
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COKV: OPTIMIZING LLM INFERENCE WITH GAME-
THEORETIC ADAPTIVE KV CACHE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved remarkable success in various
aspects of human life. However, one of the major challenges in deploying these
models is the substantial memory consumption required to store key-value pairs
(KV), which imposes significant resource demands. Recent research has focused on
KV cache budget allocation, with several approaches proposing head-level budget
distribution by evaluating the importance of individual attention heads. These
methods, however, assess the importance of heads independently, overlooking
their cooperative contributions within the model, which may result in a deviation
from their true impact on model performance. In light of this limitation, we
propose CoKV, a novel method that models the cooperation between heads in
model inference as a cooperative game. By attributing the contribution of each head
within the model, CoKV can more effectively allocate the cache budget in KV cache
techniques such as eviction and quantization. Extensive experiments demonstrate
the effectiveness of CoKV on long-context benchmarks (e.g., LongBench, NIAH,
and RULER) and mathematical reasoning benchmarks (e.g., GSM8K and MATH)
across multiple model families, including Qwen, Llama, and Mistral. Code is
provided in https://anonymous.4open.science/r/CoKV-40AC.

1 INTRODUCTION

Large language models (LLMs) are widely applied across various domains, including content genera-
tion (Li et al., 2024a), automated services (Chen et al., 2024a), and decision support systems (Hager
et al., 2024). With the widespread application of large language models (LLMs), reducing the cost of
inference services has become increasingly important. LLMs consist of multiple transformer blocks
that store key and value states (KV) during inference. KV cache allows efficient decoding in token
generation without recomputing key and value states by using previously cached KV pairs. However,
the KV cache becomes excessively large when processing long sequences or a large number of inputs,
inevitably straining GPU memory, thereby substantially raising deployment costs and hardware
requirements for large-scale applications.

To address this challenge, research efforts have advanced on several fronts. Some studies have
explored methods for ranking the importance of tokens within a single attention head, retaining
only the top k most significant ones. For example, H2O (Zhang et al., 2023b) evaluates token
importance using the sum of attention weights. StreamingLLM (Xiao et al., 2024) directly removes
KV from the middle segment of the cache to reduce the cache size as they incorporate less information.
SnapKV (Li et al., 2024b) calculates token scores by pooling the attention weights between tokens in
the local window and those in the cache. In parallel, several studies have also investigated strategies
for optimizing KV quantization to reduce KV cache costs, such as Kvquant (Hooper et al., 2024)
and OTT (Su et al., 2025). Recently, some studies have recognized that the importance of each
attention head varies, enabling methods like AdaKV (Feng et al., 2025), HeadKV (Fu et al., 2025) and
DuoAttention (Xiao et al., 2025b). AdaKV improves budget utilization by adaptively allocating the
overall budget across different attention heads based on their varied concentration degrees. HeadKV
evaluates the retrieval-reasoning scores of different heads and allocates a larger cache size to those
with higher scores. DuoAttention uses a reinforcement learning-based algorithm with synthetic data
to identify retrieval heads.

1

https://anonymous.4open.science/r/CoKV-40AC

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

While prior work on head importance evaluation has made significant advancements in adaptive KV
cache management, we observe that several challenges remain unresolved in current approaches.
Some existing methods evaluate attention head importance independently. For example, AdaKV
evaluates the concentration degrees of heads while HeadKV assesses the retrieval-reasoning capability
of each head in isolation as a measure of importance. However, these approaches treat heads as
isolated units, overlooking the fact that their true importance emerges from their cooperation rather
than individual capabilities. As a result, independently assessing head importance may lead to
suboptimal allocation. DuoAttention frames each attention head as an agent within a reinforcement
learning framework, thereby incorporating interactions among heads. However, this approach suffers
from unstable policy convergence, which can hinder its practical application. Based on these insights,
we propose CoKV (Cooperation-based Key-Value Cache), a method that evaluates the contribution
of all attention heads in their cooperation within the model based on game-theoretic utilities and
dynamically allocates cache budgets based on their contribution.

CoKV is inspired by the Shapley value (Shapley, 1953), a seminal concept in cooperative game
theory that offers a mathematically rigorous framework for fair contribution allocation. The Shapley
value of a player pi measures the expected marginal contribution that pi provides to a coalition of
players. In this work, each attention head can be treated as a player, with its importance assessed via
its Shapley value. The marginal contribution is defined as U(S ∪{pi})−U(S) where S is a coalition
of players excluding i and U is the utility function. A simple intuition for computing the Shapley
value of each head in LLMs is to define U as the model performance metric. This is a #P-hard (Deng
& Papadimitriou, 1994) problem as there are an exponential number of coalitions and corresponding
marginal contributions, thus requiring an enormous number of model inferences. Although many
studies (Jia et al., 2019; Mitchell et al., 2022) have explored approximating the Shapley value to
reduce computational costs, the process of applying these methods to evaluate the importance of
heads in LLMs remains prohibitively expensive.

The computational bottleneck in calculating the Shapley value arises from the fact that each sample
of the marginal contribution can only be applied to a single player. Fortunately, Shapley value can be
expressed as the expectation of the weighted complementary contribution, defined as U(S)−U(N\S),
where N represents the set of all players (Zhang et al., 2023a). Complementary contribution has an
advantage over the marginal contribution in that U(S)−U(N \S) can be used to update the Shapley
values for all players in S . By expressing the Shapley value in terms of complementary contributions,
we can interpret it as an expectation over these contributions computed at different coalition sizes |S|.
However, in the LLM setting, the cost of computing the complementary contributions in all coalition
sizes is still prohibitively high. We observe that the average complementary contribution of a single
player at different coalition sizes exhibits a strong correlation in Appendix Section E.4. This insight
allows us to approximate attention head importance by computing complementary contributions at
only a few selected coalition sizes, rather than evaluating all possible sizes (i.e., from 1 to |N |). By
focusing on a few representative coalition sizes, we can significantly reduce the computational cost
of estimating the contributions of heads. Additionally, we provide a theoretical error bound of this
approach and demonstrate its efficiency.

CoKV is a simple-yet-effective method and can integrate well with other inference optimization
techniques. We integrate CoKV with widely used methods, including FlashAttention (Dao et al., 2022)
and group query attention (GQA) (Ainslie et al., 2023). CoKV achieves state-of-the-art performance
in LongBench (Bai et al., 2024) using Qwen3-32B, Llama-3-8B-Instruct (Dubey et al., 2024) and
Mistral-7B Jiang et al. (2023) models. Results from the Llama-3-8B-Instruct model show that when
each KV cache retains an average of 128 KV pairs (1.6% of the full cache), it achieves 97.29% of
the performance of the full KV cache. Furthermore, when each cache retains just 512 tokens on
average, CoKV outperforms the full KV cache in terms of average accuracy. This demonstrates that
CoKV not only reduces computational costs but also improves inference performance by identifying
which heads benefit from cache retention and which may have a detrimental effect. For Qwen3-
32B, CoKV achieve 98.83% of the performance of the full KV when retains an average of 1024KV
pairs(12.8%). Additionally, we evaluate all methods within the token range up to 61k in the Needle-in-
a-Haystack test and the RULER dataset (Hsieh et al., 2024), which are widely recognized benchmarks
for evaluating long-text processing capabilities of LLMs, where CoKV also demonstrated the best
performance. Experiments on mathematical reasoning datasets also demonstrate that CoKV possesses
strong cross-task capabilities.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

In this section, we first formalize the key-value caching and compression mechanism in multi-head
attention. We then present the Shapley value framework as a principled approach for quantifying the
importance of individual attention heads.

2.1 KEY-VALUE CACHING AND COMPRESSION

In Multi-Head Attention (MHA), for each attention head hi in one layer, the embedded input
X = {x1, x2, . . . , xm} ∈ Rm×dmodel of m tokens is mapped into different subspaces using query
WQ

i , key WK
i , and value WV

i ∈ Rdmodel×dh matrices:

Qi = XWQ
i ,Ki = XWK

i , Vi = XWV
i ∈ Rm×dh

where dh is the dimension of attention heads, dh = d/τ , and τ is the number of heads in one layer.

All the computed KV for the input sequence are cached to avoid recalculating them during the
subsequent decoding stages. Assume there is a new input token x ∈ R1×dmodel , then it will be mapped
to a new query, key, and value as follows,

qi = xWQ
i , ki = xWK

i , vi = xWV
i ∈ R1×dh .

The KV cache is updated by adding the new key and value pair

Ki = Cat[Ki, ki], Vh = Cat[Vi, vi].

The attention output is computed as follows Oi = AiVi where Ai = softmax(qiK
T
i /
√
dh). The

final output y ∈ R1×dmodel is obtained through a linear transformation

y = Cat[O1, · · · , Oτ]W
O

where WO ∈ Rd×dmodel output weight matrix.

Due to space limitations, we present the introduction of KV cache eviction and KV cache quantization
in Appendix Section C.

2.2 SHAPLEY VALUE

Consider a set of players N = {p1, . . . , pn}. A coalition S is a subset of N that cooperates to
complete a task. A utility function U(S) (S ⊆ N) is the utility of coalition S for the task. The
marginal contribution of player pi with respect to a coalition S is U(S ∪ {pi})− U(S). The Shapley
value measures the expectation of marginal contribution of player pi in all possible coalitions. That is

SVi =
1

n

∑
S⊆N\{pi}

U(S ∪ {pi})− U(S)(
n−1
|S|

) . (1)

According to Equation 1, it is evident that computing the exact Shapley value requires enumerating
the utilities for all possible subsets of players and each marginal contribution can only be used to
update the Shapley value of a single player. Therefore, the computational complexity of exactly
calculating the Shapley value is exponential. Recently, the Shapley value of player pi is proven to be
equal to the weighted complementary contributions (Zhang et al., 2023a) as follows,

SVi =
1

n

∑
S⊆N\{pi}

U(S)− U(N \ S)(
n−1
|S|

) . (2)

U(S)− U(N \ S) is called complementary contribution which has an advantage that can be reused
to update Shapley value estimation for all players in S . In the context of KV caches, attention heads
are treated as players for evaluating their importance to each specific task. U(S) is defined as the
model accuracy when the attention heads in N \ S are masked, we retain only the KV pairs within
the local window for masked heads.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 IMPORTANCE-AWARE KV CACHE COMPRESSION VIA SLICED SHAPLEY
VALUE

Our method consists of two phases. First, we precompute the importance scores for each attention
head. Second, these scores are utilized for KV cache compression during inference. The overview of
our approach is illustrated in Figure 1.

Figure 1: Overview of our proposed method: (1) Head Importance Evaluation (Upper Part): For
a 4-layer × 4-head model, We measure head importance using the Sliced Shapley Value (SSV). To
approximate SSV, we sample M different sets of masked heads and compute their complementary
contributions. The average complementary contribution of each head is its estimated SSV. (2) KV
Cache Compression (Lower Part): Using the 4 heads in Layer 3 and the KV cache eviction method
as an example, each head stores KV pairs for a small local window of recent tokens. Heads with
higher SSV (represented by darker areas in the heatmap) are allocated more cache size to retain KV
pairs prior to the local window. For adaptive KV cache quantization, we can assign heads with higher
SSV more bits, while heads with lower SSV receive fewer bits.

3.1 HEAD IMPORTANCE EVALUATION

Although the complementary contribution helps in increasing efficiency when approximating the
Shapley value, it is still computationally costly, especially in the LLM setting. Given a set of
players N = {p1, . . . , pn}, a coalition of j players (1 ≤ j ≤ n) is called a j-coalition. Moreover,
for a player pi (1 ≤ i ≤ n), a j-coalition that contains pi is called a (i, j)-coalition. Denote by
Si,j = {S ∪ {pi}|S ⊆ N \ {pi}, |S| = j − 1} the set of (i, j)-coalitions, and by SVi,j the expected
complementary contributions of (i, j)-coalitions. That is,

SVi,j =
∑

S∈Si,j

U(S)− U(N \ S)(
n−1
j−1

) . (3)

It is clear that SVi =
1
n

∑n
j=1 SVi,j . Computing the Shapley value needs to calculate SVi,j for j

ranging from 1 to n, which becomes costly when n is large.

We observe that the expected complementary contributions of j-coalitions for heads in LLMs follow
a similar distribution across different j values, as shown in Appendix Section E.4. This suggests
that the contributions of heads can be effectively captured using a subset of j-coalitions. Based
on this insight, we propose assessing the importance of heads using the expected complementary
contribution of several j-coalitions, which can significantly reduce the computation cost while
maintaining effectiveness. Formally, we introduce a new definition called the Sliced Shapley value .

Definition 1 (Sliced Shapley Value) Let H ⊆ {1, · · · , n} denote the selected set of j-coalitions,
representing a specific slice of the coalition size space. The Sliced Shapley value of head hi with

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

respect toH is defined as:

SSVH
i =

1

|H|

n∑
j=1

SVi,j · I|H|
j , (4)

where IHj is an indicator function, which is 1 if j is the element inH and 0 otherwise.

