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Abstract

Abstract Meaning Representation (AMR) is a
Semantic Parsing formalism that aims at pro-
viding a semantic graph abstraction represent-
ing a given text. Current approaches employ
Transformer-based Autoregressive language
models such as BART or T3, fine-tuned through
Teacher Forcing to obtain a linearized version
of the AMR graph from a sentence. In this
paper, we explore a modification to the Trans-
former architecture, using structural adapters
to explicitly incorporate graph structural in-
formation into the learned representations and
improve AMR parsing performance. Our ex-
periments show how, by employing word-to-
node alignment, we can construct a graph to
embed structural information using the hidden
states through the Encoder. While employing
the graph structure constitutes a data leak, we
demonstrate how this information leads to a
performance gain that can be preserved implic-
itly via self-knowledge distillation, providing a
new State-of-the-Art (SotA) AMR parser, im-
proving over previous ones even without the
use of additional data. We release the code at
availableafterreview.

1 Introduction

Creating a machine-interpretable representation of
meaning lies at the core of Natural Language Un-
derstanding, which has been framed as Semantic
Parsing. Even though multiple formalisms have
been proposed throughout the years (e.g., Haji¢
et al. (2012); Abend and Rappoport (2013); White
et al. (2016) ), Abstract Meaning Representation
(Banarescu et al., 2013, AMR) has received more
attention thanks to the large corpus available and a
well-defined structure. AMR captures text seman-
tics in the form of a directed acyclic graph (DAG),
with nodes representing concepts and edges repre-
senting semantic relationships between them. As
of now, AMR is widely employed in a plethora
of NLP domains, such as Information Extraction
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3) Here itis a country with speech freedom.

Figure 1: Three sentences with the same AMR.

(Rao et al., 2017), Text Summarization (Hardy and
Vlachos, 2018; Liao et al., 2018), Question An-
swering (Lim et al., 2020; Bonial et al., 2020b;
Kapanipathi et al., 2021), Human-Robot Interac-
tion (Bonial et al., 2020a), and Machine Translation
(Song et al., 2019), among other areas. Figure 1
shows an example of an AMR graph.

In recent years, autoregressive models proved
to be the best approach for semantic parsing be-
cause of their outstanding performances without
relying on sophisticated ad-hoc architectures (Xu
et al., 2020; Bevilacqua et al., 2021; Procopio et al.,
2021). Several approaches have recently emerged
to increase performance by including structural
information into the model (Chen et al., 2022),
adding extra Semantic Role Labeling tasks (Bai
etal., 2022) or by using ensembling strategies (Lam
et al., 2021; Lee et al., 2022).

In this paper, following the effort of strength-
ening the model’s learning phase by incorporat-
ing meaningful structural information, we investi-
gate the use of structural adapters (Ribeiro et al.,
2021a) based on Graph Neural Networks (GNN) to
boost performance through self-distillation. GNN
is a type of neural network which deals with data
that has structural dependencies; that is, it can be
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represented as a graph. However, graph informa-
tion is not available at inference time, hence the
need to transfer the knowledge of a model exploit-
ing the graph structure. Knowledge Distillation
(KD) is the technique that transfers the knowledge
from a teacher model to a student model (Hinton
et al., 2015). In our approach, we leverage concept-
node alignments to generate a word-based graph
with a structure similar to the original AMR. Af-
ter that, such a graph is employed, with structural
adapters, in the Encoder of a Transformer Encoder-
Decoder architecture to obtain soft targets, which
are then used for self-knowledge distillation, trans-
ferring the knowledge from the teacher path with
the leaked graph structure to the student, which
only has access to the text.

The main contributions of this paper are: i) ex-
ploring how to add structural information into the
model using structural adapters and self-knowledge
distillation, ii) SotA results in AMR parsing for
AMR 2.0 and AMR 3.0 datasets, iii) competitive
base models for AMR parsing.

