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Abstract

Abstract Meaning Representation (AMR) is a001
Semantic Parsing formalism that aims at pro-002
viding a semantic graph abstraction represent-003
ing a given text. Current approaches employ004
Transformer-based Autoregressive language005
models such as BART or T5, fine-tuned through006
Teacher Forcing to obtain a linearized version007
of the AMR graph from a sentence. In this008
paper, we explore a modification to the Trans-009
former architecture, using structural adapters010
to explicitly incorporate graph structural in-011
formation into the learned representations and012
improve AMR parsing performance. Our ex-013
periments show how, by employing word-to-014
node alignment, we can construct a graph to015
embed structural information using the hidden016
states through the Encoder. While employing017
the graph structure constitutes a data leak, we018
demonstrate how this information leads to a019
performance gain that can be preserved implic-020
itly via self-knowledge distillation, providing a021
new State-of-the-Art (SotA) AMR parser, im-022
proving over previous ones even without the023
use of additional data. We release the code at024
availableafterreview.025

1 Introduction026

Creating a machine-interpretable representation of027

meaning lies at the core of Natural Language Un-028

derstanding, which has been framed as Semantic029

Parsing. Even though multiple formalisms have030

been proposed throughout the years (e.g., Hajič031

et al. (2012); Abend and Rappoport (2013); White032

et al. (2016) ), Abstract Meaning Representation033

(Banarescu et al., 2013, AMR) has received more034

attention thanks to the large corpus available and a035

well-defined structure. AMR captures text seman-036

tics in the form of a directed acyclic graph (DAG),037

with nodes representing concepts and edges repre-038

senting semantic relationships between them. As039

of now, AMR is widely employed in a plethora040

of NLP domains, such as Information Extraction041

Figure 1: Three sentences with the same AMR.

(Rao et al., 2017), Text Summarization (Hardy and 042

Vlachos, 2018; Liao et al., 2018), Question An- 043

swering (Lim et al., 2020; Bonial et al., 2020b; 044

Kapanipathi et al., 2021), Human-Robot Interac- 045

tion (Bonial et al., 2020a), and Machine Translation 046

(Song et al., 2019), among other areas. Figure 1 047

shows an example of an AMR graph. 048

In recent years, autoregressive models proved 049

to be the best approach for semantic parsing be- 050

cause of their outstanding performances without 051

relying on sophisticated ad-hoc architectures (Xu 052

et al., 2020; Bevilacqua et al., 2021; Procopio et al., 053

2021). Several approaches have recently emerged 054

to increase performance by including structural 055

information into the model (Chen et al., 2022), 056

adding extra Semantic Role Labeling tasks (Bai 057

et al., 2022) or by using ensembling strategies (Lam 058

et al., 2021; Lee et al., 2022). 059

In this paper, following the effort of strength- 060

ening the model’s learning phase by incorporat- 061

ing meaningful structural information, we investi- 062

gate the use of structural adapters (Ribeiro et al., 063

2021a) based on Graph Neural Networks (GNN) to 064

boost performance through self-distillation. GNN 065

is a type of neural network which deals with data 066

that has structural dependencies; that is, it can be 067
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represented as a graph. However, graph informa-068

