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Abstract001

Scientific knowledge is growing rapidly, mak-002
ing it difficult to track progress and high-003
level conceptual links across broad disciplines.004
While tools like citation networks and search005
engines help retrieve related papers, they lack006
the abstraction needed to capture the density007
and structure of activity across subfields.008

We motivate SCIENCE HIERARCHOGRAPHY,009
the goal of organizing scientific literature into010
a high-quality hierarchical structure that spans011
multiple levels of abstraction—from broad do-012
mains to specific studies. Such a representation013
can provide insights into which fields are well-014
explored and which are under-explored. To015
achieve this goal, we develop a hybrid approach016
that combines efficient embedding-based clus-017
tering with LLM-based prompting, striking a018
balance between scalability and semantic preci-019
sion. Compared to LLM-heavy methods like it-020
erative tree construction, our approach achieves021
superior quality-speed trade-offs. Our hierar-022
chies capture different dimensions of research023
contributions, reflecting the interdisciplinary024
and multifaceted nature of modern science. We025
evaluate its utility by measuring how effectively026
an LLM-based agent can navigate the hierar-027
chy to locate target papers. Results show that028
our method improves interpretability and offers029
an alternative pathway for exploring scientific030
literature beyond traditional search methods.031

1 Introduction032

The pace of scientific publishing is accelerat-033

ing (Ware and Mabe, 2015), but this growth is un-034

even across fields (Hope et al., 2023). Some areas035

attract dense research activity, while others remain036

underexplored. This raises a natural question:037

How do we understand the distribution of038

scientific efforts across different sub-areas?039

Answering this question is essential for both aca-040

demic and policy stakeholders. A clearer view of041

…

…
Science

Sub-Cluster: 
Oceanic Dynamics 

and Acoustics

Sub-Cluster: 
Climate Dynamics 

Research

Cluster: Ocean-Climate 
Dynamics and Conservation

Cluster: Interdisciplinary 
Bioengineering Innovations

Level 1

Level 2
Sub-Cluster: 
Bioelectronic 
Innovations

Sub-Cluster: 
Advanced Li-ion 

Battery Optimization
…

Level  L…
…

Paper: Impact 
of Cold-Air 

Outbreaks and 
Oceanic … 

Paper: Synthetic 
microbiology caucus 

Programming living sensors 
for environment, health … 

…

…

…

…

………

…

Papers

… …
…

…
…

…
…

…

Paper: SynMADE: 
Synthetic Microbiota 

Across Diverse 
Ecosystems

Figure 1: An example of SCIENCE HIERARCHOGRA-
PHY illustrates how scholarly work can be organized
hierarchically—from broad research domains at the top,
through increasingly specific sub-clusters, down to indi-
vidual papers at the lowest level. Critically, this structure
must be inferred automatically and at scale.

how research efforts are distributed enables institu- 042

tions to spot emerging or neglected areas, prioritize 043

strategic hiring and future agendas. For policymak- 044

ers, it supports more informed funding decisions, 045

ensuring that critical but underexplored domains 046

receive the attention and resources they deserve. 047

Conventional tools like Google Scholar are de- 048

signed as retrieval engines, optimized to return a 049

handful of papers that match a specific query. They 050

offer little in the way of a comprehensive or struc- 051

tured view of the broader scientific landscape. Sim- 052

ilarly, while modern LLM-based assistants can sur- 053

face related works (seen during pretraining or via 054

their retrieval tools), they fall short in offering a 055

broad, bird’s-eye perspective on scientific progress. 056

Addressing this challenge requires abstraction: 057

a way to generalize over research problems and 058

techniques and to connect broad scientific areas to 059

specific papers via intermediate categories. At one 060

end, we have high-level domains (e.g., physics, AI); 061

at the other, individual papers. Between them lie 062

a latent spectrum of subfields and methodological 063

clusters. What’s missing is a data structure that 064

captures all these abstraction levels. 065
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We propose building large-scale hierarchical rep-066

resentations of scientific literature, which we call067

SCIENCE HIERARCHOGRAPHY. A well-designed068

hierarchy provides a macro-level view of scien-069

tific progress, revealing how research is distributed070

across methods and application areas. This helps071

researchers spot emerging trends and gaps, and072

supports policymakers and institutions in making073

more strategic resource decisions. It also offers a074

new way to explore the literature—complementing075

traditional search by allowing users to navigate076

science through conceptual hierarchies.077

How should scholarly work be represented? A078

central challenge in building a scientific hierarchy079

is defining what each node represents. Research pa-080

pers often span multiple topics (e.g., reinforcement081

learning for medical imaging or deep learning for082

oceanography). To capture this complexity, we de-083

velop a prompting strategy that decomposes papers084

into key contribution types—such as the problems085

addressed and techniques used (§3.2). For each086

fixed contribution type, we construct a correspond-087

ing hierarchical structure, ensuring that papers are088

organized into meaningful, coherent categories.089

What construction strategies balance scala-090

bility and quality? To address this, we introduce091

SCYCHIC (pronounced “psychic”), a new method092

for building high-quality hierarchical structures093

of scientific literature. SCYCHIC integrates fast094

embedding-based clustering with LLM prompting,095

combining the efficiency of embeddings with the096

semantic precision of language models (§4.1).097

How can we evaluate the quality of a scien-098

tific hierarchy? Scientific hierarchies lack a fixed099

ground truth—they evolve over time as research100

landscapes shift. We therefore adopt an evaluation-101

through-utilization approach, measuring whether102

an information seeker (human or AI) can efficiently103

locate specific content (e.g., child nodes) by navi-104

gating the hierarchy from the root. This evaluation105

hinges on the idea that a good hierarchy enables106

rapid information discovery, even though its utility107

extends well beyond search alone (§5.2).108

What did our empirical results show? Our ap-109

proach achieves the best trade-off between quality110

and speed when compared to LLM-heavy methods111

like iterative tree construction or pruning. Exten-112

sive experiments show that SCYCHIC consistently113

produces higher-quality hierarchies than a broad114

set of baselines (§5.4). Validation on a 10K-paper115

dataset further confirms its strong accuracy and116

scalability for large-scale use.117

Contributions: (1) We introduce the goal of 118

constructing large-scale, abstract hierarchies of sci- 119

entific literature to reveal how scholarly efforts 120

are distributed across research areas. (2) We pro- 121

pose a utilization-based evaluation framework that 122

measures how effectively users can discover in- 123

formation by traversing the hierarchy. (3) We 124

present SCYCHIC, a new method that combines fast 125

embedding-based clustering with LLM prompting 126

to build high-quality, multidimensional hierarchies. 127

Extensive experiments show that SCYCHIC outper- 128

forms baseline approaches, offering a more struc- 129

tured and bird’s-eye view of scientific progress. 130

2 Related Work 131

Gierarchy induction: The field of taxonomy in- 132

duction has progressed from early pattern-based 133

techniques to modern LLM-augmented methods. 134

Seminal work by Hearst (1992) introduced the use 135

of hand-crafted hyponym patterns for extracting is- 136

a relationships. Subsequent research expanded on 137

this using statistical methods and large-scale infor- 138

mation extraction to identify hypernym-hyponym 139

structures (Pantel and Pennacchiotti, 2006; Yang 140

and Callan, 2009; Girju et al., 2006). 141

Recent advances incorporate LLMs prompting 142

to enhance taxonomy construction. For example, 143

Wan et al. (2024); Zeng et al. (2024a); Chen et al. 144

(2023); Zeng et al. (2024b) apply zero-/few-shot 145

reasoning and ensemble ranking, while others ex- 146

plore open-ended, vocabulary-free taxonomy cre- 147

ation (Gunn et al., 2024), self-supervised expan- 148

sion in low-resource domains (Mishra et al., 2024), 149

and graph-based methods leveraging metadata and 150

citations (Cong et al., 2024; Sas and Capiluppi, 151

2024; Shen et al., 2024). Optimization and in- 152

context learning have also shown promise (Hu et al., 153

2024b; Shi et al., 2024; Xu et al., 2025; Jain and 154

Espinosa Anke, 2022; Chen et al., 2021). 155

Our work differs in scope, scale, and method- 156

ological design. We focus on scaling taxonomy 157

induction for the domain of scholarly literature—a 158

setting that presents greater challenges than typical 159

setups (e.g., entity hierarchy) due to the complexity, 160

size, and evolving nature of scientific content. The 161

most comparable effort is by Oarga et al. (2024), 162

though our broader objectives require fundamen- 163

tally different algorithmic strategies and operate 164

without access to ground truth labels. 165

Structured representation of science: As sci- 166

ence grows at an unprecedented rate (Teufel et al., 167
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System # of Levels Node content Node granularity Assigned by Purpose Public

Web of Science One Research areas One keyword Publisher Indexing No
Scopus Two Research areas One keyword Editor Indexing Yes
arXiv Taxonomy Two Research areas One keyword Authors Indexing Yes
PubMed MeSH Multiple Medical headings One keyword Authors Indexing Yes
Microsoft Academic Graph Multiple Research areas Multiple keywords Algorithms Indexing Discontinued

SCIENCE
HIERARCHOGRAPHY (Ours)

Multiple (by
designer)

Rich contribution
descriptions

Science contribution
summary (many tokens)

Algorithms Exploratory
Analysis

Yes

Table 1: Comparison of hierarchical resources for organizing scientific literature, ordered by hierarchy depth.
Conventional systems are built for indexing, relying on fixed, shallow taxonomies with keyword-based nodes and
human-assigned labels. In contrast, SCIENCE HIERARCHOGRAPHY supports deeper, designer-controlled hierarchies
with rich natural-language summaries, enabling more flexible and exploratory analysis of scientific work.