2 Related Work

Throughout the years, multiple trends have ap-
peared to parse AMR graphs: using statistical
methods (Flanigan et al., 2014, 2016a; Wang et al.,
2015a), neural-transition based parsers (Ballesteros
and Al-Onaizan, 2017; Liu et al., 2018; Fernan-
dez Astudillo et al., 2020; Zhou et al., 2021a), bidi-
rectional transformers (Lyu and Titov, 2018; Zhang
et al., 2019; Cai and Lam, 2020) based on BERT
(Devlin et al., 2019), sequence-to-sequence trans-
formers (Xu et al., 2020; Bevilacqua et al., 2021;
Procopio et al., 2021; Chen et al., 2022; Bai et al.,
2022), or by ensemble models (Lam et al., 2021;
Lee et al., 2022).

The interest in Transformer models based on
BART (Lewis et al., 2020) has constantly increased
over the last years since they obtained SotA per-
formances without complex pipelines. In seman-
tic parsing, these models face the task similarly
to Neural Machine Translation, where the text is
translated into a linearized version of the graphs.
The earliest attempts (Xu et al., 2020; Bevilacqua
et al., 2021) were trained with pairs of sentences
and graphs, so the model automatically generates
the representation of the sentences.

Lately, some works have extended sequence-to-
sequence models to incorporate extra information
useful for parsing. Procopio et al. (2021) leverages

multitask learning to improve cross-lingual AMR
parsing results. Chen et al. (2022, ATP) expand the
dataset with extra auxiliary tasks such as Seman-
tic Role Labeling and Dependency Parsing, with
pseudo-AMR graphs constructed based on a par-
ticular task. During training, a special task tag is
added at the beginning of the input sentence, and
the ATP model predicts the output for such a task.
Bai et al. (2022, AMRBART) pre-train the model
on 200k graphs generated by SPRING where gener-
ated linearized graphs are modified with a masking
strategy and used as input. Additionally, they use
a unified strategy involving the concatenation of a
masked graph and a masked text. The model needs
to reconstruct the original sequence, similarly to
Masked Language Modeling. In such a way, the
model improves structure awareness of Pretrained
Language Models (PLM) over AMR graphs. More-
over, recent research has shown the capabilities of
the autoregressive models for extracting alignment
information online while parsing (Huguet Cabot
et al., 2022). Finally there is a recent surge of
ensemble models. Lam et al. (2021) devised a
new strategy to merge predicted graphs, and Lee
et al. (2022) expanded on it by ensemble distilla-
tion. However we decide not to compare our work
with ensemble strategies, as they rely on multiple
parsers, such as our proposed one, rendering com-
parisons unfit.

3 Fundamentals

3.1 AMR Parsing with BART

AMR parsing can be defined as a sequence-to-
sequence (seq2seq) problem where the input x =
(x1, ..., 25 ) is a sequence of n words (or subwords)
and the output g = (ey,...,€,,) is a linearized
graph with m elements. Our goal is to learn a
function that models the conditional probability:

m

plglz) = [ [ pletle<t, ), (1)

t=1

where e; are the tokens of the linearized graph g
before step t.

Suppose we have a dataset D of size | D| which
consists of pairs (x*, g*), with each ¢* having length
m". Our objective is then to minimize a negative
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Figure 2: Top: sentence. Middle: AMR graph. Bottom:
Linearized graph. Alignment is represented by colours.

In order to model the problem, one can ex-
ploit the transfer learning capabilities of BART. In
Bevilacqua et al. (2021, SPRING), the vocabulary
of BART is updated with tokens corresponding to
1) AMR-related tokens, ii) variable names <R0>,
<R1>, ... <Rn> and other tokens needed for the
various graph linearizations. In addition, BART is
fine-tuned with the input = and the target g. The ap-
proach described in this work is built on top of the
SPRING model, which we consider our baseline
system.

3.2 AMR alignment

Since the AMR graph represents the semantic
meaning behind a sentence, there exists an align-
ment between the spans in text and semantic units
in graphs. In Figure 2, we can find an example. No-
tice how most of the words are connected to a node
in the graph but some, such as the preposition a, are
not reflected or aligned to the graph. Indeed, some
Semantic Parsers rely on alignment to be trained
(Wang et al., 2015b; Flanigan et al., 2016b; Misra
and Artzi, 2016; Damonte et al., 2017; Zhou et al.,
2021b). Multiple alignment formalisms have been

proposed through the years, such as JAMR (Flani-
gan et al., 2014), ISI (Pourdamghani et al., 2014) or
LEAMR (Blodgett and Schneider, 2021). We will
leverage alignment to construct a graph based on
the words in the sentence and their representation.