tion is not available at inference time, hence the069

need to transfer the knowledge of a model exploit-070

ing the graph structure. Knowledge Distillation071

(KD) is the technique that transfers the knowledge072

from a teacher model to a student model (Hinton073

et al., 2015). In our approach, we leverage concept-074

node alignments to generate a word-based graph075

with a structure similar to the original AMR. Af-076

ter that, such a graph is employed, with structural077

adapters, in the Encoder of a Transformer Encoder-078

Decoder architecture to obtain soft targets, which079

are then used for self-knowledge distillation, trans-080

ferring the knowledge from the teacher path with081

the leaked graph structure to the student, which082

only has access to the text.083

The main contributions of this paper are: i) ex-084

ploring how to add structural information into the085

model using structural adapters and self-knowledge086

distillation, ii) SotA results in AMR parsing for087

AMR 2.0 and AMR 3.0 datasets, iii) competitive088

base models for AMR parsing.089

2 Related Work090

Throughout the years, multiple trends have ap-091

peared to parse AMR graphs: using statistical092

methods (Flanigan et al., 2014, 2016a; Wang et al.,093

2015a), neural-transition based parsers (Ballesteros094

and Al-Onaizan, 2017; Liu et al., 2018; Fernan-095

dez Astudillo et al., 2020; Zhou et al., 2021a), bidi-096

rectional transformers (Lyu and Titov, 2018; Zhang097

et al., 2019; Cai and Lam, 2020) based on BERT098

(Devlin et al., 2019), sequence-to-sequence trans-099

formers (Xu et al., 2020; Bevilacqua et al., 2021;100

Procopio et al., 2021; Chen et al., 2022; Bai et al.,101

2022), or by ensemble models (Lam et al., 2021;102

Lee et al., 2022).103

The interest in Transformer models based on104

BART (Lewis et al., 2020) has constantly increased105

over the last years since they obtained SotA per-106

formances without complex pipelines. In seman-107

tic parsing, these models face the task similarly108

to Neural Machine Translation, where the text is109

translated into a linearized version of the graphs.110

The earliest attempts (Xu et al., 2020; Bevilacqua111

et al., 2021) were trained with pairs of sentences112

and graphs, so the model automatically generates113

the representation of the sentences.114

Lately, some works have extended sequence-to-115

sequence models to incorporate extra information116

useful for parsing. Procopio et al. (2021) leverages117

multitask learning to improve cross-lingual AMR 118

parsing results. Chen et al. (2022, ATP) expand the 119

dataset with extra auxiliary tasks such as Seman- 120

tic Role Labeling and Dependency Parsing, with 121

pseudo-AMR graphs constructed based on a par- 122

ticular task. During training, a special task tag is 123

added at the beginning of the input sentence, and 124

the ATP model predicts the output for such a task. 125

Bai et al. (2022, AMRBART) pre-train the model 126

on 200k graphs generated by SPRING where gener- 127

ated linearized graphs are modified with a masking 128

strategy and used as input. Additionally, they use 129

a unified strategy involving the concatenation of a 130

masked graph and a masked text. The model needs 131

to reconstruct the original sequence, similarly to 132

Masked Language Modeling. In such a way, the 133

model improves structure awareness of Pretrained 134

Language Models (PLM) over AMR graphs. More- 135

over, recent research has shown the capabilities of 136

the autoregressive models for extracting alignment 137

information online while parsing (Huguet Cabot 138

et al., 2022). Finally there is a recent surge of 139

ensemble models. Lam et al. (2021) devised a 140

new strategy to merge predicted graphs, and Lee 141

et al. (2022) expanded on it by ensemble distilla- 142

tion. However we decide not to compare our work 143

with ensemble strategies, as they rely on multiple 144

parsers, such as our proposed one, rendering com- 145

parisons unfit. 146

3 Fundamentals 147

3.1 AMR Parsing with BART 148

AMR parsing can be defined as a sequence-to- 149

sequence (seq2seq) problem where the input x = 150

(x1, ..., xn) is a sequence of n words (or subwords) 151

and the output g = (e1, ..., em) is a linearized 152

graph with m elements. Our goal is to learn a 153

function that models the conditional probability: 154

p(g|x) =
m∏
t=1

p(et|e<t, x), (1) 155

where e<t are the tokens of the linearized graph g 156

before step t. 157

Suppose we have a dataset D of size |D| which 158

consists of pairs (xi, gi), with each gi having length 159

mi. Our objective is then to minimize a negative 160
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log-likelihood loss function:161

Lnll(D) = −
|D|∑
i=1

log p(gi|xi) =

= −
|D|∑
i=1

mi∑
t=1

log p(eit|ei<t, x
i)

(2)162

Figure 2: Top: sentence. Middle: AMR graph. Bottom:
Linearized graph. Alignment is represented by colours.

