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Abstract

The rapid growth of data-driven technologies and the emergence of various data-
sharing paradigms have underscored the need for efficient and stable data exchange
protocols. In any such exchange, agents must carefully balance the benefit of
acquiring valuable data against the cost of sharing their own. Ensuring stability
in these exchanges is essential to prevent agents—or groups of agents—from
departing and conducting local (and potentially more favorable) exchanges among
themselves. To address this, we study a model where n agents participate in a
data exchange. Each agent has an associated payoff for the data acquired from
other agents and a cost incurred during sharing its own data. The net utility of
an agent is payoff minus the cost. We adapt the classical notion of core-stability
from cooperative game theory to data exchange. A data exchange is core-stable
if no subset of agents has any incentive to deviate to a different exchange. We
show that a core-stable data exchange is guaranteed to exist when agents have
concave payoff functions and convex cost functions– a setting typical in domains
like PAC learning and random discovery models. We show that relaxing either
of the foregoing conditions may result in the nonexistence of core-stable data
exchanges. Then, we prove that finding a core-stable exchange is PPAD-hard,
even when the potential blocking coalitions are restricted to constant size. This
provides the first known PPAD-hardness result for core-like guarantees in data
economics [BGI+24a, ACGM25]. Finally, we show that data exchange can be
modeled as a balanced n-person game. This immediately gives a pivoting algorithm
via Scarf’s theorem [Sca67]. We show that the pivoting algorithm works well in
practice through our empirical results.

1 Introduction

From accelerating vaccine development in healthcare to improving fraud detection in financial
services and advancing self-driving technology in the automotive industry, high-quality data has
become the bedrock of algorithmic decision-making and AI-driven solutions in the 21st century.
However, this valuable data is often fragmented i.e., distributed across multiple organizations. This
decentralization makes data sharing and collaboration critical for effective decision-making. For
instance, in healthcare, capturing nuanced relationships between disease patterns, socio-economic
factors, genetic information, and rare conditions requires training machine learning models on large,
diverse datasets that extend beyond curated datasets within individual organizations [RHL+20].
Similarly, in autonomous vehicle technology, self-driving cars must be exposed to a wide range
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of driving scenarios, including varying terrains, climates, and traffic regulations across countries,
making it essential to train models on diverse datasets from multiple regions [XPHS23]. Collaborative
data economics offers both unique opportunities and challenges: Unlike most economic assets, data
is non-rivalrous– meaning multiple organizations can simultaneously benefit from the same data.
This creates the potential for significantly greater collective value compared to traditional market
economies, where assets are typically rivalrous. However, the benefits of data sharing are tempered
by concerns over privacy, security, and the risk of losing a competitive advantage. As a result, despite
its vast potential, data collaboration has not yet reached its full scale. As the European Council aptly
notes [Com20]:

“In spite of the economic potential, data sharing between companies has not taken off at a sufficient
scale. This is due to a lack of economic incentives, including the fear of losing a competitive edge.”

We introduce a collaborative data exchange economy, where a group of agents, each having an
endowment of data, aim to engage in mutually beneficial data exchanges. Each agent derives (i)
a payoff from the data acquired (indicative of the agent’s value for the marginal improvement in
predictive payoff of their ML model from the acquired data) and (ii) incurs a cost for sharing their
own data. The agent’s net utility from the data exchange is defined as the payoff minus the cost. In
our model, shared data cannot be redistributed by other agents. Specifically, when we say that agent
i shares its data with agent j, we mean that agent i allows agent j to refine its machine learning
model using samples of i’s data. However, this does not entail direct data sharing between i and
j. Instead, we adopt a framework similar to standard collaborative learning paradigms, such as
Federated Learning [MMR+17], where j trains on i’s data by only receiving the gradients of the loss
function on i’s data, allowing agent j to update its model without direct access to i’s data.

Desiderata. The gold-standard desiderata in a collaborative economy is core-stability– a data
exchange is core-stable if no group of agents can identify a local exchange among themselves that
they all strictly prefer to the current exchange. Core-stability implies other desired guarantees like (i)
individual rationality: every agent participating in the data exchange gains more in utility than they
lose in the cost of sharing their own data, and (ii) Pareto-optimality: there exists no exchange that
all agents strictly prefer to the current exchange. This paper delves into the conditions under which
core-stable exchanges exist within this collaborative data exchange economy and explores how to
compute such exchanges.

1.1 Our Contributions

Data Exchange Model. In an instance of our problem, there are n agents N , where each agent
i owns dataset Di. In a data exchange x = (xi,j)i̸=j∈[n], xi,j ∈ [0, 1] represents the fraction of
Di shared with j, x−i represents the data bundle (x1,i, x2,i, . . . , xn,i) that i receives from the data
exchange, and xi represents the data bundle (xi,1, xi,2, . . . , xi,n) that i gives to the data exchange.
Given a data exchange x, an agent’s utility ui(x) is given by

ui(x) = pi(x−i)− ci(xi),

where pi(x−i) ∈ R≥0 and ci(xi) ∈ R≥0 denote the payoff agent i has from x−i and the cost
incurred by sharing xi for agent i respectively. We assume pi(0) = ci(0) = 0, which means that
agent i receives no benefit and suffers no cost if she is not exchanging any data with others. Further,
consistent with the existing literature on data-sharing [MYC+23, KGJ22, BHPS21a], pi(·) and ci(·)
are monotone in xji and xij for all j, i.e., more data acquired gives higher payoff, and more data
shared leads to higher costs.

Core-Stability. A data exchange x is core-stable if there exists no coalition of agents U ⊆ N , and an
exchange xU among agents in U such that ui(x

U ) > ui(x) for all i ∈ U .

On the Existence of Core-Stable Exchanges. Our first observation is that a core-stable data
exchange may not always exist, even when there are only three agents. This motivates studying natural
conditions that guarantee the existence of a core-stable data exchange. To this end, we prove that when
agents have concave payoff functions and convex cost functions, a core-stable data exchange always
exists. The foregoing conditions capture a broad range of interesting instances [BHPS21a, KGJ22].
Convexity of cost is a natural choice since it captures the property of increasing marginal costs. For
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instance, data sharing through ordered selection, i.e., sharing records in ascending order of costs
involved for collecting the records, results in convex cost functions. There are more models that result
in strictly convex cost functions ([LR14]). Similarly, several important ML models exhibit concave
payoff functions; for instance, payoffs in linear or random discovery models [BHPS21b], random
coverage models [BHPS21b], and general PAC learning [MRT18] are all concave. Furthermore, there
is empirical evidence that the accuracy function in neural networks under the cross-entropy loss is
also concave ([KMH+20]). We further show that relaxing either of these conditions, i.e., concavity
of payoff or convexity of cost, can lead to instances that do not admit core-stable exchanges.
Theorem 1. When agents have concave payoff functions and convex cost functions, a core-stable data
exchange always exists. One can construct instances relaxing only one of the foregoing conditions
(either concavity in payoff or convexity in costs) that do not admit any core-stable data exchanges.

Computational Results. We allow oracle access to the value and super gradient of the utility
functions. In particular, we have the following two types of queries: Value query U(i,x): return the
utility that agent i receives from the data exchange x, ui(x); Supergradident query ∇U(i,x): return
the supergradident of utility function ui(x) at x if ui(·) is concave.

We first prove that given an arbitrary instance, determining whether it admits a core-stable data
exchange is NP-hard. Thereafter, we investigate the computational complexity of identifying core-
stable exchanges under sufficient conditions. We show that finding a core-stable exchange under our
sufficient conditions is PPAD-hard. Even if we restrict the blocking coalitions to comprise of only
constantly many agents, the problem remains PPAD-hard. To the best of our knowledge, this is the
first PPAD-hardness proof for core-like guarantees in data economies [BGI+24a, ACGM25]. Our
proof technique could be potentially useful for settling the complexity of the problems in [BGI+24a,
ACGM25].
Theorem 2. Determining core-stable data exchanges when agents have concave monotone payoff
functions and convex monotone cost functions is PPAD-hard. The hardness holds even when we
restrict ourselves to our deviating coalitions of constant size. Further, for instances exhibiting
non-concave payoffs and non-convex costs, it is NP-hard to determine whether a core-stable data
exchange exists.

On the positive side, our existence proof yields a pivoting algorithm to find a ε-approximate core-
stable data exchange. Typically, pivoting algorithms (Simplex [Dan90], Complementary Pivot
Algorithms [CDRP08]) are well-suited for practical implementation, suggesting that the problem
may have effective algorithmic solutions in practice, despite the PPAD-hardness. In Section 4, we
validate the practical efficacy of our algorithm through simulations on a mean estimation task similar
to [BGI+24a]. In particular, we observe that the number of “pivoting” operations, which in theory
may not be polynomially bounded, grows linearly with the number of agents.

1.2 Related Work

Our work draws on concepts, techniques, and problems from several disciplines, including cooperative
game theory, game complexity, and data economics. Providing a comprehensive survey of all related
work is beyond the scope of this paper. Instead, we focus on (i) federated learning– a parallel
framework to ours which also involves incentives and other economic processes involving data as an
asset, and (ii) some related stability problems in cooperative games and their complexity.

Federated Learning. Federated learning (FL) offers a privacy-preserving and effective distributed
learning paradigm in which a group of agents with local data samples collaboratively train a shared
machine learning model [MMR+17]. This approach has seen widespread success in applications like
autonomous vehicles [ESC20] and digital healthcare [DRZ+21, XGS+21]. Data exchange can be
viewed as a private learning paradigm, where each agent exchanges its own data for other valuable
data to train its own private ML model. In contrast, FL is a public learning paradigm, where all
agents collaboratively train the same model using data shared among them. Despite these differences,
both FL and data exchange face similar challenges in designing principles and mechanisms to
incentivize participation. As a result, FL has incorporated a range of concepts from game theory,
including Stackelberg games [KPT+20, PTB+19], non-cooperative games [ZFX+19, CZXL21],
auctions [RSR+21], incentives in collaboration [ADNMM25, PSS25], and budget-balanced reward
mechanisms [MYC+23, MSS+25].
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Data Markets. Data markets are two-sided real-time platforms facilitating pricing and selling
data to data-seekers. Theoretical research on data markets has recently gained traction, given the
current importance of data economies. There is a long line of work [AP86, AP90, BBS18, BKL12]
that investigates revenue-maximizing strategies of a monopolist data seller. In fact, several studies
investigate the pricing of data/ information from first principles in different settings [MDJM21, Pei20,
CV20, BBG22]. Competitive pricing and allocation rules have also been discussed in the context
of digital goods that behave similarly to data [JV10]. There is another line of theoretical work
studying the data exchange economy [BGI+24a, ACGM25]. The setting of [ACGM25] is the most
relevant one to ours, and they also consider the same data sharing model. In contrast to our work,
[ACGM25] assumes no cost within data sharing, which makes it trivial to obtain a core-stable data
exchange in their setting – everyone exchanges all the data. This way, no agent can achieve a higher
utility in any exchange. Therefore, [ACGM25] investigates core stability in conjunction with another
desideratum, i.e., fairness, and proves their existence results. The utility function of our setting is a
generalization – an agent’s utility is defined as payoff minus cost. As a result, the overall utility may
not be non-monotonic, which introduces significant complexity. In particular, [ACGM25]’s results
do not carry over, as we demonstrate in Example 1, a core-stable exchange may not even exist under
the generality of [ACGM25]’s model when such costs are taken into account. This motivates our
investigation into sufficient conditions – such as concave payoffs and convex costs – that still capture
important and realistic scenarios while allowing for meaningful analysis. Conceptually, our utility
model aligns more closely with practical distributed learning frameworks such as federated learning,
where agents must consider both the benefits and costs of participation [MYC+23, MSS+25, PSS25].