1999; Pertsas and Constantopoulos, 2017; Con-168

stantin et al., 2016; Fisas et al., 2016; Liakata169

et al., 2010), numerous frameworks have emerged170

to structure this information through knowledge171

graphs and taxonomies (Fathalla et al., 2017; Ja-172

radeh et al., 2019; Oelen et al., 2020; Vogt et al.,173

2020; Soldatova and King, 2006). Recent work174

includes prompt-based topic modeling (Pham et al.,175

2024), iterative taxonomy construction that incor-176

porates object properties and graph mining (Cui177

et al., 2024; Marchenko and Dvoichenkov, 2024),178

and hybrid approaches that combine curated ontolo-179

gies with data-driven maps (Zimmermann et al.,180

2024). Our work builds on these efforts by con-181

structing a high-quality hierarchical structure tai-182

lored to scientific literature, in three key ways. The183

prior work: (1) Produces shallow hierarchies, typi-184

cally only one or two levels deep; (2) Uses cluster185

labels based on keywords, whereas ours are derived186

from natural-language summaries of paper content;187

(3) Depends heavily on manual effort, while our188

pipeline is fully automated.189

Finally, in Table 1 we summarize the differ-190

ences with existing hierarchical resources. While191

most prior systems are limited to one or two lev-192

els of depth and rely on manually assigned key-193

word labels for indexing—a process often prone194

to bias (Hadfield, 2020)—our approach supports195

deeper, algorithmically generated hierarchies with196

semantically rich node descriptions. This enables197

a more flexible and interpretable representation of198

scientific knowledge.199

3 SCIENCE HIERARCHOGRAPHY:200

Toward Hierarchy of Scholarly Work201

We begin with a formal problem definition (§3.1),202

followed by content representation (§3.2) and depth203

considerations (§3.3).204

3.1 Formal Problem Statement 205

We define the task of SCIENCE HIERARCHOGRA- 206

PHY as an inference problem where the input is a 207

large set of scientific papers: P = {p1, p2, . . . , pn}. 208

The goal is to infer a hierarchical structure for these 209

papers (e.g., their problems and techniques). This 210

structure represents levels of specificity and ab- 211

straction, with nodes closer to the root representing 212

broader topics. Broader topics are at the upper lev- 213

els, while more specific subtopics and individual 214

papers are at the lower levels. 215

Formally, this goal is defined as inferring a graph 216

that encodes relationships between nodes (atomic 217

concepts representing scholarly ideas or goals). 218

This is formally defined as T := (N,E) where: 219

• N is the set of all concepts (nodes) present in 220

the hierarchy: N = {n1, n2, . . . , nN}. 221

• E is the set of all edges connecting node pairs: 222

E = {r1, r2, . . . , eM} where each edge is a 223

node pair ri = (np, nc) connects a parent node 224

np to its child node nc. 225

• For each edge e ∈ E, there is a type at- 226

tribute: type(e) ∈ {“isA”, “instanceOf”} asso- 227

ciated with the edge. 228

• Each node n ∈ N has a property n.prop which 229

defines the content of the node (e.g., a sentence 230

description or a few keywords). 231

The edge (relations connecting two nodes) have 232

types that is either “isA” relationships or “in- 233

stanceOf.” The "isA" relationship defines a hi- 234

erarchical link between node pairs, indicating a 235

child node is a subclass of its more abstract parent 236

node (e.g., "RLHF isA RL" means "RLHF" is a 237

type of "RL"). The "instanceOf" relationship indi- 238

cates that a specific instance belongs to a concept 239

category (e.g., "Ouyang et al. (2022) instanceOf 240

RLHF" means "Ouyang et al. (2022)" is a specific 241

instance of the broader “RLHF” cluster). 242
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3.2 Decomposing Papers to Contributions243

A central challenge is how to represent the content244

of scholarly work within hierarchy nodes. Scien-245

tific papers are idea-dense, often combining broad246

goals, specific problems, and technical methods.247

To capture this complexity, we extract structured248

representations that disentangle these distinct as-249

pects (D’Souza and Auer, 2020). This also mit-250

igates the issue of input length: papers typically251

range from 4 to 10 pages (5K to 10K tokens), mak-252

ing full-document processing across large corpora253

infeasible and costly for LLMs.254

We use an LLM to preprocess each paper (ti-255

tle and abstract) and break them down into a pre-256

defined set of contributions, akin to prior work257

(Hope et al., 2017; Chan et al., 2018) that mine258

“problem schema” from existing documents. We259

consider the following contribution types: (1) prob-260

lem statement (the problem addressed), (2) so-261

lution (the technical approach used), (3) result262

(the key finding), and (4) topic (the overarching263

themes). (See §C for prompts and examples). We264

note that each contribution may include additional265

dimensions (sub-contributions). For instance, a266

“result” encompasses both the “outcome” and its267

“potential impact.”268

3.3 Choosing Hierarchy Depth269

While the ideal number of hierarchy layers is ul-270

timately empirical, we can build useful intuition271

from the structure of a near-balanced tree. For a272

tree with branching factor b and depth L, the total273

number of nodes is roughly O(bL). To organize274

C contributions, the number of nodes should scale275

with C, implying a depth of L = O(logbC). In276

practice, we use L = 3 for a 2K-paper corpus and277

L = 4 for 10K papers, consistent with this logarith-278

mic scaling. Extrapolating further, corpora of 107279

papers would likely require depths of L = 6 or 7.280

4 Tackling SCIENCE HIERARCHOGRAPHY281

We present algorithms to address our proposed282

goal. We start with our main method, SCYCHIC283

(§4.1), explore its special cases (§4.2), and then de-284

scribe alternative baselines that rely more heavily285

on LLMs (FLMSCI; §4.3). While all approaches286

leverage LLMs to some extent, they differ signifi-287

cantly in their reliance on them: some require many288

calls (linear or quadratic in the number of papers),289

while others are more efficient (e.g., logarithmic).290

Since our goal is to scale to millions of papers,291

minimizing LLM usage is critical. Our objective 292

is to identify the method that yields the highest- 293

quality hierarchy with the lowest LLM overhead, 294

balancing quality, latency, and cost. 295

4.1 SCYCHIC: Alternating Between 296

Clustering and Summarization 297

This approach is based on the following design 298

choices: (1) access to embedder, a neural model 299

that converts a description into a d-dimensional 300

vector, (ideally) capturing its semantic meaning; 301

(2) a clustering algorithm clusterer that, given 302

the hyperparameter k, generates k clusters; (3) a 303

contribution type (e.g., problem definition) and its 304

dimensions C extracted per paper as detailed in 305

§3.2 which determines the focus of the node de- 306

scriptions; (4) summarizer, an LLM that generates 307

a summary description which (ideally) provides a 308

more abstract description of a collection of node 309

descriptions; and (5) the total number of hierarchy 310

layers L and target number of clusters in each layer 311

(k1, k2, . . . , kL). 312

Initialization: The approach begins by embed- 313

ding each papers. For each paper pi, we embed 314

each component in C: embedder(cij) ∈ Rd, where 315

j ∈ C. This process results in |C| embeddings per 316

paper. We concatenate these embeddings, yielding 317

Rd.|C| embeddings per paper. With this, we present 318

the main algorithm which involves two phases: 319

Top-down phase: First, we use a top-down 320

strategy, iterating through the top half of the layers. 321

For each layer l ∈ (1 . . . ⌊L/2⌋) (starting from 322

the root and moving downward), we cluster the 323

documents using clusterer. 324

For the first layer (L = 1), we partition the en- 325

tire paper collection into k1 top-level clusters using 326

their embeddings. For the second level, we process 327

each top-level cluster independently, i.e., within 328

each top-level cluster, we take only the papers be- 329

longing to that cluster and apply clusterer to their 330

embeddings to divide them into subgroups. 331

This process continues recursively: for subse- 332

quent layers, clustering operates on the data points 333

within each cluster. We run as many clustering al- 334

gorithms as there are clusters in the previous layer. 335

The allocation of the total cluster count across dif- 336

ferent top-level clusters is determined proportion- 337

ally based on the number of papers in each top-level 338

cluster. If a top-level cluster contains a larger pro- 339

portion of papers, it will be allocated more subclus- 340

ters from the total cluster count. This proportional 341

allocation ensures that areas with higher paper den- 342
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sity receive finer-grained clustering.343

This recursively subdivides each cluster at level344

l into multiple clusters at level l + 1. This top-345

down phase continues until we reach level ⌊L/2⌋.346

Alongside clustering, we also use the summarizer347

to generate abstracted summaries for each of the348

clusters. The generated cluster description follows349

the same structure or style as the input descriptions.350

For example, if the inputs are statements about351

problem categories, the output from summarizer352

is also in the same style, but more abstract.353

Bottom-up phase: In the second phase, we354

switch to a bottom-up strategy to construct the355

remaining levels (⌊L/2⌋ + 1 through L). To356

form clusters for bottom-level (layer L), we apply357

clusterer to the paper embeddings within each358

sub-cluster within level-⌊L/2⌋ (the lowest level359

clustering obtained from top-down approach). We360

then use the summarizer to create an abstracted361

description for each cluster.362

We repeat this process for all layers from L to363

⌊L/2⌋ + 1. To build layer l, we start by embed-364

ding the generated cluster summaries from the level365

below l − 1 using embedder, similar to how we366

embedded the papers. We then run the clustering367

clusterer on these new embeddings and generate368

abstracted summaries for the clusters to group these369

summaries into higher-level clusters. This bottom-370

up aggregation continues until we connect with the371

previously constructed level ⌊L/2⌋ clusters.372

Algorithm 1 SCYCHIC algorithm
Require: Set of papers P = {p1, p2, . . . , pn}, embedder,

clusterer, summarizer, num of layers L, target cluster
sizes (k1, k2, . . . , kL)

1: Initialization: For each paper pi ∈ P , embed their se-
lected components to form Rd×|C|.

