shows significant advantages over baseline approaches: masking less important groups (low)
results in less performance degradation, while masking critical groups (top) leads to substantially
larger drops in performance compared with other methods.
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Table 13: Benchmark Results of Llama-3-8B-Instruct

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.1 51.64 41.73
KV size=64

SnapKV 19.94 13.21 28.91 40.06 28.58 18.12 17.29 21.71 17.05 49.41 89.00 35.48 3.99 71.57 54.35 50.42 34.94
Pyramid 20.11 16.54 32.67 40.25 27.71 17.54 18.67 22.37 20.03 62.55 89.89 36.63 4.30 71.76 54.27 50.96 36.64
Ada-SnapKV 20.40 14.46 32.62 42.39 31.48 17.58 18.57 22.18 18.71 58.82 90.13 35.25 4.41 71.57 54.02 51.68 36.52
HeadKV-R2 20.30 16.76 35.96 38.08 26.41 17.98 18.68 21.75 20.58 67.06 88.19 37.30 3.21 71.76 56.20 54.49 37.17
CoKV 20.77 19.67 35.11 44.37 34.36 17.83 17.89 22.33 18.55 71.76 90.73 38.51 4.71 71.76 55.45 55.82 38.73

KV size=128

SnapKV 20.37 14.73 34.24 43.32 28.94 19.74 19.68 22.15 20.68 64.71 90.69 39.03 4.41 71.76 58.48 51.70 37.39
Pyramid 20.32 19.28 33.81 41.13 28.21 19.94 19.70 22.97 21.11 67.65 89.89 37.77 4.30 71.76 55.93 51.30 37.82
Ada-SnapKV 20.86 18.14 35.17 45.12 30.39 20.43 19.93 21.84 21.25 69.41 90.29 38.08 4.75 71.76 57.99 53.16 38.66
HeadKV-R2 21.30 21.28 39.85 42.07 29.91 19.92 20.18 22.54 22.87 71.18 90.63 38.58 4.46 71.76 60.75 57.17 39.65
CoKV 20.40 23.25 38.93 45.11 37.60 20.40 19.78 23.16 21.14 73.59 91.21 40.96 4.71 71.76 58.34 59.37 40.61

KV size=256

SnapKV 22.98 21.02 36.27 44.24 31.02 19.72 20.90 22.63 22.45 69.41 90.77 39.64 4.26 71.76 59.44 54.35 39.43
Pyramid 22.18 22.83 35.95 41.85 31.74 21.14 21.27 22.65 22.83 71.18 90.83 40.50 4.35 71.37 57.69 51.49 39.37
Ada-SnapKV 23.58 23.76 35.65 43.83 32.24 20.50 21.26 22.77 22.69 71.76 90.87 40.36 4.21 71.76 58.79 54.70 39.92
HeadKV-R2 23.13 25.55 39.97 43.60 31.12 21.26 22.02 22.68 24.47 71.76 90.63 38.32 5.13 71.08 61.81 59.25 40.74
CoKV 22.69 28.23 42.34 46.32 36.38 21.17 21.17 23.64 23.08 72.94 90.93 42.07 4.71 71.76 62.40 61.92 41.98

KV size=512

SnapKV 22.92 22.86 39.33 43.89 32.70 20.87 22.24 22.39 23.97 71.18 90.87 41.14 4.54 71.76 59.98 55.00 40.35
Pyramid 23.59 25.70 38.21 44.34 32.48 20.59 22.94 22.49 24.07 72.35 90.87 40.92 4.75 71.76 58.22 52.54 40.36
Ada-SnapKV 23.47 28.41 39.02 44.87 32.77 20.52 23.14 22.96 24.47 72.12 90.93 39.85 4.71 71.76 58.59 54.65 40.77
HeadKV-R2 22.52 29.32 40.34 45.64 34.52 20.53 23.92 22.61 25.73 72.35 90.93 39.28 4.41 71.76 61.59 59.22 41.54
CoKV 24.56 29.18 40.60 46.11 37.53 21.33 23.02 23.51 24.77 72.94 91.09 41.29 4.76 71.50 63.06 63.55 42.44