Cooperative Games and their Complexity. Cooperative games focus on analyzing mechanisms
and studying stable configurations in environments where agents voluntarily cooperate, in contrast to
non-cooperative games where agents act independently and selfishly. Similar to Nash Equilibrium in
non-cooperative games, core-stability is the canonical stability notion in cooperative games. The exis-
tence of core-stability has been investigated thoroughly within transerable utility (Bondareva-Shapley
theorem [Sha67, Bon63]) and non-transferable utility cooperative games (Scarf’s Theorem [Sca67]).
Scarf’s theorem has since been used to show the existence of stability in other cooperative settings like
stable marriages [FHS23], fractional dominating antichains [AF03], and fractional stable hypergraph
matching [AF03]. [Kin08] showed that computing the core of an n person game (outcome of the
Scarf’s theorem) is PPAD-complete. The hardness of Scarf has then been used to show the hardness
of several other cooperative problems (see [KPR+09] for a detailed outline).

Convex Cost Functions. Theorem 3 shows the existence of a core-stable data exchange under
convex cost functions. Such cost functions have been discussed in the literature [LR14]. As discussed
by [LR14, Section 3.1], when data collectors (e.g., grocery store) collect (private) data from agents
(e.g., buyers) in return for financial compensation (e.g., membership card), the resulting marginal
costs grow with the amount of data collected, which naturally leads to convexity. For example, early
records are cheaper or less sensitive, while later records may carry greater privacy risks or legal
implications. Similar convex models are also adopted in incentive and fairness studies for federated
learning (e.g., [MYC+23, MSS+25, KGJ22]).

2 Existence of Core-Stable Data Exchanges

Basic Notations and Definitions. A coalition is a non-empty subset of the agents and a deviation in
a data exchange x is a pair (U,xU ), where U is a subset of agents and xU is a data exchange within
U , i.e., xU

i,j > 0 only if i, j ∈ U . A deviation blocks the data exchange x if ui(x
U ) > ui(x) for all

i ∈ U . An exchange x is core-stable if there does not exist a deviation that blocks x. Formally,

Definition 1 (Core-Stability and Relaxations). A data exchange x is core-stable if for any U ⊆ [n],
there does not exist an exchange xU over U such that ui(x

U ) > ui(x) for all i ∈ U . Further, x is
core-stable with respect to s if the above constraint holds for all U ⊆ [n] with |U | ≤ s. x is α-core-
stable if for any U ⊆ [n], there does not exist an exchange xU over U such that ui(x

U ) > ui(x)+α
for all i ∈ U .

In this section, we provide a complete picture on the existence of core-stable data exchanges. In
Section 2.1, we show that a core-stable data exchange may not always exist, even for the case of three
agents. Despite this, we show that a core-stable data exchange always exists in Section 2.2, when (i)
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the payoff functions are concave and (ii) the cost functions are convex. From here on, we refer to the
foregoing two conditions as sufficient conditions. We also show that core-stable data exchange may
not always exist if one of the two sufficient conditions is unsatisfied.

2.1 Non-existence of Core-Stable Data Exchange

We first give the reader the main idea of why a core-stable data exchange may not always exist.

Example 1. Consider a data exchange instance with three agents, as illustrated in Figure 1, where
the nodes represent the agents. For any agent i ∈ [3], the green number (denoted by pj,i) on the
incoming edge (j, i) denotes the payoff agent i receives if agent j shares her full dataset, while the
red number (denoted by ci,j) on the outgoing edge (i, j) indicates the cost incurred by agent i for
sharing her full dataset with agent j. For example, as shown in Fig. 1, when agent 1 shares her entire
dataset with agent 2, agent 2 receives a payoff of 1/4 while agent 1 incurs a cost of 1/4.

+𝟓/𝟖

+𝟓/𝟖
+𝟏/𝟒

+𝟏/𝟒

+𝟑/𝟖
+𝟑/𝟖

−𝟏/𝟒
−𝟏/𝟖

−𝟏/𝟐
−𝟑/𝟖

−𝟏/𝟖

−𝟏/𝟖

Figure 1: Payoff and cost for one-unit sharing, where a
numbered node represents an agent and the arrow i → j
represents that agent i is sharing her entrie dataset with agent
j, i.e., xi,j = 1. The green number on the arrow means the
payoff that agent j receives by the single share, and the red
number means the cost that agent i incurs.

For any agent i ∈ [3], define her payoff and cost functions as follows.

▷ Payoff: pi(xα,i, xβ,i) =
pα,i
ϵ
· (xα,i − (1− ϵ))+ +

pβ,i
ϵ
· (xβ,i − (1− ϵ))+ , (1)

▷ Cost: ci(xi,α, xi,β) = ci,α · xi,α + ci,β · xi,β +
1

ϵ
· xi,α · xi,β , (2)

where {α, β} = [3] \ {i} and (·)+ = max(·, 0). The idea behind the payoff is agent i benefits from
agent j’s share only when xj,i > 1 − ϵ. Meanwhile, the cost function discourages an agent from
sharing a fraction in the range (0, 1− ϵ], as it does not yield a positive payoff for the other agent and
only incurs a cost. In addition, no agent can share data with two other agents without incurring a
high cost (which negates the benefit of getting any amount of data).

The values pα,i, pβ,i, ci,α, ci,β are curated carefully so that (1) If nobody shares anything, a couple of
agents deviate and start sharing data with one another. (2) If only two agents exchange data, there is
always one agent who prefers sharing with the third non-included agent, therefore she deviates with
the non-included agent. (3) In a cyclic data exchange among the three agents, there always exists an
agent for whom the cost of sharing data is more than the gain of receiving data, therefore, she prefers
to deviate and have no data exchange. Therefore, for any data exchange, there exists a subset of
agents that gain a strictly higher utility by deviation, implying a core stable exchange does not exist.
We refer the reader to Appendix A.3 for further details, and a complete landscape of non-existence
scenarios.

2.2 Existence of Core-stable Data Exchange under Sufficient Conditions

Despite the non-existence in the general setting, we next show that core-stable data exchanges
exist for a broad class of interesting instances that exhibit concave payoff functions and convex
cost functions. To prove existence, we formulate the data exchange problem as an n-person game
(proposed by [Sca67]) and then show that the game is balanced, which implies that a core exists.

An n-person game consists of n agents and a function V (·). For every subset S of N , function V (S)
specifies the set of outcomes V (S), which consists of a set of utility vectors that are achievable by
the coalition S. A utility vector u is attainable by S if u ∈ V (S). The game is balanced if for any
collection of coalitions T along with a collection of nonnegative weights {δS}S∈T , if

∑
S|i∈S δS = 1

holds for all i ∈ N , then utility vector u is attainable by N if uS is attainable by S for all S ∈ T .

Next, we formulate the data exchange problem into the framework of the n-person game. Define
V (·) as follows: for every subset S ⊆ N , V (S) is the set of nonnegative utility vectors when only
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agents in S exchanging data. As the utility function is continuous and achieves zero when no data
is exchanged, we demonstrate that V (S) is nonempty and also downward closed (i.e., if u ∈ V (S)
and u′ ≤ u, then u′ ∈ V (S)) for any subset S ⊆ N . In addition, for any collection of coalitions
T , weights {δS : S ∈ T} and utility vector u that meet the precondition of the balanced game,
assume the utility vector uS is achieved by data exchange xS . Consider the combination of the data
exchanges x =

∑
S∈T δS · xS . As ui(·) is concave, for any i ∈ N , we have

ui(x) = ui

(∑
S∈T

δS · xS

)
≥

∑
S∈T :i∈S

δS · ui(xS) =
∑

S∈T :i∈S

δS · ui = ui,

As V (N) is nonempty and downward closed, then utility vector u is attainable by N . Therefore, the
data exchange game is balanced and the core exists. We defer the complete proof to Appendix A.2.
Theorem 3. A core-stable data exchange always exists if the payoff functions {pi}i∈N are concave,
the cost functions {ci}i∈N are convex.

We remark that the above existence also extends to non-monotone payoffs and costs as long as they
are concave and convex, respectively.

3 The Complexity of Finding Core-Stable Data Exchanges

In this section, we explore the computational complexity of identifying core-stable data exchanges.
We first show that for instances that do not meet our sufficient conditions, determining the existence of
a core-stable data exchange is NP-hard. Next, we shift our focus to finding core-stable data exchanges
for instances that satisfy sufficient conditions and establish that this problem is PPAD-hard. We defer
the full details of the NP-hardness proof to the Appendix and give an overview of the PPAD-hardness,
which constitutes our main technical result.
Theorem 4. It is NP-hard to determine the existence of a core-stable data exchange.

3.1 PPAD-Hardness of Finding Core-Stable Data Exchange

We perform a reduction from the Approximate Fractional Hypergraph Matching problem which is
known to be PPAD-hard [IK18, Csá22].
Definition 2 (Approximate Fractional Hypergraph Matching Problem). In an instance of the fractional
hypergraph matching, we are given a hypergraph G = (V,E) and a preference order ≻v over
hyperedges E incident to v for every vertex v ∈ V . Denote by e′ ⪰v e if e′ ≻v e or e′ = e. Let E(v)
denote the set of hyperedges that contain/are incident to v. A fractional matching f in G, assigns to
each edge e ∈ E, a value f(e) ∈ [0, 1] such that

∑
e : e∈E(v) f(e) ≤ 1 for all v ∈ V .

Definition 3 (Stable fractional matching). A fractional matching f is (1− ϵ)-stable if for every edge
e, there exists a vertex v in e such that

∑
e′∈E(v) : e′⪰ve

f(e′) ≥ 1− ϵ.

Finding an approximately stable fractional matching remains PPAD-hard for any ϵ ≤ 1/220|V |4 , even
in 3-uniform hypergraphs with maximum vertex degree three [Csá22, IK18]. We reduce the problem
of finding an approximately stable fractional matching to the problem of finding a core-stable data
exchange. We give the detailed proof in Appendix B.2.1 of the Appendix, but include a shorter
overview of the reduction in the main body.
Theorem 2. Determining core-stable data exchanges when agents have concave monotone payoff
functions and convex monotone cost functions is PPAD-hard. The hardness holds even when we
restrict ourselves to our deviating coalitions of constant size. Further, for instances exhibiting
non-concave payoffs and non-convex costs, it is NP-hard to determine whether a core-stable data
exchange exists.

Overview of the Reduction. To see the connection to our problem, we urge the reader to interpret
the vertices of G as agents, the hyperedges E as coalitions, and the matching f as a function that
assigns to each edge e (coalition) a value. The stability criterion in fractional hypergraph matching
requires that for each hyperedge (coalition) e, there is at least one vertex v incident to e (one agent
that is part of the coalition e) such that the total aggregated value on edges preferred strictly or equal
to e by v is large:

∑
e′∈E(v):e′⪰ve

f(e′) ≥ 1− ϵ.
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Given an instance of fractional hypergraph matching, we construct a data exchange instance, where
we have agent va corresponding to a vertex v in G. Further, each blocking coalition corresponds to
a hyperedge. We then show that if the core-stability condition holds in the data exchange problem
— i.e., for every blocking coalition corresponding to a hyperedge e, and any exchange within that
coalition, there exists an agent va who prefers the current exchange — then for the corresponding
hyperedge e in G, we have

∑
e′∈E(v):e′⪰ve

f(e′) ≥ 1− ϵ for the agent v.

The data exchange instance is constructed in the following way: Given an instance (G = (V,E), {≻v

}v∈V ) of fractional hypergraph matching, with |E(v)| ≤ 3 and every hyperedge containing three
vertices (if one hyperedge has less than three vertices, we can add dummy vertices to it), we construct
an edge-agent ea for every edge e, and a vertex-agent va for every vertex v. Every vertex agent va is
only interested in (has non-zero marginal utility for) the data of the edge agents corresponding to the
hyperedges incident to v, and every edge agent ea is only interested in the data hosted by the vertex
agents corresponding to the vertices incident to e. Moreover, for every ∆ > 0, every edge agent ea
is willing to exchange ∆ units of its data with the vertex agents corresponding to the vertices in e,
for ∆ units of data from them, i.e., the payoff gain from receiving ∆ units of data from the vertex
agents compensates the cost of sharing ∆ units of data with them. The payoff of a vertex agent va
is defined as

∑
e∈E(v) w(va, ea)xeava where w(va, ea) is the utility agent va gets from unit data of

ea. We set the weights (w(·, ·)) such that e ≻v e′, implies w(va, ea) > w(va, e
′
a). The cost of any

vertex agent va, cva(x) is Γ · (
∑

e:v∈e xva,ea − 1)+
1, for a sufficiently large Γ, which ensures that∑

e∈E(v) xva,ea ≤ 1 + γ for a sufficiently small γ > 0, as otherwise agent va will have negative
utility and data exchange x will not be individually rational, and consequently not core-stable.