2: for layer l = 1 to ⌊L/2⌋ do ▷ Top-down phase
3: if l = 1 then
4: Apply clusterer to divide papers into k1 clusters
5: else
6: for each cluster from layer l − 1 do
7: Apply clusterer to divide into subclusters
8: Use summarizer to generate summaries for each clus-

ter
9: for each cluster κ at level ⌊L/2⌋ do ▷ Bottom-up phase

10: for layer l = L to ⌊L/2⌋+ 1 do
11: if l = L then
12: Collect the embeddings of papers within κ.
13: else
14: Apply embedder on summaries of cluster l+1

15: Apply clusterer to form higher-level clusters
16: Use summarizer to generate abstracted sum-

maries
17: return Hierarchical structure

Rationale behind the hybrid design: The hy-373

brid approach merges the strengths of top-down 374

and bottom-up strategies. A bottom-up method 375

may create less coherent top-level clusters. The top- 376

down approach ensures high-quality top-level clus- 377

ters but doesn’t utilize the abstracted summaries 378

from summarizer used by bottom-up clustering. 379

By combining both methods, the hybrid design 380

achieves robust and effective clustering. Our em- 381

pirical results in §5.4 demonstrate this approach’s 382

strength by balancing quality and scalability. 383

4.2 Top-down and Bottom-up Baselines 384

We examine two special cases of SCYCHIC: one 385

using only a top-down strategy and the other solely 386

with a bottom-up approach. These variants help 387

isolate and evaluate the strengths and limitations of 388

each method. Results are discussed in §5.4. 389

4.3 Pure LLM-based Baselines 390

We introduce baselines that heavily utilize LLM 391

calls, based on the hypothesis that LLMs can make 392

high-quality local decisions, collectively forming 393

a robust global structure. The potential cost here 394

is the need to make many LLM calls. We refer to 395

these baselines as FLMSCI (pronounced “flimsy”) 396

and present two variants below. 397

Initializing a Seed Hierarchy: The first step 398

involves creating a seed hierarchy, starting with the 399

hierarchy of sciences from the Wikipedia page on 400

branches of science.1 We made several adjustments 401

to this hierarchy, detailed in §D, where the resulting 402

seed hierarchy is also included. 403

FLMSCI (parallel): Adding Many Items in 404

Parallel with Few Prompts: This approach in- 405

volves adding items to the seed hierarchy in paral- 406

lel. First, gather all unique items extracted from 407

different papers and create batches of 100 items 408

each (batching because all of these items would 409

not fit within the context window of LLM). Then, 410

implement a multi-threaded program where each 411

thread adds a batch of keywords to a clone of the 412

seed hierarchy. Finally, merge (with a Python pro- 413

gram, not an LLM call) all these cloned trees into 414

a single comprehensive structure. 415

FLMSCI (incremental): Expand the tree 416

by incrementally adding items one at a time: 417

This approach involves an iterative, layer-by-layer 418

prompt that navigates the tree starting from the root 419

node and performs specific actions. By default, the 420

supported actions include: (a) Go down: select one 421

1en.wikipedia.org/wiki/Branches_of_science
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of the nodes to traverse down to a lower layer in the422

tree; (b) Add sibling: Insert a new node at the same423

level; (c) Make parent: Create a new parent node;424

(d) Discard: Ignore the item, if no suitable location425

is found. This prompt are shown in Fig.11.426

The available actions vary depending on the427

tree’s current position. To prevent placing detailed428

items too high in the tree (above layer 3), we hide429

the actions that involve nodes (b) and (c). This re-430

striction provides more control and reduces errors,431

as observed in pilot experiments. If the traversal432

reaches a child node, we hide the option to move433

further down (a). Another issue identified was fre-434

quent mistakes in earlier layers, likely due to broad435

labels where multiple categories could fit. To ad-436

dress this, we provide more context for the first437

layer by replacing label strings with descriptive438

definitions, as shown in Fig.10.439

4.4 Computational Complexity of Approaches440

A major scalability bottleneck in hierarchy con-441

struction is the number of LLM calls. Let C be442

the number of contributions (§3.2), b the branching443

factor, and L = O(logbC) the maximum depth444

for a near-balanced tree (§3.3). Our proposed algo-445

rithm, SCYCHIC, requires O (C/b) LLM calls for446

both its top-down and bottom-up variants. Among447

the LLM-based baselines discussed in §4.3, FLM-448

SCI (parallel) makes O(C/l) calls (with l as batch449

size), offering lower complexity but at the cost of450

reduced quality. In contrast, FLMSCI (incremental)451

achieves higher accuracy but requires O(C logbC)452

LLM calls due to root-to-leaf traversals during in-453

sertion. Empirically, the difference in LLM usage454

is significant: in our 2K-paper setup, FLMSCI (in-455

cremental) makes 61K calls compared to just 322456

for SCYCHIC (Table 3).457

Approach # of LLM calls

SCYCHIC O (C/b)
FLMSCI (parallel) O(C/l)

FLMSCI (incremental) O(C logb C)

Table 2: Computational complexity of hierarchy con-
struction methods measured by LLM calls, with C =
contributions, b = branching factor, and l = batch size.

5 Experimental Setup and Results458

We describe our experimental setup, including the459

diverse paper collection used for our experiments460

(§5.1) and the evaluation framework (§5.2).461

5.1 Collection of Science Papers 462

We compile a collection of scientific papers span- 463

ning domains such as computer science, neuro- 464

science, biology, oceanography, and their interdis- 465

ciplinary intersections. Our initial analysis focuses 466

on a smaller set of approximately 2K papers (re- 467

ferred to as SciPile), allowing for rapid iteration 468

over design choices and assessment of scalability. 469

We then extend our analysis to a larger collection of 470

10K papers, referred to as SciPileLarge. Details 471

on data collection and filtering are provided in §F. 472

5.2 Evaluation as Utilization 473

Ideally, hierarchy quality would be evaluated 474

against a gold standard—but no such reference ex- 475

ists, and scientific literature continually evolves. As 476

a result, we adopt an evaluation framework based 477

on utilization, independent of fixed ground truth. 478

We assess hierarchy quality by measuring how 479

well it supports navigation and content discovery. 480

Specifically, we use an LLM-based agent to locate 481

target papers via tree traversal, tracking accuracy at 482

each level and across the full hierarchy. A stronger 483

hierarchy should better capture conceptual relation- 484

ships and improve information-seeking efficiency. 485

While our evaluation focuses on retrieval, the hier- 486

archy’s utility extends beyond that. 487

Two key design choices guide our evaluation: 488

(a) selecting appropriate queries, and (b) choosing 489

a reliable LLM. For (a), we sample paper titles 490

and abstracts as queries. Although we considered 491

generating language questions from papers, pilot 492

studies showed both approaches yield similar re- 493

sults, so we use the simpler method. For (b), we 494

use Qwen2.5-32b-instruct, which demonstrated 495

performance closest to GPT-4 among open models 496

in our pilot evaluations (§B). 497

Starting at the top of the hierarchy, we provide 498

the evaluator (LLM) with the query and the list of 499

cluster descriptions (prompt in Fig. 2). The model 500

must select the cluster it deems most relevant. We 501

move to the next level only if the chosen cluster 502

contains the target paper. At each subsequent level, 503

the same query is used, but only subclusters of the 504

previously selected (and correct) cluster are shown. 505

This continues until the model reaches the level 506

containing the target paper. We report two metrics: 507

Strict Accuracy (Strict-Acc), which captures how 508

often the model selects the exact correct node, and 509

Layer-1 Accuracy (L1-Acc), which measures how 510

often it selects the correct top-level subtree. 511
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Method Strict-Acc (%) ↑ L1-Acc (%) ↑ # of Calls ↓
Topic contributions

SCYCHIC 14.9 ± 2.7 65.7 ± 4.4 322↱
Top-down 14.5 ± 4.7 62.5 ± 7.4 322↱
Bottom-up 13.9 ± 5.3 54.4 ± 12.7 322

↱
FLMSCI (par) 4.0 ± 2.8 32.0 ± 6.3 226↱
FLMSCI (inc) 18.0 ± 5.3 91.0 ± 4.0 61K

Table 3: Evaluations results for SCYCHIC, FLMSCI
(parallel) and FLMSCI(incremental) when using Topic
as the contribution type. All methods exhibit low Strict-
Acc (≤ 18.0%), underscoring the difficulty of the task.
While FLMSCI (inc) achieves the highest accuracy, it re-
quires approximately 200× more LLM calls than other
methods. In contrast, SCYCHIC strikes a balance be-
tween performance and efficiency, achieving competi-
tive accuracy (14.9% Strict-Acc, 65.7% L1-Acc) with
substantially lower computing cost. Full results in §H.1.

5.3 Experiment Design512

We conduct few sets of experiments to evaluate513

our method (SCYCHIC, §4.1) against the baselines514

(§4.2, 4.3) following the proposed evaluation pro-515

tocol. Hyperparameter details for SCYCHIC are516

provided in §G. The experiments are structured as517

follows: (1) We begin by comparing all methods518

on “topic” contributions, the simplest contribution519

type (Table 3). Due to the high computational cost,520

LLM-based baselines are evaluated only in this set-521

ting. (2) We then evaluate performance on more522

complex contributions (problem, solution, and re-523

sults) using both SciPile and SciPileLarge to test524

scalability (Table 4). The results tables also report525

LLM Cost (average number of input tokens and526

LLM calls) and Hierarchy Structure (depth and527

branching factor per node).528

5.4 Empirical Findings529

SCYCHIC outperforms its special-case baselines.530

As shown in Table 3, SCYCHIC achieves higher531

Level-1 accuracy than the top-down and bottom-532

up baselines, while maintaining comparable Strict-533

Acc. Similar trends hold across other contribution534

types in Table 4. For example, on “solution” contri-535

butions, SCYCHIC exceeds the top-down baseline536

by 2.9% in Strict-Acc and 3.1% in L1-Acc, high-537

lighting its effectiveness. Notably, these gains are538

achieved with a similar number of tokens and LLM539

calls, underscoring SCYCHIC’s compute efficiency.540

LLM-based baselines can be far more expensive541

than SCYCHIC. While FLMSCI slightly outper-542

forms SCYCHIC in accuracy, it does so at the cost543

of a massive increase in LLM calls—making it im-544

practical for large-scale use. As a result, despite its 545

strong performance, FLMSCI (incremental) simply 546

doesn’t scale. 547

SCYCHIC scales to larger paper corpus. For our 548

scalability experiments, we evaluated SCYCHIC on 549

our larger 10K paper dataset SciPileLarge, using 550

the problem statement contribution type. Due to 551

the significant increase (×5) in corpus size, we 552

implemented a 4-layer hierarchy instead of the 3- 553

layer structure used previously. Notably, SCYCHIC 554

achieved even higher L1-Acc (86.5%) on SciPile- 555

Large compared to our smaller dataset SciPile. 556

This improvement likely stems from the enhanced 557

quality of our expanded dataset, which has more 558

strict filtering mechanisms. While the Strict-Acc 559

showed a minor decrease compared to results on 560

SciPile, it remained at a satisfactory level. Collec- 561

tively, these results provide compelling evidence 562

that our method scales successfully to substantially 563

larger paper corpora. 564

5.5 Additional Analyses 565

We briefly cover additional analyses that were omit- 566

ted from the main text due to space constraints. 567

Detailed prompts significantly improve hier- 568

archy quality. To demonstrate this, we com- 569

pare two prompt types. The first is a "detailed" 570

prompt—carefully curated with comprehensive in- 571

structions and reminders—which we use for all 572

main experiments in this paper. The second is a 573

"simplified" prompt containing only the core task 574

description. The results confirm that the detailed 575

prompt consistently and substantially outperforms 576

the simplified version across all scenarios. More 577

detailed results are in §H.3. 578

Embedding quality varies significantly 579

across models. For the embedder men- 580

tioned in §4.1. We evaluated three mod- 581

els—Qwen’s gte-Qwen2-7B-instruct (Li et al., 582

2023), OpenAI’s text-embedding-3-large, 583

and text-embedding-ada-002. The first 584

two models perform similarly, whereas 585

text-embedding-ada-002 produces 586

markedly weaker results. We select 587

gte-Qwen2-7B-instruct for its strong bal- 588

ance of performance and its practical value as an 589

open-weight model for reproducible research. The 590

experimental results are in §H.2. 591

5.6 Sample Visualization of the Hierarchy 592

The reader might be curious to see the resulting 593

hierarchies. In §I we show a slice of the final 594
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Method Accuracy (%) LLM Cost Hierarchy Structure

