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Abstract
Deep learning models have become a popular
choice for medical image analysis. However, the
poor generalization performance of deep learn-
ing models limits them from being deployed in
the real world as robustness is critical for medi-
cal applications. For instance, the state-of-the-art
Convolutional Neural Networks (CNNs) fail to de-
tect adversarial samples or samples drawn statis-
tically far away from the training distribution. In
this work, we experimentally evaluate the robust-
ness of a Mahalanobis distance-based confidence
score, a simple yet effective method for detecting
abnormal input samples, in classifying malaria
parasitized cells and uninfected cells. Results in-
dicated that the Mahalanobis confidence score de-
tector exhibits improved performance and robust-
ness of deep learning models, and achieves state-
of-the-art performance on both out-of-distribution
(OOD) and adversarial samples.

1. Introduction
Deep learning is increasingly making its way into ground-
breaking technologies that have high-value applications in
the real-world clinical environment. Innovative medical
imaging applications and diagnostics are among the most
exciting use cases. One such application is developing
microscopy-based malaria diagnosis procedures (Ravendran
et al., 2015; Silva et al., 2013; Yang et al., 2019). Malaria is a
deadly mosquito-borne disease infecting around 300 million
people annually (World Health Organization). Since it is
mostly prevalent in low-income countries, developing semi-
automated microscopy techniques, as alternatives to poly-
merase chain reaction (PCR) tests and rapid diagnostic tests
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(RDT), is a low-cost and reliable solution (Wongsrichanalai
et al., 2007).

1.1. Applications of deep learning in medical diagnosis

Esteva et al. (2017) developed a convolutional neural net-
work (CNN) model that was trained on 130, 000 clinical
images of skin pathologies to detect cancer. The proposed
model achieves performance on par with all tested experts,
demonstrating an artificial intelligence model capable of
classifying skin cancer with a level of competence compa-
rable to dermatologists. In 2018, another research study
showed that a convolutional neural network trained to an-
alyze dermatology images identified melanoma with ten
percent more specificity than human clinicians (Haenssle
et al., 2018). Another algorithm trained on 42, 000 chest
CT scans outperformed expert radiologists in detecting lung
cancers (Ardila et al., 2019). It was able to find malignant
lung modes 5-9.5% more often than human specialists. Re-
cently, a CNN model designed to predict malignancy and
identify 134 skin disorders (Cho et al., 2020). The proposed
algorithm is capable of distinguishing, at the human expert
level, melanoma from birthmarks. There have also been
various studies on assessing the uncertainty and robustness
in medical data (Senanayake et al., 2016; Laves et al., 2020;
Asgharnezhad et al., 2020).

1.2. Applications of deep learning for malaria diagnosis

Various computer vision algorithms have been used for
malaria diagnosis (Ravendran et al., 2015). Deep learning al-
gorithms are recently being used increasingly by researchers
especially for malaria detection because of its applicability
in building automated diagnostic system. Liang et al. (2016)
presented a 16-layer CNN towards classifying uninfected
and parasitized cells. The study reported that the custom
model was more accurate, sensitive, and specific than the
pre-trained model. Dong et al. (2017) evaluated three well-
known CNNs (LeNet, AlexNet and GoogLeNet) on classi-
fying parasite/not parasite slide images of thin blood stains.
Simulation results showed that all three CNNs achieved
classification accuracy scores of over 95%. Rajaraman et al.
(2018b) introduced a pretrained CNN as a feature extractor
towards improved malaria parasite detection in thin blood
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smear images, and the results present the use of pretrained
CNNs as a promising tool in malaria detection.

Rajaraman et al. (2018a) has demonstrated that deep neural
networks can be used to detect malaria from microscopic
images. However, in order to deploy such systems in medi-
cal facilities, it is vital to ensure that the automated detection
systems are indeed robust. Nonetheless, deep learning algo-
rithms work on the premise that both training and test data
are drawn from the same application-specific distribution.
However, in real-world applications, they need to be able to
robustly handle anomalous inputs including, 1) adversarial
samples arising from image distortion and 2) samples drawn
from a different distribution but belong to the same input
space.

In this work, we propose using a Mahalanobis distance-
based confidence score method (Lee et al., 2018; Kamoi
& Kobayashi, 2020; Nitsch et al., 2021) for detecting ab-
normal (both OOD and adversarial) samples to improve the
performance and robustness of pre-trained convolutional
neural network models to improve the robustness of malaria
detection (Figure 1). The suggested method gives better re-
sults compared to the current state-of-the-art method ODIN
(Liang et al., 2018) in detecting OOD malaria samples. We
also demonstrate that Mahalanobis distance-based confi-
dence score outperforms the state-of-the-art detection, LID,
in all test cases, in detecting adversarial samples generated
by four adversarial attacking methods: FGSM (Goodfel-
low et al., 2015), BIM (Kurakin et al., 2016), DeepFool
(Moosavi-Dezfooli et al., 2016), and CW (Carlini & Wag-
ner, 2017).