Core Stability⇒ Stable Matching. Now we show that ensuring core-stability in data exchange
implies stability in fractional hypergraph matching. To this end, first observe that in fractional
hypergraph matching, the stability criterion involves one variable per hyperedge, which appears in
the inequality associated with every vertex incident to that hyperedge (See Definition 3). However,
for core-stability in data exchange, inequality in Definition 1 involves distinct variables (in particular
variables xea,va , xva,ea for every vertex v incident to e, as the payoff and cost functions of va are
functions of these variables). To overcome the foregoing dilemma, we introduce more agents (call
them intermediate agents), and carefully design their cost and payoff functions, such that if x is a
core-stable data exchange, then xea,va = xea,v′

a
≈ xva,ea = xv′

a,ea
for all v, v′ incident to e. In

particular, for each edge e, we introduce a set of intermediate vertices Ie = {ie | e ∈ E(v)} such that
each ie acts as an intermediary between ea and va. The payoff and cost functions of the intermediate
agents are designed in such a way that we ensure the exchanges between intermediary vertices with
their corresponding vertex agents and edge agents are almost the same(See Figure 6). We refer
the reader to Appendix B.2.2 for full details. Still, for the remainder of this Section, we proceed
assuming that in a core-stable data exchange, all pairwise data exchanges between an edge agent and
its corresponding vertex agents have the same value. We set f(e) to this value.

Lemma 1. If data exchange x is core-stable, then the fractional matching f is (1− ϵ)-stable.

Proof. We first show that f is a valid fractional matching: Recall that by the design of the cost
functions of the vertex agents, we ensure that

∑
e∈E(v) xva,ea ≤ 1 + γ for all v. Since we ensure

that xva,ea = xea,va = f(e), we have
∑

e∈E(v) f(e) ≤ 1 + γ ≤ 1 + ϵ for a sufficiently small γ.
Therefore, f is a fractional matching.

We next show that f also satisfies the stability criterion. Observe that the payoff of any vertex agent
va is

∑
e∈E(v) w(ea, va)xea,va . Since xea,va = f(e) for all v incident to e, the payoff of va can

be expressed as
∑

e∈E(v) w(va, ea) · f(e). Consider the coalition C formed by the edge agent ea
and the vertex agents corresponding to the vertices in e. Consider the data exchange y obtained by
setting yea,va = yva,ea = 1 for all v incident to e in G. Also, recall that we are working under the
assumption that all pairwise exchanges between the vertex agents and edge agents corresponding
to the hyperedge e have the same value in the exchange x. By the construction of uea(·), we have
uea(y) > uea(x)

2. Since x is core-stable, at least one of the vertex agents, say va, must have
uva(x) ≥ uva(y). Therefore for any vertex agent va in C, we have uva(y) = w(ea, va) · 1 (note

1We use the notation a+ to represent max(a, 0).
2As y can be obtained by increasing all pairwise exchange by the same additive factor
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that the cost is zero as the total data received is equal to 1). Since there exists an agent va in C with
uva(x) ≥ uva(y), we have,

w(ea, va) = uva(y) ≤ uva(x) =
∑

e′∈E(v)

w(e′a, va)f(e) ≤ ŵ
∑

e′:e′⪰e

f(e) + w̃
∑

e′:e′≺e

f(e),

where w̃ = maxe′∈E(v):e′≺e w(e
′
a, va) (equals zero if there is no e′ ∈ E(v) such that e′ ≺ e), and

ŵ = maxe′∈E(v) w(e
′
a, va). Observe that ŵ ≥ w(ea, va) > w̃. Now, substituting

∑
e′:e′≺e f(e) as

1−
∑

e′:e′⪰e f(e), we have

ŵ ·
∑

e′:e′⪰e

f(e) + w̃ ·

1−
∑

e′:e′⪰e

f(e)

 ≥ w(ea, va)⇒
∑

e′:e′⪰e

f(e) ≥ w(ea, va)− w̃

ŵ − w̃
.

Given that |E(v)| ≤ 3 for all v, we can set

w(ea, va) =


d+H + 1 e is v’s favorite edge
d+H e is v’s second favorite edge
H otherwise,

implying that
∑

e′:e′⪰e f(e) ≥
w(ea,va)−w̃

ŵ−w̃ ≥ d
d+1 ≥ 1 − ϵ for a sufficiently large d. This implies

that f is a stable matching.

4 The Pivoting Algorithm and Empirical Results

In this section, we adapt the pivoting algorithm [Sca67] to find a core-stable data exchange under
sufficient conditions – when payoff functions are concave, and cost functions are convex, and
coalitions are constrained to be of constant size. As we mentioned in Section 2.2, our game is
balanced and therefore we can get a pivoting algorithm (PA) following the proof of existence of core
for a balanced game theorem in Scarf’s theorem [Sca67]. It is worth noting that, when the number of
agents is not constant, even verifying whether a given data exchange is core-stable is coNP-complete,
and we defer the proof to Appendix C.2.

4.1 The Pivoting Algorithm

We first define two matrices: coalition matrix C and the utility matrix U, both with dimension n×m.
Given a coalition S ⊆ [n], we aim to identify all possible utility vectors resulting from data exchanges
within S. Since this set may be infinite, we instead consider a discretized approximation of the utility
space. Suppose v ∈ V (S). We create the kth column in the coalition matrix C: Ci,k = 1 if i ∈ S
and 0 otherwise, which is the characteristic vector of the coalition. Meanwhile, we insert a column
into the utility matrix U at the same coordinate: ui,k = M for i /∈ S and ui,k = vi for i ∈ S where
M is a very large number3. Note that to compute the utility matrix, we need to find all achievable
utility values in the grid. To this end, we assume that the payoff of every agent is uniformly bounded4

by B. For a fixed ϵ > 0, we create a grid of size ϵ, so utility of every agent will be an integer multiple
of ϵ. Given a coalition of size k, there are at most (B/ϵ)k possible utility vectors. Using the Ellipsoid
method, we can approximate the feasibility of each in polynomial time, as shown in the following
claim (proof deferred to Appendix C.1).
Claim 5. Given a coalition S ⊆ [n] and a utility profile (vi)i∈S , we can compute in polynomial time
either a data exchange x such that ui(x) ≥ vi − ϵ for all i ∈ S or return that no data exchange
satisfies ui(x) ≥ vi for all i ∈ S.

After constructing the two matrices, we reduce finding core-stable data exchange to solving Scarf’s
Lemma (as elaborated in Appendix C.3). Then we apply PA. It maintains two evolving bases: a
cardinal basis for C and an ordinal basis for U, where each basis consists of a set of column indices.
If the two bases differ, PA respectively performs the cardinal pivot step and the ordinal pivot step to
adjust the two bases. These bases evolve iteratively until equal. As the total search space is finite, PA
terminates in finite time. We defer a detailed description to Appendix C.4.

3The intuition behind choosing a large M is that we do not want an agent outside the coalition block deviation
to this coalition. In fact, we assign slightly different M to these entries to make these entries non-identical.

4By scaling down the payoff functions, our hardness results still hold.
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Figure 2: Performance of PA on the constructed data exchange instance.

4.2 Empirical Results

Next, we empirically test the performance of PA on real-world datasets. We construct a data exchange
instance using the same road map dataset [roa] as the previous work [BGI+24b]. The graph contains
4.4K nodes and 9.6K edges. The data exchange instance is constructed as follows: each agent i
corresponds to a path Pi. The agents aim to estimate the delays on their roads. Assume each agent i
possesses zie random samples of the delay for every edge e included in her path with identical variance
σ2
e . The payoff of agent i is determined by the sum of the variance of the mean of the random samples

of every edge that path Pi includes. For every edge e ∈ Pi, the initial variance of the mean is given
by σ2

e/z
i
e. Hence, the initial sum of variance of agent i is given by

∑
e∈Pi

σ2
e/z

i
e. In an exchange

x, xi,j represents agent i will shares xi,j · zie data samples with agent j for every e ∈ Pi ∩ Pj . The
payoff function pi(·) of agent i is induced by the decrease of the sum of variance, as follows:

pi(x) =
∑
e∈Pi

σ2
e

zie
−
∑
e∈Pi

σ2
e

zie +
∑

j:e∈Pj ,j ̸=i xj,i · zje
.

Meanwhile, we assume that every agent i incurs a cost of ci(x) = µi

∑
e∈Pi

µe · zie
∑

j:e∈Pj ,j ̸=i xi,j ,
where µe represents the cost of sharing per random sample of edge e

Simulation Setup. We run PA on the above data exchange instance to find a 0.1-core-stable
exchange, fixing each coalition size to 3, and varying the number of agents as n = 3i for i ∈ [9]. We
adopt the same method as [BGI+24b] to sample an agent i from the road map: Sample a random
node u and then sample a length t uniformly at random between 5 and the depth of the BFS tree
rooted at u. Then we sample another node uniformly at random from all nodes within layer t, choose
the shortest path from u to v, and assign it to agent i. The variance of each edge, σe, is a random
number in range [0, 1], and µe is set as (1 − σe) · 10−3. In addition, every agent i starts with zie
random data samples for every edge in her path, where zie is chosen uniformly at random in the range
[4, 9]. All experiments were run on a MacBook Pro with an Apple M3 Pro CPU and 18 GB RAM.
The implementation uses Python 3.12 and SciPy [VGO+20] (v1.13.0) for concave optimization.

Performance. We evaluate PA’s performance on the constructed data exchange instance using three
metrics: (i) number of coalitions formed; (ii) number of concave optimization calls; and (iii) runtime
for coalition matrix construction and pivoting. For each agent size, we repeat the construction and
PA execution 20 times and report the mean. Results are shown in Figure 2, with the first subfigure
displaying optimization calls and coalition sizes. Both reach the maximum when n = 27, where the
number of calls and size of coalitions are respectively 7.17× 104 and 2, 914. In addition, Figure 2b
shows the time of constructing the coalition matrix (Phase I) and PA (Phase II). The most (least)
expensive sample includes 9, 198 (resp. 533) possible coalitions, and the time of constructing the
coalition matrix is 9, 821.54 (resp. 151.36) seconds, while the running time of the pivoting algorithm
is 118.08 (resp. 2.36) seconds. The time of constructing the coalition matrix grows significantly in
polynomial time, while the time of PA is much smaller and less affected by the number of agents.
On average, PA terminates in 7.36 seconds, ranging from 0.001 seconds for n = 3 to 38.37 seconds
for n = 27. The third subfigure (Figure 2c) shows the number of iterations until termination. We
observe a modest, seemingly quadratic growth in iterations with the number of agents. PA takes an
average of 238.3 iterations and up to 1434 in the worst case.
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5 Discussion and Conclusion

We introduced a general model of data exchange and studied the existence and computation of
core-stable solutions within it. We identified interesting sufficient conditions for the existence of
core-stable exchanges. We outline computational barriers and end with an algorithm that can be
expected to be efficient in practice. We see this paper as an initiation for studying stability in data
exchange economies. Currently, our model is very general in its assumptions, and we expect more
efficient algorithms for some special cases, e.g., (i) accuracy functions from Gaussian inference or
PAC learning (usually pi(x−i = 1− 1/(

∑
j τjixji)), and cost functions being linear, or (ii) when

there are only constantly many payoff and cost functions, corresponding to fixed types of agents.

Another promising direction is to explore additional desiderata beyond stability. For in-
stance, [BGI+24a, ACGM25] investigate exchanges that satisfy both core-stability and a fairness
criterion, where each agent’s final payoff is proportional to their contribution to the payoffs of others.
However, their model does not incorporate costs for data sharing– making core-stability alone trivial
to achieve (set all xij = 1). An intriguing question is whether one can compute exchanges that are
both core-stable and fair when agents incur costs for data-sharing. In essence, this involves integrating
our cost-aware framework with the fairness-oriented approach of [BGI+24a, ACGM25].