Strict-Acc ↑ L1-Acc ↑ Avg. # of
Input Tokens ↓

# of
Calls ↓ Depth Avg. Branching

Factor
Max. Branching

Factor

Dataset: SciPile (2K papers)

Contributions type: Problem Statement

SCYCHIC 51.1 ± 3.8 81.7 ± 2.6 2624 20↱
Top-down 49.0 ± 3.7 80.3 ± 2.7 2953 322 3 7.1 18↱
Bottom-up 45.9 ± 5.0 69.3 ± 8.1 2177 16

Contributions type: Solution Statement

SCYCHIC 48.8 ± 6.1 82.3 ± 1.1 2343 16↱
Top-down 45.9 ± 5.5 79.2 ± 3.4 2521 322 3 7.1 19↱
Bottom-up 36.7 ± 2.6 67.0 ± 4.3 1990 14

Contributions type: Results Statement

SCYCHIC 46.4 ± 5.2 76.4 ± 6.9 2654 16↱
Top-down 47.3 ± 3.1 80.5 ± 4.4 2718 322 3 7.1 16↱
Bottom-up 40.0 ± 10.7 64.0 ± 8.9 2210 13

Dataset: SciPileLarge (10K papers)

Contributions type: Problem Statement

SCYCHIC 43.7 ± 6.5 85.8 ± 4.2 7451 26↱
Top-down 41.5 ± 8.2 86.5 ± 5.6 8990 1572 4 8 30↱
Bottom-up 26.2 ± 5.4 41.9 ± 4.0 5924 26

Contributions type: Solution Statement

SCYCHIC 24.7 ± 4.8 65.8 ± 2.5 7653 28↱
Top-down 22.4 ± 3.5 52.3 ± 3.0 4032 1572 4 8 26↱
Bottom-up 23.9 ± 3.3 51.3 ± 3.1 6150 28

Contributions type: Results Statement

SCYCHIC 27.6 ± 4.6 69.8 ± 2.1 6457 30↱
Top-down 19.7 ± 4.0 54.0 ± 3.3 5380 1572 4 8 30↱
Bottom-up 23.6 ± 2.7 55.2 ± 2.9 4731 28

Table 4: Evaluation results of SCYCHIC and the corresponding baselines on both the 2K (SciPile) and 10K
(SciPileLarge) datasets. SCYCHIC maintains high accuracy and a relatively small variance, proving the rationale
behind our hybrid design. When scaling from 2K to 10K papers, our method shows a slight decrease in Strict-Acc
but maintains strong L1-Acc, demonstrating its feasibility on larger datasets. Across both scales, the problem
statement contribution type consistently yields the most accurate hierarchies, indicating this contribution type
contributes most for hierarchy construction.

hierarchy generated by SCYCHIC on the SciPile-595

Large dataset. The original hierarchy has 4 levels,596

use papers’ problem contribution. Due to space597

constraints, this slice shows only two levels of clus-598

ters above the individual papers.599

6 Discussion and Conclusion600

Future applications: Our work opens several601

promising directions for future research. One key602

opportunity is to use the constructed hierarchies as603

tools for exploratory analysis across scientific do-604

mains. They can aid academic institutions and fund-605

ing bodies in identifying emerging trends and un-606

derexplored areas, and can be adapted for domain-607

specific analyses that capture the unique structure608

of individual fields. This approach not only deep-609

ens our understanding of scientific progress but 610

also provides a new lens for organizing the vast 611

and growing body of scholarly work. 612

Conclusions: We introduced SCIENCE HIERAR- 613

CHOGRAPHY, a framework for large-scale hier- 614

archical summarization of scientific literature, of- 615

fering a new lens on how research efforts are dis- 616

tributed. Our method, SCYCHIC, combines LLMs 617

with efficient algorithms to strike a balance be- 618

tween quality and scalability. Looking forward, we 619

aim for this work to help researchers navigate the 620

scientific landscape more intuitively and support 621

more informed resource allocation in academia. 622
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Limitations623

Although we evaluated our pipeline on 10K pa-624

pers, this is still far from the true scale of scientific625

literature. We hope future work will enhance our626

approach to handle more realistic scales. Addition-627

ally, while our evaluation framework shows poten-628

tial for efficient information discovery, it may have629

its own weaknesses and biases. Integrating human630

verification into the assessment process could help631

ensure the quality and reliability of the inferred632

hierarchies.633

Ethics Statement634

In our work, all data and models are accessed via635

licenses that grant us free and open access for re-636

search purposes. Expert annotations are provided637

by the paper’s authors, who have contributed their638

efforts without compensation. We have not ob-639

served any harmful content in either the scholarly640

papers or the content generated by LLMs. On the641

other hand, since our resulting hierarchy reflects642

the distribution of scientific efforts across various643

fields, it offers a detailed map of where research ac-644

tivity is concentrated and where it is lacking. This645

nuanced view can guide decision-makers—such as646

government agencies and academic institutions—in647

making more informed choices about resource allo-648

cation. By highlighting underexplored yet promis-649

ing areas alongside well-established fields, the hi-650

erarchy helps ensure that funding, support, and651

strategic initiatives are distributed more equitably.652

Ultimately, this balanced approach can foster inno-653

vation and drive progress in areas that might oth-654

erwise be overlooked, leading to a more inclusive655

and socially beneficial advancement of science.656
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A Additional Related Work930

We include additional related work here because of the space limitation in the main text.931

Clustering with LLMs: Recent advances in clustering methodologies augmented by LLMs have demon-932

strated effective ways to generate interpretable groupings of text. For example, (Viswanathan et al., 2024;933

Katz et al., 2024) apply few-shot clustering and thematic grouping to partition scientific literature into934

meaningful subtopics, while (Zhang et al., 2023; Wang et al., 2023) further refine these techniques by935

aligning clustering outcomes with natural language explanations and user intent. Other recent work itera-936

tively refines cluster representations by replacing cluster centroids or summary points with LLM-generated937

natural language descriptions and inclusion criteria, thereby inducing more abstract, interpretable concepts938

over multiple clustering rounds (Lam et al., 2024; Diaz-Rodriguez, 2025). While these approaches939

improve clustering quality by using LLMs at various stages, they mostly result in flat groupings rather than940

hierarchical structures. Our approach builds on this by using LLMs to cluster documents and organizing941

these clusters into a structured hierarchy.942

Structured knowledge in LLMs: Prior work has explored how LLMs internalize hierarchical knowl-943

edge. For example, (He et al., 2024; Lovón-Melgarejo et al., 2023; Park et al., 2025) extend the linear944

representation hypothesis to reveal that LLMs encode categorical concepts as polytopes, with hierarchical945

relationships reflected as orthogonal directions. Other works such as (Wolfman et al., 2024) and (Budagam946

et al., 2024) examine the benefits of explicit hierarchical syntactic structures and prompting frameworks for947

guiding LLM performance, while (Moskvoretskii et al., 2024) and (Hu et al., 2024a) focus on constructing948

and materializing large-scale structured knowledge bases about entities and events. In line with the same949

aspirations, our work explores the use of hierarchical structures to organize scientific literature.950

Structured knowledge representation: Understanding and organizing knowledge is a fundamental951

pursuit in both artificial and human intelligence (Dahlberg, 1993). Abstraction hierarchies, such as952

WordNet for lexical semantics (Miller, 1995), ConceptNet for commonsense reasoning (Speer et al.,953

2017), and Probase for large-scale concept representation (Wu et al., 2012), have proven to be powerful954

tools for structuring information. Similarly, modern tabular reasoning leverages structured representations955

to facilitate systematic inference and knowledge retrieval, demonstrating that such structure remains956

crucial (Wang et al., 2024).957
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B Evaluation Framework 958

We provide more context on our evaluation. As discussed in §5.2, we use randomly-sampled papers 959

(title/abstract) as a query. The evaluator LLM goes through the hierarchy, starting from the root node and 960

iteratively selects the relevant nodes to traverse. The prompt for each decision is shown in Fig.2. 961

Evaluation Framework

You are a scientist expert in taxonomy. Please read the following paper title and abstract.

Your task is to choose the next cluster/topic (while considering the current path) in the taxonomy that 

has the best chance of containing this paper.