Figure 1. FGSM adversarial attack on parasitized and healthy cells
for varying levels of noise. Noise can be visually inspected on
the black areas and cell boundary, especially for ε = 0.3). On the
top row, parasites can be seen in dark color inside the cell. The
prediction probabilities are indicated above each image.

2. Robustness of deep learning models
The robustness of deep learning algorithms needs to be
evaluated before deploying them in real-wold. Therefore, it
is crucial to ensure the neural networks can detect abnormal
inputs in safety- and security-sensitive applications such
as medical diagnosis, biometric authentication, intrusion
detection, and autonomous driving (Emmott et al., 2016;
Nitsch et al., 2021).

2.1. Robust out-of-distribution detection for neural
networks

Out-of-Distribution (OOD) samples, the test samples that
are not well covered by training data, is a major cause of
poor performance in deep learning models. OOD samples
are able to both evade the deep learning algorithms as well
as achieve targeted misclassification with high confidence.
There are currently many approaches that can detect OOD
examples. They work well when tested on natural samples
from a distribution that is sufficiently different from the
distribution of the training data (Chen et al., 2020).

Hendrycks & Gimpel (2016) recently proposed a baseline
for detecting misclassified and OOD examples in deep neu-
ral networks (DNNs), and Liang et al. (2017) improved it by
processing the input and output of the DNNs. The Softmax
Baseline Mode computes softmax probabilities with the
fast-growing exponential function. Thus minor changes to
the softmax inputs, can lead to major changes in the output
distribution. A softmax baseline method uses probabilities
from softmax distributions to predict whether a test exam-
ple is from a different distribution from the training data
or from within the same distribution. Liang et al. (2018)
proposed ODIN (Out-of-DIstribution detector for Neural
networks) which is a simple and effective method for de-
tecting OOD images in neural networks. ODIN does not
require re-training the neural network and is compatible
with diverse network architectures and datasets.

2.2. Robust adversarial detection for neural networks

Recent studies have concentrated on identifying adversar-
ial examples despite the inefficiency of adversarial defense
(Fawzi et al., 2016). Goodfellow et al. (2014) suggested a
framework for estimating abnormal samples via adversarial
networks. Local Intrinsic Dimensionality (LID) is one of
the successful adversarial detection techniques proposed
by Ma et al. (2018). With the assumption that adversarial
subspaces are low probability regions that are densely scat-
tered in the high dimensional representation space of DNNs.
The properties of adversarial regions is considered as a key
requirement for adversarial defense (Ma et al., 2018).
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3. Mahalanobis confidence score
One of the limitations of both ODIN and LID is that they are
designed for either OOD or adversarial corruption but not
for both. More recently, Lee et al. (2018) proposed a simple
yet effective method for detecting both OOD samples and
adversarial samples.

Mahalanobis distance-based confidence score is a class-
conditional anomaly detection method, motivated by classi-
fication prediction confidence (Kamoi & Kobayashi, 2020).

Let us consider a dataset D = {(xn, yn)}Nn=1 with input-
label pairs. The labels belong to one of the classes
{1, . . . , C}. For malara parasite detection, labels are either
parasitized or healthy. For a deep neural network, fφ, with
parameters φ, we consider a pre-trained softmax classifier,

pθ(y = c|x) =
exp(w>c fφ(x))∑
c′ exp(w>c′fφ(x))

. (1)

For each class, we define a multivariate Gaussian distribu-
tion, p(fφ(x)|y = c) = N (fφ(x)|µc,Σ) with class mean
µc and pooled-covariance Σ. This way, we compute the
empirical statistics (µ̂1, µ̂2, . . . , µ̂C , Σ̂) from the training
datasetD. With these statistics, the closest class c̃ to a query
input x∗ can be computed using the Mahalanobis distance,

c̃ = min
c∈{1,2,...,C}

√
(f(x∗)− µ̂c)>Σ̂−1(f(x∗)− µ̂c). (2)

Following Liang et al. (2017), a controlled noise ε is added
to the input,

x̃∗ = x∗ − ε · sign
(
∇x(f(x∗)− µc̃)>Σ̂−1(f(x∗)− µ̂c̃)

)
,

(3)
for better calibration. Then, we can compute the confidence
score,

M(x̃∗) = max
c∈{1,2,...,C}

−(f(x̃∗)− µ̂c)>Σ̂−1(f(x̃∗)− µ̂c).