Finally, we believe that questions of stability merit investigation in more general models—particularly
those involving externalities. Such externalities arise naturally in competitive environments, where
collaboration between two agents may negatively impact the utility of others (e.g., collaborating
agents can capture a greater share of the market). In these settings, we suspect that core-stability is
unlikely to hold. However, it would be interesting to explore whether suitable mechanisms—such as
structured rules for splitting the joint utility gains—can facilitate the existence of core-stable data
exchanges despite the presence of externalities.
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A Existence of Core-Stability

In this section, we provide a complete picture on the existence of core-stable data exchanges. In
Appendix A.2, we show a core-stable data exchange always exists when (i) the payoff functions are
concave and (ii) the cost functions are convex. From here on, we refer to the foregoing two conditions
as sufficient conditions. Then we show that core-stable data exchange may not always exist if one of
the two sufficient conditions is unsatisfied, even when we have only three agents.

A.1 N-Person Game, Balanced Game

The definition of the core of an n-person game was proposed by Scarf [Sca67]. An n-person game
with non-transferable utilities consists of n agents (denoted by N ) and a function V (·). Let RS

≥0 to
be a subspace of Rn

≥0 where the entries corresponding to coordinates indexed by S can take values
in R≥0, while the entries for coordinates not in S are set to 0. For every subset S of N , function
V (·) returns a set of outcomes V (S) consisting of a set of utility vectors, which belong to RS

≥0 and
represent all the achievable utilities of agents in S when they collaborate exclusively with other agents
in S. Next, we introduce the notion of balanced game.
Definition 4 (Balanced Game). A collection T of subsets of agents is said to be balanced, if there
exists an assignment {δS}S∈T such that, for every agent i ∈ N , we have

∑
S:i∈S δS = 1. We say a

utility vector u is attainable by S if u ∈ V (S). If u is a utility vector for n agents, let uS denote the
projection of u onto the agents in S. A game balanced if and only if for any balanced collection T
and any u, if uS is attainable by all S in T , then u is attainable by N .

The core of an n-person game is defined almost the same as core-stable exchange. A core is a utility
vector that is attainable by the entire agent set N and cannot be blocked by any coalition. Given a
utility vector u, if a coalition of agents can get a higher utility for all of its members, then the vector
u is said to be blocked by that coalition. As shown in [Sca67], the core of any n-person balanced
game exists if V (·) satisfies the following mild assumptions.
Lemma 2 ([Sca67]). The core of any balanced n-person game exists if the function V (·) is assumed
that:

• For each S ⊆ N , V (S) is a closed set;

• If u ∈ V (S) and y ∈ RS
≥0 with y ≤ u5, then y ∈ V (S);

• The set of vectors in V (S) in which each player in S receives no less than the maximum that she
can obtain by herself is nonempty and bounded.

A.2 Existence of core-stable data exchange under Sufficient Conditions

We first formalize the data exchange problem into the framework of an n-person game. The function
V (·) is specified as follows: for every subset S ⊆ N , we define V (S) as the set of nonnegative utility
vectors that are attainable by the agent set S. Formally,

V (S) =
{
(ui(x))i∈N : x ∈ [0, 1]S×S and ui(x) ≥ 0,∀i ∈ N

}
,

where [0, 1]S×S denotes the set of all data exchanges among S, i.e., only shares between agents in
S can take values in [0, 1] while other fractions are forced to be zero. Next, we show the game is
balanced when the payoff functions pi(·) are concave and cost functions ci(·) are convex, which
would then imply that a core exists.
Theorem 3. A core-stable data exchange always exists if the payoff functions {pi}i∈N are concave,
the cost functions {ci}i∈N are convex.

Proof. We demonstrate that the function V (·) meets the pre-conditions of Lemma 2. First, we
claim that V (S) is a closed set for any S ⊆ N . For any sequence {uk ∈ V (S)}∞k=1 converging
to some utility vector u∗, we show u∗ ∈ V (S). By the definition of V (S), uk is attainable by

5This is coordinate-wise comparison of the vectors. Given vectors a, b ∈ Rd, a ≤ b if and only if ai ≤ bi
for all i ∈ [d].

14



Algorithm 1: Update the data exchange x iteratively
1 Input: ϵ > 0, a utility vector y and an exchange x on a specified agent set S ⊆ N ;
2 Let k ← 0 and x0 ← x;
3 while there exists an agent i ∈ S such that ui(x

k) ≥ yi + ϵ do
4 Let k ← k + 1 and xk be the copy of the last exchange;
5 Pick an arbitrary agent j ∈ S with j ̸= i and positive shares with agent i, i.e., xk

j,i > 0;
6 Decrease the share xk

j,i until xk
j,i = 0 or ui(x

k) = yi;

7 return xk;

some exchange xk. As the space of data exchanges [0, 1]S×S is compact, there exists a subsequence
{xk(ℓ)}∞ℓ=1 converging to some exchange x∗ ∈ V (S). By the continuity of the utility functions, we
have ui(x

∗) = limℓ→∞ ui(x
k(ℓ)) = u∗

i for any i ∈ S. Thus, u∗ is attainable by agent set S.

Next, we show that if u ∈ V (S) and y ∈ RS
≥0 with y ≤ u, then y ∈ V (S). Suppose u is attainable

by some exchange x. We now run the procedure described in Algorithm 1, which iteratively adjusts
the current exchange until the utility vector is quite close to y. We then show that y is also included
in V (S) as follows. First, we show that the procedure always terminates.

Claim 6. For any ϵ > 0, Algorithm 1 will terminate in finite steps.

Proof. Let ηj,i(x) be the infinum of t ∈ [0, 1] such that ui(x+ t · ej,i) ≥ ui(x) + ϵ. If such t does
not exists (ui(x+ t · ej,i) < ui(x) + ϵ for any t ∈ [0, 1]), we set ηj,i(x) = 1. For every agent i ∈ S,
we let ηi(x) = minj∈S,j ̸=i ηj,i(x). We first prove the following property.

inf
x

ηj,i(x) > 0, for any i ̸= j ∈ S.

Suppose for contradiction that infx ηj,i(x) = 0. Then, there exists a sequence of exchanges and
values of t, {(xk, tk)}∞k=1, such that ui(x

k + tk · ej,i) > ui(x
k) + ϵ and limk→∞ tk = 0. As

the whole space of exchanges is compact, there exists a subsequence {xk(ℓ)} converging to some
exchange x∗ and tk(ℓ) → 0. Also, ui(x

k(ℓ) + tk(ℓ) · ej,i) > ui(x
k(ℓ)) + ϵ for any ℓ. By taking the

limit on both sides, we get the contradiction as ϵ > 0 and ui is continuous. Therefore, we can further
conclude that,

inf
x

ηi(x) = inf
x

min
j∈S,j ̸=i

ηj,i(x) = min
j∈S,j ̸=i

inf
x

ηj,i(x) > 0, for any i⇒ min
i∈S

(
inf
x

ηi(x)
)
> 0 .

Denote the minimum by ∆. We can observe that all the shares xj,i are iteratively decreased at each
round. If a step terminates until ui(x

k) = yi, xj,i will be decreased by a value of at least ∆ by the
definition of ηi(x). For that reason, we know that, at each round, one of the following two must
happen: (1) one positive xj,i is turned to zero; (2) one xj,i decreases by at least ∆. As the sum of
xj,i is bounded by |S|2, the number of iterations is at most |S|2 /∆+ 1, which is finite.

According to Claim 6, we can find a data exchange x(ϵ) over S for every ϵ > 0, such that its utility
vector u = (ui(x))i∈S satisfies yi ≤ ui(x) ≤ yi + ϵ. As the set V (S) is closed, by taking ϵ to 0+,
we know that y ∈ V (S).

Thirdly, when no one in S shares anything with another one, all the utilities will be zero. So 0 is
attainable by S. Besides, as all the utility functions are continuous and the space of all exchanges is
closed, the utility vectors of V (S) are bounded. Thus, we can conclude that the function V satisfies
the conditions in Lemma 2.

Finally, we show that the data exchange game is balanced. For any balanced collection T and any u,
if uS is attainable by all S in T , we need to show that u is also attainable by N . We let xS

i,j to be the
share of agent i to agent j in the data exchange that attains utility vector uS . We then construct a new
exchange x over N by

xi,j =
∑

S∈T :i∈S

δS · xS
i,j ,
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As xS
i,j ≤ 1 and

∑
S∈T :i∈S δS = 1, xi,j ≤ 1, which satisfies the feasibility constraints. Besides,

since pi is concave and ci is convex, the utility function ui(x) is concave, which means that

ui(x) = ui

( ∑
S∈T :i∈S

δS · xS
s,t

)
s,t∈[n]


≥

∑
S∈T :i∈S

δS · ui(x
S
−i,i) (By concavity of pi(·) and convexity of ci(·))

=
∑

S∈T :i∈S

δS · ui = ui . (As uS is attainable by S)

Hence, ui(x) ≥ ui for any i ∈ N . By the second property of V (·), u is also attainable by N . Thus,
the data exchange game is balanced and has a core u. By the definition of the core, we know u is
attainable by some exchange x of the n agents, and u is not blocked by any utility vector of V (S)
for any S ⊆ [n]. For any utility vector u′ that is attainable by S but not included in V (S), we know
there must exist an agent in S receiving negative utility, which means that S cannot form a deviating
coalition either. Therefore, x is a core-stable data exchange.

A.3 Non-existence of Core-Stable Data Exchange For Instances Not Satisfying Sufficient
Conditions

We first provide more details of the construction discussed in Section 2.1. By the construction of
the payoff function, one agent receives a positive payoff only when she receives a share larger than
1− ϵ from another agent. As the cost function is monotone, we can reduce a fraction xi,j to 0 if it is
smaller than 1− ϵ, which does not decrease the utility of any agent and hence, does not affect the core
stability of the data exchange x. Below, we assume that xi,j is either 0 or larger than 1− ϵ. Observe
that the denominator of the third term of the cost function, ϵ, is assumed to be a sufficiently small
constant, such that if xi,α and xi,β are both larger than 1− ϵ, the cost will be no less than (1− ϵ)2/ϵ,
which is pretty larger than the maximum payoff agent i can receive (i.e., pi,α + pi,β). Hence, agent i
would have the incentive to deviate, which implies that every agent cannot have positive shares with
both two other agents.

Case Exchange Agents x1,2 x1,3 x2,1 x2,3 x3,1 x3,2 u1 u2 u3

I x {1, 2, 3} 0 0 0 0 0 0 0 0 0

xU {1, 2} 1 0 1 0 0 0 0.25 0.125 -
II x {1, 2, 3} ≥ 1 − ϵ 0 ≥ 1 − ϵ 0 0 0 < 0.25 + ϵ < 0.125 + ϵ 0

xU {2, 3} 0 0 0 1 0 1 - 0.25 0.125
II x {1, 2, 3} 0 ≥ 1 − ϵ 0 0 ≥ 1 − ϵ 0 < 0.125 + ϵ 0 < 0.25 + ϵ

xU {1, 2} 1 0 1 0 0 1 0.25 0.125 -
II x {1, 2, 3} 0 0 0 ≥ 1 − ϵ 0 ≥ 1 − ϵ 0 < 0.25 + ϵ < 0.125 + ϵ

xU {1, 3} 1 0 1 0 0 1 0.125 - 0.25
III x {1, 2, 3} ≥ 1 − ϵ 0 0 ≥ 1 − ϵ ≥ 1 − ϵ 0 < 0.5 + ϵ < 0.125 + ϵ < −0.125 + ϵ

xU {3} 0 0 0 0 0 0 - - 0
III x {1, 2, 3} 0 ≥ 1 − ϵ ≥ 1 − ϵ 0 0 ≥ 1 − ϵ < −0.125 + ϵ < 0.25 + ϵ < 0.5 + ϵ

xU {1} 0 0 0 0 0 0 0 - -

Table 1: Deviation (U,xU ) for each case of data exchange x. The row with x is the original exchange
and the row with xU is the deviation. Cells in gray are the utilities of agents in the coalition U .

Next, we construct a simple graph G = (V,E) with three vertices, with each of them corresponding
to an agent. There is an edge from i to j if agent i shares more than 1− ϵ unit of data with agent j.
Therefore, every agent has an out-degree of at most 1 and there is no source in the graph. It suffices
to discuss the following three cases.