Paper Title: {paper_title}

Paper Abstract: {paper_content}

Current Path: {path_so_far}

Choose from this cluster/topic list (MUST pick one):

{cluster_descriptions}

Required Response Format:

Cluster ID: [EXACT ID from the list] or Topic: [EXACT Category Name from the list]

Figure 2: Prompt used for Evaluation

One question is, which LLM should we use for evaluation? We chose Qwen2.5-32b-instruct for 962

its strong instruction-following capabilities. In pilot experiments, Qwen showed a high consistency against 963

GPT4 score, compared to other open-weight models. Here’s a summary of that experiment: We evaluated 964

one of the hierarchies produced by SCYCHIC using different models, including GPT-4. Assuming GPT-4 965

has the highest accuracy, we sought alternative models with the greatest consistency against it, as frequent 966

evaluations with GPT4 are costly. Fig.5 presents the results. As it can be observed, Llama has the highest 967

agreement, but we suspect bias since the hierarchy was also constructed with Llama. To avoid this, we 968

selected the next best model, Qwen2.5-32b-instruct, for evaluation. 969

Evaluator LLLM Agreement with GPT4

GPT-3.5 39.6
GPT4-mini 59.2
Gemma3-24b-it 62.1
Qwen2.5-32b-instruct 66.5
Llama 3.3 70B 72.4

Table 5: Agreement of different evaluator LLMs against GPT4.
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C Extracting Paper Contributions970

Below are prompts and examples for extracting different contributions (problem, solution, result and971

topics) from papers’ titles and abstracts. we utilize the GPT-4o model (gpt-4o-2024-08-06) to generate972

all contribution extractions along with detailed rationales explaining the extraction decisions.973

C.1 Prompt for Extracting Problem/Solution/Result Contributions974

We use the prompt below to extract contributions from the paper’s title and abstract. After finishing the975

extraction, the three contributions will be saved into the original json file. Please see §3.2 for more976

information.977

Contributions Extraction from Paper

Consider the following following paper:

Title: {title}

Abstract: {abstract}

Extract the relevant content of the above abstract into the following JSON structure.
For certain fields that the information is not found in the abstract, leave them empty (empty
string).

{
"problem": {

"overarching problem domain": "".
"challenges/difficulties": "",
"research question/goal": "",
"novelty of the problem": "",
"knowns or prior work": "",

},
"solution": {

"overarching solution domain": "".
"solution approach": "",
"novelty of the solution": "",
"knowns or prior work": "",

},
"results": {

"findings/results": "",
"potential impact of the results": "",

}
}

Figure 3: Prompt for extracting Problem/Solution/Result contributions
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C.2 Prompt for Extracting Topic Contributions and Rationales 978

This section has the prompt of generating topics and rationales from papers given their titles and abstracts. 979

The prompt provides the model with a system role instruction that describes the task, title, and abstract, 980

and also an example to get the specified output format. 981

Topics and Rationales Generation
You are an experienced scientist who is going to read and review research papers.

Paper Title: {title}
Paper Abstract: {abstract}

Read the above given Title and Abstract for a research paper and 
Generate topics that are represented in the given Title and Abstract.
Example output format:
```json
{
  "topics": [
    {
      "topic": "Entity Taxonomy Creation",
      "rationale": "The research focuses on generating a comprehensive entity taxonomy using 
LLMs."
    },
    {
      "topic": "Iterative Prompting Techniques",
      "rationale": "Highlights the use of iterative prompting to refine entity classifications."
    },
    {
      "topic": "GPT-4 and GPT-4 Turbo",
      "rationale": "Explores the capabilities of these advanced LLMs in taxonomy development."
    },
    {
      "topic": "Information Extraction",
      "rationale": "Demonstrates applications like relation and event argument extraction."
    },
    {
      "topic": "Computational Linguistics",
      "rationale": "Emphasizes contributions to AI-related and linguistic computational tasks."
    }
  ]
}
```

Figure 4: Prompt of Topic and Rationale Generation

C.3 Examples for Problem/Solution/Result/Topic contributions extracted from papers 982

Below we show examples of paper titles and abstracts, and different contributions (Problem/Solution/Re- 983

sult/Topic) we extract by language model. 984
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Problem/Solution/Result/Topic contributions from scientific papers

Title: Sixfold excitations in electrides
Abstract: Due to the lack of full rotational symmetry in condensed matter physics, solids exhibit new excitations beyond
Dirac and Weyl fermions, of which the sixfold excitations have attracted considerable interest owing to the presence
of maximum degeneracy in bosonic systems. Here, we propose that a single linear dispersive sixfold excitation can
be found in the electride Li12 Mg3 Si4 and its derivatives. The sixfold excitation is formed by the floating bands of
elementary band representation A@12a originating from the excess electrons centered at the vacancies (i.e., the 12a
Wyckoff sites). There exists a unique topological bulk-surface-edge correspondence for the spinless sixfold excitation,
resulting in trivial surface “Fermi arcs” but topological hinge arcs. All gapped kz slices belong to a two-dimensional
higher-order topological insulating phase, which is protected by a combined symmetry T S4z and characterized by a
quantized fractional corner charge Qcorner = 3|e|/4. Consequently, the hinge arcs are obtained in the hinge spectra of the
S4z-symmetric rod structure. The state with a single sixfold excitation, stabilized by both nonsymmorphic crystalline
symmetries and time-reversal symmetry, is located at the phase boundary and can be driven into various topologically
distinct phases by explicit breaking of symmetries, making these electrides promising platforms for the systematic
studies of different topological phases.

Contribution - Problem Statement Contribution - Solution Statement Contribution - Result Statement
{
"overarching_problem_domain":

"Condensed matter physics",
"challenges/difficulties":

"Lack of full rotational symmetry
in solids leading to new excitations
beyond Dirac and Weyl fermions",

"research_question/goal":
"Investigate sixfold excitations
in electrides"

}

{
"overarching_solution_domain":

"Electrides and topological phases",
"solution_approach":

"Propose that a single linear
dispersive sixfold excitation can
be found in the electride
Li12Mg3Si4 and its derivatives",

"novelty_of_the_solution":
"Unique topological bulk-surface-edge
correspondence for the spinless
sixfold excitation"

}

{
"findings/results":

"The sixfold excitation is formed by
floating bands of elementary band
representation A@12a. All gapped
kz slices belong to two-dimensional
higher-order topological insulating
phase, characterized by a quantized
fractional corner charge Qcorner = 3|e|/4.
Hinge arcs are obtained in the hinge
spectra of the S4z-symmetric rod
structure.",

"potential_impact_of_the_results":
"Electrides are promising platforms
for systematic studies of different
topological phases."

}

Contribution - Topic: ’Electrides’, ’Electrides in Condensed Matter Physics’, ’Higher-Order Topological Insulators’, ’Non-
symmorphic Symmetries’, ’Sixfold Excitation in Solids’, ’Sixfold Excitations’, ’Symmetry Breaking in Topological Materials’,

’Topological Bulk-Surface-Edge Correspondence’, ’Topological Phase Transitions’, ’Topological Phases in Condensed Matter
Physics’, ’Topological Properties’

Title: The Tin Pest Problem as a Test of Density Functionals Using High-Throughput Calculations
Abstract: At ambient pressure tin transforms from its ground-state semi-metal α-Sn (diamond structure) phase to the compact
metallic β-Sn phase at 13 • C (286K). There may be a further transition to the simple hexagonal γ-Sn above 450K. These
relatively low transition temperatures are due to the small energy differences between the structures, ≈ 20 meV/atom between
α-and β-Sn. This makes tin an exceptionally sensitive test of the accuracy of density functionals and computational methods.
Here we use the high-throughput Automatic-FLOW (AFLOW) method to study the energetics of tin in multiple structures using
a variety of density functionals. We look at the successes and deficiencies of each functional. As no functional is completely
satisfactory, we look Hubbard U corrections and show that the Coulomb interaction can be chosen to predict the correct phase
transition temperature. We also discuss the necessity of testing high-throughput calculations for convergence for systems with
small energy differences.

Contribution - Problem Statement Contribution - Solution Statement Contribution - Result Statement
{
"overarching_problem_domain":

"Density functionals and computational
methods for phase transitions in
materials.",

"challenges/difficulties":
"Small energy differences between
phases of tin make it a sensitive
test for the accuracy of density
functionals.",

"research_question/goal":
"To study the energetics of tin in
multiple structures using a variety
of density functionals and assess
their accuracy."

}

{
"overarching_solution_domain":

"High-throughput computational
methods and density functional
theory.",

"solution_approach":
"Using the high-throughput
Automatic-FLOW (AFLOW) method
to study tin's energetics with
various density functionals.",

"novelty_of_the_solution":
"Application of Hubbard U
corrections to improve predictions
of phase transition temperatures."

}

{
"findings/results":

"No functional is all satisfactory,
but Hubbard U corrections can be chosen
to predict the correct phase
transition temperature.",

"potential_impact_of_the_results":
"Improved accuracy in predicting
phase transitions in materials
with small energy differences."

}

Contribution - Topic: ’Convergence Testing in Computational Simulations’, ’Density Functional Theory (DFT) Accuracy’,
’High-Throughput Computational Methods’, ’Hubbard U Corrections’, ’Tin Phase Transitions’

Table 6: Examples of extracted problem/solution/result/topic contributions from scientific paper abstracts.
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C.4 Distribution of Extracted Topics 985

This section shows the distribution of various topics extracted from the papers based on frequency. This 986

gives us an idea of what kind of topics were extracted.

Com
pu

tat
ion

al 
Eff

icie
ncy

So
ft R

ob
oti

cs

Num
eri

cal
 Si

mula
tio

ns

Ex
pe

rim
en

tal
 Va

lida
tio

n

Ad
dit

ive
 Man

ufa
ctu

rin
g

Mate
ria

ls S
cie

nce

Den
sity

 Fu
nct

ion
al 

Th
eo

ry 
(DFT)

Den
sity

 Fu
nct

ion
al 

Th
eo

ry

Sp
ace

-Tim
e W

av
e P

ack
ets

Mole
cul

ar 
Dyn

am
ics

 Si
mula

tio
ns

Orga
nic

 So
lar

 Cells

Num
eri

cal
 Ex

pe
rim

en
ts

Tw
iste

d B
ilay

er 
Grap

he
ne

Firs
t-P

rin
cip

les
 Calc

ula
tio

ns

Unce
rta

int
y Q

ua
nti

fica
tio

n

Non
line

ar 
Opti

cs

Dire
ct 

Num
eri

cal
 Si

mula
tio

n (
DNS)

Mon
te 

Carl
o S

im
ula

tio
ns

Algo
rith

m Dev
elo

pm
en

t

Dim
en

sio
na

lity
 Re

du
cti

on

Ph
oto

vo
lta

ic E
ffic

ien
cy

Com
pu

tat
ion

al 
Flu

id 
Dyn

am
ics

Com
pu

tat
ion

al 
Flu

id 
Dyn

am
ics

 (C
FD

)