3.3 Structural adapters

Ribeiro et al. (2021b) have shown how the Trans-
former architecture can be modified to improve
PLM for modeling graph information. They in-
troduced the Structural Adapter (StructAdapt), a
residual neural network involving a Graph Convo-
lutional (GraphConv) layer.

We employ structural adapters to encode the
graph structure imposed by a Word-Aligned Graph
(see Section 4.1), leading to the construction of a
graph G = (V, £), where each token of the input x
is linked to a node v € V, and £ is an unlabeled set
of edges {(u,v)|u,v € V}. Moreover, we remove
layer normalization and set GELU as an activation
function (Figure 4). Then, for each hidden repre-
sentation h!, € R® from the encoder layer [ and
the set of edges £, we compute the updated hidden
states z, as:

g! = GraphConv,(h!, £) 3)
z, = Woo(g,) + b,
where ¢ is GELU and W. € R?*? is a parameter
matrix of the feed-forward layer.
Likewise Ribeiro et al. (2021b), the adapters are
inserted after each Encoder’s layer having the same
amount of adapters as encoder layers (Figure 5).

Graph Convolution In a similar manner to
Ribeiro et al. (2021b), we use GraphConv proposed
by Kipf and Welling (2017) and computed as:

1
Vdudy

GraphConv,(h! &) = Z
ueN (v)

Wihi,, (4)

where N (v) is a set that contains v and its adja-
cent nodes, d,, is the degree of v, Wfq e Rb*Piga
parameter.

4 Model

In the next section, we explain how we have
extended the SPRING architecture in order to
leverage AMR structure information from word-
nodes alignments using structural adapters and self-
knowledge distillation.
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Figure 3: Different representations of the sentence: "Here, it is a country with the freedom of speech". An AMR
with edges converted in nodes (left), a Full WAG (center) and a Contracted WAG (right).
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Figure 4: Structural adapter without layer normalization
and with GELU activation.

4.1 Word-Aligned Graph

Using AMR alignment, we design a Word-Aligned
Graph (WAG) representation where nodes and rela-
tions are actual words of the input sentence instead
of the AMR concepts when it is possible. First, we
convert the relations into nodes that connect two
adjacent nodes in the original graph (see Figure
3, left). Then, we replace the nodes and relations
with the aligned words of their respective sentence
(Figure 3, center).

Unfortunately, a problem arises when dealing
with the structural adapter since non-aligned nodes
(e.g., the :location relation in Figure 3) do not have
associated hidden states. Therefore, in order to
use WAG in the structural adapter, we have two
alternatives: 1) remove nodes for which we do not
have hidden states, i.e., contract non-aligned nodes
(see Section 4.1.1), or ii) create new hidden states
for them (see Section 4.1.2).

4.1.1 Contracted WAG

For the first approach, we must remove non-aligned
nodes from the graph. However, deleting the nodes
from the original graph would produce a discon-
nected graph. To achieve a similar connected struc-

ture to the original graph, we contract nodes rather
than remove them. A contracted WAG (CWAG)
is a graph in which non-aligned nodes are com-
pressed with the closest parent node, preserving all
relations from both nodes. Figure 3 (right) depicts
an AMR and its corresponding CWAG. Addition-
ally, in multi-token nodes (e.g., "Romneycare"), we
merge to the first token any of the subword tokens.

4.1.2 Full WAG

In the second representation, we preserve the nodes
without alignment (the node "location" in Figure
3 (center)). First, if the node’s label is in the
new AMR special tokens which were added to the
model’s vocabulary (e.g., :location), we extract the
embedding from the embedding matrix. Other-
wise, we tokenize the node’s label and take the
average of their embedding tokens as the represen-
tation. Furthermore, the representations for the non-
aligned nodes are added to the model in the first
adapter layer by concatenating them with the hid-
den states of the encoder. After each adapter block,
we split representations into two groups: i) the up-
dated hidden states for the original input tokens,
which are inputs for the next Transformer layer,
ii) the updated hidden states for the non-aligned
nodes, which are concatenated again before the
next adapter block. This type of graph is referred
to as a Full WAG (FWAG). Figure 3 (center) shows
an example of FWAG.