• Case I: Nobody shares anything, i.e., xi,j = 0 for any i, j ∈ [n].

• Case II: Only two agents are exchanging data. Thus, there are three possible subcases: (i)
E = {(1, 2), (2, 1)}; (ii) E = {(1, 3), (3, 1)}, or; (iii) E = {(2, 3), (3, 2)}.

• Case III: All three agents are exchanging. By the properties of the graph, there are only two
possible subcases: (i) E = {(1, 2), (2, 3), (3, 1)} or; (ii) E = {(1, 3), (3, 2), (2, 1)}.
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Figure 3: Cost function c1(·) of agent 1

However, as shown in Table 1, for each case, there exists a coalition U and an exchange xU such that
every agent in U can improve her utility. In particular, for the first case, agent 1 and agent 2 have the
incentive to form a coalition. For either of the second cases, there exists one agent of the two having
the incentive to form a coalition with the other agent. For either of the third cases, there always exists
one agent with a negative utility who can improve her utility by deviating alone. Therefore, we can
conclude that it is impossible to find a core-stable exchange in both the three cases, which concludes
the non-existence.
Remark 1. It can be noticed that, in Table 1, each agent in the coalition U improves her utility by at
least 0.125− ϵ in each case, which even proves a stronger result – an α-core-stable does not always
exist in an arbitrary instance even when α is a positive constant number.

Next, we showthat when either of the two sufficient conditions – concavity of payoff functions or
convexity of cost functions – is relaxed, core-stable data exchange may not always exist, even when
having only three agents.
Proposition 1. Even if both payoff and cost functions are continuous, core-stable data exchange
does not always exist if either the concavity of payoff or the convexity of cost is relaxed.

A.3.1 Linear Payoff and Concave Cost

We have already provided an instance where core-stable data exchange does not exist when both the
concavity of payoff and the convexity of cost functions are removed. Next, we show it also holds
even when there are three agents and only the convexity of cost is removed.

Let the payoff functions of the three agents p1(·), p2(·), p3(·) be defined as linear functions. In
particular, pi(x) = pi,α · xi,α + pi,β · xi,β , where {α, β} = [3] \ {i} and pi,j is defined by Figure 1.
The cost functions are defined as follows. Fix a sufficiently large constant C > 0. We take agent 1 as
an example and start by defining her costs for some particular sharing (x1,2, x1,3):

c1(x1,2, x1,3) =


0 if (x1,2, x1,3) = (0, 0)
c1,3/ϵ · x1,3 if x1,2 = 0 and x1,3 ≤ ϵ
c1,2/ϵ · x1,2 if x1,3 = 0 and x1,2 ≤ ϵ
C if x1,2 ≥ ϵ or x1,3 ≥ ϵ

Then we define the costs for the remaining points (x1,2, x1,3) in [0, 1]× [0, 1]. As shown in Figure 3,
consider the four planes P1, P2, P3 formed by connecting four points respectively, where plane P1

is formed by points (0, 0, 0), (ϵ, ϵ, C), (ϵ, 0, c12), (0, ϵ, C), plane P2 is formed by points (ϵ, 0, c1,2),
(1, 0, c1,2), (1, ϵ, C), (ϵ, ϵ, C), plane P3 is formed by points (0, ϵ, c1,3), (0, 1, c1,3), (ϵ, 1, C), (ϵ, ϵ, C),
and plane P4 is formed by points (ϵ, ϵ, C), (ϵ, 1, C), (1, ϵ, C), (1, 1, C).

Consider the union of the three planes P = P1 ∪ P2 ∪ P3 ∪ P4. Since their projections on the
x1,2 − x1,3 plane do not overlap (except the intersection line), for every (x1,2, x1,3) ∈ [0, 1]× [0, 1],
there is just one possible c such that (x1,2, x1,3, c) ∈ P . We then define c1(x1,2, x1,3) as follows:

c1(x1,2, x1,3) = c such that (x1,2, x1,3, c) ∈ P .

Besides, as the constant C is sufficiently large, we can observe that function c1 is concave. We
symmetrically define c2 and c3 as the above and they are concave for the same reason.
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Figure 4: Illustration of reduction of Theorem 4, where each node corresponds to an agent.

Next, as C is sufficiently large, every agent cannot share fractions of at most ϵ with the other two
agents simultaneously.

Then we show a core-stable exchange still does not exist in this case. We prove it by contradiction.
Assume x is a core-stable exchange. Then we still discretize the data exchange x. If xi,j ≤ ϵ, then
we reduce it to zero, which only reduces the utility of agent j by ϵ. Otherwise, if xi,j > ϵ, then we
increase it to 1, which does not affect agent i’s cost, since her two shares cannot be larger than ϵ
simultaneously and the other share is reduced to zero. It can be noticed that xi,j turns to one or zero
for any i, j ∈ [3] after the discretization. In addition, the discretization operation only decreases the
utility of each agent by 2ϵ.

However, since 2ϵ is sufficiently small, our previous discussion demonstrates that there always exists
a deviation (U,xU ) that significantly improves the utility of every agent in U , no matter how the
integral exchange performs, which means that there still exists a blocking x before the discretization
and contradicts assumption of core-stability of x.

A.3.2 Convex Payoff and Convex Cost

We now construct a data exchange instance where core-stable exchange does not exist for convex
payoff functions and convex cost functions. Set the number of agents as three and use the same payoff
function as Section 2.1. Define the cost function as follows:

ci(x) =
1

ϵ
· (xi,α + xi,β − 1)+ + ci,α · xi,α + ci,β · xi,β ,

where {α, β} = [3] \ {i}. As the payoff functions are the same, we can still discretize the data
exchange to make sure every xi,j = 0 or xi,j > 1− ϵ. It can be observed that, for every agent i, it is
impossible that xi,α and xi,β are both at least 1− ϵ, since the incurred cost will become larger than
1/ϵ · (1− 2ϵ), which is much larger than the payoff she can receive. Using the same analysis before,
we can conclude that there always exists a deviation from x.

B The Complexity of Finding Core-Stable Data Exchanges

B.1 Hardness of Determining the Existence of a Core-Stable Data Exchange

Theorem 4. It is NP-hard to determine the existence of a core-stable data exchange.

Overview of the Reduction. We reduce from the 3SAT problem, which is known to be NP-
complete. Given a 3SAT instance, we create a data exchange instance with two parts, as illustrated in
Figure 4, distinguished by shallow and dotted curves. The nodes represent the agents, and only agent
s1 appears in both areas. The lightly shaded area on the left corresponds to the instance discussed,
where core-stable exchanges do not exist. In addition, we create a gadget using the input 3SAT
instance in the right area. Each agent receives a positive payoff only if she simultaneously receives
almost all data from every agent who points to her. In addition, we sets a threshold for every agent
such that she incurs a large cost if the total fraction she shares exceeds the threshold.

Agent s1 receives payoffs from both areas and takes the maximum as her final payoff and serves as a
variable that determines whether a core-stable exchange exists. When the input 3SAT instance is a
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(a) Illustration of the directed graph gadget used in Theorem 4, where diamond nodes represent super agents,
square nodes represent literal agents, circle nodes represent selection agents and triangle nodes represent clause
agents. Clause C1 is in form of C1 = (v1 ∨ · · · ). An arrow i → j represents data share xi,j affecting the payoff
of agent j. The graph within the dotted ellipse represents the graph G.
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(b) The data exchange xY, where the truth assignment is v1 = false, v2 = true, . . . , vn = true and an arrow
i → j in gray shadow represents agent i sharing one unit of data with agent j.

YES instance, then we are able to construct a data exchange according to the assignment such that
(almost) every agent in the right area receives the maximum payoff. Hence, no agent in the right area
has an incentive to deviate from the data exchange. However, if the input 3SAT instance is a NO
instance, the construction guarantees that no agent in the right area should exchange data with any
other agent. Otherwise, the threshold requirement of some agent would be violated, which would
lead to a large cost and give her an incentive to deviate. Therefore, the data exchange only happens in
the left area, which is the instance we discussed in the last section, and we know that the core-stable
exchange does not exist.

We now present the formal proof for Theorem 4.

Proof. We show a reduction from the 3SAT problem. Given a 3SAT instance with n variables
v1, . . . , vn and m clauses C1, . . . , Cm, we construct a directed graph gadget G = (V,E) (as shown
in Fig. 5a) and then use it to construct a data exchange instance. For each variable vi, we construct
two literal vertices vi and v̄i and a selection vertex si. For each clause Cj , we construct a clause
vertex Cj . The vertices are connected as follows: (i) For each variable vi, we create two arcs from
literal vertex vi and v̄i to si. Meanwhile, we create two arcs (si+1, vi) and (si+1, v̄i); (ii) Then, we
create a path from s1 to sn+1 that goes through all the clause vertices C1, . . . , Cm; (iii) Finally, for
each clause Cj , if literal vi appears in Cj , we construct an arc from Cj to v̄i. If v̄i is in Cj , construct
an arc from Cj to vi. For example, if Cn is in form of Cn = (v1 ∨ · · · ), then we construct a arc
from Cn to v̄1 in Fig. 5a. Observe that the out-degree of every clause vertex is exactly 4. We now
construct a data exchange instance as follows: Let every vertex of G correspond to a normal agent.
For simplicity, we use the same notation to denote both the vertices and their corresponding agents.
We slightly abuse N to denote the set of normal agents. In addition, we introduce two super agents
A1 and A2 and connect them with the selection agent s1 with bi-directional arcs.

Payoff Function. The payoff function of each agent a is in form of pa(x) = max
(
pVa (x), p

A
a (x)

)
,

where pVa (x) only depends on data shares from normal agents and pAa (x) only depends on the shares
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from the two super agents. In particular, pAv (x) = 0 for any normal agent v other than s1. For any
super agent A ∈ {A1, A2}, pVa (x) is set to zero. We now proceed to define pVa (x) and pa(x).

The payoff function pVv (x) for every normal agent v ∈ V is defined as follows:

• For each selection agent s, let xv1,s and xv2,s be the fractions of shares received from the agents
with arcs incident to s. When s = sn+1, we set xv1,s = xv2,s as the share from Cm. Define
pVs (x) = 1/ϵ · (max(xv1,s, xv2,s)− (1− ϵ))+. Hence, the maximum payoff pVs of a selection
agent s is 1.

• For any other agent v, let pVv (x) =
∏

(u,v)∈E 1/ϵ · (xu,v − (1 − ϵ))+. This implies that the
maximum payoff these agents can receive is also 1.

Next, we define pAa (x) for the two super agents A1, A2, and the selection agent s1. Fix γ > 0 as
a constant smaller than ϵ. Consider the counter-example presented in Appendix A.3. We consider
agents A1, A2, and s1 to be the three agents 1, 2, and 3 (respectively) in that data exchange instance.
Let pAa (x) be the payoff function of any agent a ∈ {A1, A2, s1} from Appendix A.3, scaled by a
factor of γ.

Cost Function. The cost function is also in the form of ca(x) = cVa (x) + cAa (x), where cVa (x)
and cAa (x) are set as zero for any super agent and any normal agent (except for s1).

The cost function cVv (x) for every normal agent v ∈ V consists of two parts: the first part is a sum of
concave functions where each term becomes a small constant ϵ if xv,u > ϵ; while the second part is a
convex function that becomes super large if the total out-shares is larger than a threshold. Formally,
we set cVv (x) =

∑
(v,u)∈E ϵ · min(1/ϵ · xv,u, 1) + 1/ϵ · (

∑
(v,u)∈E xv,u − τv)+. Let τv = 3 for

any clause agent v and τv = 1 for any normal agent v. cAa (x) is defined similarly. For any agent
a ∈ {A1, A2, s1}, her cost function cAa (x) is inherited from Appendix A.3, scaled by a factor of γ.