Theorem 1 Assume SVi,j ∈ [a, b] for all j, and let R = b − a. Then, for any δ ∈ (0, 1), with

probability at least 1 − δ, |SVi − SSVH
i | ≤ R

√
(n−|H|+1) ln(2/δ)

2|H|n . Furthermore, the established

bound implies that the error |SVi − SSVH
i | is O

(√
1/|H|

)
. The proof is provided in Appendi

Section D.1.

Algorithm 1: Evaluating Head Importance in LLMs.
input :Heads N = {h1, . . . , hn} and sampling numberM > 0

output :approximate Sliced Shapley value SSVH
i for each head hi (1 ≤ i ≤ n)

1 SVH
i ← 0 (1 ≤ i ≤ n); SVi,j ,mi,j ← 0 (1 ≤ i, j ≤ n);

2 for k=1 toM do
3 let πk be a random permutation of {1, . . . , n};
4 let i be a randomly selected element from the setH;
5 S ← {πk(1), . . . , πk(i)};
6 N \ S ← {πk(i+ 1), . . . , πk(n)};

// U(S) is the model performance when heads in N \ S are masked and vice versa for U(N \ S).

7 u← U(S)− U(N \ S);
8 for j=1 to i do
9 SVπk(j),i+ = u;

10 mπk(j),i+ = 1;

11 for i = 1 to n do
12 SSVH

i = 1
H
∑n

j=1 SVi,j/mi,j ;

13 return SSVH
1 , . . . ,SSVH

n .

Algorithm Description. The detailed steps of approximating SSVH
i are shown in Algorithm 1. In

each iteration, sample a random permutation πk of the heads {h1, . . . , hn}, which defines a random
ordering of the heads. Randomly select a split point and create a set S of selected heads. Mask heads
in the setN \S , and evaluate the model accuracy after masking, which is denoted as U(S). Similarly,
calculate U(N \ S) by masking heads in S (Lines 3-6). For each head in S, update SVπk(j),i and
count matrix mπk(j),i (Lines 7-10). AfterM iterations are completed, calculate the approximated
Sliced Shapley value for each head by averaging the complementary contributions.

Theorem 2 Algorithm 1 returns an (ϵ, δ)-approximation of Sliced Shapley value with time complexity

O(T |H|ln 2|H|
δ

ϵ2) where T is the time cost of evaluating a complementary contribution which is the
time to inference on the validation dataset of each task in our setting. In contrast, Shapley value
requires the time complexity of O(Tnln 2n

δ

ϵ2) to achieve an (ϵ, δ)-approximation. The proof is provided
in Appendix Section D.2.

3.2 KV CACHE COMPRESSION

In this section, we present how our proposed head importance evaluation method can be effectively
applied to KV cache compression. We demonstrate its application in two primary directions, KV
cache eviction and KV cache quantization. While our main focus and contributions lie in the eviction-
based approach, we also show that the sameimportance scores can be seamlessly integrated into
quantization frameworks to achieve superior performance compared to existing methods.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2: Token Eviction Using CoKV.

input :Shared budget size B, local window size s, tokens in local window Xwin ∈ Rs×d, KV
in local window {Kwin

i , V win
i }, KV outside local window {Kout

i , V out
i }

output :Retained KV Cache {K̂i, V̂i}
1 Qwin

i = XwinWQ
i ;

// Compute attention weights of queries in local window and prefix Keys.

2 Ai = softmax(Qwin
i KT

i);
3 Ai = Ai.maxpooling(dim = 1).mean(dim = 0);

// Calculate token scores outside the local window.

4 Get ci using Algorithm 1 and Equation 5;
5 indices = Ai.topk(ci).indices;
6 Select {K̂i, V̂i} from {Kout

i , V out
i } according indices;

7 {K̂i, V̂i} = Cat({K̂i, V̂i}, {Kwin
i , V win

i });
// Keep top ci KV pairs in the cache.

8 return Retained KV Cache {K̂i, V̂i}.

KV Cache Eviction Budget Allocation. An intuitive approach suggests that the least important
heads, which contribute minimally or even negatively to the model performance, may not require
cache allocation. Let α represent the number of such heads, which serves as the sole hyperparameter
in our allocation scheme. For the remaining n − α heads, we employ a normalization method to
normalize their importance scores and allocate the cache size proportionally based on their normalized
scores.

Specifically, we normalize their contributions using min-max normalization for the n− α heads:

NSVH
i =

SSVH
i −minα(SSVH)

max(SSVH)−minα(SSVH)
,

where minα(·) and max(·) extract the α-th smallest and maximum value, respectively. For the α
heads with the smallest Sliced Shapley values, we set the normalized score as 0. This ensures that all
normalized scores lie in the range [0, 1].

Next, the cache size ci allocated to head hi is determined by the local window size s and linearly
distributing the remaining shared cache size B based on the normalized scores:

ci = B · NSVH
i∑n

j=1NSV
H
j

+ s. (5)

Algorithm Description. The detailed KV cache eviction steps for a single head are outlined in
Algorithm 2. First, we allocate the KV cache size for each head based on their normalized Sliced
Shapley values. Next, we rank the importance of KV pairs within each head following SnapKV.
Specifically, the most recent tokens within local windows guide the KV cache selection. Attention
scores from these local windows to the remaining tokens are aggregated via pooling, with higher-
scoring tokens retained in the cache for each head.

Remark on KV Cache Quantization. The head importance scores derived by our method are
not limited to eviction and can be directly applied to guide non-uniform quantization strategies.
Specifically, our scores enable an adaptive bit allocation scheme where more important heads are
assigned higher precision. This principle can complement advanced quantization techniques like
Kvquant (Hooper et al., 2024), allowing for a head-aware quantization policy that operates on top of
their sophisticated per-channel methods.

In our experiments, we demonstrate that a simple integration, which allocates bits proportionally
to our importance scores, consistently outperforms baselines that use alternative head importance
metrics under the same average bit-width. This validates the general utility of our cooperation-based
evaluation framework across different compression paradigms.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

In this section, we present the evaluation results of our method on the LongBench benchmark. Due
to space limitations, detailed results are provided in the appendix, including an ablation study on
coalition sizes (Appendix Section E.2), the precomputation cost analysis of CoKV (Section E.3),
evaluations on GSM8K and MATH (Section E.6), an analysis of CoKV’s general ability (Section E.7,
the Needle-in-a-Haystack test (Section E.8), and experiments on the RULER dataset (Section E.9).

4.1 EXPERIMENT SETTINGS

Datasets. Details of all experimental datasets are provided in Appendix Section E.1.

Baselines and Settings. We compare CoKV with four strong KV cache compression methods. All
methods keep the same total cache size for fair comparison. Besides, we implement all methods with
GQA Ainslie et al. (2023) and FlashAttention Dao et al. (2022) for efficient computation.

• SnapKV Li et al. (2024b) uses the last several tokens as local windows. Attention scores from
these windows to the remaining tokens are pooled to guid the KV selection in each head.

• PyramidKV Cai et al. (2024) allocates more KV cache to lower layers to retain key information
while reducing the budget for higher layers where information is already aggregated.

• Ada-KV Feng et al. (2025) dynamically allocates budgets to heads within each layer based on their
concentration degrees, and can be combined with SnapKV or PyramidKV. Ada-SnapKV is used as
the baseline due to its superior performance over Ada-PyramidKV.

• HeadKV-R2 Fu et al. (2025) allocate budgets to heads based on their retrieval-reasoning score,
and it uses SnapKV to rank the importance of KV pairs in each head.

We evaluate CoKV on the Qwen3-32B, Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2 models.
Due to the page limit, the Mistral-7B-Instruct-v0.2 results are provided in Appendix. For test data that
exceeds the maximum input length of Llama-3-8B-Instruct, we adopt the approach of HeadKV by
utilizing the first 4k tokens and the last 4k tokens. Following standard practices in Ada and HeadKV,
we perform cache eviction after the prefilling phase of each layer for consistent comparison. In GQA,
a group of heads shares the same KV cache. We treat each cache within a group as a player in the
cooperative game, evaluating their Sliced Shapley value to determine their importance scores. For
HeadKV-R2, we calculate the importance score of each group by averaging the retrieval-reasoning
scores of the heads within the group. This adaptation ensures compatibility with GQA, as HeadKV
is implemented with MHA in the original paper. The context length for headkv score detection
was configured to the maximum capacity of an H100 96G GPU for computing the head scores in
Qwen-3-32B. For the Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2 models, we adopted the
scores reported by the authors. In CoKV, we use for coalition sizes H = {32, 64, 96, 128} for
Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2 which have 256 groups(32 layers, 8 groups in each
layer), and only one coalition size H = {256} for Qwen3-32B (64 layers, 8 groups in each layer).
Our ablation experiment of H show that CoKV with only one coalition size works well, but more
slices will enhance CoKV. Following HeadKV-R2, we set the local window size to 8. We randomly
split each dataset into a very small validation dataset and a test dataset. For Llama-3-8B-Instruct
and Mistral-7B-Instruct-v0.2, we construct validation sets of 30 data tuples, with the remaining data
used as the test set. For Qwen3-32B, due to its significantly higher inference cost, we use a smaller
validation set of 20 data tuples. The hyperparameter α is selected from {1, 5, 10, 15, 20, 30, 40}
based on the Sliced Shapley value computed on the corresponding validation set. We do not compare
with DuoAttention (Xiao et al., 2025a) because its requirement for certain attention heads to retain
the full key-value cache exceeds the total budget constraint of our eviction policy.

4.2 HYPERPARAMETER FREE RESULTS.

Since both HeadKV-R2 and CoKV provide importance scores for each group, we conduct an
experiment to compare their effectiveness without introducing any additional hyperparameters. In this
experiment, we mask the caches of groups based on the importance scores assigned by each algorithm.
This experiment can be viewed as a specific case of adaptive KV quantization that switches between 0
bits and 16 bits. Specifically, we mask the caches of both the highest-ranked (top) and lowest-ranked
groups (low). The complete results are shown in Tables 16, 17 and 18 in the appendix. We include a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comprehensive Masking Top Important Heads Results on LongBench

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Masking Top 16 heads with Llama-3-8B-Instruct model

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.10 51.64 41.73
Random 20.93 28.48 33.69 44.93 20.01 20.6 28.43 23.7 26.67 74.12 91.07 41.12 4.26 71.76 49.83 40.55 38.76
HeadKV-R2(top) 19.45 12.97 27.75 34.2 17.33 14.32 19.74 22.76 22.05 67.06 87.91 35.53 4.71 68.49 26.62 26.53 31.71
CoKV(top) 6.55 9.46 9.47 10.19 12.27 5.67 5.73 16.96 4.47 43.53 71.21 23.77 3.91 34.98 11.58 17.18 17.93

Masking Top 64 heads with Qwen3-32B model

Full Cache 37.14 45.51 49.17 58.2 54.74 38.36 32.9 23.72 25.08 72.78 72.57 37.95 17.78 100 62.72 70.08 49.92
Random 30.13 44.81 50.07 56.51 54.06 39.24 27.33 23.32 24.82 72.78 71.12 37.72 12.94 100.0 22.71 23.79 43.21
HeadKV-R2(top) 28.38 34.55 32.15 47.25 45.26 25.33 20.14 22.17 13.98 55.56 56.69 21.18 8.69 98.33 14.44 18.47 33.91
CoKV(top) 28.85 28.55 18.91 25.1 19.78 12.69 13.48 22.97 23.8 35.56 26.43 10.41 8.04 17.22 5.2 5.05 18.88

simplified table for the results of masking groups of Qwen3-32B and Llama-3-8B-Instruct model
in Table 1. The results show that when masking the top-ranked groups identified by each method,
the performance of CoKV degrades more significantly than that of HeadKV-R2. This suggests that
CoKV is more effective at ranking group importance, as it better distinguishes between critical and
non-critical caches. Conversely, the results in the full tables show that when masking the unimportant
groups (low), the performance of CoKV declines more gradually than HeadKV-R2. When masking
the 64 most important heads of Qwen3-32B, CoKV achieves an average accuracy of only 18.88%,
while HeadKV maintains 33.91%. This demonstrates that CoKV more accurately identifies critical
heads, as its performance drops more significantly when they are removed. Suprisingly, the results
of masking 16 most unimportant groups in Table 16 and 18 outperformed the FullKV approach.
This further demonstrates that CoKV can identify groups that have a negative impact on the model.
By removing the KV pairs from these groups, the model inference not only optimizes storage and
decoding speed but also enhances overall performance.