4.2 Graph Leakage Model (GLM)

Through WAG, we explore whether information
leakage has an impact on performance. In this man-
ner, we can determine the model’s upper bound per-
formance with the enhanced Encoder, determining
which graphs and adapter architectures are suitable
for the Two-Path Model described in Section 4.4.
Thereby, we insert structural adapters in each
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Figure 5: Left: Scheme of Graph Leakage Model. Right: Scheme of Two-Path Model, where parameters of the
original BART Encoder and Decoder are shared partially among two paths: (green) path incorporating WAG
information via adapters, (red) path omitting adapters which is basically the outcome model for the problem.

Transformer layer of the Encoder (Figure 5 left).
The adapter’s input in a layer [ consists of a matrix
of hidden states H' and the set of edges £. In the
case of CWAG, H'! corresponds to hidden states
of Transformer layer . Whilst, for FWAG, we
add extra representations as described in Section
4.1.2. Note that the set of edges £ does not change
through layers. The loss function for GLM is:

Licar, = Lnu(D), )

where D is the updated dataset consisting of pairs
((z*,at), g*), where a’ is the WAG.

GLM performance may be considered as the
upper model’s bound in which the encoder learns
graph information from alignments.

4.3 Knowledge Distillation

GLM leverages the alignment information to en-
hance the model’s conception of the graph struc-
ture to improve the parsing performance of the
model. Unfortunately, WAG cannot be employed
at inference time since alignment information is
not available when parsing text to predict a graph.
Therefore, following the idea of knowledge dis-
tillation, we set the teacher to be the pre-trained
GLM that employs the structural information using
sentences and WAGs as input, and then we project
such knowledge to the student model, which is just

aware of the sentences, with no adapters. There-
fore, our objective is to achieve the following:

fstud(x) = fGLM (JJ, CL), (6)

where a is the WAG.

For this purpose, we set SPRING as the student.
The fundamental objective is to encourage the stu-
dent to match the teacher’s probability distribution
by minimizing the following loss:

Cc-1
Lir(p,q) = KL(p,q) = ) pi log(%), )
i=0 ¢

where ¢ and p are probabilities of the teacher and
the student respectively, K L is Kullback—Leibler
divergence, C' is the number of classes. Usually,
the loss Ly for the original task is added to the
total loss:

Lgp = Lpy + alky, (8)

where « is a hyper-parameter.

The architectural differences between the teacher
and the student model belong to the encoder, not
the decoder, since the teacher is the one with the
structural adapters. Therefore, we copy the GLM
decoder to the student model and fix the decoder
and the language model head parameters.



4.4 Two-Path Model

We propose a Two-Path Model (TPM) for learning
where, in contrast with the KD approach, a single
model is trained via two paths simultaneously, one
path with the structural adapters and the other with-
out them. Then, we force the two paths to learn
the same distribution by adding a Kullback—Leibler
divergence loss on the output logits. As a result,
the total loss is:

Lrpym = aLkr, + BLicak + Lni, )

where L. is the loss for the first path, with
leaked information, L,,; is the loss for the second
path, which is the original negative log-likelihood
loss, and finally L, is the above-described Kull-
back-Leibler divergence loss. «,/ are hyper-
parameters to control each loss scale.

Notably, the Two-Path Model is a variant of
knowledge distillation as described in Section 4.3,
called self-knowledge distillation (Hahn and Choi,
2019). In this case, we project the knowledge via
the adapter’s path rather than computing soft tar-
get probabilities. Moreover, we calculate KL di-
vergence for all classes to distill more knowledge
from the first path. Finally, based on the assump-
tion that there is not enough information to distill
at the initiation of the training process, we train
with scheduling the L;.,;, multiplier 3, where [ is
gradually decreasing.

5 Experimental Setup

To demonstrate the benefits of incorporating struc-
tural information in AMR parsing, we devise a set
of experiments to assess its performance with re-
spect to State-of-the-Art models. Before delving
into their details, we first provide thorough infor-
mation regarding the dataset (Subsection 5.1) and
model (Subsection 5.2) used in our experiments.