KV size=1024

SnapKV 23.95 26.95 37.81 44.03 30.88 20.93 24.26 23.09 25.79 72.35 90.87 41.43 4.31 71.76 59.29 54.91 40.79
Pyramid 23.62 26.76 39.44 45.79 33.41 19.87 23.57 22.98 25.13 73.02 90.93 40.86 4.71 71.76 58.43 53.67 40.87
Ada-SnapKV 23.52 28.33 40.39 45.20 32.95 20.11 24.55 23.33 25.37 73.53 90.87 41.38 4.46 71.76 58.88 54.65 41.21
HeadKV-R2 23.35 29.60 40.09 45.82 35.81 21.39 25.57 23.32 26.30 74.12 90.77 40.27 4.19 71.76 61.58 59.03 42.06
CoKV 24.01 31.70 40.64 48.13 37.89 20.64 23.02 23.89 25.71 74.12 91.01 42.02 4.71 71.20 63.33 63.74 42.86

Table 14: Benchmark Results of Qwen3-32B

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 37.14 45.51 49.17 58.2 54.74 38.36 32.9 23.72 25.08 72.78 72.57 37.95 17.78 100 62.72 70.08 49.92
KV size=64

SnapKV 28.97 30.05 41.1 29.74 41.62 35.03 16.57 19.56 16.86 33.33 67.43 32.3 9.52 95.24 50.67 47.05 37.19
Pyramid 19.74 30.56 36.64 32.77 40.62 35.56 17.62 21.29 16.53 33.33 67.43 36.61 9.52 100.0 55.33 48.95 37.66
Ada-SnapKV 31.71 32.31 37.52 32.72 42.53 37.32 17.17 21.89 17.1 33.33 71.43 32.35 9.52 100.0 53.24 47.19 38.58
HeadKV-R2 29.1 32.46 39.89 50.95 44.62 33.42 18.04 20.01 17.27 41.41 66.06 32.37 18.2 98.99 55.0 50.87 40.54
CoKV 29.37 33.52 43.15 52.83 48.37 37.1 18.18 19.96 18.72 44.44 68.77 32.67 19.21 98.99 55.08 51.4 41.99

KV size=128

SnapKV 30.18 32.54 41.96 55.2 47.04 34.31 22.74 21.19 19.0 47.22 67.89 36.77 17.22 98.89 58.52 50.48 42.65
Pyramid 27.17 32.11 40.93 30.13 37.2 34.43 22.01 20.95 18.71 38.1 68.43 35.55 9.52 100.0 56.48 51.29 40.19
Ada-SnapKV 22.74 32.11 40.02 32.42 40.44 27.97 23.43 21.67 18.98 46.67 67.43 38.93 9.52 100.0 57.9 49.71 39.43
HeadKV-R2 29.78 33.39 41.51 51.85 52.06 36.17 24.17 21.04 19.03 48.89 67.98 36.44 18.02 99.44 56.88 52.47 43.07
CoKV 28.73 37.56 44.80 53.48 53.07 35.17 23.89 21.34 19.28 54.44 69.35 38.23 19.22 100 57.13 56.87 44.53

KV size=256

SnapKV 32.96 37.46 46.19 38.2 47.63 38.21 25.04 22.29 20.88 42.86 68.43 44.41 9.52 100.0 62.05 52.62 43.05
Pyramid 29.13 31.77 47.74 31.19 40.27 26.84 24.97 22.75 20.97 38.1 68.43 37.85 9.52 100.0 58.38 55.0 40.18
Ada-SnapKV 30.26 37.95 48.05 37.54 48.17 42.59 25.33 23.9 21.15 47.62 68.93 41.95 9.52 100.0 64.0 53.14 43.76
HeadKV-R2 33.0 38.69 47.01 51.98 57.2 38.36 26.01 22.17 21.83 49.49 68.15 38.79 18.18 100.0 58.35 55.72 45.31
CoKV 33.07 41.66 47.5 55.98 59.15 38.88 25.84 22.79 21.41 56.57 68.98 38.65 17.17 100.0 59.42 55.76 46.43

KV size=1024

SnapKV 33.75 43.59 46.97 45.74 56.52 38.19 28.10 22.96 24.18 61.9 69.25 45.12 9.52 100.0 60.86 67.1 47.11
Ada-SnapKV 34.92 44.87 47.18 46.45 56.21 37.19 27.74 23.56 24.42 61.9 69.52 40.54 9.52 100.0 61.71 63.38 46.82
HeadKV-R2 36.27 44.14 50.83 54.07 62.96 37.72 28.29 23.79 24.63 64.65 68.48 39.07 18.28 100.0 61.29 64.91 48.71
CoKV 35.82 45.23 51.45 57.31 61.37 37.34 28.78 24.41 24.79 68.69 68.96 39.01 18.18 100.0 62.52 65.62 49.34
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Table 15: Results of Mistral-7B-Instruct-v0.2