In order to model the problem, one can ex-163

ploit the transfer learning capabilities of BART. In164

Bevilacqua et al. (2021, SPRING), the vocabulary165

of BART is updated with tokens corresponding to166

i) AMR-related tokens, ii) variable names <R0>,167

<R1>, ... <Rn> and other tokens needed for the168

various graph linearizations. In addition, BART is169

fine-tuned with the input x and the target g. The ap-170

proach described in this work is built on top of the171

SPRING model, which we consider our baseline172

system.173

3.2 AMR alignment174

Since the AMR graph represents the semantic175

meaning behind a sentence, there exists an align-176

ment between the spans in text and semantic units177

in graphs. In Figure 2, we can find an example. No-178

tice how most of the words are connected to a node179

in the graph but some, such as the preposition a, are180

not reflected or aligned to the graph. Indeed, some181

Semantic Parsers rely on alignment to be trained182

(Wang et al., 2015b; Flanigan et al., 2016b; Misra183

and Artzi, 2016; Damonte et al., 2017; Zhou et al.,184

2021b). Multiple alignment formalisms have been185

proposed through the years, such as JAMR (Flani- 186

gan et al., 2014), ISI (Pourdamghani et al., 2014) or 187

LEAMR (Blodgett and Schneider, 2021). We will 188

leverage alignment to construct a graph based on 189

the words in the sentence and their representation. 190

3.3 Structural adapters 191

Ribeiro et al. (2021b) have shown how the Trans- 192

former architecture can be modified to improve 193

PLM for modeling graph information. They in- 194

troduced the Structural Adapter (StructAdapt), a 195

residual neural network involving a Graph Convo- 196

lutional (GraphConv) layer. 197

We employ structural adapters to encode the 198

graph structure imposed by a Word-Aligned Graph 199

(see Section 4.1), leading to the construction of a 200

graph G = (V, E), where each token of the input x 201

is linked to a node v ∈ V , and E is an unlabeled set 202

of edges {(u, v)|u, v ∈ V}. Moreover, we remove 203

layer normalization and set GELU as an activation 204

function (Figure 4). Then, for each hidden repre- 205

sentation hl
v ∈ Rb from the encoder layer l and 206

the set of edges E , we compute the updated hidden 207

states zlv as: 208

glv = GraphConvl(h
l
v, E)

zlv = Wl
aσ(g

l
v) + hl

v,
(3) 209

where σ is GELU and Wl
a ∈ Rb×b is a parameter 210

matrix of the feed-forward layer. 211

Likewise Ribeiro et al. (2021b), the adapters are 212

inserted after each Encoder’s layer having the same 213

amount of adapters as encoder layers (Figure 5). 214

Graph Convolution In a similar manner to 215

Ribeiro et al. (2021b), we use GraphConv proposed 216

by Kipf and Welling (2017) and computed as: 217

GraphConvl(h
l
v, E) =

∑
u∈N (v)

1√
dudv

Wl
ghl

u, (4) 218

where N (v) is a set that contains v and its adja- 219

cent nodes, dv is the degree of v, Wl
g ∈ Rb×b is a 220

parameter. 221

4 Model 222

In the next section, we explain how we have 223

extended the SPRING architecture in order to 224

leverage AMR structure information from word- 225

nodes alignments using structural adapters and self- 226

knowledge distillation. 227
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Figure 3: Different representations of the sentence: "Here, it is a country with the freedom of speech". An AMR
with edges converted in nodes (left), a Full WAG (center) and a Contracted WAG (right).

Figure 4: Structural adapter without layer normalization
and with GELU activation.