5.1 Datasets

We tested on two AMR benchmark datasets: 1)
AMR 2.0, which has 36521, 1368, and 1371
sentence-AMR pairs in the training, validation, and
test sets, respectively, and ii) AMR 3.0, which con-
tains 55635, 1722, and 1898 sentence-AMR pairs
in the training, validation, and test sets, respectively.
Furthermore, we tested on the Little Prince and the
Bio AMR out-of-distribution datasets.

Alignment Our approach directly relies on the
structural information extracted between the word-

concept alignment. There are several alignment
standards: First, Information Sciences Institute
(ISI) provides extended AMR 2.0 and AMR 3.0
datasets with alignments of all the graph seman-
tic units that are directly related to the sentences’
spans (Pourdamghani et al., 2014). Second, Lin-
guistically Enriched AMR (Blodgett and Schneider,
2021, LEAMR) achieves full graph-alignment cov-
erage by aligning all the graph semantic units to
anything in the sentence.

Silver Data Following Bevilacqua et al. (2021),
we have explored the same strategy to generate
a dataset with 140k silver sentence-graph pairs.
The silver alignments were generated using the
approach of Huguet Cabot et al. (2022), where they
are extracted from the cross-attention of the model.

5.2 Models

We use SPRING (Bevilacqua et al., 2021) as our
baseline model, an auto-regressive model based on
BART (Lewis et al., 2020) for predicting linearized
versions of AMR graphs. Our models have been
built on top of SPRING, inheriting some of its
hyper-parameters (see Table 7). Structural adapters
leverage one graph convolutional layer and GELU
activation. In the next paragraphs, we explain the
specific setup per each model.

Graph Leakage Model We explore two differ-
ent settings for GLM: i) Contracted WAG, Section
4.1.1 - Figure 3 right; and ii) Full WAG, Section
4.1.2 - Figure 3 center.

Knowledge Distillation We test KD on the GLM
with the highest SMATCH (see Table 1).

Two-Path Model Likewise GLM, we first exam-
ine the difference in performance between Con-
tracted WAG and Full WAG. Then, we test Full
WAG with i) 8 scheduling, ii) the silver data, iii)
the combination of the silver data and the 3 schedul-
ing. In the case of the scheduling of 3, we start
from 8 = 90 and decrease it linearly at each iter-
ation for 21k iterations in total until it reaches 10.
The hyper-parameter « is set to 20.

6 Results

Graph Leakage Model Table 1 shows results for
the Graph Leakage Model. While this setup relies
on information being leaked from the final graph
structure, it sets an upper bound on how encoding
such information can improve performance. Here



Model AMR 3.0
SPRING 84.10
Contracted WAG 86.01
Full WAG 89.58
Leaked Path of TPM 86.09

Table 1: GLM results for AMR 3.0 development set.

Model AMR 3.0
SPRING 84.10
KD Full WAG (89.58) 83.90
Lleak + Lnll 84.47
Two-Path Lleak + Lnll + LKL 85.04

Table 2: Knowledge Distillation results for the develop-
ment set of AMR 3.0.

Model AMR 3.0
SPRING 84.10
Contracted WAG 84.90
Full WAG 85.04
+ 3 scheduling 85.08
+ Silver 85.34
+ Silver + 3 scheduling 85.28

Table 3: Performance of Two-Path models on the devel-
opment set of AMR 3.0.

we observe an increase of around five SMATCH
points when including concept labels and token
masking. While the model is certainly taking ad-
vantage of the leaked information, this is encoded
through the hidden states of the Encoder. There-
fore we need to explore whether some of this per-
formance gain can be kept implicitly without any
information leak.

Knowledge Distillation and TPM Table 2 com-
pares the results between applying KD with GLM
as the teacher versus the self-KD approach, TPM,
explained in Section 4.4. We see how KD alone
falls short of taking full advantage of the perfor-
mance gains of GLM. On the other hand, TPM,
especially when including the KL loss, leads to
over one SMATCH point increase on the develop-
ment set. Hence we focus on TPM as our main
approach. Table 3 shows a breakdown of the exper-
iments with TPM, such as scheduling the KL loss
or adding a silver data pretraining phase.