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 26.40 31.07 49.38 37.60 26.07 17.81 31.87 23.16 27.15 70.59 85.73 43.26 1.52 58.52 55.10 49.45 39.67
KV size=64

SnapKV 16.99 18.26 38.29 29.51 23.24 13.46 18.24 20.48 18.05 48.82 81.45 36.18 2.54 43.79 46.13 39.30 30.92
Pyramid 17.51 18.60 40.49 31.92 22.08 13.81 18.68 20.94 18.80 57.06 81.71 37.42 1.68 46.23 46.05 40.03 32.06
Ada-SnapKV 17.93 18.68 40.03 29.99 22.67 14.92 18.84 20.87 18.53 54.12 81.43 37.25 2.30 45.20 46.84 39.37 31.81
HeadKV-R2 22.75 25.37 45.36 36.52 25.39 13.82 20.45 22.06 21.48 65.29 83.56 37.95 2.43 50.78 47.76 42.86 35.24
CoKV 21.07 21.41 42.87 37.74 28.93 15.60 18.03 21.08 19.70 67.65 86.52 39.54 3.68 54.22 49.20 42.13 35.59

KV size=128

SnapKV 23.02 20.73 41.91 31.39 22.88 14.55 20.92 21.83 21.25 62.35 83.21 38.99 3.14 51.16 49.94 43.61 34.43
Pyramid 22.06 21.82 43.73 32.33 24.12 13.80 20.27 21.65 21.34 65.29 83.78 38.37 2.63 53.59 49.21 42.69 34.79
Ada-SnapKV 22.32 22.71 44.40 32.63 23.29 13.79 21.15 22.50 21.77 66.47 84.28 39.68 3.04 51.87 49.57 44.84 35.27
HeadKV-R2 24.81 27.66 48.29 36.87 26.66 14.75 23.30 22.88 23.26 67.65 84.93 39.75 2.50 49.31 50.79 45.57 36.81
CoKV 24.42 24.12 46.95 38.28 28.85 17.18 21.11 21.91 22.02 68.82 86.14 40.48 4.21 54.12 51.08 46.25 37.25

KV size=256

SnapKV 23.01 23.47 45.38 33.15 24.12 13.93 22.80 22.89 22.85 67.65 84.62 40.39 2.36 59.18 51.34 46.74 36.49
Pyramid 22.98 25.66 46.12 34.47 25.81 13.98 22.86 22.54 22.88 68.90 85.07 40.92 2.39 58.74 53.13 46.59 37.07
Ada-SnapKV 23.54 26.02 45.92 34.45 26.09 14.12 22.79 22.64 23.32 68.82 85.32 41.93 2.04 58.62 52.10 47.70 37.21
HeadKV-R2 25.40 27.42 47.05 37.98 25.57 17.08 25.31 22.72 25.03 69.41 84.93 40.24 2.58 52.94 53.48 49.21 37.90
CoKV 25.70 26.10 48.43 38.96 30.06 17.33 23.42 22.55 23.73 70.00 86.19 42.35 3.65 56.37 53.97 48.79 38.60

KV size=512

SnapKV 25.24 26.30 47.85 37.16 25.07 14.57 24.43 22.98 24.61 68.82 85.72 43.04 2.00 58.63 54.06 49.03 38.09
Pyramid 24.43 27.09 48.49 37.57 25.35 16.20 24.40 22.85 24.16 68.82 85.81 42.07 1.87 56.93 53.05 48.22 37.96
Ada-SnapKV 25.01 26.76 49.10 37.12 26.68 15.63 24.42 22.94 24.61 69.41 85.56 41.88 1.87 57.93 54.09 48.94 38.25
HeadKV-R2 25.80 28.73 48.34 37.43 27.03 17.28 28.22 23.22 26.65 70.59 85.72 40.15 2.69 56.15 53.24 49.22 38.78
CoKV 25.25 28.13 49.91 38.87 32.33 18.27 25.00 23.08 25.50 70.59 86.37 43.46 3.06 59.20 55.54 49.38 39.62