Data
-Driv

en
 Mod

elin
g

Und
erw

ate
r A

cou
stic

s

Non
-Fu

ller
en

e A
cce

pto
rs

Hum
an

-Ro
bo

t In
ter

act
ion

Mult
i-A

ge
nt 

Sy
ste

ms

So
lar

 Cell 
Eff

icie
ncy

Con
vex

 Opti
miza

tio
n

Re
inf

orc
em

en
t L

ea
rni

ng

Mach
ine

 Le
arn

ing
 in

 Mate
ria

ls S
cie

nce

Com
pu

tat
ion

al 
Com

ple
xit

y

Mod
el 

Pre
dic

tiv
e C

on
tro

l (M
PC

)

High
-Th

rou
gh

pu
t S

cre
en

ing

Con
ve

rge
nce

 Ana
lys

is

Mach
ine

 Le
arn

ing
 App

lica
tio

ns

Sy
nth

eti
c B

iolo
gy

Sa
mple

 Com
ple

xit
y

Re
ser

vo
ir C

om
pu

tin
g

En
vir

on
men

tal
 Mon

ito
rin

g

Non
con

vex
 Opti

miza
tio

n

Den
sity

 Fu
nct

ion
al 

Th
eo

ry 
Calc

ula
tio

ns

Mach
ine

 Le
arn

ing
 in

 Mate
ria

l S
cie

nce

Re
cur

ren
t N

eu
ral

 Netw
ork

s

Sp
in-

Orbi
t C

ou
plin

g

Pow
er 

Con
ve

rsi
on

 Ef
fici

en
cy

Orga
nic

 Ph
oto

vo
lta

ics

Fin
ite

 El
em

en
t M

od
elin

g

Pri
nci

pa
l C

om
po

ne
nt 

Ana
lys

is (
PC

A)
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
eq

ue
nc

y

Top 50 Most Frequent Topics

(a) Top-50 topics by frequency in decreasing order

Com
pu

tat
ion

al 
Eff

icie
ncy

Dire
ct 

Num
eri

cal
 Si

mula
tio

n

Grap
h N

eu
ral

 Netw
ork

s

Meta
cog

nit
ive

 In
eff

icie
ncy

Fie
ld 

Cam
pa

ign
 Data

 Utili
zat

ion

Biot
ech

no
log

ica
l A

pp
lica

tio
ns 

of 
Bact

eri
a

Cog
nit

ive
 Lo

ad
 Ef

fec
ts

Bista
ble

 Ep
ide

mic R
eg

im
e

Tym
pa

nic
 Mem

bra
ne

 Re
sea

rch

Com
pu

tat
ion

al 
Eff

icie
ncy

 in
 Ana

lyt
ica

l C
alc

ula
tio

ns

Sy
nch

ron
y-B

rea
kin

g B
ifu

rca
tio

ns

Sp
ati

o-t
em

po
ral

 Sc
alin

g A
na

lys
es

Bou
nd

ed
 Su

bg
rad

ien
t Tr

aje
cto

rie
s

Ph
ase

 Lo
cki

ng
 in

 La
ser

s

Bala
nci

ng
 Beh

av
ior

s in
 Ro

bo
tic

s

Sin
gle

-ce
ll R

NA-s
eq

 Data

Cha
oti

c M
icr

ow
av

e C
av

itie
s

Age
nt-

Base
d M

od
el

Str
on

gly
 Con

vex
 an

d C
on

vex
 Opti

miza
tio

n

Data
 Ef

fici
en

cy 
in 

Neu
ral

 Netw
ork

s

Ph
en

om
en

olo
gic

al 
Mod

els

Th
ird

-Orde
r N

on
line

ari
ty

Cryo
ge

nic
 Si

lico
n C

av
itie

s E
xp

eri
men

tat
ion

Ele
ctr

on
-Tra

nsf
er 

Ra
tes

Che
ren

kov
 Ra

dia
tio

n i
n O

pti
cal

 Fib
ers

Bioc
om

pa
tib

ilit
y T

est
ing

Ful
ler

en
e a

nd
 Non

-Fu
ller

en
e A

cce
pto

rs

Sid
e-G

rou
p S

ter
ic H

ind
ran

ce

EE
G an

d P
up

il S
ign

al 
Ana

lys
is

Com
ple

x S
yst

em
s C

on
tro

l

Non
hy

dro
sta

tic
 Clou

d M
od

el 
Sim

ula
tio

ns

Data
 Cura

tio
n f

or 
Mach

ine
 Le

arn
ing

Sch
izo

ph
ren

ia 
an

d P
red

ict
ion

 Defi
cit

s

Mem
bra

ne
 Curv

atu
re 

Mod
elli

ng

Alar
m Fa

tig
ue

 in
 Med

ica
l Pe

rso
nn

el

Harm
on

ic B
ala

nce
 Meth

od

Str
ess

 Ph
ysi

olo
gy

 in
 Mari

ne
 Mam

mals

Non
line

ar 
Opti

cal
 Sw

itc
hin

g

Re
sis

tiv
e S

witc
hin

g P
rop

ert
ies

App
lica

tio
n i

n D
isc

ret
e E

lem
en

t M
eth

od
 Si

mula
tio

ns

Mult
i-io

n C
rys

tal
 App

roa
ch

Im
pa

ct 
of 

Nois
e a

nd
 Sm

oo
thi

ng
 in

 Neu
ral

 Data

Pri
mate

 Ve
ntr

al 
Vis

ua
l S

tre
am

Int
erd

isc
ipli

na
ry 

Re
sea

rch
 Colla

bo
rat

ion

Sim
ula

tio
n o

f G
rou

p B
eh

av
ior

Sci
en

tifi
c D

ocu
men

t D
iss

em
ina

tio
n

Fre
e-S

pa
ce 

Vis
ible

 Ra
dia

tio
n

Hum
an

-M
ach

ine
 In

ter
act

ion
 Desi

gn

Con
jug

ate
d P

oly
mer 

Agg
reg

ati
on

Non
line

ar 
Wav

e P
he

no
men

a
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
eq

ue
nc

y

Every 200th Topic by Frequency

(b) Sampled topics (every 200)

Figure 5: Distribution of topics extracted from SciPile: (a) Top-50 topics, (b) Every 200 topics. Refer §3.2 for more
information.
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D Compiling a Seed Hierarchy988

As we discuss in §4.3, we make a few adjustments to the seed hierarchy that we obtain from Wikipedia.989

Specifically:990

1. We added “Theoretical Computer Science” and “Information Theory” as separate branches under991

“Formal Sciences” due to their unique characteristics;992

2. We moved “Astronomy” under “Physical Science”;993

3. “Astronomy”, “Geology” and “Oceanography” are listed under “Earth Science” but since these topics994

are not specific to early, we move them up one layer so that they’re directly under “Physical Science”;995

The Wikipedia article groups Geology, Oceanography, and Meteorology under ;996

4. We added “History” as a branch under “Social Sciences”;997

5. We included “Cell Biology” and “Genetics” under “Biological Sciences” as they were relevant and998

their inclusion would only help in better hierarchy creation.999

These modifications aim to refine the hierarchy, ensuring it accurately reflects the distinct areas within1000

each scientific domain. The resulting hierarchy is included in Fig.6.1001
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1 {
2 "Science":{
3 "Formal Sciences":{
4 "Logic":{},
5 "Mathematics":{},
6 "Statistics":{},
7 "Computer Science":{},
8 "Information Theory":{},
9 "Systems Theory":{},

10 "Decision Theory":{}
11 },
12 "Natural Sciences":{
13 "Physical Science":{
14 "Physics":{
15 "Classical Mechanics":{},
16 "Thermodynamics and statistical mechanics":{},
17 "Electromagnetism and photonics":{},
18 "Relativity":{},
19 "Quantum Mechanics":{},
20 "Atomic and molecular physics":{},
21 "Condensed matter physics":{},
22 "Optics and acoustics":{},
23 "High energy particle physics":{},
24 "Nuclear physics":{},
25 "Cosmology":{},
26 "Interdisciplinary Physics":{}
27 },
28 "Chemistry":{
29 "Physical Chemistry":{},
30 "Organic Chemistry":{},
31 "Inorganic Chemistry":{},
32 "Analytical Chemistry":{},
33 "Biological Chemistry":{},
34 "Theoretical Chemistry":{},
35 "Interdisciplinary Chemistry":{}
36 },
37 "Earth Science":{},
38 "Astronomy":{},
39 "Geology":{},
40 "Oceanography":{},
41 "Meteorology":{}
42 },
43 "Biological Sciences":{
44 "Biochemistry":{},
45 "Cell Biology":{},
46 "Genetics":{},
47 "Ecology":{},
48 "Microbiology":{},
49 "Botany":{},
50 "Zoology":{}
51 }
52 },
53 "Social Sciences":{
54 "Anthropology":{},
55 "Economics":{},
56 "Political Science":{},
57 "Sociology":{},
58 "Psychology":{},
59 "Geography":{},
60 "History":{}
61 }
62 }
63 }

Figure 6: The seed hierarchy used by our FLMSCI baselines. See §D for details.
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E FLMSCI: LLM-based Baselines1002

This section includes the pipeline and prompts used for FLMSCI (parallel) and FLMSCI(incremental).1003

E.1 Pipeline for FLMSCI (parallel)1004

This section demonstrates the pipeline used for FLMSCI (par) right from extracting topics and rationales1005

to obtaining a final taxonomy with papers. (Refer to §4.3 for more information).

Topic:
Rationale:

Topic:
Rationale:

Topic:
Rationale:

Topic:
Rationale:

Topic 
Chunk 1

Topic 
Chunk 2

Topic 
Chunk 3

Topic 
Chunk N

Papers

Seed 
Taxonomy

Updated 
Taxonomy 1

Updated 
Taxonomy 2

Updated 
Taxonomy 3

Updated 
Taxonomy N

.

.

LLM

LLM

LLM

LLM

LLM

.

.

.

.

.

.

.

.

.

Paper 1

Paper 2

Paper N

.

.

.

Mapping papers

Final Taxonomy

Generating 
Topics with 
Rationales

Chunking 
Topics

Chunked 
Taxonomies

M
er

gi
ng

   
  T

ax
on

om
ie

s

Paper 3

Figure 7: Pipeline for of FLMSCI (parallel).
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E.2 Prompt for FLMSCI (parallel) 1007

This prompt guides a large language model (LLM) to expand an existing scientific taxonomy - the seed 1008

taxonomy (Refer to D) by adding a set of new topics in a logical and consistent manner. With a clear list 1009

of instructions it ensures accurate placement and also preserves the original structure. This prompt was 1010

used with Llama-3.3-70B-Instruct. (Refer to §4.3 for more information.)