4.1 Word-Aligned Graph228

Using AMR alignment, we design a Word-Aligned229

Graph (WAG) representation where nodes and rela-230

tions are actual words of the input sentence instead231

of the AMR concepts when it is possible. First, we232

convert the relations into nodes that connect two233

adjacent nodes in the original graph (see Figure234

3, left). Then, we replace the nodes and relations235

with the aligned words of their respective sentence236

(Figure 3, center).237

Unfortunately, a problem arises when dealing238

with the structural adapter since non-aligned nodes239

(e.g., the :location relation in Figure 3) do not have240

associated hidden states. Therefore, in order to241

use WAG in the structural adapter, we have two242

alternatives: i) remove nodes for which we do not243

have hidden states, i.e., contract non-aligned nodes244

(see Section 4.1.1), or ii) create new hidden states245

for them (see Section 4.1.2).246

4.1.1 Contracted WAG247

For the first approach, we must remove non-aligned248

nodes from the graph. However, deleting the nodes249

from the original graph would produce a discon-250

nected graph. To achieve a similar connected struc-251

ture to the original graph, we contract nodes rather 252

than remove them. A contracted WAG (CWAG) 253

is a graph in which non-aligned nodes are com- 254

pressed with the closest parent node, preserving all 255

relations from both nodes. Figure 3 (right) depicts 256

an AMR and its corresponding CWAG. Addition- 257

ally, in multi-token nodes (e.g., "Romneycare"), we 258

merge to the first token any of the subword tokens. 259

4.1.2 Full WAG 260

In the second representation, we preserve the nodes 261

without alignment (the node "location" in Figure 262

3 (center)). First, if the node’s label is in the 263

new AMR special tokens which were added to the 264

model’s vocabulary (e.g., :location), we extract the 265

embedding from the embedding matrix. Other- 266

wise, we tokenize the node’s label and take the 267

average of their embedding tokens as the represen- 268

tation. Furthermore, the representations for the non- 269

aligned nodes are added to the model in the first 270

adapter layer by concatenating them with the hid- 271

den states of the encoder. After each adapter block, 272

we split representations into two groups: i) the up- 273

dated hidden states for the original input tokens, 274

which are inputs for the next Transformer layer, 275

ii) the updated hidden states for the non-aligned 276

nodes, which are concatenated again before the 277

next adapter block. This type of graph is referred 278

to as a Full WAG (FWAG). Figure 3 (center) shows 279

an example of FWAG. 280

4.2 Graph Leakage Model (GLM) 281

Through WAG, we explore whether information 282

leakage has an impact on performance. In this man- 283

ner, we can determine the model’s upper bound per- 284

formance with the enhanced Encoder, determining 285

which graphs and adapter architectures are suitable 286

for the Two-Path Model described in Section 4.4. 287

Thereby, we insert structural adapters in each 288
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Figure 5: Left: Scheme of Graph Leakage Model. Right: Scheme of Two-Path Model, where parameters of the
original BART Encoder and Decoder are shared partially among two paths: (green) path incorporating WAG
information via adapters, (red) path omitting adapters which is basically the outcome model for the problem.