KV size=1024

SnapKV 26.38 29.70 48.13 37.36 25.52 16.88 27.31 22.63 26.10 69.41 85.72 42.43 1.54 56.87 55.05 49.33 38.77
Pyramid 25.09 28.59 47.78 37.74 25.83 17.53 25.88 23.05 25.91 68.24 85.95 42.77 1.59 57.82 54.47 48.85 38.57
Ada-SnapKV 25.70 29.95 47.50 37.68 26.18 17.10 26.63 22.93 26.10 70.00 85.72 43.16 1.68 56.28 54.52 49.10 38.76
HeadKV-R2 27.48 29.94 49.49 37.49 26.45 18.69 30.73 23.31 26.74 70.59 85.92 42.05 3.15 56.37 54.73 49.30 39.53
CoKV 26.15 29.82 49.47 38.54 34.39 17.98 27.76 23.33 26.49 70.59 86.23 43.54 2.48 59.32 55.47 49.92 40.09
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Figure 4: Results for varying KV cache sizes (64, 128, 256, 512, 1024) in the LongBench benchmark.
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Figure 5: Results for varying masked groups (16,32,64,96,128) in the LongBench benchmark.
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Table 16: Results of masking groups with Llama-3-8B-Instruct

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.10 51.64 41.73
Masking 16 groups

Random 20.93 28.48 33.69 44.93 20.01 20.6 28.43 23.7 26.67 74.12 91.07 41.12 4.26 71.76 49.83 40.55 38.76
HeadKV-R2(top) 19.45 12.97 27.75 34.2 17.33 14.32 19.74 22.76 22.05 67.06 87.91 35.53 4.71 68.49 26.62 26.53 31.71
CoKV(top) 6.55 9.46 9.47 10.19 12.27 5.67 5.73 16.96 4.47 43.53 71.21 23.77 3.91 34.98 11.58 17.18 17.93
HeadKV-R2(low) 21.83 14.36 33.34 31.37 27.23 12.55 27.29 23.82 26.99 74.12 91.03 42.18 4.12 70.59 37.35 38.55 36.05
CoKV(low) 23.74 33.76 41.71 49.27 40.48 19.99 29.13 23.25 27.79 74.12 91.45 42.37 4.71 70.55 63.38 61.26 43.56

Masking 32 groups

Random 20.69 18.60 29.63 39.12 18.50 6.94 22.40 22.33 26.45 74.12 89.82 33.80 4.71 61.12 30.78 40.71 33.73
HeadKV-R2(top) 17.33 6.98 9.37 13.50 9.37 5.11 13.18 20.86 15.24 45.88 75.30 27.21 4.76 66.21 11.24 13.64 22.20
CoKV(top) 1.40 3.49 3.78 7.94 9.32 2.32 2.64 11.74 0.58 34.71 21.37 6.96 4.14 16.93 3.54 5.17 8.50
HeadKV-R2(low) 21.51 11.16 25.33 19.52 14.48 7.42 16.73 23.91 14.58 74.12 89.09 40.69 4.66 70.09 33.13 32.39 31.18
CoKV(low) 22.45 33.06 38.34 45.82 39.62 20.18 28.39 24.04 26.67 74.12 91.14 41.70 4.71 71.76 52.24 64.94 42.45

Masking 64 groups

Random 13.22 7.34 20.57 20.58 9.11 6.76 7.50 21.22 19.18 72.35 71.92 36.09 4.71 52.80 21.27 18.07 25.17
HeadKV-R2(top) 7.49 2.95 5.05 11.06 12.01 2.46 3.63 14.43 5.06 34.71 48.92 8.05 3.97 70.67 21.03 16.14 16.73
CoKV (top) 0.76 1.76 2.45 4.85 5.58 1.93 2.48 5.65 0.20 34.12 3.33 7.34 3.16 12.18 2.45 3.83 5.75
HeadKV-R2(low) 19.23 12.19 21.33 19.61 14.21 6.63 6.45 20.17 6.16 71.76 77.40 31.52 4.41 53.48 16.00 14.58 24.70
CoKV(low) 21.98 29.85 38.95 44.21 36.65 17.71 28.04 24.49 25.92 74.71 91.66 40.80 4.54 71.76 47.04 52.77 40.69

Masking 96 groups

Random 5.19 4.04 6.85 8.15 10.33 5.08 2.21 10.77 2.82 40.00 61.54 13.38 4.64 54.29 15.37 9.81 15.90
HeadKV-R2(top) 2.89 4.34 7.90 11.83 9.14 2.93 4.37 13.21 3.80 34.12 30.32 8.46 4.78 71.76 13.55 14.76 14.89
CoKV(top) 1.36 1.14 1.82 3.66 3.79 1.48 1.20 4.63 0.13 34.12 2.40 7.52 0.54 6.71 2.41 3.54 4.78
HeadKV-R2(low) 19.28 8.23 15.65 20.89 16.80 8.00 3.32 11.81 0.99 58.82 58.70 15.72 4.71 61.88 10.56 11.05 20.40
CoKV(low) 20.24 18.97 35.28 41.37 30.02 13.87 19.95 17.33 20.76 74.71 84.08 41.23 4.71 68.24 38.11 38.08 35.43