FLMSCI (parallel) Prompt
You are a scientific domain expert. You have an initial "seed taxonomy" of scientific concepts and a 
list of new topics to integrate into that taxonomy. Please carefully analyze these new topics and 
update the seed taxonomy so that:

1. You must retain the current structure of the seed taxonomy and respect all existing categories.

2. Place each and every topic from the list given below.

2. You are free to add new branches or subcategories only where necessary to fit the new topics in 
a consistent, hierarchical ("is-a") manner.

3. Each topic from the list must appear exactly once. Do not introduce any new topics beyond 
those in the list.

4. Ensure each new topic is placed under the correct parent concept based on its semantic 
meaning or specialization level.

5. Return your updated taxonomy as valid JSON, containing both the original seed hierarchy and 
the newly incorporated topics.

Below is your seed taxonomy (in JSON). Make sure to preserve its structure as much as possible:

{seed_taxonomy}

Here is the list of new topics that must be integrated:

{topics_chunk}

Focus on logical placement of each term to maintain an accurate scientific hierarchy.

Figure 8: Prompt of FLMSCI (incremental) pipeline

1011
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E.3 Demonstration of actions for FLMSCI (incremental)1012

This section demonstrates the various actions (add sibling, make parent, go down and discard)1013

that are available for the LLM to take at various levels of taxonomy building. Refer to §4.3 for more1014

information.

Current Node

Currently visible subnodes

add_sibling

Current Node

Currently visible subnodes

make_parent

Current Node

go_down

Current Node

Currently visible subnodes

discard

Currently visible 
subnodes after go_down

Currently visible subnodes

Current 
Node

Currently visible subnodes

New Node
to be placed

The initial state

Actions

Figure 9: Actions for FLMSCI (incremental)

1015

E.4 Prompt for FLMSCI (incremental)1016

This prompt is used to place new scientific topics into an existing seed taxonomy (Refer §D) incrementally.1017

The model evaluates multiple possible actions based on the available action options. The prompt clearly1018

instructs its priorities explicitly to give a hint to the model. The example usage and example output format1019

help to get the response in a valid format. This prompt was used for Llama-3.3-70B-Instruct.1020

1 SUBNODE_DESCRIPTIONS = {
2 "Formal Sciences": "Focuses on abstract systems and formal methodologies grounded in logic ,

mathematics , and symbolic reasoning. Provides theoretical frameworks (e.g., statistics , computer
science , systems theory) used to model and solve problems across empirical disciplines and

technology.",
3 "Natural Sciences": "Investigates the physical universe and living organisms through empirical

observation , experimentation , and theoretical analysis. Includes physical sciences (e.g.,
physics , chemistry , astronomy) and biological sciences (e.g., genetics , ecology) to uncover
fundamental laws and processes governing nature.",

4 "Social Sciences": "Studies human behavior , societies , and institutions using qualitative and
quantitative methods. Encompasses disciplines like psychology , economics , and political science
to analyze cultural , economic , and social interactions within historical and geographic contexts
."

5 }

Figure 10: Descriptive statement used for contextualizing layer-1 items in the seed hierarchy, used in FLMSCI
(incremental). See §4.3 for broader context.
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1 You are building a scientific topics based hierarchy.
2
3 Path traced until now: {current_path}
4 Subnode options available at this level:
5 subnodes = [{ subnodes }]
6 New topic: "{new_topic}"
7
8 Evaluate all possible actions listed below equally before choosing the most appropriate one.
9 Choose the action that best preserves a logical hierarchy , semantic clarity , and appropriate

abstraction level.
10
11 ** Priority Guidance **:
12 1. FIRST consider "go_down" if ANY existing subnode could reasonably contain the new topic as a

specialization
13 2. THEN consider "make_parent" if multiple existing subnodes could be grouped under a new category
14 3. ONLY use "add_sibling" if the topic is FUNDAMENTALLY distinct from all existing subnodes at this

level
15 4. "discard" should be used for low -quality or redundant topics
16
17 ** Critical Rules**:
18 - A node about "Applications of X" should ALWAYS go under X, not as a sibling
19 - Specific methods/tools belong under their parent field (e.g., "PCR" under "Molecular Biology")
20 - Avoid creating flat structures
21
22 Possible actions:
23 1) "go_down" - Use this if the topic: {new_topic} is a *more specific* subtype of one of the "

subnodes" and belongs *within* it.
24 2) "add_sibling" - Use this if the topic: {new_topic} is on the same level of abstraction as the

existing "subnodes". It should be added *alongside* them as a direct child of `{current_path
[-1]}`.

25 3) "discard" - Use this if the topic: {new_topic} is irrelevant , redundant , or already captured under
another topic.

26 4) "make_parent" - Use this when the new topic: {new_topic} or any one of the "subnodes" is broader
or more abstract than one or more of the subnodes. In that case , make the new topic a direct
child of `{current_path [-1]}` and move the relevant subnodes under it. Return them in `"
child_nodes": [...] `.

27
28 ### Example of desired usage for each action:
29 1) "go_down"
30 - "node": must be the name of one of the existing "subnodes"
31 - "explanation": an optional text with reasoning
32 - "child_nodes", "parent_node": not used.
33
34 2) "add_sibling"
35 - "node": {new_topic}
36 - "parent_node": {current_path [-1]}
37 - "explanation": optional
38 - "child_nodes": not used.
39
40 3) "discard"
41 - "node": {new_topic}
42 - "explanation": optional
43 - "parent_node", "child_nodes": not used
44
45 4) "make_parent"
46 - "node": {new_topic} or one of the "subnodes" whichever is more appropriate
47 - "child_nodes": array of the subnodes that must be moved under the new node
48 - "explanation": optional
49 - "parent_node": not used
50
51 Your output must be valid JSON only:
52 {{
53 "action": "go_down"|"add_sibling"|"make_parent"|"discard",
54 "node": "string",
55 "parent_node": "string or null", // only used if action = add_sibling
56 "child_nodes": ["string", ...], // only used if action = make_parent
57 "explanation": "string (optional)"
58 }}
59 No extra text.

Figure 11: The detailed prompt used in the execution of our FLMSCI (incremental) baseline. See §4.3 for broader
context.
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F Further Details on Collection of Science Papers1021

This section provides more context on our piles of papers in our experiments from §5.1. SciPileLarge is1022

an extension of SciPile. For each paper in SciPile, we extract five relevant keywords using an LLM (see1023

Fig.12) and query the Semantic Scholar API2 with these keywords to retrieve additional relevant papers.1024

We apply three filtering criteria to ensure quality: (a) Citation Count: A paper must have a minimum1025

number of citations to be considered reliable. The minimum citation count is calculated using the formula:1026

(2 + 3× (2025− publish_year). (b) Abstract Length: A paper must have an abstract with at least 2501027

tokens, as measured by the tokenizer of Llama-3.1-8B-Instruct. (c) Publication Venue: A paper must1028

be published in a recognized journal or conference. For each keyword, we select up to five papers that1029

meet all criteria. This approach maintains the disciplinary distribution of our seed dataset SciPilewhile1030

expanding our corpus to 10K papers.1031

Keyword Extraction for Dataset Expansion
Title: {title}

Abstract: {abstract}

Generate exactly 5 relevant keyword phrases for this research paper. Each keyword phrase should be no more 
than 6 words long.

Return only a JSON array containing these 5 keywords. No explanations or other text.

Figure 12: Prompt of Keyword Extraction for Dataset Expansion

G Hyperparameters of SCYCHIC1032

Here shows the models and hyperparameters we use for the experiments mentioned in §5.3. We1033

utilize the GPT-4o model (gpt-4o-2024-08-06) to generate all contribution extractions along1034

with detailed rationales explaining the extraction decisions. For summarizer, we use We choose1035

Llama-3.3-70B-Instruct(Grattafiori et al., 2024) for its superiority of following instructions among1036

open-source models, and use gte-Qwen2-7B-instruct as our embedder. For clustering algorithm, we ap-1037

ply k-means clustering. The number of clusters for each layer is (6, 40, 276) when conducting experiments1038

on SciPile (2K papers), and (6, 40, 276, 1250) when on SciPileLarge (10k papers).1039

2https://www.semanticscholar.org/product/api
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H Additional Experiments of SCYCHIC 1040

H.1 Detailed Evaluation Results on Topic Contributions 1041

Here we show the complete evaluation results mentioned in §5.2. SCYCHIC, FLMSCI (parallel) and 1042

FLMSCI(incremental) are using Topic as contribution type.

Method Accuracy (%) LLM Cost Hierarchy Structure

Strict-Acc ↑ L1-Acc ↑ Avg. # of
Input Tokens ↓

# of
Calls ↓

Max
Depth

Avg
Depth

Avg Bran.
Factor

Max Bran.
Factor

# of
Items

Contributions type: Topic

SCYCHIC 14.9 ± 2.7 65.7 ± 4.4 5017 322 3 3 40.9 128 11k↱
Top-down 14.5 ± 4.7 62.5 ± 7.4 6440 322 3 3 40.9 104 11k↱
Bottom-up 13.9 ± 5.3 54.4 ± 12.7 3988 322 3 3 40.9 119 11k

↱
FLMSCI (par) 4.0 ± 2.8 32.0 ± 6.3 8896 226 9 6.2 13.9 734 9.9K↱
FLMSCI (inc) 18.0 ± 5.3 91.0 ± 4.0 4040 61K 14 7.7 3.6 704 10.4K

Table 7: Evaluation results of SCYCHIC, FLMSCI (parallel) and FLMSCI(incremental) when using Topic as
contribution type. “Bran.” stands for “Branching”. All methods show poor Strict-Acc (≤ 18.0%), highlighting the
challenging nature of the task. On one hand, FLMSCI (inc) achieves the highest accuracy, showing the feasibility of
building hierarchies by pure LLM-based methods. However, it incurs substantial computational costs, about 200×
higher than other methods. In contrast, SCYCHIC offers a balanced performance profile with competitive accuracy
(14.9% Strict-Acc, 65.7% L1-Acc) while maintaining significantly lower computational requirements.