(4)
By doing this for all l = {1, . . . , L} layers of the neural
network with weights αl of the logistic regression clas-
sifier (separately trained for each layer on a validation
dataset (Ma et al., 2018)), we can compute the overall score
M∗(x∗) =

∑L
l=1 αlMl(x∗). For a given threshold ρ, the

query samples, x∗, is in-distribution, if M∗(x∗) ≥ ρ.

4. Experiments
In our experiments, we used a publicly accessible and an-
notated malaria dataset of healthy and infected blood smear
images 1. It contains 13, 779 parasitized and 13, 779 unin-
fected cell images. We split the dataset into 60 : 10 : 30 for

1https://lhncbc.nlm.nih.gov/publication/
pub9932

train, validation, and test datasets, respectively. We resized
the images to 125×125 pixels and normalized them to assist
in faster convergence. To prevent over-fitting and to account
for possible variations in photomicroscopy, we have applied
data augmentation techniques such as rotation, shearing,
translation, and zooming. For OOD, another malaria dataset
consisting of 22, 046 was used2.

Figure 2. Robustness against out-of-distribution samples: ResNet-
18

Figure 3. Robustness against out-of-distribution samples: VGG-19

For OOD and adversarial samples detection, the suggested
method to improve the robustness of DL models was eval-
uated on both VGG-19 and ResNet-18 using a threshold-
based detector. We evaluate the models with the following
metrics: the true negative rate (TNR) at 95% true positive
rate (TPR), the area under the receiver operating character-
istic (AUROC) curve, the area under the precision-recall
(AUPR) curve, and the detection accuracy. The Mahalanobis

2https://github.com/shriyakabra97/
malaria-parasite-detection

https://lhncbc.nlm.nih.gov/publication/pub9932
https://lhncbc.nlm.nih.gov/publication/pub9932
https://github.com/shriyakabra97/malaria-parasite-detection
https://github.com/shriyakabra97/malaria-parasite-detection
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Table 1. Robustness against adversarial samples: a comparison of the performance of LID and Mahalanobis (proposed) towards detecting
adversarial test samples generated from malaria image datasets.

Model Metric LID Mahalanobis

FGSM BIM DeepFool CW FGSM BIM DeepFool CW

VGG-19 TNR at TPR 95% 99.96 96.87 74.48 75.93 100.00 100.00 75.96 98.11
AUROC 97.30 96.68 78.01 89.64 99.98 99.68 83.56 99.35
Detection accuracy 99.41 90.46 46.05 72.96 99.98 99.99 61.95 97.51

ResNet-18 TNR at TPR 95% 96.84 95.61 63.59 73.09 99.99 97.98 76.22 98.90
AUROC 97.30 96.68 78.01 89.64 99.98 99.68 83.56 99.35
Detection accuracy 97.02 97.65 49.56 84.66 99.75 99.95 64.95 98.05

Figure 4. A comparison of performance between LID and Maha-
lanobis distance-based confidence score for ResNet-18 pre-trained
model.

confidence score was compared with the baseline method
and state-of-the-art ODIN for OOD samples. It was also
compared with the state-of-the-art LID toward adversarial
samples detection. Comparing with the baseline method,
ODIN and LID, as shown in Table 1 and Figures 2, 3,4,and 5,
the proposed approach outperforms on detecting abnormal
samples.

As the Mahalanobis distance-based score method outper-
forms for the tasks of detecting OOD samples and adver-
sarial samples, it can serve as a diagnostic framework for
evaluating deep neural networks, as it is able to reveal their
potentially non-obvious vulnerabilities and reliability. Such
frameworks help to ensure that deep neural networks are
effective, secure, and easy to deploy in a broad range of med-
ical imaging applications beyond malaria detection. Our
future work will extend this framework to test medical im-
ages under various lighting and other possible sources of
corruption. We envision this, in the long-term, will enable
low-cost, yet reliable, imaging procedures.

Figure 5. A comparison of detection performance between LID
and Mahalanobis distance-based confidence score for VGG-19
pre-trained model

Broader impact statement
Broadly, our research is a step towards developing robust
semi-automated medical image analysis techniques. Specif-
ically, we focus on ensuring that malaria detection proce-
dures are reliable enough before deployment. It, in the long-
term, will help low-income countries to eradicate malaria.
These systems, however, need to be rigorously validated
before deploying in medical facilities.
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