Masking 128 groups

Random 3.34 2.50 5.33 10.59 5.12 2.73 2.15 9.19 0.16 44.12 31.33 9.05 4.18 66.74 12.27 9.23 13.63
HeadKV-R2(top) 2.34 2.17 5.38 7.21 7.19 1.85 1.80 10.34 0.31 34.71 26.08 7.87 4.71 66.92 13.94 11.76 12.79
CoKV(top) 0.59 0.80 1.38 2.96 3.42 1.11 1.16 4.05 0.13 34.12 2.89 7.17 1.09 7.52 2.91 3.55 4.68
HeadKV-R2(low) 12.02 7.97 8.92 14.87 12.83 5.26 2.41 9.12 1.42 55.88 40.96 10.2 4.71 68.42 10.14 6.03 16.95
CoKV(low) 15.31 12.15 28.44 35.35 23.27 10.67 2.93 12.24 9.41 73.82 76.32 37.70 4.71 68.24 22.20 24.93 28.61

Table 17: Results of masking groups with Qwen3-32B

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 37.14 45.51 49.17 58.2 54.74 38.36 32.9 23.72 25.08 72.78 72.57 37.95 17.78 100 62.72 70.08 49.92
Masking 16 groups

Random 36.53 45.37 54.32 55.82 61.69 40.09 26.43 24.57 25.04 69.7 68.57 37.43 22.22 100.0 22.51 25.01 44.71
HeadKV-R2(top) 36.89 45.22 54.08 56.57 61.02 38.12 24.08 22.58 24.69 68.43 68.43 35.28 19.19 57.05 26.50 28.61 41.67
CoKV(top) 32.16 35.64 38.05 35.18 29.20 30.56 21.38 23.92 24.67 38.61 37.57 27.02 19.57 35.93 9.74 12.43 28.23
CoKV(top)-general 23.7 31.61 28.7 32.91 21.91 15.86 22.12 20.73 13.58 40.4 39.41 24.96 19.19 15.15 16.07 17.75 24.00

Masking 32 groups

Random 33.75 43.74 54.44 53.97 63.31 39.09 25.01 24.86 25.31 69.7 67.56 35.92 21.21 100.0 18.11 25.76 43.86
HeadKV-R2(top) 36.52 46.09 53.75 56.14 60.98 38.35 21.96 23.96 24.67 68.69 63.8 34.09 21.21 100.0 21.13 22.77 43.38
CoKV(top) 35.42 33.8 27.53 32.42 24.45 22.63 18.67 24.13 25.0 36.36 29.67 20.87 19.19 29.29 5.18 6.89 24.47
CoKV(top)-general 17.59 23.02 13.13 22.35 16.09 8.1 19.03 16.08 9.91 36.36 26.18 15.34 20.2 41.41 10.86 16.55 19.51

Masking 64 groups

Random 30.13 44.81 50.07 56.51 54.06 39.24 27.33 23.32 24.82 72.78 71.12 37.72 12.94 100.0 22.71 23.79 43.21
HeadKV-R2(top) 28.38 34.55 32.15 47.25 45.26 25.33 20.14 22.17 13.98 55.56 56.69 21.18 8.69 98.33 14.44 18.47 33.91
CoKV(top) 28.85 28.55 18.91 25.1 19.78 12.69 13.48 22.97 23.8 35.56 26.43 10.41 8.04 17.22 5.2 5.05 18.88
CoKV(top)-general 12.07 16.96 7.72 19.81 16.13 4.72 14.47 12.14 4.72 34.34 22.01 8.58 14.14 1.01 15.76 14.37 13.68

Masking 96 groups

Random 36.07 45.2 54.41 57.49 60.17 40.92 22.67 24.37 24.5 68.69 63.46 21.53 21.21 96.97 24.15 23.12 42.81
HeadKV-R2(top) 22.16 23.92 21.57 38.2 38.23 21.34 15.85 17.13 7.72 38.38 42.65 11.54 20.2 46.46 6.23 10.23 23.86
CoKV(top) 24.3 22.02 13.6 18.44 14.94 13.98 11.39 22.44 16.66 33.33 17.8 6.23 13.13 3.03 5.28 4.51 15.07
CoKV(top)-general 8.4 11.81 7.76 15.6 12.53 6.97 9.82 9.74 3.4 33.33 21.65 8.71 14.14 0.0 13.68 9.25 11.67
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Table 18: Results of masking groups with Mistral-7B-Instruct-v0.2