4.3 KV CACHE EVICTION RESULTS

Benchmark Results. The complete benchmark results are presented in Tables 14 and 15 in the
appendix. We include a simplified table (Table 2), showing the performance of Llama-3-8B-Instruct
and Qwen3-32B when keeping 64 KV pairs on average for Llama-3-8B-Instruct and 128 KV pairs on
average for Qwen3-32B. The results demonstrate that CoKV consistently outperforms all baseline
methods. The superior performance of CoKV arises from its ability to effectively evaluate the

Table 2: Comprehensive KV Cache Eviction Results on LongBench

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Llama-3-8B-Instruct model with KV size=64

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.1 51.64 41.73
SnapKV 19.94 13.21 28.91 40.06 28.58 18.12 17.29 21.71 17.05 49.41 89.00 35.48 3.99 71.57 54.35 50.42 34.94
Pyramid 20.11 16.54 32.67 40.25 27.71 17.54 18.67 22.37 20.03 62.55 89.89 36.63 4.30 71.76 54.27 50.96 36.64
Ada-SnapKV 20.40 14.46 32.62 42.39 31.48 17.58 18.57 22.18 18.71 58.82 90.13 35.25 4.41 71.57 54.02 51.68 36.52
HeadKV-R2 20.30 16.76 35.96 38.08 26.41 17.98 18.68 21.75 20.58 67.06 88.19 37.30 3.21 71.76 56.20 54.49 37.17
CoKV 20.77 19.67 35.11 44.37 34.36 17.83 17.89 22.33 18.55 71.76 90.73 38.51 4.71 71.76 55.45 55.82 38.73

Qwen3-32B model with KV size=128

Full Cache 37.14 45.51 49.17 58.2 54.74 38.36 32.9 23.72 25.08 72.78 72.57 37.95 17.78 100.0 62.72 70.08 49.92
SnapKV 30.18 32.54 41.96 55.2 47.04 34.31 22.74 21.19 19.0 47.22 67.89 36.77 17.22 98.89 58.52 50.48 42.65
Pyramid 27.17 32.11 40.93 30.13 37.2 34.43 22.01 20.95 18.71 38.1 68.43 35.55 9.52 100.0 56.48 51.29 40.19
Ada-SnapKV 22.74 32.11 40.02 32.42 40.44 27.97 23.43 21.67 18.98 46.67 68.43 38.93 9.52 100.0 57.9 49.71 39.43
HeadKV-R2 29.78 33.39 41.51 51.85 52.06 36.17 24.17 21.04 19.03 48.89 67.98 36.44 18.02 99.44 56.88 52.47 43.07
CoKV 28.73 37.56 44.80 53.48 53.07 35.17 23.89 21.34 19.28 54.44 69.35 38.23 19.22 100.0 57.13 56.87 44.53

importance of each cache within a group while considering the cooperation among all groups. It is
not only capable of identifying which groups are important but also able to recognize those groups
that do not contribute or even have a negative contribution. By optimizing the cache size to enhance
overall cooperation, CoKV ensures efficient and high-quality inference.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Decoding Latency and Memory Usage We conduct experiments using the Qwen3-32B model,
which supports a maximum context window of 128k tokens with YaRN (Peng et al.), with FlashAt-
tention enabled as the default setting. All methods except FullKV, were executed on a single H100
96G GPU. The FullKV method alone necessitated the use of two H100 96G GPUs. We design two
key experiments with the average KV cache size set to 128 tokens for all KV cache eviction methods.

Figure 2: Results of Peak Memory Usage and Decoding Latency.

Peak Memory Usage Under fixed generation length (1 token), we measure the peak GPU
memory usage (including model parameters and runtime states) across varying input contexts
(1k/8k/16k/32k/64k/120k tokens). As shown in the Peak Memory Usage of Figure 2, CoKV reduces
memory usage by 38.4% compared to FullKV baseline at 120k input length. Notably, CoKV can
accommodate 120k inputs on a single H100 GPU, in contrast to FullKV, which supports under 60k.

Decoding Latency With a fixed input context length of 120k tokens, we measure decoding latency
(including both the pre-filling time and the decoding time) across different generation lengths
(1/128/256/512/1024/2048 tokens). As shown in the Decoding Latency of Figure 2, CoKV achieves
less than 25.14% of the total latency compared to the FullKV baseline, with negligible differences
observed between the other baselines(comparative experiments showed less than 2% variation across
64/256/512/1024 tokens).

4.4 KV CACHE QUANTIZATION RESULTS

To evaluate the effectiveness of CoKV, we conducted comparative experiments under a KV cache
quantization setting. Specifically, we compared CoKV against HeadKV-R2 using an adaptive
quantization strategy with two bit-widths. The more important half of the attention heads were
quantized to 8 bits, and the remaining half to 4 bits. The results are presented in Table 3. We also
conduct KV quantization with Qwen model which is shown in Table 19 in the appendix.

Table 3: Llama-3-8B Instruct Model with 8-4 Bits Quantization

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

HeadKV-R2 21.23 31.86 35.33 43.51 34.44 17.05 17.19 15.44 15.23 73.53 74.6 31.83 7.14 35.71 58.86 43.29 34.77
CoKV 22.58 32.62 38.36 44.91 34.53 21.61 16.9 17.35 15.68 75.29 82.14 31.02 7.14 35.71 60.29 42.64 36.17

5 CONCLUSION

Large language models (LLMs) face significant challenges in inference cost due to the excessive
memory and latency overhead associated with the growing size of the KV cache. To this end, we
introduce CoKV, a novel method designed to evaluate the collaborative importance of attention
heads and dynamically allocate cache sizes based on Sliced Shapley value. Our experimental results
demonstrate that CoKV achieves state-of-the-art performance across 16 LongBench datasets, as well
as on the NIAH, RULER, and math reasoning benchmarks. CoKV provides a scalable and practical
solution for enhancing the efficiency of LLMs in real-world applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study uses only public benchmark datasets and open-source models. No personal data or
sensitive attributes are involved, and use follows the original dataset terms. The research does not
involve any personal, private, or sensitive data. The proposed methods are intended for research
purposes, and we have conducted a review which identified no foreseeable ethical concerns.

REPRODUCIBILITY STATEMENT

All datasets and models used in this study are publicly accessible online. The experimental details
are described in the Experiment section, and the code for reproducing all results is available in our
anonymous repository.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head checkpoints.
In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023. URL
https://openreview.net/forum?id=hmOwOZWzYE.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 3119–3137, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-long.172/.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling, 2024. URL https://arxiv.org/abs/2406.02069.

Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu, Gangwei Jiang, Yuanhao Pu, Yuxuan
Lei, Xiaolong Chen, Xingmei Wang, Kai Zheng, Defu Lian, and Enhong Chen. When large
language models meet personalization: perspectives of challenges and opportunities. World Wide
Web (WWW), 27(4):42, 2024a. doi: 10.1007/S11280-024-01276-1. URL https://doi.org/10.
1007/s11280-024-01276-1.

Renze Chen, Zhuofeng Wang, Beiquan Cao, Tong Wu, Size Zheng, Xiuhong Li, Xuechao Wei, Shen-
gen Yan, Meng Li, and Yun Liang. Arkvale: Efficient generative LLM inference with recallable key-
value eviction. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet,
Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing Systems
38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024, 2024b. URL http://papers.nips.cc/paper_files/
paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html.

Yaofo Chen, Zeng You, Shuhai Zhang, Haokun Li, Yirui Li, Yaowei Wang, and Mingkui Tan. Core
context aware transformers for long context language modeling. arXiv preprint arXiv:2412.12465,
2024c.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pp. 493–507, 1952.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

10

https://openreview.net/forum?id=hmOwOZWzYE
https://aclanthology.org/2024.acl-long.172/
https://arxiv.org/abs/2406.02069
https://doi.org/10.1007/s11280-024-01276-1
https://doi.org/10.1007/s11280-024-01276-1
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/cd4b49379efac6e84186a3ffce108c37-Abstract-Conference.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Re. Flashattention: Fast and
memory-efficient exact attention with IO-awareness. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=H4DqfPSibmx.

Xiaotie Deng and Christos H. Papadimitriou. On the complexity of cooperative solution concepts.
Math. Oper. Res., 19(2):257–266, 1994. doi: 10.1287/MOOR.19.2.257. URL https://doi.org/
10.1287/moor.19.2.257.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024.
doi: 10.48550/ARXIV.2407.21783. URL https://doi.org/10.48550/arXiv.2407.21783.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference, 2025. URL https://arxiv.
org/abs/2407.11550.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads
matter: A head-level KV cache compression method with integrated retrieval and reasoning.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=FJFVmeXusW.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
uNrFpDPMyo.

Paul Hager, Friederike Jungmann, Robbie Holland, Kunal Bhagat, Inga Hubrecht, Manuel Knauer,
Jakob Vielhauer, Marcus Makowski, Rickmer Braren, Georgios Kaissis, et al. Evaluation and
mitigation of the limitations of large language models in clinical decision-making. Nature medicine,
30(9):2613–2622, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel,
Bo Li, Ce Zhang, Dawn Song, and Costas J. Spanos. Towards efficient data valuation based
on the shapley value. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of the
Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89 of
Proceedings of Machine Learning Research, pp. 1167–1176. PMLR, 16–18 Apr 2019. URL
https://proceedings.mlr.press/v89/jia19a.html.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/
abs/2310.06825.

11

https://openreview.net/forum?id=H4DqfPSibmx
https://doi.org/10.1287/moor.19.2.257
https://doi.org/10.1287/moor.19.2.257
https://doi.org/10.48550/arXiv.2407.21783
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=FJFVmeXusW
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://proceedings.mlr.press/v89/jia19a.html
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pre-trained language
models for text generation: A survey. ACM Comput. Surv., 56(9):230:1–230:39, 2024a. doi:
10.1145/3649449. URL https://doi.org/10.1145/3649449.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024b. URL https://openreview.net/forum?id=poE54GOq2l.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for LLM KV cache compression at test time. In Thirty-seventh Conference on Neural In-
formation Processing Systems, 2023. URL https://openreview.net/forum?id=JZfg6wGi6g.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=L057s2Rq8O.

Rory Mitchell, Joshua Cooper, Eibe Frank, and Geoffrey Holmes. Sampling permutations for shapley
value estimation. J. Mach. Learn. Res., 23:43:1–43:46, 2022. URL https://jmlr.org/papers/
v23/21-0439.html.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models, 2023. URL https://arxiv. org/abs/2309.00071.

Robert J Serfling. Probability inequalities for the sum in sampling without replacement. The Annals
of Statistics, pp. 39–48, 1974.

Lloyd S Shapley. A value for n-person games. Contribution to the Theory of Games, 2, 1953.

Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019. URL https:
//arxiv.org/abs/1911.02150.

Yi Su, Yuechi Zhou, Quantong Qiu, Juntao Li, Qingrong Xia, Ping Li, Xinyu Duan, Zhefeng Wang,
and Min Zhang. Accurate KV cache quantization with outlier tokens tracing. In Wanxiang Che,
Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2025, Vienna, Austria, July 27 - August 1, 2025, pp. 12895–12915. Association for Computational
Linguistics, 2025. URL https://aclanthology.org/2025.acl-long.631/.

Qiheng Sun, Jiayao Zhang, Jinfei Liu, Li Xiong, Jian Pei, and Kui Ren. Shapley value approximation
based on complementary contribution. IEEE Transactions on Knowledge and Data Engineering,
36(12):9263–9281, 2024. doi: 10.1109/TKDE.2024.3438213.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Danning Ke, Yiwu Yao, and Gongyi
Wang. Razorattention: Efficient KV cache compression through retrieval heads. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=tkiZQlL04w.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanisti-
cally explains long-context factuality. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=EytBpUGB1Z.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, junxian guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context LLM inference with retrieval and streaming
heads. In The Thirteenth International Conference on Learning Representations, 2025a. URL
https://openreview.net/forum?id=cFu7ze7xUm.

12

https://doi.org/10.1145/3649449
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=L057s2Rq8O
https://jmlr.org/papers/v23/21-0439.html
https://jmlr.org/papers/v23/21-0439.html
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://aclanthology.org/2025.acl-long.631/
https://openreview.net/forum?id=tkiZQlL04w
https://openreview.net/forum?id=tkiZQlL04w
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=cFu7ze7xUm

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Shang Yang, Haotian Tang, Yao Fu, Song Han, et al.
Duoattention: Efficient long-context llm inference with retrieval and streaming heads. In The
Thirteenth International Conference on Learning Representations, 2025b.

June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable KV cache compression via
importance-aware mixed precision quantization. CoRR, abs/2402.18096, 2024. doi: 10.48550/
ARXIV.2402.18096. URL https://doi.org/10.48550/arXiv.2402.18096.

Jiayao Zhang, Qiheng Sun, Jinfei Liu, Li Xiong, Jian Pei, and Kui Ren. Efficient sampling approaches
to shapley value approximation. Proc. ACM Manag. Data, 1(1), May 2023a. doi: 10.1145/3588728.
URL https://doi.org/10.1145/3588728.

Shuhai Zhang, Zeng You, Yaofo Chen, Zhiquan Wen, Qianyue Wang, Zhijie Qiu, Yuanqing Li, and
Mingkui Tan. Curse of high dimensionality issue in transformer for long context modeling. In
Forty-second International Conference on Machine Learning, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen.
H2o: Heavy-hitter oracle for efficient generative inference of large language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023b. URL https:
//openreview.net/forum?id=RkRrPp7GKO.