Transformer layer of the Encoder (Figure 5 left).289

The adapter’s input in a layer l consists of a matrix290

of hidden states H l and the set of edges E . In the291

case of CWAG, H l corresponds to hidden states292

of Transformer layer l. Whilst, for FWAG, we293

add extra representations as described in Section294

4.1.2. Note that the set of edges E does not change295

through layers. The loss function for GLM is:296

Lleak = Lnll(D̃), (5)297

where D̃ is the updated dataset consisting of pairs298

((xi, ai), gi), where ai is the WAG.299

GLM performance may be considered as the300

upper model’s bound in which the encoder learns301

graph information from alignments.302

4.3 Knowledge Distillation303

GLM leverages the alignment information to en-304

hance the model’s conception of the graph struc-305

ture to improve the parsing performance of the306

model. Unfortunately, WAG cannot be employed307

at inference time since alignment information is308

not available when parsing text to predict a graph.309

Therefore, following the idea of knowledge dis-310

tillation, we set the teacher to be the pre-trained311

GLM that employs the structural information using312

sentences and WAGs as input, and then we project313

such knowledge to the student model, which is just314

aware of the sentences, with no adapters. There- 315

fore, our objective is to achieve the following: 316

fstud(x) = fGLM (x, a), (6) 317

where a is the WAG. 318

For this purpose, we set SPRING as the student. 319

The fundamental objective is to encourage the stu- 320

dent to match the teacher’s probability distribution 321

by minimizing the following loss: 322

LKL(p, q) = KL(p, q) =

C−1∑
i=0

pi log(
pi
qi
), (7) 323

where q and p are probabilities of the teacher and 324

the student respectively, KL is Kullback–Leibler 325

divergence, C is the number of classes. Usually, 326

the loss Lnll for the original task is added to the 327

total loss: 328

LKD = Lnll + αLKL, (8) 329

where α is a hyper-parameter. 330

The architectural differences between the teacher 331

and the student model belong to the encoder, not 332

the decoder, since the teacher is the one with the 333

structural adapters. Therefore, we copy the GLM 334

decoder to the student model and fix the decoder 335

and the language model head parameters. 336
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4.4 Two-Path Model337