Model TLP BioAMR
SPRING 81.3 61.6
ATP 79.0 55.2
AMRBART 823 63.4
Ours 82.6 64.5

Table 4: Out of distribution results. ATP, AMRBART
and SPRING are taken from Lee et al. (2022)

Model AMR 2.0 AMR3.0
SPRING 82.8 -
AMRBART 83.6 82.5
Ours 84.7 83.5

Table 5: BART-base versions performance.

Main Results Table 6 shows results for our pro-
posed model, based on BART-large. Our system
performs better than any previous single model
parser, and most notably, does so even without the
need of extra data. For AMR 2.0, we see up to
0.7 SMATCH increase over AMRBART and 0.4
on AMR 3.0. The use of extra data only leads to
a small improvement, showing the efficiency of
our approach which is able to outperform previous
SotA systems that relied on up to 200K extra sam-
ples. In the breakdown performance, we see how
our system performs worse than ATP on Reentran-
cies, Negation and notably SRL. We believe this is
due to the multitask nature of ATP, where SRL is
explicitly included as a task. This opens the door
to future work exploring the interaction between
our approach and the inclusion of auxiliary tasks.

BART base Our SotA system relies on BART-
large, which has 400M parameters. While it shows
great performance, it has a big computational foot-
print, especially at inference time due to its auto-
regressive generative nature. This makes the need
for lighter, more compute efficient models an im-
portant step towards better Semantic Parsers. Table
5 shows the performance of our approach when
trained on top of BART-base, which has 140M
parameters, achieving 83.5 SMATCH points on
AMR 3.0, 1 point higher than AMRBART and,
noticeably, surpassing SPRING-large performance
by half a point. We believe it is crucial to have
close to SotA performance base models, closing
the gap from 2 points to 1 when compared to its
large counterparts.



Model Extra Data Smatch | Unlab. NoWSD Conc. Wiki NER Reent. Neg. SRL
SPRING 200K 84.3 86.7 84.8 90.8 831 905 724 736 805

2 ATP 40K 85.2° 88.3 85.6 90.7 833 931 747 749 833
& AMRBART 200K 85.4° 88.3 85.8 912 814 915 735 740 815
<§t Ours 0K 85.7° 88.6 86.2 91.0 839 091.1 742 76.8 81.8
Ours 140K 86.1°% | 88.8 86.5 914 839 916 751 76.6 82.4
SPRING 0K 83.0 85.4 83.5 895 812 87.1 713 717 79.1

S’i ATP 40K 83.9° 87.0 84.3 89.7 810 884 739 739 825
& AMRBART 200K 84.2° 87.1 84.6 902 789 885 724 721 803
;,: Ours 0K 84.5%% | 81.5 84.9 90.5 80.7 885 731 737 80.7
Ours 140K 84.6°% | 87.5 84.9 90.7 813 878 734 730 809

Table 6: Results and comparisons with previous systems. Bold indicates best performance per set, underline in
case of a tie. Breakdown extra scores after vertical line. Upperscript indicates result is significantly better using an
approximate randomization test (Riezler and Maxwell, 2005) at p < 0.05. s = SPRING, a = AT P. Ours is the

only system significantly better than ATP.

== SPRING = = ATP = - AMRBART = TPM

9%
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84
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Figure 6: SMATCH score for buckets of 200 instances.
X axis shows max. number of words per sentence.

Out-of-distribution evaluation Table 4 shows
the Out-of-Distribution of TPM. We see a smaller
improvement on TLP, 0.3 over AMRBART. On
the harder BioAMR, performance increased over a
point, showing how the model is able to generalize
well on different domains.

7 Performance Analysis

Seq2seq parsers show decreased performance for
longer sentences since a single error at decoding
time in an early step can lead to compound errors
and suffer from exposure bias. We explore how
this affects our model compared to SPRING, ATP
and AMRBART. Figure 6 shows the SMATCH per-
formance on AMR 3.0 test set for buckets of 200
sentences divided by the number of words. While

the performance is similar on shorter sentences,
with AMRBART showing slightly better perfor-
mance, with longer sentences of over 14 words
TPM shows better performance, especially com-
pared to the baseline, which drops to 80 SMATCH
points for longer sentences. This experiment also
shows how performance is relatively stable for
medium length sentences (10-30 words, oscillat-
ing around 85 points), while it starts deteriorating
for longer ones. The high performance on short
sentence is likely due to expressing easy-to-parse
structures such as single date sentences.