13

https://doi.org/10.48550/arXiv.2402.18096
https://doi.org/10.1145/3588728
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR policy on large language model usage, we report the use of LLMs in
the preparation of this manuscript. We used GPT-5 as a writing assistance tool to improve grammar
and clarity. We also used Cursor for code completion and debugging. The authors reviewed and
tested all code. LLMs did not contribute to the design of any methods or the implementation of core
algorithms. The LLM was not used for research ideation or the design of methods. All scientific
ideas, experimental designs, theoretical results, and conclusions presented in this paper are entirely
the work of the authors.

B RELATED WORKS

KV Cache Compression The memory overhead of storing key-value (KV) pairs for LLM has
motivated extensive research on KV cache compression. StreamingLLM Xiao et al. (2024) preserves
the initial and recent tokens, which empirically exhibit higher informativeness during generation.
Similarly, Scissorhands Liu et al. (2023) proposes the persistence of importance to identify and retain
pivotal tokens. H2O Zhang et al. (2023b) employs a heavy-hitter oracle to drop tokens with low
attention scores.SnapKV Li et al. (2024b) uses the attention scores of the recent tokens to retain
critical tokens. CCA-LLM Chen et al. (2024c) groups input tokens, compressing each group into a
core token, which are then combined with recent tokens for attention computation. DGA-LLM Zhang
et al. (2025) aggregates less important tokens while preserving important tokens. While these
methods reduce memory usage and accelerate inference, they implicitly assume uniform importance
across attention heads, limiting their applicability. Recent works address head diversity through
layer-wise and head-wise optimizations. PyramidKV Cai et al. (2024) implements a hierarchical
allocation strategy, assigning larger cache budgets to lower layers based on the observed attention
patterns across layers. FastGen Ge et al. (2024) is an adaptive KV cache compression method that
reduces LLMs’ memory usage by profiling attention modules and constructing caches adaptively.
RazorAttention Tang et al. (2025) and Duoattention Xiao et al. (2025a) divide attention heads into
retrieval heads(critical for long-context processing Wu et al. (2025)) and non-retrieval heads, apply
full KV cache to retrieval heads and compressed KV cache to non-retrieval heads. ArkVale Chen
et al. (2024b) proposes a page-based KV cache manager that asynchronously copies filled pages
into external memory (e.g., CPU memory) as a backup and supports the recall of important tokens
that were previously evicted. AdaKV Feng et al. (2025) dynamically adjusts cache budgets across
heads based on their concentration degrees and HeadKV Fu et al. (2025) calculates head importance
scores to allocate cache budget before inference. However, these methods assess heads in isolation,
neglecting their collaborative interactions. For example, the standalone score of a head may not
reflect its true contribution when working synergistically with others. Additionally, these approaches
overlook the task-dependent variations in head importance. Our approach tackles these limitations by
modeling head interactions as a cooperative game, dynamically allocating cache resources based on
the varying complementary contributions of heads across different tasks.

In addition to KV cache eviction methods, KV cache quantization is also one of the mainstream
approaches for KV cache compression Yang et al. (2024); Liu et al. (2024). However, while eviction
methods can be used to retain less than 1% of the cache, KV cache compression cannot be applied to
such an extent because it must preserve at least 1 bit. Nevertheless, the combination of these two
methods is an interesting direction for future research.

Model Architecture and Computation Optimization Modern LLMs employ architectural op-
timizations to balance efficiency and performance. Multi Query Attention (MQA) Shazeer (2019)
shares a single key-value pair across all attention heads, drastically reducing memory usage but
potentially sacrificing performance. Group Query Attention (GQA) Ainslie et al. (2023) strikes
a balance by grouping heads to share key-value pairs, preserving performance while maintaining
memory efficiency, which is widely adopted in recent LLMs like Llama Dubey et al. (2024) and
Mistral Jiang et al. (2023). Concurrently, Flash Attention Dao et al. (2022) optimizes hardware
utilization by minimizing memory reads/writes during attention computation, significantly accelerat-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

ing inference. Notably, our approach is fully compatible with GQA and Flash Attention, ensuring
seamless integration with current LLMs.

Cooperative Game Theory Cooperative game theory offers a principled framework for understand-
ing how multiple players can jointly contribute to overall system performance. Shapley value Shapley
(1953), a classic solution in cooperative game theory, provides a method for fairly allocating joint
benefits based on the marginal contribution of each player. However, traditional Shapley value
computation methods allow each sample to be used to calculate the marginal contribution of only a
single player. Recent works Zhang et al. (2023a); Sun et al. (2024) address this limitation through
complementary contributions that enable simultaneous estimation of multiple players’ contributions.
In the context of LLMs, these methods still encounter scalability issues, as the cost of computing
complementary contributions across all coalition sizes remains prohibitively high. We propose
the Sliced Shapley value, which samples only a subset of coalition sizes. This approach not only
accelerates the computation but also accurately reflects the contributions of different heads.

C SUPLEMENTARY OF PRELIMINARIES

C.1 KV CACHE EVICTION

KV cache eviction methods can be employed to discard unimportant KV cache entries while pre-
serving model performance. As the attention heads process more tokens, the KV cache can grow
in size, which results in increased memory usage and computation costs. To address this, selective
eviction methods can be introduced to remove KV pairs that contribute less to the final attention
results. Typically, the eviction is based on criteria such as the relevance of key-value pairs (e.g., low
activation values or relevance scores) or certain pruning strategies based on model performance.

For each head hi, the compressed KV cache is reduced to K̂i ∈ Rs×dh and V̂i ∈ Rs×dh , where
some unimportant KV pairs are evicted, and s ≪ m, resulting in a significant improvement in
computational efficiency and memory usage. This compression is typically done by selecting the
most relevant KV pairs and discarding the rest. The process is often repeated over multiple layers or
tokens, progressively reducing the size of the KV cache while maintaining performance.

Specifically, the compressed KV cache is updated by appending the new key and value pair:

K̂i = Cat[K̂i, ki], V̂i = Cat[V̂i, vi].

The attention output for each head hi is computed using the compressed KV cache by Ôi = ÂiV̂i,
where the attention weights Âi are calculated as:

Âi = softmax(qiK̂T
i /

√
dh).

By selectively discarding less relevant KV pairs, the model can maintain a more efficient cache,
reducing memory and computation overhead. The effectiveness of this method depends on how well
the eviction process retains the most important KV pairs for accurate attention calculation, ensuring
that the overall model performance remains optimal despite the reduced cache size.

C.2 KV CACHE QUANTIZATION

The uniform quantization to the KV cache process is shown as follows. For each head group hi with
bit-width bi, and for each token position t, we compute a per-token dynamic range along the head
dimension. Define the integer range as:

qmax(bg) = max
(
1, 2bi−1 − 1

)
, bi > 1

and the scale as:

si,t =
max |Ki,t|
qmax(bi)

, ui,t =
max |Vi,t|
qmax(bi)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Uniform quantization maps float element Ki,t,j(1 ≤ j ≤ dh) to integers via:

Ki,t,j = clip
(

round
(
Ki,t,j

si,t

)
,−qmax(bi), qmax(bi)

)
and for values:

V i,t,j = clip
(

round
(
Vi,t,j

ui,t

)
,−qmax(bi), qmax(bi)

)
The dequantization process restores the values by:

K̃i,t,j = Ki,t,j × si,t, Ṽi,t,j = V i,t,j × ui,t

Specifically, the compressed KV cache is updated by appending the new key and value pair:

K̃i = Cat[K̃i, ki], Ṽi = Cat[Ṽi, vi].

The attention output for each head hi is computed using the compressed KV cache by Õi = ÃiṼi,
where the attention weights Ãi are calculated as:

Ãi = softmax(qiK̃T
i /

√
dh).

Since we only cache the quantized matrices Ki and V g which use bi bits for storing each element, it
can significantly reduce memory usage during model inference.

D PROOF

D.1 PROOF OF THEOREM 1

Let N = {1, 2, . . . , n} be the set of coalition sizes, and let Zj = SV{i, j} for j ∈ N , where SVi,j

denotes the expected complementary contribution for coalition size j. Assume Zj ∈ [a, b] for all j,
and define R = b− a. The true Shapley value is the population mean:

µ =
1

n

n∑
j=1

Zj = SVi.

For a randomly sampled subsetH ⊆ N of size |H| drawn without replacement, the Sliced Shapley
value is the sample mean:

Z̄ =
1

|H|
∑
j∈H

Zj = SSVH
i .

To bound the error |Z̄ − µ|, we apply Hoeffding’s inequality for sampling without replacement.
Consider a random permutation π of N , and let Xi = Zπ(i) for i = 1, . . . , |H|. The sample sum is
S =

∑|H|
i=1 Xi. By Serfling’s result (Serfling, 1974), the moment generating function satisfies:

E[exp(λ(S − µ))] ≤ exp

(
λ2|H|R2

8

n

n− |H|+ 1

)
.

Applying the Chernoff bound (Chernoff, 1952), for any t > 0:

P (S − µ ≥ t) ≤ min
λ>0

E[exp(λ(S − µ))] exp(−λt).

Substituting the Serfling’s bound:

P (S − µ ≥ t) ≤ min
λ>0

exp

(
λ2|H|R2

8

n

n− |H|+ 1
− λt

)
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The expression on the right is minimized by choosing λ = 4t
|H|R2

n−|H|+1
n . Plugging this value in

yields:

P (S − µ ≥ t) ≤ exp

(
− 2t2

|H|R2

n

n− |H|+ 1

)
.

By symmetry,

P (|S − |H|µ| ≥ t) ≤ 2 exp

(
− 2t2

|H|R2

n

n− |H|+ 1

)
.

Substituting t = |H|ϵ yields:

P (|S − |H|µ| ≥ |H|ϵ) = P (|S − |H|µ| ≥ |H|ϵ) ≤ 2 exp

(
−|H|ϵ

2

R2

n

n− |H|+ 1

)
.

Setting the right-hand side to δ and solving for ϵ:

2 exp

(
−2|H|ϵ2

R2

n

n− |H|+ 1

)
= δ,

ln(2)− 2|H|ϵ2

R2

n

n− |H|+ 1
= ln(δ),

ϵ2 =
R2

2|H|
(n− |H|+ 1) ln

(
2

δ

)
.

Thus, with probability at least 1− δ:

|SVi − SSVH
i | ≤ R

√
(n− |H|+ 1) ln(2/δ)

2|H|n
.

It is clear that (n−H+1)
n ≤ 1 asH ≥ 1. Therefore, we have

|SVi − SSVH
i | ≤ R

√
ln(2/δ)

2|H|
.

By omitting the constants, we obtain the asymptotic error bound O(|SVi −SSVH
i |). This completes

the proof.

D.2 PROOF OF THEOREM 2

In this section, we give the proof of Theorem 2. Denote H the selected coalition sizes. The
approximation of SVi,j(1 ≤ i, j ≤ n) is unbiased, which can be proven following Corollary 1 in Sun
et al. (2024). So it is evident that SSVi, being the weighted average of SVi,j , serves as an unbiased
estimator of SSVi. Hence, we have

P(|SSVH
i − SSV

H
i | ≥ ϵ) ≤P(

∑
j∈H
|SVi,j − SVi,j | ≥ ϵ)

≤
∑
j∈H

P(|SVi,j − SVi,j | ≥
ϵ

|H|
)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Then,we have ∑
j∈H

P(|SVi,j − SVi,j | ≥
ϵ

|H|
) ≤ 2|H| exp(−

2(ϵ
|H|)

2∑M/|H|
k=1 (bj − aj)2

)

≤ 2|H| exp(−
2(ϵ

H)2

Mr2

|H|
),

according to Hoeffding’s inequality where (aj , bj) denotes the range of complementary contribution
of j-coalitions, and r is max(b1 − a1, · · · , bj − aj). . Since we want the right hand side to be at

most δ, we have M ≥ Hr2ln 2H
δ

2ϵ2 . Thus, Alogorithm 1 returns an (ϵ, δ)-approximation of Sliced

Shapley value with time complexity O(T |H|ln 2|H|
δ

ϵ2) where T is the time cost of evaluating each
complementary contribution. The analysis of the time complexity of approximating Shapley value
starts from P(|SV1 − SVi| ≥ ϵ) ≤ P(

∑n
j=1 |SVi,j − SVi,j | ≥ ϵ) Following similar steps, we can

proof that the time complexity of approximating Shapley value is O(Tnln 2n
δ

ϵ2). Thus, we complete
the proof.

E SUPPLEMENTARY EXPERIMENTS

E.1 DATASETS

LongBench (Bai et al., 2023) is a multitask benchmark for long context understanding and exhibits a
wide range of average input lengths, spanning from 1,235 to 18,409 tokens. We introduce the detailed
information of LongBench in Table 4, including the task types, evaluation metrics, average length,
languages, and the number of samples for each task. .