We propose a Two-Path Model (TPM) for learning338

where, in contrast with the KD approach, a single339

model is trained via two paths simultaneously, one340

path with the structural adapters and the other with-341

out them. Then, we force the two paths to learn342

the same distribution by adding a Kullback–Leibler343

divergence loss on the output logits. As a result,344

the total loss is:345

LTPM = αLKL + βLleak + Lnll, (9)346

where Lleak is the loss for the first path, with347

leaked information, Lnll is the loss for the second348

path, which is the original negative log-likelihood349

loss, and finally LKL is the above-described Kull-350

back–Leibler divergence loss. α, β are hyper-351

parameters to control each loss scale.352

Notably, the Two-Path Model is a variant of353

knowledge distillation as described in Section 4.3,354

called self-knowledge distillation (Hahn and Choi,355

2019). In this case, we project the knowledge via356

the adapter’s path rather than computing soft tar-357

get probabilities. Moreover, we calculate KL di-358

vergence for all classes to distill more knowledge359

from the first path. Finally, based on the assump-360

tion that there is not enough information to distill361

at the initiation of the training process, we train362

with scheduling the Lleak multiplier β, where β is363

gradually decreasing.364

5 Experimental Setup365

To demonstrate the benefits of incorporating struc-366

tural information in AMR parsing, we devise a set367

of experiments to assess its performance with re-368

spect to State-of-the-Art models. Before delving369

into their details, we first provide thorough infor-370

mation regarding the dataset (Subsection 5.1) and371

model (Subsection 5.2) used in our experiments.372

5.1 Datasets373

We tested on two AMR benchmark datasets: i)374

AMR 2.0, which has 36521, 1368, and 1371375

sentence-AMR pairs in the training, validation, and376

test sets, respectively, and ii) AMR 3.0, which con-377

tains 55635, 1722, and 1898 sentence-AMR pairs378

in the training, validation, and test sets, respectively.379

Furthermore, we tested on the Little Prince and the380

Bio AMR out-of-distribution datasets.381

Alignment Our approach directly relies on the382

structural information extracted between the word-383

concept alignment. There are several alignment 384

standards: First, Information Sciences Institute 385

(ISI) provides extended AMR 2.0 and AMR 3.0 386

datasets with alignments of all the graph seman- 387

tic units that are directly related to the sentences’ 388

spans (Pourdamghani et al., 2014). Second, Lin- 389

guistically Enriched AMR (Blodgett and Schneider, 390

2021, LEAMR) achieves full graph-alignment cov- 391

erage by aligning all the graph semantic units to 392

anything in the sentence. 393

Silver Data Following Bevilacqua et al. (2021), 394

we have explored the same strategy to generate 395

a dataset with 140k silver sentence-graph pairs. 396

The silver alignments were generated using the 397

approach of Huguet Cabot et al. (2022), where they 398

are extracted from the cross-attention of the model. 399

5.2 Models 400

We use SPRING (Bevilacqua et al., 2021) as our 401

baseline model, an auto-regressive model based on 402

BART (Lewis et al., 2020) for predicting linearized 403

versions of AMR graphs. Our models have been 404

built on top of SPRING, inheriting some of its 405

hyper-parameters (see Table 7). Structural adapters 406

leverage one graph convolutional layer and GELU 407

activation. In the next paragraphs, we explain the 408

specific setup per each model. 409

Graph Leakage Model We explore two differ- 410

ent settings for GLM: i) Contracted WAG, Section 411

4.1.1 - Figure 3 right; and ii) Full WAG, Section 412

4.1.2 - Figure 3 center. 413

Knowledge Distillation We test KD on the GLM 414

with the highest SMATCH (see Table 1). 415

Two-Path Model Likewise GLM, we first exam- 416

ine the difference in performance between Con- 417

tracted WAG and Full WAG. Then, we test Full 418

WAG with i) β scheduling, ii) the silver data, iii) 419

the combination of the silver data and the β schedul- 420

ing. In the case of the scheduling of β, we start 421

from β = 90 and decrease it linearly at each iter- 422

ation for 21k iterations in total until it reaches 10. 423

The hyper-parameter α is set to 20. 424

6 Results 425

Graph Leakage Model Table 1 shows results for 426

the Graph Leakage Model. While this setup relies 427

on information being leaked from the final graph 428

structure, it sets an upper bound on how encoding 429

such information can improve performance. Here 430
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Model AMR 3.0

SPRING 84.10

Contracted WAG 86.01
Full WAG 89.58

Leaked Path of TPM 86.09

Table 1: GLM results for AMR 3.0 development set.

Model AMR 3.0

SPRING 84.10

KD Full WAG (89.58) 83.90

Two-Path
Lleak + Lnll 84.47

Lleak + Lnll + LKL 85.04

Table 2: Knowledge Distillation results for the develop-
ment set of AMR 3.0.

Model AMR 3.0

SPRING 84.10

Contracted WAG 84.90
Full WAG 85.04

+ β scheduling 85.08
+ Silver 85.34
+ Silver + β scheduling 85.28

Table 3: Performance of Two-Path models on the devel-
opment set of AMR 3.0.

we observe an increase of around five SMATCH431

points when including concept labels and token432

masking. While the model is certainly taking ad-433

vantage of the leaked information, this is encoded434

through the hidden states of the Encoder. There-435

fore we need to explore whether some of this per-436

formance gain can be kept implicitly without any437

information leak.438

Knowledge Distillation and TPM Table 2 com-439

pares the results between applying KD with GLM440

as the teacher versus the self-KD approach, TPM,441

explained in Section 4.4. We see how KD alone442

falls short of taking full advantage of the perfor-443

mance gains of GLM. On the other hand, TPM,444

especially when including the KL loss, leads to445

over one SMATCH point increase on the develop-446

ment set. Hence we focus on TPM as our main447

approach. Table 3 shows a breakdown of the exper-448

iments with TPM, such as scheduling the KL loss449

or adding a silver data pretraining phase.450

Model TLP BioAMR

SPRING 81.3 61.6
ATP 79.0 55.2
AMRBART 82.3 63.4
Ours 82.6 64.5

Table 4: Out of distribution results. ATP, AMRBART
and SPRING are taken from Lee et al. (2022)

Model AMR 2.0 AMR 3.0

SPRING 82.8 -
AMRBART 83.6 82.5
Ours 84.7 83.5

Table 5: BART-base versions performance.