When the input 3SAT instance is a YES instance, we define a data exchange xY according to the
assignment as follows: (i) The two super agents share one unit of data with each other; (ii) If a literal
ℓi (vi or v̄i) is assigned true, let her share one unit of data with si and let si+1 share one unit of data
with her; (iii) Let selection agent s1 share one unit of data with clause agent Cn and every clause
agent shares one unit of data with her adjacent agent; In particular, Cn shares one unit of data with
Cn−1, Cn−1 shares one unit of data with Cn−2, and so on; (iv) For each clause agent Cj , if a literal
ℓ within it is assigned false, then let Cj share one unit of data with the agent corresponding to the
negation of ℓ. We present a graphical explanation of xY in Figure 5b.

Claim 7. If the 3SAT instance is a YES instance, the data exchange xY is a core-stable exchange.

Proof. First, it can be verified that every agent has a positive utility in xY. Then we prove xY is
core-stable by contradiction. Suppose that a deviation (U,xU ) exists. We first discretize xU as
follows: for every xi,j , if xi,j ≤ 1 − ϵ, we can decrease xi,j to zero as it does not affect agent j’s
utility. In addition, since all the cost functions are monotone, the operation weakly decreases the cost
of agent i, which further increases agent i’s utility. Thus, the discretization operation does not affect
the feasibility of the deviation.

After discretization, if U contains some normal agent, we claim there must exist one selection agent
s still with positive out-shares in xU . Suppose for contradiction, all selection agents share nothing in
xU . If U contains clause agents, there must exist one clause agent in U not receiving any shares in
xU . Hence, the utility of that clause agent will be non-positive in xU , which gives her no incentive to
deviate from xY. Otherwise, if U does not contain any clause agent, any literal agent should not be
included either, as the payoff of these agents only depends on the clause agents and selection agents.
Loss of a clause agent makes a literal agent receive significantly less utility than in xY. These imply
that U should not contain any normal agent, and this contradicts our assumption. Therefore, there
must exist one selection agent s with positive shares in U . That means the cost of that selection agent
is at least ϵ by the definition of her cost function. Meanwhile, as her maximum payoff is 1, her utility
in xU cannot exceed her payoff in xY, which causes a contradiction.

Last, if the coalition U does not contain any normal agent, it can also be verified that the two super
agents cannot strictly increase their utility simultaneously.
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When the input 3SAT instance is a NO instance, we prove the non-existence of core-stable exchange
by contradiction. For the sake of contradiction, we assume a core-stable exchange xN exists. In fact,
we find that, to guarantee core stability, the shares among the normal agents V can only be zero, i.e.,
xN
i,j = 0 for any i ̸= j ∈ N .

Claim 8. xN
i,j = 0 for any two distinct normal agents i, j if the 3SAT instance is a NO instance.

Proof. Let U be the set of normal agents who share positively with other normal agents. If U is
empty, the claim is proved. Assume that U is nonempty. We next demonstrate that an agent v in U
must exist with a zero payoff, which means she has negative utility since she has a positive share
– which incurs a positive cost. Our discretization operation ensures that every agent in U has an
out-share of at least 1− ϵ, which makes her incur a cost of at least ϵ.

Since ϵ > γ, it implies pAv (x) < ϵ and pVv (x) should be positive for any v ∈ U . By the definition
of pVv , the fractional data shared on every edge incident to every clause agent or literal agent in U
should be larger than 1− ϵ. Similarly, the fractional data shared on one of the incident edges of every
selection agent in U should also be larger than 1− ϵ. Since U is nonempty, by the structure of the
directed graph gadget, the following agents should be included in U : (i) every selection agent; (ii) at
least one of vi and v̄i for any i ∈ [n]; (iii) every clause agent.

By the structure of the graph gadget, it can be observed that the following agents should be included
in U : (i) every selection agent; (ii) at least one of vi and v̄i for any i ∈ [n]; (iii) every clause agent.
Next, we interpret U as an assignment of the input 3SAT instance. If vi and v̄i are both included,
we only keep an arbitrary one. Then we create an assignment as follows: if vi is included, then vi
is assigned true. Otherwise, if v̄i is included, vi is assigned false. Since the 3SAT instance is a NO
instance, no matter how the assignment is given, one clause Ci will be unsatisfied, which means
all the literals within it are assigned false. Hence, the negations of all three literals are included in
U , and Ci should share 1 − ϵ unit of data with each of them. Meanwhile, Ci should also share at
least 1 − ϵ unit of data with her adjacent clause agent (or selection agent), which makes the sum
of fractions on her out-edges to be no less than 4(1 − ϵ). Thus, her incurred cost will be at least
1/ϵ ·(4−4ϵ−3) = 1/ϵ ·(1−4ϵ), which is much larger than her maximum payoff as ϵ is a sufficiently
small constant. So there must exist one clause agent receiving negative utility in U , and such agent
has no incentive to deviate, which leads to a contradiction. Thus, there must exist an agent v in
U whose payoff is zero while her cost is positive, but such an agent has a negative utility and has
no incentive to deviate, but this leads to contradiction as well. Therefore, U must be empty, which
concludes the claim.

Based on Claim 8, only data exchanges between s1 and the two super agents A1 and A2 can be
positive. However, by the analysis of the counter-example in Appendix A.3, a deviation always exists
no matter how they exchange. Therefore, there is no core-stable data exchange when the 3SAT is a
NO instance, which concludes the correctness of the reduction.

B.2 PPAD-Hardness of Finding Core-Stable Exchange under the Sufficient Conditions

In this part, we show that the problem of finding a core-stable exchange is PPAD-hard for concave
payoff functions and convex cost functions, where a core-stable exchange is shown to exist in Sec-
tion 2.2. It is worth noting that, the hardness result still holds when the size of coalitions is restricted
by a fixed constant.

We first introduce the problem of APPROXIMATE FRACTIONAL HYPERGRAPH MATCHING, where
we are given a hypergraph G = (V,E), a preference system O = (≻v)v∈V and a number ϵ ∈ [0, 1].
The goal is to determine whether there exists a fractional matching f : E → [0, 1] such that∑

e : e∈E(v) f(e) ≤ 1 for all v ∈ V . The matching is stable if there exists a vertex v in e such that∑
e′∈E(v) : e′⪰ve

f(e′) ≥ 1 − ϵ for every edge e. A stable fractional matching is known to exist
even if ϵ is set as zero [AF03]. Finding a stable fractional matching is PPAD-complete when ϵ is
set as 1/220|E|4 [IK18, Theorem 4]. Furthermore, by applying their result to the setting in [Csá22],
the PPAD-completeness still holds even when each edge has a size of exactly 3 and every vertex is
incident to at most three edges.
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Figure 6: Graphical explanation of the edge gadget for the PPAD-hardness reduction.

B.2.1 Overview of the Reduction

Given a hypergraph instance G = (V,E) and a preference system O, we construct the data exchange
instance as follows. For every hyperedge e, we construct an edge agent (denoted by e for simplifi-
cation). Meanwhile, we create three vertex agents for the three vertices included in e, denoted by
v1e , v

2
e , v

3
e . Note that if a vertex appears in multiple hyperedges, we do not create separate vertex

agents for each occurrence. Instead, we create a unique vertex agent and simply refer to it by different
names on different hyperedges. Additionally, we create one intermediate agents ie for every edge,
who serve as the bridge facilitating data exchanges between edge agents and vertex agents. For
every edge e ∈ E, we correspond intermediate agent ite to vertex agent vte for t ∈ [3]. We present a
graphical illustration of the edge gadget in Fig. 6.

Fix ϵ > 0 to be a sufficiently small constant such that 1− 10ϵ1/4 ≥ 1− 1/220|E|4 and ϵ < 10−3. Let
d = ϵ−1/4, H = ϵ−1/2, and Γ = 3(d+H + 1)/ϵ. Next, let us define the payoff and cost functions
of the agents in the above data exchange instance.

Payoff Functions. For every vertex agent v ∈ V , we introduce a payoff function pev(x) for
every hyperedge including it, and her total payoff is defined as the sum of these payoffs, i.e.,
pv(x) =

∑
e:v∈e p

e
v(x). Consider a hyperedge e ∈ E including v. Then we define pev(x) as follows:

pev(x) =


(d+H + 1) · xie,v if e is v’s favorite hyperedge,
(d+H) · xie,v if e is v’s second preferred hyperedge,
H · xie,v if e is v’s least preferred hyperedge .

The payoff function of every intermediate agent ie is pie(x) = min
(
xe,ie , xv1

e ,ie
, xv2

e ,ie
, xv3

e ,ie

)
. In

addition, the payoff function of the edge agent e is defined as pe(x) = xie,e.

Cost Functions. For every vertex agent v, define her cost function using the truncation function.
The cost will be pretty large if her total shares with the intermediate agents exceed 1.

cv(x) = Γ ·

(∑
e:v∈e

xv,ie − 1

)
+

. (3)

Meanwhile, the cost function of an intermediate agent ie is defined as cie(x) = (1 − ϵ) ·
max

(
xie,e, xie,v1

e
, xie,v2

e
, xie,v3

e

)
. The cost function of edge agent e is defined as ce(x) =

(1 − ϵ) · xe,ie . We can check that all the payoff functions are concave and the cost functions
are convex. Meanwhile, it can be observed that the utility of every agent is equal to zero when the
data exchange x is 0.

B.2.2 Mapping from Data Exchange to Fractional Hypergraph Matching

Next, we construct a hypergraph mapping from a core-stable data exchange x. Since every agent
receives a utility of zero in the data exchange 0, any core-stable data exchange must ensure that the
utility of every agent is nonnegative. Otherwise, an agent receiving negative utility would have an
incentive to deviate. We then adjust the fractions to ensure that no agent’s utility decreases. Note
that each agent’s payoff and cost functions are monotonic with respect to every coordinate of the
data exchange. For every intermediate agent ie, since her cost function is defined as the maximum
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of her out-shares xie,e, xie,v1
e
, xie,v2

e
, xie,v3

e
, we can adjust all the four fractions to be equal to the

maximum of them, which weakly increase other agents’ utility without increasing her cost. In
addition, consider the edge agent e and the three vertex agents corresponding to the intermediate
agent. As the payoff of the intermediate agent is the minimum of the fractions of shares from the
four agents, we can adjust the four fractions to be equal to the minimum of them, which weakly
increases the utility of other agents without decreasing the payoff of the intermediate agent. As the
utility of all agents does not decrease during the above adjustment, the tweaked data exchange x
is still core-stable. In the following proof, we assume that xie,e = xie,v1

e
= xie,v2

e
= xie,v3

e
and

xe,ie = xv1
e ,ie

= xv2
e ,ie

= xv3
e ,ie

for every intermediate agent ie. Denote the former value by f−(e)

and the latter value by f+(e). We first have the following lemma of the relationship between the two
fractions f−(e) and f+(e) for every hyperedge e.
Lemma 3. For every hyperedge e ∈ E, we have (1− ϵ)f+(e) ≤ f−(e) ≤ f+(e)/(1− ϵ).

Proof. First observe that, the utility of the edge agent e is given by

pe(x)− ce(x) = f−(e)− (1− ϵ) · f+(e),

which should be nonnegative as the data exchange is core-stable. This implies that f−(e) ≥
(1− ϵ) · f+(e). In addition, the utility of the intermediate agent ie is given by

pie(x)− cie(x) = f+(e)− (1− ϵ) · f−(e),

which is also nonnegative. This implies that f+(e) ≥ (1− ϵ) · f−(e) and concludes the lemma.

Lemma 4. For every vertex v ∈ V , we have
∑

e:v∈e f
+(e) ≤ (1 + ϵ).

Proof. Observe that, the utility of every vertex agent v is given by

pv(x)− cv(x) =
∑
e:v∈e

pev(x)− cv(x) ≤
∑
e:v∈e

(d+H + 1)− Γ ·
( ∑

e:v∈e

f+(e)− 1
)
+

≤ 3 · (d+H + 1)− Γ ·
( ∑

e:v∈e

f+(e)− 1
)
+
, (the degree of v is at most 3)

which should be nonnegative. As Γ = 3(d+H + 1)/ϵ, then we have
∑

e:v∈e f
+(e) ≤ 1 + ϵ.

Now we are ready to construct the fractional hypergraph matching on that hypergraph. Define the
flow f : E → [0, 1] as follows: for every edge e ∈ E, we let f(e) = max(f+(e), f−(e)) · 1−ϵ

1+ϵ ,
which is valid fractional matching by Lemma 4.