Table 4: Details of 16 Datasets in LongBench

Label Task Type Eval metric Avg
len

Language Sample
Num

NrtvQA Single-Doc. QA F1 18,409 EN 200
Qasper Single-Doc. QA F1 3,619 EN 200
MF-en Single-Doc. QA F1 4,559 EN 150
HotpotQA Multi-Doc. QA F1 9,151 EN 200
2WikiMQA Multi-Doc. QA F1 4,887 EN 200
Musique Multi-Doc. QA F1 11,214 EN 200
GovReport Summarization Rouge-L 8,734 EN 200
QMSum Summarization Rouge-L 10,614 EN 200
MultiNews Summarization Rouge-L 2,113 EN 200
TREC Few-shot Learning Accuracy 5,177 EN 200
TriviaQA Few-shot Learning F1 8,209 EN 200
SAMSum Few-shot Learning Rouge-L 6,258 EN 200
PCount Synthetic Accuracy 11,141 EN 200
PRe Synthetic Accuracy 9,289 EN 200

Lcc Code Edit Sim 1,235 Python/
C#/Java 500

RB-P Code Edit Sim 4,206 Python/
Java 500

NIAH (Needle In A Haystack) is a test specifically designed to evaluate a model’s ability to locate
and recall a small piece of critical information (the "needle") hidden within a very long, irrelevant
text (the "haystack"). It systematically measures retrieval accuracy as the document length increases,
directly probing the limits of a model’s context window.
RULER is a comprehensive benchmark for evaluating the factual reasoning capabilities of large
language models over long contexts. It expands tasks from the popular "LAMA" probe into a

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

long-context setting, challenging models to maintain accuracy when factual knowledge is distributed
across thousands of tokens.
GSM8K (Cobbe et al., 2021) is a dataset of diverse grade-school level math word problems. Each
problem requires a sequence of logical reasoning steps to solve, and the benchmark is primarily used
to evaluate a model’s fundamental mathematical reasoning and arithmetic capabilities.
MATH (Hendrycks et al., 2021) is a large-scale dataset containing challenging high-school
competition-level mathematics problems. It tests advanced reasoning by requiring solutions to
problems from various sub-fields like algebra, geometry, and calculus, often demanding step-by-step
derivations.

E.2 ABLATION STUDY

In this section, we analyze the number of coalition sizes in H using the Llama-3-8B Instruct
model. We conducted experiments by masking the 32 most important attention heads (top) and
the 32 least important heads (low) based on their significance scores. This approach eliminates
the need for hyperparameter tuning, ensuring a fair comparison between CoKV and HeadKV by
removing potential fluctuations caused by parameter selection. We compare the results for H =
{32, 64, 96, 128} with H = {128}. The results show that using the expected complementary
contribution of a single coalition size 128 in Llama-3-8B-Instruct still outperforms the baselines, and
CoKV is more effective with a larger number of coalition sizes. The results are shown in Table 5.

Table 5: Ablation Study on Llama-3-8B-Instruct models using LongBench

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.10 51.64 41.73
Random 20.69 18.60 29.63 39.12 18.50 6.94 22.40 22.33 26.45 74.12 89.82 33.80 4.71 61.12 30.78 40.71 33.73
HeadKV-R2(top) 17.33 6.98 9.37 13.50 9.37 5.11 13.18 20.86 15.24 45.88 75.30 27.21 4.76 66.21 11.24 13.64 22.20
CoKV(top) 1.40 3.49 3.78 7.94 9.32 2.32 2.64 11.74 0.58 34.71 21.37 6.96 4.14 16.93 3.54 5.17 8.50
CoKV(coalition 128)(top) 5.98 4.41 3.98 9.25 13.02 2.80 5.16 10.92 2.23 33.58 24.15 8.87 7.36 15.89 3.67 8.94 10.01
HeadKV-R2(low) 21.51 11.16 25.33 19.52 14.48 7.42 16.73 23.91 14.58 74.12 89.09 40.69 4.66 70.09 33.13 32.39 31.18
CoKV(low) 22.45 33.06 38.34 45.82 39.62 20.18 28.39 24.04 26.67 74.12 91.14 41.70 4.71 71.76 52.24 64.94 42.45
CoKV(coalition 128)(low) 20.85 29.56 33.62 46.01 35.27 18.80 27.93 22.18 23.57 74.12 91.08 40.25 4.56 71.76 48.66 50.54 39.92

E.3 COMPUTATION EFFICIENCY

We further conduct experiments to evaluate the efficiency of approximating the Sliced Shapley value
(referred to as CoKV in our method) using the qasper dataset with the Qwen3-32B model. A subset
of 20 examples from the qasper dataset is used as the validation set for computing the Sliced Shapley
value which is the same as other experiments. The experiment is performed on a single H100 96GB
GPU, with a coalition size of 256, consistent with the settings in our other experiments.

Table 6: Overlap Ratio of Top 50% Important Heads

Sampling number 70 80 140 160 210 240

Time (hours) 4.97 5.71 9.64 10.91 14.32 17.08
Overlap Ratio (%) 64.45 68.75 74.60 77.73 84.37 90.18

To assess the stability of the approximation, we introduce a new metric, the overlap ratio of the top
50% important attention heads between two independent sampling runs. As shown in Table 6, when
the number of samples reaches 80, the overlap ratio exceeds two-thirds (68.75%), indicating that the
CoKV importance scores are beginning to converge and can reliably identify the most influential
heads. We recommend performing two independent sampling runs when computing CoKV. Once the
overlap ratio of the top 50% important heads between the two runs exceeds two-thirds, the results can
be averaged and used as the final importance scores. At this point, CoKV can effectively reflect the
relative contributions of attention heads.

Notably, even for a large model like Qwen3-32B, the precomputation of CoKV importance requires
only a few hours, a cost that is negligible compared to that of full training or fine-tuning. Once

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

computed, the importance scores can be stored and reused for long-term inference optimization, and
shared across users of the same model architecture, making CoKV a highly cost-effective approach.

E.4 DISTRIBUTION OF SLICED SHAPLEY VALUE

Figure 6 shows the distribution of Sliced Shapley values computed for the selected coalition size
H = 256 for Qwen3-32B on LongBench. Figures 7 and 8 illustrate the distribution for the selected
coalition sizesH = 32, 64, 96, 128 for Llama-3-8B-Instruct and Mistral-7B-v0.2, respectively.

We observe that the distributions of Sliced Shapley values exhibit significant differences across
datasets of different task categories, while showing relatively smaller variations within datasets
of the same domain type. In Figures 9 and 10, we present the distributions of the expected
complementary contributions of heads in Llama-3-8B-Instruct model on the hotpotqa dataset
(multi-document question answering) and the lcc dataset (code generation), with coalition sizes
of {32, 64, 96, 128, 160, 192, 224}. We observe strong correlations in the distributions across all
coalition sizes. Additionally, the distributions of the expected complementary contributions for
coalition sizes S and n− |S| are nearly identical, exhibiting symmetry around the size of 128. To
optimize computational efficiency, we restrict the calculation of complementary contributions to
coalitions with sizes below 128. These observations provide a justification for our approach of
computing complementary contributions using only a small subset of coalition sizes, as it effectively
captures the contributions of the heads.

As showing all the distribution of all datasets costs too much pages, we conduct additional experiment
analysis comparing the averaged complementary contributions of small coalitions (j=32,64,96) and
large coalitions (j=160,192,224) by measuring the overlap rate of top-contributing heads between
them in 16 datasets in LongBench. Specifically, we computed the percentage of shared heads in their
respective top-k lists (k=32,64,128). The results show consistently high overlap rates (averaging over
85%) across all 16 datasets and two different LLMs, confirming that the distributional similarity is
not model- or dataset-specific. This pattern suggests an underlying structural property of attention
heads in transformer-based LLMs, where the complementary contribution of heads remains stable
across different coalition scales. The results are shown in Tables 7 and 8.

Table 7: Overlap Results of Llama-3-8B-Instruct

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Top 32 heads 0.81 0.66 0.81 0.91 0.84 0.81 0.62 0.66 0.50 0.84 0.84 0.59 0.97 0.97 0.81 0.75 0.77
Top 64 heads 0.77 0.81 0.88 0.88 0.91 0.91 0.67 0.72 0.66 0.88 0.77 0.80 0.98 0.98 0.83 0.86 0.83
Top 128 heads 0.82 0.88 0.80 0.93 0.90 0.95 0.83 0.83 0.80 0.95 0.84 0.80 0.99 0.99 0.88 0.85 0.88

Table 8: Overlap Results of Mistral-7B-Instruct-v0.2

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Top 32 heads 0.66 0.84 0.72 0.78 0.75 0.94 0.75 0.72 0.62 0.75 0.78 0.72 1.00 0.94 0.75 0.69 0.78
Top 64 heads 0.77 0.94 0.77 0.72 0.81 0.94 0.92 0.72 0.69 0.86 0.84 0.77 0.97 0.94 0.72 0.73 0.82
Top 128 heads 0.83 0.94 0.84 0.86 0.87 0.97 0.95 0.84 0.88 0.88 0.87 0.86 0.99 0.95 0.86 0.80 0.89

E.5 DECODING LATENCY AND MEMORY USAGE

We also conduct decoding latency and memory usage experiments using the Mistral-7B-Instruct-v0.2
model, which supports a maximum context window of 32k tokens, with FlashAttention enabled as
the default setting, on an A100 GPU with 40GB of memory. We design two key experiments with the
average KV cache size set to 128 tokens(comparative experiments showed less than 2% variation
across 64/256/512/1024 tokens).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 3: Results of Decoding Latency and Peak Memory Usage.

Peak Memory Usage Under fixed generation length (1 token), we measure the peak GPU
memory usage (including model parameters and runtime states) across varying input contexts
(1k/2k/4k/8k/16k/32k tokens). As shown in the Peak Memory Usage of Figure 3, CoKV reduces
memory usage by 64% compared to FullKV baseline at 32k input length.

Decoding Latency With a fixed input context length of 28k tokens, we measure decoding latency
(including both the pre-filling time and the decoding time) across different generation lengths
(1/512/1024/2048/4096 tokens). As shown in the Decoding Latency of Figure 3, CoKV achieves less
than 50% of the total latency compared to the FullKV baseline, with negligible differences observed
between the other baselines.

E.6 MATHEMATICAL REASONING EVALUATION

To assess the mathematical reasoning capability of CoKV, we evaluate it on the GSM8K and MATH
datasets using the Qwen3-32B model. The head importance scores are derived from the average
scores across all tasks in LongBench. We perform experiments involving both KV cache eviction and
head masking. We use 5 shots in all the experiments. The results are shown in Tables 9, 10, 11,and
12.

Table 9: Qwen3-32B mode with KV size = 128 on GSM8K

Full Cache SnapKV Pyramid AdaKV HeadKV-R2 CoKV

93.47 70.71 69.56 68.69 79.44 82.10

Table 10: Mask Top Important Heads Results on GSM8K

16 heads 32 heads 64 heads 96 heads

Random 92.24 91.73 89.57 88.15
HeadKV-R2 91.24 90.38 72.15 36.85
CoKV(top) 86.57 19.40 3.77 1.89

E.7 GENERALIZATION ANALYSIS

We first compute a general head importance score by averaging the scores across all tasks in Long-
Bench using Qwen3-32B. This general score is then applied uniformly in head masking experiments
for each individual task in LongBench. The results, summarized in Table 17, indicate that although
CoKV using this general score performs better than using task-specific scores, it evaluates head
importance across more tasks therefore leading to a more comprehensive assessment. Besides, the
experiments in Section E.6 demonstrate that the head importance scores derived from LongBench
generalize effectively to mathematical reasoning tasks, confirming that CoKV captures a robust and
transferable notion of head importance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 11: Qwen3-32B mode with KV size = 128 on MATH

Full Cache SnapKV Pyramid AdaKV HeadKV-R2 CoKV

52.53 39.10 37.58 41.02 43.65 46.17

Table 12: Mask Top Important Heads Results on MATH

16 heads 32 heads 64 heads 96 heads

Random 52.15 51.06 46.97 42.39
HeadKV-R2 51.41 36.54 32.83 10.61
CoKV(top) 45.45 21.37 2.92 1.70

To validate the generalization capability of our method, we also conduct cross-dataset evaluations on
two task categories: 1. Multi-Document QA including 2WikiMQA and Musique datasets. 2. Code
Processing including Lcc and RB-P datasets. Following Section 4.2, we mask top and low-ranked
attention heads but cross-apply head importance scores between datasets within the same task (e.g.,
mask 2WikiMQA using Musique-derived scores). As shown in Table 20 and Table 21, our method
maintains superior accuracy over baselines across both models, confirming that learned importance
scores can generalize across datasets within shared task domains.