8 Conclusion

We presented a new approach to training the Trans-
former architecture where partial information of the
target sequence can be learned via multi-tasking
and self-knowledge distillation: the information
can be leaked in the Encoder implicitly through
Transformer adapters which improve training but
are switched off during inference. By employing
this approach in AMR parsing, we achieved SotA
results among non-ensemble methods. Moreover,
we produced a lightweight AMR parser that outper-
forms SPRING having four times fewer parameters.
We also showed that, for all methods, including
ours, performance degrades as the number of words
increases, which raises a question of limitation of
the current methods based on BART.
Interestingly, our approach can be potentially
used in other tasks where alignments between input
and target sequence elements exist, or structural
information is unavailable at inference time.
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Appendices
A Model Hyper-Parameters

Table 7 lists hyperparameters and search space for
the experiments:

¢ LR sched. - learning rate scheduler

e KL temp. - KL temperature

* AMR 3 aligns. - a type of alignments for

AMR 3.0

* Mask. range - masking range. For each batch,
we mask the input tokens with probability p,
the value for which is sampled uniformly from

the masking range.

Group Parameter Values
Optimizer RAdam
Batch size 500
Inherited Dropout 0.25
(SPRING) Attent. dI'OpOllt 0
Grad. accum. 10
Weight decay 0.004
LR 0.00005
Beamsize 5
Encoder layers 1-12
Adapter Activation GELU
Dropout 0.01, 0.1
LR 0.00005, 0.0001
GLM LR sched. const., linear
LR 0.00005, 0.0001
KD LR sched. const., linear
Weight decay 0.004, 0.0001
LR sched. const., linear
KL temp. 1,2
Two-Path « 1,5, 10, 20
8 1, 5, 10, sched.
AMR 3 aligns. ISI, LeAMR
Mask. range [0; {0, 0.1, 0.15}]
Beamsize 5,10

Table 7: Final hyperparameters and search space for the
experiments

B Hardware and size of the model

We performed experiments on a single NVIDIA
3090 GPU with 64GB of RAM and Intel® Core™
19-10900KF CPU. The total number of trainable
parameters of TPM is 434,883,596. Training the
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model on the silver data took 33 hours, whereas
further fine-tuning took 16 hours.

C BLINK

All systems from Table 6 use BLINK (Ledell Wu,
2020) for wikification. For this purpose, we used
the blinki fy.py script from the SPRING reposi-
tory.

D Metric

We evaluate AMR parsing using the Smatch met-
ric Cai and Knight (2013) and extra scores of Da-
monte et al. (2017): i) Unlabel, compute on the
predicted graphs after removing all edge labels,
ii) No WSD, compute while ignoring Propbank
senses (e.g., duck-01 vs duck-02), iii) Wikification,
F-score on the wikification (:wiki roles), iv) NER,
F-score on the named entity recognition (:name
roles), v) Negations, F-score on the negation detec-
tion (:polarity roles), vi) Concepts, F-score on the
concept identification task, vii) Reentrancy, com-
puted on reentrant edges only, viii) Semantic Role
Labeling (SRL), computed on :ARG-i roles only.

E Data

The AMR 3.0 data used in this paper is licensed
under the LDC User Agreement for Non-Members
for LDC subscribers, which can be found here. The
The Little Prince Corpus can be found here from
the Information Science Institute of the University
of Southern California.

F Limitations

At train time, our system requires alignment be-
tween graph and sentence. We obtain them for
the silver data with an external system which over-
comes this limitation, but other systems do not rely
on alignment. Since we have two pathways in-
side the TPM architecture, the model requires two
forward paths. Along with the fact that we have
three losses, the model is considered computation-
ally heavier than its competitors from Table 6 at
training time. However, the number of parameters
and computational cost/time remains the same at
inference time.


https://catalog.ldc.upenn.edu/LDC2020T02
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