B.2.3 From Core-Stability to Stable Matching

Finally, we show the fractional matching constructed above is a stable fractional matching. For every
hyperedge e ∈ E, if f(e) ≥ 1−ϵ

1+ϵ , then the stability constraint is met by every vertex v included in the

hyperedge since
∑

e′:e′⪰e f(e
′) ≥ f(e) and ϵ is assumed to be 2ϵ < 220|V |4 . Below we consider the

case when f(e) < 1−ϵ
1+ϵ . Then we can see that

max(f+(e), f−(e)) ≤ f(e) · 1 + ϵ

1− ϵ
< 1

Denote the maximum of f+(e) and f−(e) by x∗
e . Let us define ∆e = 1 − x∗

e . This variable is
positive since max(f+(e), f−(e)) < 1. Consider a coalition U consisting of the edge agent e,
the intermediate agents ie and the three vertex agents v1e , v

2
e , v

3
e . Define the data exchange xU as

xU
s,t = xs,t + ∆e for every s, t ∈ U . Observe that the edge agent and the intermediate agent all

receive higher utility in deviation.
Claim 9. ue(x

U ) > ue(x) and uie(x
U ) > uie(x).

Proof. For the intermediate agent ie, as all the in-shares (out-shares) are shifted by ∆e simultaneously.
Her payoff increases by 4∆e while her cost increases by 4(1− ϵ)∆e. Thus, her total payoff increases
by 4ϵ∆e. Similarly, the payoff of the edge agent e increases by ∆e while her cost increases by
(1− ϵ)∆e. Therefore, her total payoff increases by ϵ∆e.
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Since x is a core-stable exchange, there must exist an agent in U receiving less utility in xU . By
Claim 9, such agent must be one of the three vertex agents. Denote the agent by v for simplicity.
Let f(e1), f(e2) and f(e3) respectively be the flows for e1, e2, e3 respectively being vertex v’s most
favorite, second favorite, and least favorite edge. Hence, we know f(e1) + f(e2) + f(e3) ≤ 1. We
now discuss the following three cases according to the ranking of e in vertex v’s preference order ≻v .

Case I: e is v’s favorite edge. In the new data exchange xU , we know the maximum fraction
is equal to 1 as ∆e = 1 − x∗

e . Hence, it holds that xU
ie,v

= xie,v + ∆e ≥ (1 − ϵ)x∗
e + ∆e ≥

(1− ϵ) · (x∗
e +∆e) = 1− ϵ. Meanwhile, since the total out-shares of agent v is xv,ie , which is at

most 1 and does not exceed the threshold of Equation (3), her incurred cost is zero. Thus, the utility
of agent v in xU , uv(x

U ) is at least

uv(x
U ) ≥ (1− ϵ) · (d+H + 1) .

On the other hand, we can observe that the utility of agent v in exchange x is at most
uv(x) = pe1(x) + pe2(x) + pe3(x)

= f−(e1) · (d+H + 1) + f−(e2) · (d+H) + f−(e3) ·H

≤ 1 + ϵ

1− ϵ
· (f(e1) · (d+H + 1) + f(e2) · (d+H) + f(e3) ·H)

≤ 1 + ϵ

1− ϵ
· (f(e1) · (d+H + 1) + (1− f(e1)) · (d+H)))

=
1 + ϵ

1− ϵ
· (f(e1) + d+H) .

Since uv(x) ≥ uv(x
U ), it follows that

f(e1) ≥
(1− ϵ)2

1 + ϵ
− (d+H) ·

(
1− (1− ϵ)2

1 + ϵ

)
≥ 1− 4ϵ− 3ϵ · (d+H) ≥ 1− 10ϵ1/2 .

Case II: e is v’s second favorite edge. In this case, the utility of agent v in data exchange xU is at
least uv(x

U ) ≥ (d+H)·(1−ϵ). Since f(e1)+f(e2)+f(e3) ≤ 1, we have f(e3) ≤ 1−f(e1)−f(e2).
Thus, the utility of agent v in x is at most

uv(x) ≤ f−(e1) · (d+H + 1) + f−(e2) · (d+H) + f−(e3) ·H

≤ 1 + ϵ

1− ϵ
· (f(e1) · (d+H + 1) + f(e2) · (d+H) + f(e3) ·H)

≤ 1 + ϵ

1− ϵ
· (f(e1) · (d+H + 1) + f(e2) · (d+H) + (1− f(e1)− f(e2)) ·H)

≤ 1 + ϵ

1− ϵ
· ((f(e1) + f(e2)) · (d+ 1) +H)

For this reason, we further derive that

f(e1) + f(e2) ≥
d

d+ 1
· (1− ϵ)2

1 + ϵ
−
(
1− (1− ϵ)2

1 + ϵ

)
·H

≥ (1− ϵ1/4) · (1− 3ϵ)− 3ϵ ·H ≥ 1− 7ϵ1/4 .

Case III: e is v’s least favorite edge. In this case, we know the utility of agent v in xU is at least
uve(x

U ) ≥ H · (1− ϵ). Meanwhile, the utility of agent ve in x is at most

uv(x) ≤ (f−(e1) + f−(e2) + f−(e3)) · (d+H + 1)

≤ 1 + ϵ

1− ϵ
· (f(e1) + f(e2) + f(e3)) · (d+H + 1),

which further implies that

f(e1) + f(e2) + f(e3) ≥
(1− ϵ)2

1 + ϵ
· H

d+H + 1
≥ (1− 3ϵ) · (1− ϵ1/4) ≥ 1− 4ϵ1/4 .

We can observe that, in all three cases, the total flow on edges where v has weakly better preference
than e is at least 1− 10ϵ1/4, which is larger than 1− 1/220|V |4 by the setting of ϵ, which indicates
that the hypergraph matching is stable.
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C Pivoting Algorithm

C.1 Complexity of Construction of Coalition Matrix

Claim 5. Given a coalition S ⊆ [n] and a utility profile (vi)i∈S , we can compute in polynomial time
either a data exchange x such that ui(x) ≥ vi − ϵ for all i ∈ S or return that no data exchange
satisfies ui(x) ≥ vi for all i ∈ S.

Proof Sketch. For each agent i ∈ S, we create a new utility function u′
i(·) that caps the original

utility function at vi: u′
i(x) = min{ui(x), vi}. Next, consider the following concave program.

max
∑
i∈S

u′
i(x)

subject to 0 ≤ xi,j ≤ 1, ∀i, j ∈ S

Let K = {x : xi,j ∈ [0, 1],∀i, j ∈ S} be the feasible domain. We then apply the Ellipsoid method to
find an approximate solution with a distance of at most ϵ to the optimal solution. By [Vis21, Theorem
13.1], it suffices to find a first-order oracle for

∑
i∈S u′

i(x). As u′
i(·) is the minimum of ui(·) and vi,

its supergradient can be answered in O(1) time using [Sho12, Theorem 1.13].

Denote the solution found by the Ellipsoid method by x and the optimal solution by x∗. Then∑
i∈S

u′(x) ≥
∑
i∈S

u′(x∗)− ϵ.

We output x if
∑

i∈S u′
i(x) ≥

∑
i∈S vi − ϵ and NO otherwise. Below, we demonstrate the desirable

property of the output answer. If a data exchange x is returned, then
∑

i∈S u′
i(x) ≥

∑
i∈S vi − ϵ.

Since u′
i(x) ≤ vi holds for every i ∈ S, then u′

i(x) ≥ vi − ϵ, which means ui(x) ≥ vi − ϵ. If
the output is NO, we prove by contradiction that no data exchange can meet ui(x) ≥ vi for every
agent i. If such data exchange x exists, then the optimal solution is at least

∑
i∈S vi. Hence, as the

approximation ratio is set as ϵ, the found solution will have an objective value of at least
∑

i∈S vi− ϵ,
which violates the assumption that the output answer is NO. Therefore, the claim is proved.

C.2 Hardness of Verifying Core-Stability

Theorem 10. It is coNP-complete to verify whether an exchange x is core-stable when the payoff
functions are linear and the cost functions are convex.

s1 s2 s3 sn sn+1

v1 v2 vn−1 vn

v̄1 v̄2 v̄n−1 v̄n

C1C2

· · ·
Cn

· · ·

Figure 7: Construction of the graph gadget for the reduction from 3SAT to VERIFY CORE-STABILTY.
The blue round nodes represent the selection vertices, the red square nodes represent the variable
vertices, and the orange triangle nodes represent the clause vertices. Each clause agent has an
outgoing edge to the negation of each literal it contains. For example, if Cn = (v1 ∨ · · · ), there will
be a arc (Cn, v̄1) constructed.
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Proof. The problem VERIFY CORE-STABILTY is in coNP since once we are given another data
exchange x′ and a coalition that can deviate to, it can be verified in polynomial time whether it blocks
x. Next, we show the coNP-hardness by reducing from the 3SAT problem. Given a 3SAT problem
instance with m clauses C = (Ci)i∈[m] and n variables V = (vi)i∈[n], we construct a data exchange
instance D as follows.

First, we construct a graph gadget and use it to construct a data exchange instance then. For each
variable vi, we construct two literal vertices vi and v̄i and a selection vertex si. For each clause Cj ,
we construct a vertex Cj . Then we connect these vertices as follows (see Figure 7): For each variable
vi, we create two arcs from literal vertex vi and literal vertex v̄i to si. Meanwhile, we create arcs
(si+1, vi) and (si+1, v̄i). Then, we create a path from s1 to sn+1 that goes through all the clause
vertices Cn, . . . , C1. Moreover, for each clause Cj , if variable vi occurs positively within Cj , then
we construct an arc from Cj to v̄i. Else, if vi occurs negatively within Cj , we construct an arc from
Cj to vi. For example, in Figure 7, if Cn is in form of Cn = (v1 ∨ · · · ), then we construct an arc
from Cn to v̄1. Hence, we observe that, for each clause vertex, its out-degree is exactly 4 and its
in-degree is 1.

Now, we construct the data exchange instance D. Denote the set of all vertices by V and the out-
degree (in-degree) of each vertex v by doutv (dinv ). The data exchange instance involves two types of
agents: (1) The first is one generous agent, denoted by g; (2) The second is a set of agents {av}v∈V ,
where V is the set of all vertices in the graph gadget. We call these “normal” agents. In what follows,
when referring to the agents, we will alternatively use the label of the corresponding graph vertex.

The payoff functions and cost functions are constructed as follows: The generous agent g receives no
payoff from the normal agents and incurs no cost when sharing data. Her utility is always zero in any
data exchange. For each normal agent, we define her payoff function as follows.

Payoff Functions. Fix a small constant ϵ such that 0 < ϵ < 1/4. Define the function pi(x) for
each normal agent as the sum of payoffs from the following two sources:

• Payoff from the generous agent: For every selection vertex i = sj for j ∈ [n] and every clause
vertex i = Cj for j ∈ [n], we define pgi (x) = (1− ϵ) · xg,i. For every literal variable ℓ, we let
pgℓ (x) = (dinℓ − ϵ) · xg,ℓ.

• Payoff from other normal agents: As mentioned, the generous agent gets no payoff from the
shares of these normal agents. For each normal agent i ∈ V , we define aVi (x) =

∑
(j,i)∈E xj,i.

That means, for each normal agent pi, her payoff from V is equal to the sum of the fraction of
shares from agents that are adjacent to her in the graph gadget.

Cost Functions. Next, we define the cost functions for each agent. The cost function of the
generous agent g is defined as the constant zero. The cost functions of the normal agents are given as
follows:

▷ Selection/Literal agent ci(x) =
1

µ

(∑
j∈V

xi,j − 1
)
+

▷ Clause agent ci(x) =
1

µ

(∑
j∈V

xi,j − 3
)
+

where µ is a sufficiently small constant smaller than 1− 4ϵ. The idea behind the construction is that
each normal agent will incur a large cost if the total fraction of her shares with other agents is larger
than a threshold.

We construct the two oracles U and∇U as follows: We answer U(i,x) as the utility pi(x)− ci(x)
as constructed above, which takes constant time since the out-degree of every vertex is bounded.
Additionally, as every utility function can be rewritten as the maximum of O(1) linear functions, we
can figure out the supergradient∇ui(x) in O(1) time.