E.8 NEEDLE-IN-A-HAYSTACK TEST

To evaluate the performance of different KV cache compression methods in long-context retrieval
tasks, we conduct a Needle-in-a-Haystack benchmark test using the Mistral-7B-v0.2 model. With the
average KV cache size 128, we systematically insert target texts (needles) at ten equidistant positions
(11%, 22%, ..., 100%) across varying context lengths ranging from 1,000 to 31,000 tokens (in 1,000-
token increments). As shown in Figure 11, CoKV outperforms other baseline methods, achieving an
average score of 95.89% - the closest performance to the uncompressed FullKV benchmark.

We further extend our evaluation to the Qwen3-32B model under the same KV cache budget (average
size = 128). We use the average head scores on LongBench as the key-value allocation score, which
demonstrates that CoKV provides a fair measure of the retrieval ability of each head across different
tasks. Needles are inserted at the same ten relative positions across context lengths ranging from 1,000
to 61,000 tokens (in 4,000-token increments). As illustrated in Figure 12, CoKV again demonstrates
superior performance, attaining an average accuracy of 73.86%—the highest among all compressed
methods and the closest to the FullKV benchmark.

E.9 RULER

RULER generates synthetic examples to evaluate long-context language models with configurable
sequence length and task complexity. RULER includes four task categories, and we select the
representative task from each category for our assessment. Following the experimental setup described
in Section 4.2, we set the masking group size to 64 and test performance across various context
lengths (4k, 8k, 16k, and 31k). We compare CoKV with HeadKV-R2 because HeadKV-R2 is not
only the strongest baseline method but also provides per-head importance scores. We use mistral-7B-
v0.2-instruct model in this experiment, which supports a 32k-token context window. Notably, the
Llama3-8B instruct model is omitted due to its limited 8k context length. As shown in Table 22, our
method shows significant advantages over baseline approaches: masking less important groups (low)
results in less performance degradation, while masking critical groups (top) leads to substantially
larger drops in performance compared with other methods.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 13: Benchmark Results of Llama-3-8B-Instruct

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.1 51.64 41.73
KV size=64

SnapKV 19.94 13.21 28.91 40.06 28.58 18.12 17.29 21.71 17.05 49.41 89.00 35.48 3.99 71.57 54.35 50.42 34.94
Pyramid 20.11 16.54 32.67 40.25 27.71 17.54 18.67 22.37 20.03 62.55 89.89 36.63 4.30 71.76 54.27 50.96 36.64
Ada-SnapKV 20.40 14.46 32.62 42.39 31.48 17.58 18.57 22.18 18.71 58.82 90.13 35.25 4.41 71.57 54.02 51.68 36.52
HeadKV-R2 20.30 16.76 35.96 38.08 26.41 17.98 18.68 21.75 20.58 67.06 88.19 37.30 3.21 71.76 56.20 54.49 37.17
CoKV 20.77 19.67 35.11 44.37 34.36 17.83 17.89 22.33 18.55 71.76 90.73 38.51 4.71 71.76 55.45 55.82 38.73

KV size=128

SnapKV 20.37 14.73 34.24 43.32 28.94 19.74 19.68 22.15 20.68 64.71 90.69 39.03 4.41 71.76 58.48 51.70 37.39
Pyramid 20.32 19.28 33.81 41.13 28.21 19.94 19.70 22.97 21.11 67.65 89.89 37.77 4.30 71.76 55.93 51.30 37.82
Ada-SnapKV 20.86 18.14 35.17 45.12 30.39 20.43 19.93 21.84 21.25 69.41 90.29 38.08 4.75 71.76 57.99 53.16 38.66
HeadKV-R2 21.30 21.28 39.85 42.07 29.91 19.92 20.18 22.54 22.87 71.18 90.63 38.58 4.46 71.76 60.75 57.17 39.65
CoKV 20.40 23.25 38.93 45.11 37.60 20.40 19.78 23.16 21.14 73.59 91.21 40.96 4.71 71.76 58.34 59.37 40.61

KV size=256

SnapKV 22.98 21.02 36.27 44.24 31.02 19.72 20.90 22.63 22.45 69.41 90.77 39.64 4.26 71.76 59.44 54.35 39.43
Pyramid 22.18 22.83 35.95 41.85 31.74 21.14 21.27 22.65 22.83 71.18 90.83 40.50 4.35 71.37 57.69 51.49 39.37
Ada-SnapKV 23.58 23.76 35.65 43.83 32.24 20.50 21.26 22.77 22.69 71.76 90.87 40.36 4.21 71.76 58.79 54.70 39.92
HeadKV-R2 23.13 25.55 39.97 43.60 31.12 21.26 22.02 22.68 24.47 71.76 90.63 38.32 5.13 71.08 61.81 59.25 40.74
CoKV 22.69 28.23 42.34 46.32 36.38 21.17 21.17 23.64 23.08 72.94 90.93 42.07 4.71 71.76 62.40 61.92 41.98

KV size=512

SnapKV 22.92 22.86 39.33 43.89 32.70 20.87 22.24 22.39 23.97 71.18 90.87 41.14 4.54 71.76 59.98 55.00 40.35
Pyramid 23.59 25.70 38.21 44.34 32.48 20.59 22.94 22.49 24.07 72.35 90.87 40.92 4.75 71.76 58.22 52.54 40.36
Ada-SnapKV 23.47 28.41 39.02 44.87 32.77 20.52 23.14 22.96 24.47 72.12 90.93 39.85 4.71 71.76 58.59 54.65 40.77
HeadKV-R2 22.52 29.32 40.34 45.64 34.52 20.53 23.92 22.61 25.73 72.35 90.93 39.28 4.41 71.76 61.59 59.22 41.54
CoKV 24.56 29.18 40.60 46.11 37.53 21.33 23.02 23.51 24.77 72.94 91.09 41.29 4.76 71.50 63.06 63.55 42.44

KV size=1024

SnapKV 23.95 26.95 37.81 44.03 30.88 20.93 24.26 23.09 25.79 72.35 90.87 41.43 4.31 71.76 59.29 54.91 40.79
Pyramid 23.62 26.76 39.44 45.79 33.41 19.87 23.57 22.98 25.13 73.02 90.93 40.86 4.71 71.76 58.43 53.67 40.87
Ada-SnapKV 23.52 28.33 40.39 45.20 32.95 20.11 24.55 23.33 25.37 73.53 90.87 41.38 4.46 71.76 58.88 54.65 41.21
HeadKV-R2 23.35 29.60 40.09 45.82 35.81 21.39 25.57 23.32 26.30 74.12 90.77 40.27 4.19 71.76 61.58 59.03 42.06
CoKV 24.01 31.70 40.64 48.13 37.89 20.64 23.02 23.89 25.71 74.12 91.01 42.02 4.71 71.20 63.33 63.74 42.86

Table 14: Benchmark Results of Qwen3-32B

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 37.14 45.51 49.17 58.2 54.74 38.36 32.9 23.72 25.08 72.78 72.57 37.95 17.78 100 62.72 70.08 49.92
KV size=64

SnapKV 28.97 30.05 41.1 29.74 41.62 35.03 16.57 19.56 16.86 33.33 67.43 32.3 9.52 95.24 50.67 47.05 37.19
Pyramid 19.74 30.56 36.64 32.77 40.62 35.56 17.62 21.29 16.53 33.33 67.43 36.61 9.52 100.0 55.33 48.95 37.66
Ada-SnapKV 31.71 32.31 37.52 32.72 42.53 37.32 17.17 21.89 17.1 33.33 71.43 32.35 9.52 100.0 53.24 47.19 38.58
HeadKV-R2 29.1 32.46 39.89 50.95 44.62 33.42 18.04 20.01 17.27 41.41 66.06 32.37 18.2 98.99 55.0 50.87 40.54
CoKV 29.37 33.52 43.15 52.83 48.37 37.1 18.18 19.96 18.72 44.44 68.77 32.67 19.21 98.99 55.08 51.4 41.99

KV size=128

SnapKV 30.18 32.54 41.96 55.2 47.04 34.31 22.74 21.19 19.0 47.22 67.89 36.77 17.22 98.89 58.52 50.48 42.65
Pyramid 27.17 32.11 40.93 30.13 37.2 34.43 22.01 20.95 18.71 38.1 68.43 35.55 9.52 100.0 56.48 51.29 40.19
Ada-SnapKV 22.74 32.11 40.02 32.42 40.44 27.97 23.43 21.67 18.98 46.67 67.43 38.93 9.52 100.0 57.9 49.71 39.43
HeadKV-R2 29.78 33.39 41.51 51.85 52.06 36.17 24.17 21.04 19.03 48.89 67.98 36.44 18.02 99.44 56.88 52.47 43.07
CoKV 28.73 37.56 44.80 53.48 53.07 35.17 23.89 21.34 19.28 54.44 69.35 38.23 19.22 100 57.13 56.87 44.53

KV size=256

SnapKV 32.96 37.46 46.19 38.2 47.63 38.21 25.04 22.29 20.88 42.86 68.43 44.41 9.52 100.0 62.05 52.62 43.05
Pyramid 29.13 31.77 47.74 31.19 40.27 26.84 24.97 22.75 20.97 38.1 68.43 37.85 9.52 100.0 58.38 55.0 40.18
Ada-SnapKV 30.26 37.95 48.05 37.54 48.17 42.59 25.33 23.9 21.15 47.62 68.93 41.95 9.52 100.0 64.0 53.14 43.76
HeadKV-R2 33.0 38.69 47.01 51.98 57.2 38.36 26.01 22.17 21.83 49.49 68.15 38.79 18.18 100.0 58.35 55.72 45.31
CoKV 33.07 41.66 47.5 55.98 59.15 38.88 25.84 22.79 21.41 56.57 68.98 38.65 17.17 100.0 59.42 55.76 46.43

KV size=1024

SnapKV 33.75 43.59 46.97 45.74 56.52 38.19 28.10 22.96 24.18 61.9 69.25 45.12 9.52 100.0 60.86 67.1 47.11
Ada-SnapKV 34.92 44.87 47.18 46.45 56.21 37.19 27.74 23.56 24.42 61.9 69.52 40.54 9.52 100.0 61.71 63.38 46.82
HeadKV-R2 36.27 44.14 50.83 54.07 62.96 37.72 28.29 23.79 24.63 64.65 68.48 39.07 18.28 100.0 61.29 64.91 48.71
CoKV 35.82 45.23 51.45 57.31 61.37 37.34 28.78 24.41 24.79 68.69 68.96 39.01 18.18 100.0 62.52 65.62 49.34

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 15: Results of Mistral-7B-Instruct-v0.2

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 26.40 31.07 49.38 37.60 26.07 17.81 31.87 23.16 27.15 70.59 85.73 43.26 1.52 58.52 55.10 49.45 39.67
KV size=64

SnapKV 16.99 18.26 38.29 29.51 23.24 13.46 18.24 20.48 18.05 48.82 81.45 36.18 2.54 43.79 46.13 39.30 30.92
Pyramid 17.51 18.60 40.49 31.92 22.08 13.81 18.68 20.94 18.80 57.06 81.71 37.42 1.68 46.23 46.05 40.03 32.06
Ada-SnapKV 17.93 18.68 40.03 29.99 22.67 14.92 18.84 20.87 18.53 54.12 81.43 37.25 2.30 45.20 46.84 39.37 31.81
HeadKV-R2 22.75 25.37 45.36 36.52 25.39 13.82 20.45 22.06 21.48 65.29 83.56 37.95 2.43 50.78 47.76 42.86 35.24
CoKV 21.07 21.41 42.87 37.74 28.93 15.60 18.03 21.08 19.70 67.65 86.52 39.54 3.68 54.22 49.20 42.13 35.59

KV size=128

SnapKV 23.02 20.73 41.91 31.39 22.88 14.55 20.92 21.83 21.25 62.35 83.21 38.99 3.14 51.16 49.94 43.61 34.43
Pyramid 22.06 21.82 43.73 32.33 24.12 13.80 20.27 21.65 21.34 65.29 83.78 38.37 2.63 53.59 49.21 42.69 34.79
Ada-SnapKV 22.32 22.71 44.40 32.63 23.29 13.79 21.15 22.50 21.77 66.47 84.28 39.68 3.04 51.87 49.57 44.84 35.27
HeadKV-R2 24.81 27.66 48.29 36.87 26.66 14.75 23.30 22.88 23.26 67.65 84.93 39.75 2.50 49.31 50.79 45.57 36.81
CoKV 24.42 24.12 46.95 38.28 28.85 17.18 21.11 21.91 22.02 68.82 86.14 40.48 4.21 54.12 51.08 46.25 37.25

KV size=256

SnapKV 23.01 23.47 45.38 33.15 24.12 13.93 22.80 22.89 22.85 67.65 84.62 40.39 2.36 59.18 51.34 46.74 36.49
Pyramid 22.98 25.66 46.12 34.47 25.81 13.98 22.86 22.54 22.88 68.90 85.07 40.92 2.39 58.74 53.13 46.59 37.07
Ada-SnapKV 23.54 26.02 45.92 34.45 26.09 14.12 22.79 22.64 23.32 68.82 85.32 41.93 2.04 58.62 52.10 47.70 37.21
HeadKV-R2 25.40 27.42 47.05 37.98 25.57 17.08 25.31 22.72 25.03 69.41 84.93 40.24 2.58 52.94 53.48 49.21 37.90
CoKV 25.70 26.10 48.43 38.96 30.06 17.33 23.42 22.55 23.73 70.00 86.19 42.35 3.65 56.37 53.97 48.79 38.60