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 26.40 31.07 49.38 37.60 26.07 17.81 31.87 23.16 27.15 70.59 85.73 43.26 1.52 58.52 55.10 49.45 39.67
Masking 16 groups

Random 25.92 31.73 50.29 37.84 27.19 17.83 24.91 21.92 27.04 70.59 85.93 43.8 3.22 53.82 52.38 48.24 38.92
HeadKV-R2(top) 23.38 16.66 37.13 37.41 22.76 14.29 18.8 21.74 23.23 54.12 82.96 35.22 4.12 21.76 39.49 35.66 30.55
CoKV(top) 16.1 23.35 18.49 14.34 13.39 7.89 20.5 19.98 17.25 38.24 52.51 26.32 4.17 40.85 24.6 14.35 22.02
HeadKV-R2(low) 24.78 29.37 48.78 38.07 24.88 16.93 31.25 23.08 27.64 71.18 84.55 42.52 2.1 58.82 54.22 49.4 39.22
CoKV(low) 26.57 32.3 49.94 40.38 34.0 19.11 31.25 22.97 26.85 70.59 87.3 44.39 3.29 58.03 56.6 50.74 40.89

Masking 32 groups

Random 22.62 31.72 47.20 38.13 22.55 11.92 25.64 23.27 26.75 68.82 84.55 41.34 1.93 49.71 50.14 47.18 37.09
HeadKV-R2(top) 20.82 15.40 28.72 34.31 20.31 12.86 13.56 19.83 17.80 46.47 79.25 30.10 4.71 24.31 33.41 30.47 27.02
CoKV(top) 9.05 15.38 7.61 9.88 8.07 6.38 0.59 11.72 4.70 35.88 26.87 11.85 4.65 10.88 15.23 11.14 11.87
HeadKV-R2(low) 23.76 27.40 44.80 32.85 23.55 13.28 24.37 22.71 28.09 71.18 79.24 42.24 4.26 49.90 52.89 48.85 36.84
CoKV(low) 26.70 30.44 49.57 40.41 32.28 18.33 30.26 23.27 26.85 70.59 87.48 44.04 2.93 56.27 56.34 50.38 40.38

Masking 64 groups

Random 13.43 24.46 30.97 22.62 16.93 15.65 14.07 22.16 19.86 55.29 82.16 35.85 4.12 38.94 38.07 28.39 28.94
HeadKV-R2(top) 11.04 9.09 17.45 18.57 13.79 8.07 9.83 17.30 12.60 35.29 55.36 18.65 4.54 19.85 26.25 21.23 18.68
CoKV(top) 3.28 3.50 4.65 4.30 3.42 2.55 0.79 4.66 1.08 34.71 8.41 6.00 3.53 3.53 11.22 11.57 6.70
HeadKV-R2(low) 18.81 21.42 35.18 18.03 14.26 7.41 22.56 22.41 20.24 57.65 75.72 37.03 4.11 45.46 38.78 39.22 29.89
CoKV(low) 26.87 25.74 48.19 39.61 30.86 16.88 24.45 22.84 27.29 71.18 87.16 43.43 3.34 50.18 53.76 47.52 38.71

Masking 96 groups

Random 4.84 6.33 13.77 12.00 10.41 8.43 0.88 17.55 21.83 51.76 63.48 22.32 4.47 34.19 21.30 17.65 19.45
HeadKV-R2(top) 9.21 7.05 11.34 13.30 14.22 3.99 7.67 15.43 8.84 34.71 29.87 9.97 4.44 30.16 17.73 16.24 14.64
CoKV(top) 2.13 4.13 4.58 4.09 6.52 0.64 0.00 2.44 0.15 34.71 2.16 4.40 4.12 2.94 7.16 8.39 5.54
HeadKV-R2(low) 8.17 10.62 18.76 13.07 10.10 5.44 3.75 19.42 6.51 46.47 50.84 23.98 4.57 29.89 34.95 32.57 19.94
CoKV(low) 24.62 24.71 48.04 38.72 30.29 16.37 19.35 22.84 27.18 70.59 79.48 42.01 3.75 48.29 50.78 43.53 36.91