Now we show that deciding whether the following data exchange x0 is α-core-stable is equivalent to
deciding whether the input 3SAT instance is satisfiable, where

x0 = (xi,j) where xi,j =

{
1 if i = g,
0 otherwise.
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Note that the generous agent is sharing her entire data with every normal agent, while the fractions
of all other shares are set to zero. Hence, in x0, the utility of the generous agent is equal to zero,
i.e., ug(x

0) = 0. In addition, every normal agent only gets data from the generous agent. Each
selection agent or each clause agent receives a utility of 1 − ϵ while each literal agent ℓ receives
uℓ(x

0) = dinℓ − ϵ.

Next, we show a YES to NO mapping and a NO to YES mapping. Let us first show the former
one. As the input 3SAT instance is a YES instance, there exists a truth assignment such that each
clause is satisfied. We then define a deviation (U,xU ) containing all the literal agents assigned true,
all selection agents, and all clause agents as follows. If a variable vi is assigned as true, then we let
xvi,si = 1 and xv̄i,si = 0. Meanwhile, we let si+1 share 1 to vi and 0 to v̄i for every i ∈ [n]. If
a variable vi is assigned as false, then we define the shares symmetrically. Let selection agent s1
share one unit of data with clause agent Cn, and every clause agent shares one unit of data with her
adjacent agent. In particular, Cn shares one unit of data with Cn−1, Cn−1 shares one unit of data
with Cn−2, and so on. In addition, for each clause agent, Cj , for each literal ℓ it contains, if the literal
is assigned as false, then we let Cj share 1 unit of data with the agent corresponding to the negation
of ℓ. For literal agents not assigned true in the assignment, we just throw them away and only include
the other agents in U .

Proposition 2. The deviation (U,xU ) blocks the original exchange x0.

Proof. As the input 3SAT instance is a YES instance, we know that each clause is satisfied. Hence,
for each clause agent, at least one literal of it is assigned true. So, the total fractions of shares of the
clause agent are at most (3− 1) + 1 = 3, which is no more than the threshold of the cost function.
Hence, her cost will still be equal to zero. In addition, as she also receives one unit of data from the
adjacent agent, her utility will be equal to 1.

For each literal agent ℓ = vj or v̄j included in U , we know sj+1 shares 1 unit of data to her, and any
clause agent containing its negation also shares one unit of data to her. Thus, her total utility will be
equal to dinℓ . Also, as she just shares one unit of data with the selection agent, it does not exceed the
threshold of the cost function. Thus, her utility is also more than her old utility dinℓ − ϵ.

Finally, we know each selection agent also receives an entire dataset from one of the adjacent literal
agents and shares one unit of data with a literal agent. Hence, her utility is equal to 1− 0 = 1, which
is also larger than her old utility in x0 (which is 1− ϵ).

Now, we prove the remaining part of the reduction – the NO to YES mapping. If the input 3SAT
instance is a NO instance, we now prove the data exchange is core-stable by contradiction. Suppose
there exists a possible deviation (U,xU ) from x0. First, as the generous agent always has the utility
of zero, she does not have the incentive to deviate. Hence, U must be a subset of V .

Next, we demonstrate that when U is a subset of V , it cannot guarantee that every agent in U receives
a higher utility than in x0. If U includes one selection agent (denoted by sj without loss of generality),
as she has the incentive to deviate, she should get more than 1− ϵ in the data exchange xU . Hence,
one of vj and v̄j must be included in U as ϵ > 0. Similarly, sj+1 should also be included in U , and
continuing this process, we can eventually conclude that all selection agents and clause agents should
be included in U . In addition, at least one of the two literal agents vi and v̄i is included for every
i ∈ [n]. We arbitrarily choose one from each pair, and next construct an assignment φ for the input
3SAT instance as follows. If vi is included, then we assign the variable vi as false, φ(vi) = false.
Otherwise, we assign it as true, φ(vi) = true. For every included literal agent, her utility in the old
data exchange x0 is din − ϵ. Hence, as she has the incentive to deviate, she has received at least a
1− ϵ fraction from every clause agent adjacent to her. As the input 3SAT instance is a NO instance,
there must exist a clause Ci where all the literals are assigned false. Hence, all three literal agents
corresponding to three literals within Ci should be included in U , and the clause agent Ci should
share a fraction of at least 1− ϵ with them. Therefore, the utility of the clause agent would be at most
1−1/µ · (4 · (1− ϵ)−3)+ = 1−1/µ · (1−4ϵ) < 0 as µ < 1−4ϵ and ϵ > 0. This implies the utility
of that clause agent is smaller than in the original data exchange x0 and causes the contradiction.

Therefore, when the input 3SAT instance is NO instance, we can conclude that the exchange x0 is
core-stable, which concludes the coNP-hardness of determining whether x0 is core-stable in the
constructed data exchange instance.
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C.3 Scarf’s Lemma

In the main text of our paper, we show the data exchange game is balanced and then conclude the
existence of core-stable data exchange. Next, we show that approximate core-stable data exchange
can be constructed using the coalition matrix and the solution of Scarf’s Lemma.

Lemma 5 (Scarf’s Lemma). Let n < m and B ∈ Rn×m such that the first n columns of B form an
identical matrix. Let b a non-negative vector in Rn

≥0, such that the set {x : B · x = b} is bounded.
Let C be an n×m matrix such that ci,i ≤ ci,k ≤ ci,j whenever i, j ≤ m, i ̸= j and k > n. Then
there exists a subset O ⊆ [m] with size of n such that

• B · δ = b for some δ ∈ Rm
≥0 such that δj = 0 for j /∈ O, and

• For every k ∈ [m], there exists i ∈ [n] such that ci,k ≤ ci,j for all j ∈ O.

Note that since we discretize the utility space in the construction of the coalition matrix, we are
already ϵ away from a possible utility vector. Further, Claim 5 gives whether a particular utility vector
is possible up to an ϵ′ error. Therefore, we have all possible utility vectors up to (ϵ+ ϵ′) error. By
setting ϵ′ = ϵ, we have the following proposition.

Proposition 3. For any utility vector v that is attainable by a coalition S, there exists a utility vector
u of the columns of U such that ui ≥ vi − 2ϵ for any i ∈ S.

Based on that, we can construct a core-stable data exchange by applying Scarf’s Lemma.

Lemma 6. For any ϵ > 0, there exists a ϵ-core-stable data exchange when the payoff functions are
concave and the cost functions are convex.

Proof. First construct the coalition matrix C and utility matrix U using parameter ϵ/2 as described in
Section 4.1. To meet the preconditions of Scarf’s Lemma, we slightly modify C and U by considering
all the singleton coalitions (where only one agent forms a coalition). Therefore, C is then changed to
an augmented matrix with an identity matrix in the left part while a zero matrix is added to the left of
U. Similarly, we add slightly different M to the blanks in the first n columns of U like discussed
before.

The two matrices then meet the preconditions of Scarf’s lemma. We next construct a data exchange
x according to the solution (O, δ) as follows: x = δi · xi, where xi is the data exchange archiving
the i-th utility column of U. According to the second guarantee of Scarf’s Lemma and the concavity
of the utility function, the deviation corresponding to every column of U cannot block x. Therefore,
by Proposition 3, we can then conclude that x is ϵ-core-stable.

C.4 Pivoting Algorithm

Next, we show the pseudo-codes of the pivoting algorithm for finding an ϵ-core-stable exchange in
Algorithm 2, which mainly follows the constructive proof of Scarf’s Lemma [Sca67]. In line 2, we
first construct the two matrices: coalition matrix C and utility matrix U with the input approximation
parameter ϵ. Then we apply the pivoting algorithm to find a solution of Scarf’s Lemma, which further
induces an ϵ-core-stable data exchange. For completeness, we first introduce the concepts of cardinal
basis and ordinal basis. Denote the size of the two matrices by n×m, where m is the number of
possible coalitions.

Definition 5 (Cardinal basis). Let b = 1. Consider the polytope P = {C ·x = b}. A set of columns
B is a cardinal basis for (C,b) if (i) |B| = n and; (ii) the submatrix induced by B has a full rank.

Definition 6 (Ordinal basis). A subset of columns O is a called ordinal basis for the utility matrix
U if (i) |O| = n and; (ii) for every column j ∈ [m], there exists a row i ∈ [n] such that UO

i ≥ Ui,j ,
where UO

i = minj∈O Ui,j .

During PA, it respectively maintains two bases B and O for each of the two matrices C and U. These
bases evolve until they are equal. To get to this, we will pivot to a new basis in each matrix. A pivot
step in the coalition matrix C is defined like the usual linear programming pivoting step. A pivoting
step in the utility matrix U is called an ordinal pivot step.
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Algorithm 2: Pivoting algorithm for finding ϵ-core-stable exchange
1 Input: Payoff functions {pi}i, cost functions {ci}i and the parameter ϵ > 0;
2 Construct C and U with parameter ϵ > 0, payoff functions {ui(·)} and cost functions {ci(·)} ;
3 Update C← (In | C) and U← (0 | U) and then fill the blanks of U with slightly different

sufficiently large value M . Let the size of C and U be n×m;
4 Let B ← {1, 2, . . . , n} and O ← {1, . . . , n} ∪ argmaxj∈[n+1,m]U1,j ;
5 while B ̸= O do
6 ▷ Cardinal Pivot
7 Let j be the column in O \B, CB be the submatrix induced by B and bj be the column

indexed by j;
8 Let x and y respectively be the solution of the linear equations CB ·x = 1 and CB ·y = bj ;
9 Let j∗ ← argminj:yj>0

xj

yi
;

10 Update B by B ← B \ {j} ∪ {j∗} ; // update the cardinal basis
11 if B = O then
12 break;
13 ▷ Ordinal Pivot
14 Let jℓ be the column in O \B to be pivoted out;
15 Let iℓ be the row minimizer of column jℓ, i.e., Uiℓ,jℓ = argminj∈OUiℓ,j ;
16 Let jr ← argminj∈O\{jℓ}Uiℓ,j ;
17 Let ir be the row minimizer of column jr, i.e., Uir,jr = argminj∈OUir,jr ;

18 Let K ← {k ∈ [m] \O : Ui,k > U
O\{jℓ}
i , for all i ̸= ir};

19 j∗ ← argmaxk∈KCir,k;
20 Update the ordinal basis by O ← O ∪ {j∗} \ {jℓ} ; // update the ordinal basis
21 Find the solution δ of the linear equation CB · δ = 1;
22 Let x←

∑
i∈[m] δi · xi with xi corresponding the data exchange achieving utility vector ui ;

23 return the data exchange x;

Definition 7 (Cardinal Pivot). For the coalition matrix C, given a basis B = (j1, . . . , jn) for the
matrix consisting of n of its columns, we can take any column j /∈ B and remove one of the columns
from B to get a new basis using standard linear algebra. Such a movement is called a cardinal pivot.
Definition 8 (Ordinal Pivot). For the utility matrix U, given a basis O = (j1, . . . , jn) consisting of
n columns of the matrix, we can take any column in the basis and replace it with a unique column
from outside the basis. Such a step is called an ordinal pivot step.

Once PA terminates, we get an identical basis B, which is both a cardinal basis and an ordinal basis.
Then we solve the linear equation CB · δ = 1 and get the weights for each column. Afterward,
in Line 22, we calculate the weighted data exchange x =

∑
i δi · xi with xi as the data exchange

corresponding to the i-th column. The data exchange is guaranteed to be ϵ-core-stable by Lemma 6.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We highlight our contribution at the end of the introduction and discuss the
scope in the abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We leave some future directions of our work in the related work section, which
reflect some limitations of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide all the proofs for the results. Some of them are deferred to the
Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We give a detailed description of the parameter setting of the experiments in
Section 4.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include all the codes in the Supplementary files, including codes and graph
data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discuss the details of the experimental setup and the used dataset in Section
4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We duplicate each experiment twenty times and report the mean of the statistics
of each metric, as described in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the computer resources in Section 4.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research totally complies with the NeurIPS code of ethic.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We give the motivation of our work and the strengths of our mechanism in the
introduction section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The used dataset and Python library are all correctly cited in Section 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not use LLM in any way.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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