KV size=512

SnapKV 25.24 26.30 47.85 37.16 25.07 14.57 24.43 22.98 24.61 68.82 85.72 43.04 2.00 58.63 54.06 49.03 38.09
Pyramid 24.43 27.09 48.49 37.57 25.35 16.20 24.40 22.85 24.16 68.82 85.81 42.07 1.87 56.93 53.05 48.22 37.96
Ada-SnapKV 25.01 26.76 49.10 37.12 26.68 15.63 24.42 22.94 24.61 69.41 85.56 41.88 1.87 57.93 54.09 48.94 38.25
HeadKV-R2 25.80 28.73 48.34 37.43 27.03 17.28 28.22 23.22 26.65 70.59 85.72 40.15 2.69 56.15 53.24 49.22 38.78
CoKV 25.25 28.13 49.91 38.87 32.33 18.27 25.00 23.08 25.50 70.59 86.37 43.46 3.06 59.20 55.54 49.38 39.62

KV size=1024

SnapKV 26.38 29.70 48.13 37.36 25.52 16.88 27.31 22.63 26.10 69.41 85.72 42.43 1.54 56.87 55.05 49.33 38.77
Pyramid 25.09 28.59 47.78 37.74 25.83 17.53 25.88 23.05 25.91 68.24 85.95 42.77 1.59 57.82 54.47 48.85 38.57
Ada-SnapKV 25.70 29.95 47.50 37.68 26.18 17.10 26.63 22.93 26.10 70.00 85.72 43.16 1.68 56.28 54.52 49.10 38.76
HeadKV-R2 27.48 29.94 49.49 37.49 26.45 18.69 30.73 23.31 26.74 70.59 85.92 42.05 3.15 56.37 54.73 49.30 39.53
CoKV 26.15 29.82 49.47 38.54 34.39 17.98 27.76 23.33 26.49 70.59 86.23 43.54 2.48 59.32 55.47 49.92 40.09

64 128 256 512 1024
KV size

35

36

37

38

39

40

41

42

43

Av
er
ag
e
Sc
or
e

Llama-3-8B-Instruct

SnapKV
Pyramid
Ada-SnapKV
HeadKV-R2
CoKV
FullKV

64 128 256 512 1024
KV size

32

34

36

38

40

Av
er
ag
e
Sc
or
e

Mistral-7B-Instruct-v0.2

SnapKV
Pyramid
Ada-SnapKV
HeadKV-R2
CoKV
FullKV

Figure 4: Results for varying KV cache sizes (64, 128, 256, 512, 1024) in the LongBench benchmark.

16 32 64 96 128
Masked Groups

5

10

15

20

25

30

35

40

45

Av
er

ag
e

Sc
or

e

Llama-3-8B-Instruct

FullKV
Random
HeadKV-R2(top)
CoKV(top)
HeadKV-R2(low)
CoKV(low)

16 32 64 96 128
Masked Groups

5

10

15

20

25

30

35

40

Av
er

ag
e

Sc
or

e

Mistral-7B-Instruct-v0.2

FullKV
Random
HeadKV-R2(top)
CoKV(top)
HeadKV-R2(low)
CoKV(low)

Figure 5: Results for varying masked groups (16,32,64,96,128) in the LongBench benchmark.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 16: Results of masking groups with Llama-3-8B-Instruct

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 24.12 31.24 39.85 45.23 34.56 21.09 28.38 23.24 26.52 74.12 90.96 42.37 4.55 71.76 58.10 51.64 41.73
Masking 16 groups

Random 20.93 28.48 33.69 44.93 20.01 20.6 28.43 23.7 26.67 74.12 91.07 41.12 4.26 71.76 49.83 40.55 38.76
HeadKV-R2(top) 19.45 12.97 27.75 34.2 17.33 14.32 19.74 22.76 22.05 67.06 87.91 35.53 4.71 68.49 26.62 26.53 31.71
CoKV(top) 6.55 9.46 9.47 10.19 12.27 5.67 5.73 16.96 4.47 43.53 71.21 23.77 3.91 34.98 11.58 17.18 17.93
HeadKV-R2(low) 21.83 14.36 33.34 31.37 27.23 12.55 27.29 23.82 26.99 74.12 91.03 42.18 4.12 70.59 37.35 38.55 36.05
CoKV(low) 23.74 33.76 41.71 49.27 40.48 19.99 29.13 23.25 27.79 74.12 91.45 42.37 4.71 70.55 63.38 61.26 43.56

Masking 32 groups

Random 20.69 18.60 29.63 39.12 18.50 6.94 22.40 22.33 26.45 74.12 89.82 33.80 4.71 61.12 30.78 40.71 33.73
HeadKV-R2(top) 17.33 6.98 9.37 13.50 9.37 5.11 13.18 20.86 15.24 45.88 75.30 27.21 4.76 66.21 11.24 13.64 22.20
CoKV(top) 1.40 3.49 3.78 7.94 9.32 2.32 2.64 11.74 0.58 34.71 21.37 6.96 4.14 16.93 3.54 5.17 8.50
HeadKV-R2(low) 21.51 11.16 25.33 19.52 14.48 7.42 16.73 23.91 14.58 74.12 89.09 40.69 4.66 70.09 33.13 32.39 31.18
CoKV(low) 22.45 33.06 38.34 45.82 39.62 20.18 28.39 24.04 26.67 74.12 91.14 41.70 4.71 71.76 52.24 64.94 42.45

Masking 64 groups

Random 13.22 7.34 20.57 20.58 9.11 6.76 7.50 21.22 19.18 72.35 71.92 36.09 4.71 52.80 21.27 18.07 25.17
HeadKV-R2(top) 7.49 2.95 5.05 11.06 12.01 2.46 3.63 14.43 5.06 34.71 48.92 8.05 3.97 70.67 21.03 16.14 16.73
CoKV (top) 0.76 1.76 2.45 4.85 5.58 1.93 2.48 5.65 0.20 34.12 3.33 7.34 3.16 12.18 2.45 3.83 5.75
HeadKV-R2(low) 19.23 12.19 21.33 19.61 14.21 6.63 6.45 20.17 6.16 71.76 77.40 31.52 4.41 53.48 16.00 14.58 24.70
CoKV(low) 21.98 29.85 38.95 44.21 36.65 17.71 28.04 24.49 25.92 74.71 91.66 40.80 4.54 71.76 47.04 52.77 40.69

Masking 96 groups

Random 5.19 4.04 6.85 8.15 10.33 5.08 2.21 10.77 2.82 40.00 61.54 13.38 4.64 54.29 15.37 9.81 15.90
HeadKV-R2(top) 2.89 4.34 7.90 11.83 9.14 2.93 4.37 13.21 3.80 34.12 30.32 8.46 4.78 71.76 13.55 14.76 14.89
CoKV(top) 1.36 1.14 1.82 3.66 3.79 1.48 1.20 4.63 0.13 34.12 2.40 7.52 0.54 6.71 2.41 3.54 4.78
HeadKV-R2(low) 19.28 8.23 15.65 20.89 16.80 8.00 3.32 11.81 0.99 58.82 58.70 15.72 4.71 61.88 10.56 11.05 20.40
CoKV(low) 20.24 18.97 35.28 41.37 30.02 13.87 19.95 17.33 20.76 74.71 84.08 41.23 4.71 68.24 38.11 38.08 35.43

Masking 128 groups

Random 3.34 2.50 5.33 10.59 5.12 2.73 2.15 9.19 0.16 44.12 31.33 9.05 4.18 66.74 12.27 9.23 13.63
HeadKV-R2(top) 2.34 2.17 5.38 7.21 7.19 1.85 1.80 10.34 0.31 34.71 26.08 7.87 4.71 66.92 13.94 11.76 12.79
CoKV(top) 0.59 0.80 1.38 2.96 3.42 1.11 1.16 4.05 0.13 34.12 2.89 7.17 1.09 7.52 2.91 3.55 4.68
HeadKV-R2(low) 12.02 7.97 8.92 14.87 12.83 5.26 2.41 9.12 1.42 55.88 40.96 10.2 4.71 68.42 10.14 6.03 16.95
CoKV(low) 15.31 12.15 28.44 35.35 23.27 10.67 2.93 12.24 9.41 73.82 76.32 37.70 4.71 68.24 22.20 24.93 28.61

Table 17: Results of masking groups with Qwen3-32B

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 37.14 45.51 49.17 58.2 54.74 38.36 32.9 23.72 25.08 72.78 72.57 37.95 17.78 100 62.72 70.08 49.92
Masking 16 groups

Random 36.53 45.37 54.32 55.82 61.69 40.09 26.43 24.57 25.04 69.7 68.57 37.43 22.22 100.0 22.51 25.01 44.71
HeadKV-R2(top) 36.89 45.22 54.08 56.57 61.02 38.12 24.08 22.58 24.69 68.43 68.43 35.28 19.19 57.05 26.50 28.61 41.67
CoKV(top) 32.16 35.64 38.05 35.18 29.20 30.56 21.38 23.92 24.67 38.61 37.57 27.02 19.57 35.93 9.74 12.43 28.23
CoKV(top)-general 23.7 31.61 28.7 32.91 21.91 15.86 22.12 20.73 13.58 40.4 39.41 24.96 19.19 15.15 16.07 17.75 24.00

Masking 32 groups

Random 33.75 43.74 54.44 53.97 63.31 39.09 25.01 24.86 25.31 69.7 67.56 35.92 21.21 100.0 18.11 25.76 43.86
HeadKV-R2(top) 36.52 46.09 53.75 56.14 60.98 38.35 21.96 23.96 24.67 68.69 63.8 34.09 21.21 100.0 21.13 22.77 43.38
CoKV(top) 35.42 33.8 27.53 32.42 24.45 22.63 18.67 24.13 25.0 36.36 29.67 20.87 19.19 29.29 5.18 6.89 24.47
CoKV(top)-general 17.59 23.02 13.13 22.35 16.09 8.1 19.03 16.08 9.91 36.36 26.18 15.34 20.2 41.41 10.86 16.55 19.51

Masking 64 groups

Random 30.13 44.81 50.07 56.51 54.06 39.24 27.33 23.32 24.82 72.78 71.12 37.72 12.94 100.0 22.71 23.79 43.21
HeadKV-R2(top) 28.38 34.55 32.15 47.25 45.26 25.33 20.14 22.17 13.98 55.56 56.69 21.18 8.69 98.33 14.44 18.47 33.91
CoKV(top) 28.85 28.55 18.91 25.1 19.78 12.69 13.48 22.97 23.8 35.56 26.43 10.41 8.04 17.22 5.2 5.05 18.88
CoKV(top)-general 12.07 16.96 7.72 19.81 16.13 4.72 14.47 12.14 4.72 34.34 22.01 8.58 14.14 1.01 15.76 14.37 13.68

Masking 96 groups

Random 36.07 45.2 54.41 57.49 60.17 40.92 22.67 24.37 24.5 68.69 63.46 21.53 21.21 96.97 24.15 23.12 42.81
HeadKV-R2(top) 22.16 23.92 21.57 38.2 38.23 21.34 15.85 17.13 7.72 38.38 42.65 11.54 20.2 46.46 6.23 10.23 23.86
CoKV(top) 24.3 22.02 13.6 18.44 14.94 13.98 11.39 22.44 16.66 33.33 17.8 6.23 13.13 3.03 5.28 4.51 15.07
CoKV(top)-general 8.4 11.81 7.76 15.6 12.53 6.97 9.82 9.74 3.4 33.33 21.65 8.71 14.14 0.0 13.68 9.25 11.67

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 18: Results of masking groups with Mistral-7B-Instruct-v0.2

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Full Cache 26.40 31.07 49.38 37.60 26.07 17.81 31.87 23.16 27.15 70.59 85.73 43.26 1.52 58.52 55.10 49.45 39.67
Masking 16 groups

Random 25.92 31.73 50.29 37.84 27.19 17.83 24.91 21.92 27.04 70.59 85.93 43.8 3.22 53.82 52.38 48.24 38.92
HeadKV-R2(top) 23.38 16.66 37.13 37.41 22.76 14.29 18.8 21.74 23.23 54.12 82.96 35.22 4.12 21.76 39.49 35.66 30.55
CoKV(top) 16.1 23.35 18.49 14.34 13.39 7.89 20.5 19.98 17.25 38.24 52.51 26.32 4.17 40.85 24.6 14.35 22.02
HeadKV-R2(low) 24.78 29.37 48.78 38.07 24.88 16.93 31.25 23.08 27.64 71.18 84.55 42.52 2.1 58.82 54.22 49.4 39.22
CoKV(low) 26.57 32.3 49.94 40.38 34.0 19.11 31.25 22.97 26.85 70.59 87.3 44.39 3.29 58.03 56.6 50.74 40.89