Masking 128 groups

Random 4.15 8.45 9.73 8.38 7.80 2.07 0.51 13.19 3.40 42.94 34.04 8.82 3.85 3.53 23.74 18.34 12.06
HeadKV-R2(top) 5.22 4.78 8.63 7.04 6.15 3.89 5.64 14.59 5.64 35.88 25.98 8.36 3.82 18.53 18.68 18.52 11.96
CoKV(top) 1.33 9.43 1.03 4.24 5.54 1.41 0.09 0.78 0.01 33.53 1.06 4.50 2.94 2.94 6.94 6.22 5.12
HeadKV-R2(low) 4.41 4.53 11.12 12.8 7.20 6.64 0.46 10.48 0.61 47.65 31.61 10.45 2.91 9.92 24.09 24.48 13.09
CoKV(low) 20.43 19.12 44.82 34.23 23.31 13.97 14.22 21.28 24.65 70.59 73.98 39.73 4.10 45.21 42.14 38.14 33.12

Table 19: Comprehensive KV Quantization Results on LongBench

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Qwen3-8B model with 8-4 bits quantization

HeadKV-R2 10.78 33.24 32.78 29.37 25.96 7.93 13.17 28.49 60.28 77.06 51.97 26.1 9.88 79.41 60.29 55.47 37.64
CoKV 20.43 41.36 37.74 48.44 27.54 16.53 14.22 36.58 60.18 72.94 86.76 34.12 13.51 80.59 66.26 61.7 44.93
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Figure 6: Heatmap of Qwen3-32B.
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Figure 7: Heatmap of Llama-3-8B-Instruct.
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Figure 8: Heatmap of Mistral-7B-Instruct-v0.2.
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(1) Coalition size 32 (2) Coalition size 64 (3) Coalition size 96 (4) Coalition size 128

(5) Coalition size 160 (6) Coalition size 192 (7) Coalition size 224 (8) Average

Figure 9: The expected complementary contributions for the lcc dataset across different coalition
sizes.

(1) Coalition size 32 (2) Coalition size 64 (3) Coalition size 96 (4) Coalition size 128

(5) Coalition size 160 (6) Coalition size 192 (7) Coalition size 224 (8) Average

Figure 10: The expected complementary contributions for the hotpotqa dataset across different
coalition sizes.
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Table 20: Generalization results of masking
groups with Llama3-8B-Instruct

Method Multi-Doc. QA Code

2W
ikiM

QA

M
usique

Lcc
RB-P

Full Cache 34.56 21.09 58.10 51.64
Masking 16 groups

Random 20.01 20.6 49.83 40.55
HeadKV-R2(top) 17.33 14.32 26.62 26.53
CoKV(top) 10.78 5.43 14.41 15.33
HeadKV-R2(low) 27.23 12.55 37.35 38.55
CoKV(low) 39.92 20.9 64.04 61.22

Masking 32 groups

Random 18.50 6.94 30.78 40.71
HeadKV-R2(top) 9.37 5.11 11.24 13.64
CoKV(top) 6.71 3.45 4.39 5.78
HeadKV-R2(low) 14.48 7.42 33.13 32.39
CoKV(low) 38.1 18.22 64.75 58.28

Masking 64 groups

Random 9.11 6.76 21.27 18.07
HeadKV-R2(top) 12.01 2.46 21.03 16.14
CoKV(top) 5.68 1.82 2.5 3.66
HeadKV-R2(low) 14.21 6.63 16.00 14.58
CoKV(low) 34.17 16.29 49.97 48.93

Masking 96 groups

Random 10.33 5.08 15.37 9.81
HeadKV-R2(top) 9.14 2.93 13.55 14.76
CoKV(top) 4.38 1.28 2.74 3.07
HeadKV-R2(low) 16.80 8.00 10.56 11.05
CoKV(low) 28.08 12.92 38.62 40.55

Masking 128 groups

Random 5.12 2.73 12.27 9.23
HeadKV-R2(top) 7.19 1.85 13.94 11.76
CoKV(top) 2.93 0.94 2.48 3.84
HeadKV-R2(low) 12.83 5.26 10.14 6.03
CoKV(low) 24.34 9.37 23.38 24.11

Table 21: Generalization results of masking
groups with Mistral-7B-v0.2

Method Multi-Doc. QA Code

2W
ikiM

QA

M
usique

Lcc
RB-P

Full Cache 26.07 17.81 55.10 49.45
Masking 16 groups

Random 27.19 17.83 52.38 48.24
HeadKV-R2(top) 22.76 14.29 39.49 35.66
CoKV(top) 13.02 6.99 17.97 23.38
HeadKV-R2(low) 24.88 16.93 54.22 49.4
CoKV(low) 26.25 18.18 54.58 50.03