Main Results Table 6 shows results for our pro- 451

posed model, based on BART-large. Our system 452

performs better than any previous single model 453

parser, and most notably, does so even without the 454

need of extra data. For AMR 2.0, we see up to 455

0.7 SMATCH increase over AMRBART and 0.4 456

on AMR 3.0. The use of extra data only leads to 457

a small improvement, showing the efficiency of 458

our approach which is able to outperform previous 459

SotA systems that relied on up to 200K extra sam- 460

ples. In the breakdown performance, we see how 461

our system performs worse than ATP on Reentran- 462

cies, Negation and notably SRL. We believe this is 463

due to the multitask nature of ATP, where SRL is 464

explicitly included as a task. This opens the door 465

to future work exploring the interaction between 466

our approach and the inclusion of auxiliary tasks. 467

BART base Our SotA system relies on BART- 468

large, which has 400M parameters. While it shows 469

great performance, it has a big computational foot- 470

print, especially at inference time due to its auto- 471

regressive generative nature. This makes the need 472

for lighter, more compute efficient models an im- 473

portant step towards better Semantic Parsers. Table 474

5 shows the performance of our approach when 475

trained on top of BART-base, which has 140M 476

parameters, achieving 83.5 SMATCH points on 477

AMR 3.0, 1 point higher than AMRBART and, 478

noticeably, surpassing SPRING-large performance 479

by half a point. We believe it is crucial to have 480

close to SotA performance base models, closing 481

the gap from 2 points to 1 when compared to its 482

large counterparts. 483
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Model Extra Data Smatch Unlab. NoWSD Conc. Wiki NER Reent. Neg. SRL
A

M
R

2.
0

SPRING 200K 84.3 86.7 84.8 90.8 83.1 90.5 72.4 73.6 80.5
ATP 40K 85.2s 88.3 85.6 90.7 83.3 93.1 74.7 74.9 83.3

AMRBART 200K 85.4s 88.3 85.8 91.2 81.4 91.5 73.5 74.0 81.5
Ours 0K 85.7s 88.6 86.2 91.0 83.9 91.1 74.2 76.8 81.8
Ours 140K 86.1s,a 88.8 86.5 91.4 83.9 91.6 75.1 76.6 82.4

A
M

R
3.

0

SPRING 0K 83.0 85.4 83.5 89.5 81.2 87.1 71.3 71.7 79.1
ATP 40K 83.9s 87.0 84.3 89.7 81.0 88.4 73.9 73.9 82.5

AMRBART 200K 84.2s 87.1 84.6 90.2 78.9 88.5 72.4 72.1 80.3
Ours 0K 84.5s,a 87.5 84.9 90.5 80.7 88.5 73.1 73.7 80.7
Ours 140K 84.6s,a 87.5 84.9 90.7 81.3 87.8 73.4 73.0 80.9

Table 6: Results and comparisons with previous systems. Bold indicates best performance per set, underline in
case of a tie. Breakdown extra scores after vertical line. Upperscript indicates result is significantly better using an
approximate randomization test (Riezler and Maxwell, 2005) at p < 0.05. s = SPRING, a = ATP . Ours is the
only system significantly better than ATP.

Figure 6: SMATCH score for buckets of 200 instances.
X axis shows max. number of words per sentence.