Masking 32 groups

Random 22.62 31.72 47.20 38.13 22.55 11.92 25.64 23.27 26.75 68.82 84.55 41.34 1.93 49.71 50.14 47.18 37.09
HeadKV-R2(top) 20.82 15.40 28.72 34.31 20.31 12.86 13.56 19.83 17.80 46.47 79.25 30.10 4.71 24.31 33.41 30.47 27.02
CoKV(top) 9.05 15.38 7.61 9.88 8.07 6.38 0.59 11.72 4.70 35.88 26.87 11.85 4.65 10.88 15.23 11.14 11.87
HeadKV-R2(low) 23.76 27.40 44.80 32.85 23.55 13.28 24.37 22.71 28.09 71.18 79.24 42.24 4.26 49.90 52.89 48.85 36.84
CoKV(low) 26.70 30.44 49.57 40.41 32.28 18.33 30.26 23.27 26.85 70.59 87.48 44.04 2.93 56.27 56.34 50.38 40.38

Masking 64 groups

Random 13.43 24.46 30.97 22.62 16.93 15.65 14.07 22.16 19.86 55.29 82.16 35.85 4.12 38.94 38.07 28.39 28.94
HeadKV-R2(top) 11.04 9.09 17.45 18.57 13.79 8.07 9.83 17.30 12.60 35.29 55.36 18.65 4.54 19.85 26.25 21.23 18.68
CoKV(top) 3.28 3.50 4.65 4.30 3.42 2.55 0.79 4.66 1.08 34.71 8.41 6.00 3.53 3.53 11.22 11.57 6.70
HeadKV-R2(low) 18.81 21.42 35.18 18.03 14.26 7.41 22.56 22.41 20.24 57.65 75.72 37.03 4.11 45.46 38.78 39.22 29.89
CoKV(low) 26.87 25.74 48.19 39.61 30.86 16.88 24.45 22.84 27.29 71.18 87.16 43.43 3.34 50.18 53.76 47.52 38.71

Masking 96 groups

Random 4.84 6.33 13.77 12.00 10.41 8.43 0.88 17.55 21.83 51.76 63.48 22.32 4.47 34.19 21.30 17.65 19.45
HeadKV-R2(top) 9.21 7.05 11.34 13.30 14.22 3.99 7.67 15.43 8.84 34.71 29.87 9.97 4.44 30.16 17.73 16.24 14.64
CoKV(top) 2.13 4.13 4.58 4.09 6.52 0.64 0.00 2.44 0.15 34.71 2.16 4.40 4.12 2.94 7.16 8.39 5.54
HeadKV-R2(low) 8.17 10.62 18.76 13.07 10.10 5.44 3.75 19.42 6.51 46.47 50.84 23.98 4.57 29.89 34.95 32.57 19.94
CoKV(low) 24.62 24.71 48.04 38.72 30.29 16.37 19.35 22.84 27.18 70.59 79.48 42.01 3.75 48.29 50.78 43.53 36.91

Masking 128 groups

Random 4.15 8.45 9.73 8.38 7.80 2.07 0.51 13.19 3.40 42.94 34.04 8.82 3.85 3.53 23.74 18.34 12.06
HeadKV-R2(top) 5.22 4.78 8.63 7.04 6.15 3.89 5.64 14.59 5.64 35.88 25.98 8.36 3.82 18.53 18.68 18.52 11.96
CoKV(top) 1.33 9.43 1.03 4.24 5.54 1.41 0.09 0.78 0.01 33.53 1.06 4.50 2.94 2.94 6.94 6.22 5.12
HeadKV-R2(low) 4.41 4.53 11.12 12.8 7.20 6.64 0.46 10.48 0.61 47.65 31.61 10.45 2.91 9.92 24.09 24.48 13.09
CoKV(low) 20.43 19.12 44.82 34.23 23.31 13.97 14.22 21.28 24.65 70.59 73.98 39.73 4.10 45.21 42.14 38.14 33.12

Table 19: Comprehensive KV Quantization Results on LongBench

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Avg

NtrQA
Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC
TriviaQA

SAM
Sum

PCount

PRe
Lcc

RB-P

Qwen3-8B model with 8-4 bits quantization

HeadKV-R2 10.78 33.24 32.78 29.37 25.96 7.93 13.17 28.49 60.28 77.06 51.97 26.1 9.88 79.41 60.29 55.47 37.64
CoKV 20.43 41.36 37.74 48.44 27.54 16.53 14.22 36.58 60.18 72.94 86.76 34.12 13.51 80.59 66.26 61.7 44.93

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(1) NtrQA (2) Qasper (3) MF-en (4) HotpotQA

(5) 2WikiMQA (6) Musique (7) GovReport (8) QMSum

(9) MultiNews (10) TREC (11) TriviaQA (12) SAMSum

(13) PCount (14) PRe (15) Lcc (16) RB-P

Figure 6: Heatmap of Qwen3-32B.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(1) NtrQA (2) Qasper (3) MF-en (4) HotpotQA

(5) 2WikiMQA (6) Musique (7) GovReport (8) QMSum

(9) MultiNews (10) TREC (11) TriviaQA (12) SAMSum

(13) PCount (14) PRe (15) Lcc (16) RB-P

Figure 7: Heatmap of Llama-3-8B-Instruct.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(1) NtrQA (2) Qasper (3) MF-en (4) HotpotQA

(5) 2WikiMQA (6) Musique (7) GovReport (8) QMSum

(9) MultiNews (10) TREC (11) TriviaQA (12) SAMSum

(13) PCount (14) PRe (15) Lcc (16) RB-P

Figure 8: Heatmap of Mistral-7B-Instruct-v0.2.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(1) Coalition size 32 (2) Coalition size 64 (3) Coalition size 96 (4) Coalition size 128

(5) Coalition size 160 (6) Coalition size 192 (7) Coalition size 224 (8) Average

Figure 9: The expected complementary contributions for the lcc dataset across different coalition
sizes.

(1) Coalition size 32 (2) Coalition size 64 (3) Coalition size 96 (4) Coalition size 128

(5) Coalition size 160 (6) Coalition size 192 (7) Coalition size 224 (8) Average

Figure 10: The expected complementary contributions for the hotpotqa dataset across different
coalition sizes.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 20: Generalization results of masking
groups with Llama3-8B-Instruct

Method Multi-Doc. QA Code

2W
ikiM

QA

M
usique

Lcc
RB-P

Full Cache 34.56 21.09 58.10 51.64
Masking 16 groups

Random 20.01 20.6 49.83 40.55
HeadKV-R2(top) 17.33 14.32 26.62 26.53
CoKV(top) 10.78 5.43 14.41 15.33
HeadKV-R2(low) 27.23 12.55 37.35 38.55
CoKV(low) 39.92 20.9 64.04 61.22

Masking 32 groups

Random 18.50 6.94 30.78 40.71
HeadKV-R2(top) 9.37 5.11 11.24 13.64
CoKV(top) 6.71 3.45 4.39 5.78
HeadKV-R2(low) 14.48 7.42 33.13 32.39
CoKV(low) 38.1 18.22 64.75 58.28

Masking 64 groups

Random 9.11 6.76 21.27 18.07
HeadKV-R2(top) 12.01 2.46 21.03 16.14
CoKV(top) 5.68 1.82 2.5 3.66
HeadKV-R2(low) 14.21 6.63 16.00 14.58
CoKV(low) 34.17 16.29 49.97 48.93

Masking 96 groups

Random 10.33 5.08 15.37 9.81
HeadKV-R2(top) 9.14 2.93 13.55 14.76
CoKV(top) 4.38 1.28 2.74 3.07
HeadKV-R2(low) 16.80 8.00 10.56 11.05
CoKV(low) 28.08 12.92 38.62 40.55

Masking 128 groups

Random 5.12 2.73 12.27 9.23
HeadKV-R2(top) 7.19 1.85 13.94 11.76
CoKV(top) 2.93 0.94 2.48 3.84
HeadKV-R2(low) 12.83 5.26 10.14 6.03
CoKV(low) 24.34 9.37 23.38 24.11

Table 21: Generalization results of masking
groups with Mistral-7B-v0.2

Method Multi-Doc. QA Code

2W
ikiM

QA

M
usique

Lcc
RB-P

Full Cache 26.07 17.81 55.10 49.45
Masking 16 groups

Random 27.19 17.83 52.38 48.24
HeadKV-R2(top) 22.76 14.29 39.49 35.66
CoKV(top) 13.02 6.99 17.97 23.38
HeadKV-R2(low) 24.88 16.93 54.22 49.4
CoKV(low) 26.25 18.18 54.58 50.03

Masking 32 groups

Random 22.55 11.92 50.14 47.18
HeadKV-R2(top) 20.31 12.86 33.41 30.47
CoKV(top) 10.23 5.16 11.8 13.64
HeadKV-R2(low) 23.55 13.28 52.89 48.85
CoKV(low) 26.61 17.62 55.35 49.92

Masking 64 groups

Random 16.93 15.65 38.07 28.39
HeadKV-R2(top) 13.79 8.07 26.25 21.23
CoKV(top) 4.52 2.11 13.14 13.31
HeadKV-R2(low) 14.26 7.41 38.78 39.22
CoKV(low) 33.11 16.97 52.68 49.54

Masking 96 groups

Random 10.41 8.43 21.30 17.65
HeadKV-R2(top) 14.22 3.99 17.73 16.24
CoKV(top) 2.09 3.04 10.96 8.32
HeadKV-R2(low) 10.10 5.44 34.95 32.57
CoKV(low) 31.51 17.39 47.71 45.37

Masking 128 groups

Random 7.80 2.07 23.74 18.34
HeadKV-R2(top) 6.15 3.89 18.68 18.52
CoKV(top) 1.19 3.42 9.81 6.0
HeadKV-R2(low) 7.20 6.64 24.09 24.48
CoKV(low) 23.76 12.12 42.01 36.7

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 11: NIAH test results on Mistral-7B-v0.2 with average KV cache = 128

Figure 12: NIAH test results on Qwen3-32B with average KV cache = 128

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 22: Evaluation results of masking 64 groups with Mistral-7B-Instruct-v0.2 across varying
context lengths in the RULER benchmark

Method Retrieval Multi-hop Tracing Aggregation Question Answering

niah vt fwe qa1 qa2

31k Context Length

Full Cache 100.0 86.08 89.2 71.4 53.4
Random 0.8 59.6 54.4 53.6 19.4
Headkv-R2(top) 0.0 0.48 0.0 28.6 13.8
CoKV(top) 0.0 0.12 0.0 12.8 7.0
Headkv-R2(low) 92.4 67.08 76.73 41.8 33.0
CoKV(low) 100 90.88 74.33 70.2 51.6

16k Context Length

Full Cache 100.0 90.44 94.73 76.8 54.6
Random 0.2 6.92 71.67 63.8 52.4
Headkv-R2(top) 0.0 0.56 0.0 29.2 17.0
CoKV(top) 0.0 0.76 0.27 15.4 7.2
Headkv-R2(low) 90.8 71.6 79.27 60.2 38.0
CoKV(low) 100.0 93.84 81.6 74.0 54.0

8k Context Length

Full Cache 100.0 96.32 78.2 82.6 61.6
Random 99.4 64.6 58.8 71.2 51.0
Headkv-R2(top) 0.0 0.48 0.0 31.8 18.2
CoKV(top) 0.0 1.08 0.13 20.0 9.0
Headkv-R2(low) 91.2 69.4 61.4 64.2 44.0
CoKV(low) 100.0 92.72 67.13 80.4 62.0

4k Context Length

Full Cache 100.0 99.32 84.6 85.0 63.0
Random 98.2 35.44 33.8 62.6 56.6
Headkv-R2(top) 0.0 0.16 0.0 30.4 20.0
CoKV(top) 0.0 1.16 0.27 20.8 8.4
Headkv-R2(low) 84.8 73.12 56.47 66.2 48.0
CoKV(low) 100.0 97.0 77.0 83.6 63.2

33

	Introduction
	Preliminaries
	Key-Value Caching and Compression
	Shapley Value

	Importance-Aware KV Cache Compression via Sliced Shapley Value
	Head Importance Evaluation
	KV Cache Compression

	Experiments
	Experiment Settings
	Hyperparameter Free Results.
	KV Cache Eviction Results
	KV Cache Quantization Results

	Conclusion
	Use of Large Language Models
	Related Works
	Suplementary of Preliminaries
	KV Cache Eviction
	KV Cache Quantization

	Proof
	Proof of Theorem 1
	Proof of Theorem 2

	Supplementary Experiments
	Datasets
	Ablation Study
	Computation Efficiency
	Distribution of Sliced Shapley Value
	Decoding Latency and Memory Usage
	Mathematical Reasoning Evaluation
	Generalization Analysis
	Needle-in-a-Haystack Test
	RULER