Masking 32 groups

Random 22.55 11.92 50.14 47.18
HeadKV-R2(top) 20.31 12.86 33.41 30.47
CoKV(top) 10.23 5.16 11.8 13.64
HeadKV-R2(low) 23.55 13.28 52.89 48.85
CoKV(low) 26.61 17.62 55.35 49.92

Masking 64 groups

Random 16.93 15.65 38.07 28.39
HeadKV-R2(top) 13.79 8.07 26.25 21.23
CoKV(top) 4.52 2.11 13.14 13.31
HeadKV-R2(low) 14.26 7.41 38.78 39.22
CoKV(low) 33.11 16.97 52.68 49.54

Masking 96 groups

Random 10.41 8.43 21.30 17.65
HeadKV-R2(top) 14.22 3.99 17.73 16.24
CoKV(top) 2.09 3.04 10.96 8.32
HeadKV-R2(low) 10.10 5.44 34.95 32.57
CoKV(low) 31.51 17.39 47.71 45.37

Masking 128 groups

Random 7.80 2.07 23.74 18.34
HeadKV-R2(top) 6.15 3.89 18.68 18.52
CoKV(top) 1.19 3.42 9.81 6.0
HeadKV-R2(low) 7.20 6.64 24.09 24.48
CoKV(low) 23.76 12.12 42.01 36.7
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Figure 11: NIAH test results on Mistral-7B-v0.2 with average KV cache = 128

Figure 12: NIAH test results on Qwen3-32B with average KV cache = 128
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Table 22: Evaluation results of masking 64 groups with Mistral-7B-Instruct-v0.2 across varying
context lengths in the RULER benchmark

Method Retrieval Multi-hop Tracing Aggregation Question Answering

niah vt fwe qa1 qa2

31k Context Length

Full Cache 100.0 86.08 89.2 71.4 53.4
Random 0.8 59.6 54.4 53.6 19.4
Headkv-R2(top) 0.0 0.48 0.0 28.6 13.8
CoKV(top) 0.0 0.12 0.0 12.8 7.0
Headkv-R2(low) 92.4 67.08 76.73 41.8 33.0
CoKV(low) 100 90.88 74.33 70.2 51.6

16k Context Length

Full Cache 100.0 90.44 94.73 76.8 54.6
Random 0.2 6.92 71.67 63.8 52.4
Headkv-R2(top) 0.0 0.56 0.0 29.2 17.0
CoKV(top) 0.0 0.76 0.27 15.4 7.2
Headkv-R2(low) 90.8 71.6 79.27 60.2 38.0
CoKV(low) 100.0 93.84 81.6 74.0 54.0

8k Context Length

Full Cache 100.0 96.32 78.2 82.6 61.6
Random 99.4 64.6 58.8 71.2 51.0
Headkv-R2(top) 0.0 0.48 0.0 31.8 18.2
CoKV(top) 0.0 1.08 0.13 20.0 9.0
Headkv-R2(low) 91.2 69.4 61.4 64.2 44.0
CoKV(low) 100.0 92.72 67.13 80.4 62.0

4k Context Length

Full Cache 100.0 99.32 84.6 85.0 63.0
Random 98.2 35.44 33.8 62.6 56.6
Headkv-R2(top) 0.0 0.16 0.0 30.4 20.0
CoKV(top) 0.0 1.16 0.27 20.8 8.4
Headkv-R2(low) 84.8 73.12 56.47 66.2 48.0
CoKV(low) 100.0 97.0 77.0 83.6 63.2

33


	Introduction
	Preliminaries
	Key-Value Caching and Compression
	Shapley Value

	Importance-Aware KV Cache Compression via Sliced Shapley Value
	Head Importance Evaluation
	KV Cache Compression

	Experiments
	Experiment Settings
	Hyperparameter Free Results.
	KV Cache Eviction Results
	KV Cache Quantization Results

	Conclusion
	Use of Large Language Models
	Related Works
	Suplementary of Preliminaries
	KV Cache Eviction
	KV Cache Quantization

	Proof
	Proof of Theorem 1
	Proof of Theorem 2

	Supplementary Experiments
	Datasets
	Ablation Study
	Computation Efficiency
	Distribution of Sliced Shapley Value
	Decoding Latency and Memory Usage
	Mathematical Reasoning Evaluation
	Generalization Analysis
	Needle-in-a-Haystack Test
	RULER