Out-of-distribution evaluation Table 4 shows484

the Out-of-Distribution of TPM. We see a smaller485

improvement on TLP, 0.3 over AMRBART. On486

the harder BioAMR, performance increased over a487

point, showing how the model is able to generalize488

well on different domains.489

7 Performance Analysis490

Seq2seq parsers show decreased performance for491

longer sentences since a single error at decoding492

time in an early step can lead to compound errors493

and suffer from exposure bias. We explore how494

this affects our model compared to SPRING, ATP495

and AMRBART. Figure 6 shows the SMATCH per-496

formance on AMR 3.0 test set for buckets of 200497

sentences divided by the number of words. While498

the performance is similar on shorter sentences, 499

with AMRBART showing slightly better perfor- 500

mance, with longer sentences of over 14 words 501

TPM shows better performance, especially com- 502

pared to the baseline, which drops to 80 SMATCH 503

points for longer sentences. This experiment also 504

shows how performance is relatively stable for 505

medium length sentences (10-30 words, oscillat- 506

ing around 85 points), while it starts deteriorating 507

for longer ones. The high performance on short 508

sentence is likely due to expressing easy-to-parse 509

structures such as single date sentences. 510

8 Conclusion 511

We presented a new approach to training the Trans- 512

former architecture where partial information of the 513

target sequence can be learned via multi-tasking 514

and self-knowledge distillation: the information 515

can be leaked in the Encoder implicitly through 516

Transformer adapters which improve training but 517

are switched off during inference. By employing 518

this approach in AMR parsing, we achieved SotA 519

results among non-ensemble methods. Moreover, 520

we produced a lightweight AMR parser that outper- 521

forms SPRING having four times fewer parameters. 522

We also showed that, for all methods, including 523

ours, performance degrades as the number of words 524

increases, which raises a question of limitation of 525

the current methods based on BART. 526

Interestingly, our approach can be potentially 527

used in other tasks where alignments between input 528

and target sequence elements exist, or structural 529

information is unavailable at inference time. 530

8
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Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall,655
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Appendices848

A Model Hyper-Parameters849

Table 7 lists hyperparameters and search space for850

the experiments:851

• LR sched. - learning rate scheduler852

• KL temp. - KL temperature853

• AMR 3 aligns. - a type of alignments for854

AMR 3.0855

• Mask. range - masking range. For each batch,856

we mask the input tokens with probability p,857

the value for which is sampled uniformly from858

the masking range.859

Group Parameter Values

Inherited
(SPRING)

Optimizer RAdam
Batch size 500
Dropout 0.25

Attent. dropout 0
Grad. accum. 10
Weight decay 0.004

LR 0.00005
Beamsize 5

Adapter
Encoder layers 1-12

Activation GELU
Dropout 0.01, 0.1

GLM
LR 0.00005, 0.0001

LR sched. const., linear

KD
LR 0.00005, 0.0001

LR sched. const., linear
Weight decay 0.004, 0.0001

Two-Path

LR sched. const., linear
KL temp. 1, 2

α 1, 5, 10, 20
β 1, 5, 10, sched.

AMR 3 aligns. ISI, LeAMR
Mask. range [0; {0, 0.1, 0.15}]

Beamsize 5, 10

Table 7: Final hyperparameters and search space for the
experiments

B Hardware and size of the model860

We performed experiments on a single NVIDIA861

3090 GPU with 64GB of RAM and Intel® Core™862

i9-10900KF CPU. The total number of trainable863

parameters of TPM is 434,883,596. Training the864

model on the silver data took 33 hours, whereas 865

further fine-tuning took 16 hours. 866

C BLINK 867

All systems from Table 6 use BLINK (Ledell Wu, 868

2020) for wikification. For this purpose, we used 869

the blinkify.py script from the SPRING reposi- 870

tory. 871

D Metric 872

We evaluate AMR parsing using the Smatch met- 873

ric Cai and Knight (2013) and extra scores of Da- 874

monte et al. (2017): i) Unlabel, compute on the 875

predicted graphs after removing all edge labels, 876

ii) No WSD, compute while ignoring Propbank 877

senses (e.g., duck-01 vs duck-02), iii) Wikification, 878

F-score on the wikification (:wiki roles), iv) NER, 879

F-score on the named entity recognition (:name 880

roles), v) Negations, F-score on the negation detec- 881

tion (:polarity roles), vi) Concepts, F-score on the 882

concept identification task, vii) Reentrancy, com- 883

puted on reentrant edges only, viii) Semantic Role 884

Labeling (SRL), computed on :ARG-i roles only. 885

E Data 886

The AMR 3.0 data used in this paper is licensed 887

under the LDC User Agreement for Non-Members 888

for LDC subscribers, which can be found here. The 889

The Little Prince Corpus can be found here from 890

the Information Science Institute of the University 891

of Southern California. 892

F Limitations 893

At train time, our system requires alignment be- 894

tween graph and sentence. We obtain them for 895

the silver data with an external system which over- 896

comes this limitation, but other systems do not rely 897

on alignment. Since we have two pathways in- 898

side the TPM architecture, the model requires two 899

forward paths. Along with the fact that we have 900

three losses, the model is considered computation- 901

ally heavier than its competitors from Table 6 at 902

training time. However, the number of parameters 903

and computational cost/time remains the same at 904

inference time. 905
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