1043

H.2 Comparison of Different Embedding models 1044

For the embedder mentioned in §4.1. We evaluate three embedding models—Qwen’s 1045

gte-Qwen2-7B-instruct (Li et al., 2023), OpenAI’s text-embedding-3-large, and 1046

text-embedding-ada-002. The first two performe similarly, whereas text-embedding-ada-002 1047

produce markedly weaker results. Given the comparable overall performance between the two leading 1048

models, we selecte gte-Qwen2-7B-instruct for our main experiments due to its strong balanced 1049

performance across both metrics, superior Sctric-Acc results, and practical advantages as an open-weight 1050

model that offers greater accessibility and cost-effectiveness for reproducible research.

Models→ text-embedding-3-large gte-Qwen2-7B-instruct text-embedding-ada-002

Metrics→ L1-Acc Sctric-Acc L1-Acc Sctric-Acc L1-Acc Sctric-Acc

PROBLEM 86.7 ± 4.6 46.7 ± 0.9 81.7 ± 2.6 51.1 ± 3.8 76.0 ± 4.4 41.7 ± 5.2

SOLUTION 80.3 ± 3.4 36.7 ± 1.7 82.3 ± 1.1 48.8 ± 6.1 63.5 ± 2.0 31.0 ± 3.2

RESULTS 84.7 ± 5.7 44.0 ± 0.8 76.4 ± 6.9 46.4 ± 5.2 74.6 ± 3.4 41.0 ± 8.7

Table 8: Performance comparison across three embedding models and contribution types. gte-Qwen2-7B-instruct
demonstrates superior Sctric-Acc performance across all categories, while text-embedding-3-large excels in
L1-Acc for problem and results. text-embedding-ada-002 shows consistently weaker performance across both
metrics.

1051
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H.3 Experiments of Prompt Engineering1052

We investigate the effect of different prompts on the final quality of hierarchy. In the main text, for1053

the summarizer mentioned in §4.1, we use the detailed version prompt which is carefully curated. For1054

comparison, we also conduct the experiments with a much simpler prompt.

Detailed (Curated) Prompt Simple Prompt

You are a scientific research expert specializing in iden-
tifying and analyzing research problems and challenges.
Your task is to analyze a collection of research papers
or research clusters and provide a focused analysis of
the research problems they address. The input could
be either a collection of individual papers or research
cluster summaries. Based on the content, you need to:

1. Identify the core research problems and challenges
being addressed

2. Determine the overarching problem domain that
connects these research efforts

3. Analyze the specific difficulties, gaps, or limita-
tions that motivate this research

4. Understand the research questions or goals that
drive these investigations

5. Generate an appropriate cluster name that captures
the essence of the problem space

6. Provide a comprehensive problem-focused analy-
sis

Here is the content to analyze:
Remember to:

• Focus specifically on problems, challenges, and
research gaps rather than solutions

• Be specific about the technical difficulties and lim-
itations being addressed

• Identify both theoretical and practical challenges
• Consider interdisciplinary connections in problem

formulation
• Maintain scientific accuracy and use precise termi-

nology
• Generate only one JSON format output that must

follow the structure exactly

Please format your response as a JSON object with the
following structure:
{

"Cluster Name": "A clear and specific title focusing
on the problem domain (No less than 5 words)",

"Problem ": {
"overarching problem domain ": "The broad scientific
domain where these problems exist",
"challenges/difficulties ": "Specific technical ,
theoretical , or practical challenges that these
papers address",
"research question/goal": "The fundamental
research questions or objectives that motivate
this work"

}
}

You are a scientific research expert specializing in iden-
tifying and analyzing research problems and challenges.
Analyze the input %s and output one JSON object:
{

"Cluster Name": "A clear and specific title (No less
than 5 words)",
"Problem ": {
"overarching problem domain ": "",
"challenges/difficulties ": "",
"research question/goal": ""

}
}

Instructions Extract key themes and concepts. Identify
the common thread that links the items. Craft a clear,
specific title (≥ 5 words) for Cluster Name. Return only
the JSON—nothing else.

Table 9: Comparison of Detailed (Curated) and Simple Prompts

1055
The results show that across all contributions, the curated prompt offers significantly better quality1056

hierarchies.1057
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Prompt type ↓ Embedder→ text-embedding-3-large gte-Qwen2-7B-instruct

Metrics→ L1-Acc Sctric-Acc L1-Acc Sctric-Acc

Simplified problem 75.0 ± 4.6 33.7 ± 3.7 61.0 ± 0.8 24.7 ± 1.7

Detailed 86.7 ± 4.6 46.7 ± 0.9 81.7 ± 2.6 51.1 ± 3.8

Simplified solution 65.3 ± 3.4 32.7 ± 2.6 59.0 ± 2.8 21.7 ± 2.9

Detailed 80.3 ± 3.4 36.7 ± 1.7 82.3 ± 1.1 48.8 ± 6.1

Simplified results 77.7 ± 4.1 38.0 ± 4.6 66.7 ± 3.3 27.7 ± 2.5

Detailed 84.7 ± 5.7 44.0 ± 0.8 76.4 ± 6.9 46.4 ± 5.2

Table 10: Performance comparison between simplified and detailed prompts across different embedding models and
contribution types. Detailed prompts consistently outperform simplified prompts across all scenarios, with improve-
ments ranging from 7.0 to 23.3 % for L1-Acc and 3.0 to 26.4 % for Sctric-Acc. The gte-Qwen2-7B-instruct
model shows the largest performance gains, with L1-Acc improvements of 20.7, 23.3, and 9.7 % for problem,
solution, and results respectively.

I Demonstration of Hierarchy 1058

Below is a snippet of our final hierarchy result.

ROOT NODE

Challenges and Limitations in Machine Learning and Artificial Intelligence

overarching problem domain: Machine learning, artificial intelligence, and data science

challenges/difficulties: Technical challenges such as model interpretability, explainability, and transparency; theoretical
challenges in understanding deep learning models; practical challenges including bias, fairness, and
robustness; issues with data quality; algorithmic fairness; computational complexity; and storage,

as well as challenges in applying AI and ML to real-world problems

research question/goal: To address the fundamental challenges in machine learning and artificial
intelligence, including improving model performance, reducing computational
costs, enhancing interpretability and explainability, and developing more
accurate, efficient, and transparent models for various applications

Advanced Materials Challenges for Sustainable Energy Applications

overarching problem domain: Materials science and energy technologies

challenges/difficulties: Developing sustainable, efficient, and cost-effective materials and technologies for energy storage,
conversion, and utilization, overcoming limitations in energy density, power density, efficiency,

and environmental sustainability

research question/goal: To design, synthesize, and characterize novel materials and devices for advanced
energy applications, addressing the challenges of energy storage, conversion,

and efficiency, and enhancing energy sustainability

Neuroscience, Cognitive Psychology, and Neurotechnology Challenges

overarching problem domain: Neuroscience, cognitive psychology, and neurotechnology

challenges/difficulties: Understanding neural mechanisms, developing effective treatments for neurological and psychiatric
disorders, and improving cognitive function

research question/goal: To investigate the neural basis of cognition, emotion, and behavior, and to
develop new treatments and technologies for improving human health and

performance

Quantum Systems and Materials Science Challenges

overarching problem domain: Quantum systems, materials science, and photonics

challenges/difficulties: Understanding and controlling quantum phenomena in materials, developing quantum technologies and
devices, and addressing challenges in photonic systems and quantum computing

research question/goal: To advance the understanding of quantum phenomena in materials and develop
practical quantum technologies and photonic devices for various applications

Advancements and Challenges in Deep Learning and Artificial Intelligence

overarching problem domain: Deep Learning, Artificial Intelligence, and Machine Learning

challenges/difficulties: Understanding and addressing issues like overfitting, generalization, interpretability, and the need
for large datasets; developing more efficient, robust, and transparent models; and improving

performance in tasks such as natural language processing, computer vision, and reinforcement
learning

research question/goal: To advance the field of deep learning and AI by improving model performance,
efficiency, and interpretability, and to apply these advancements to real-world

problems

Optimization and Performance Enhancement in Machine Learning Models

overarching problem domain: Machine learning optimization and performance enhancement

challenges/difficulties: Computational efficiency, model accuracy, hyperparameter optimization, and scalability issues in
machine learning algorithms

research question/goal: To develop more efficient and accurate machine learning algorithms and
optimization techniques for various applications

Evolutionary Search for Complete Neural Network Architectures With Partial Weight Sharing

Problem: To alleviate the problem of strong interference in one-shot NAS and evolve
complete neural network architectures more effectively

Solution: A novel node representation scheme that randomly activates a subset of nodes in
each generation; a tailored crossover operator; a new mutation operator;

encoding pyramidal convolution operations in the search space

Results: The proposed method can computationally much more efficiently find neural
architectures that achieve comparable classification accuracy to the state-of-

the-art designs

Authors: Haoyu Zhang, Yaochu Jin, K. Hao

Advanced Optimization Techniques for Deep Neural Networks

Problem: Develop efficient optimization algorithms for faster and more stable training of
deep neural networks

Solution: Novel adaptive learning rate algorithms with momentum and second-order
information

Results: Significant improvement in convergence speed and final model performance across
various benchmarks

Authors: ML Researcher, Optimization Expert

Energy Storage Materials and Technologies

overarching problem domain: Energy storage materials and battery technologies

challenges/difficulties: Limited energy density, cycle life, and safety concerns in current energy storage technologies;
developing sustainable and cost-effective energy storage solutions

research question/goal: Develop advanced materials and technologies for high-performance energy storage
systems with improved capacity, stability, and environmental sustainability

Solar Energy and Photovoltaic Technologies

overarching problem domain: Solar energy conversion and photovoltaic technologies

challenges/difficulties: Limited efficiency, high costs, and stability issues in current photovoltaic technologies;
developing more efficient and cost-effective solar energy conversion systems

research question/goal: Develop advanced photovoltaic materials and technologies with higher efficiency,
lower costs, and improved stability

High-Performance Lithium-Ion Battery Electrodes with Advanced Nanomaterials

Problem: Develop advanced nanomaterials for high-performance battery electrodes with
improved capacity and stability

Solution: Novel nanostructured electrode materials with enhanced ion transport and
mechanical stability

Results: Significant improvement in energy density and cycle life compared to
conventional electrode materials

Authors: Materials Researcher, Energy Scientist

Perovskite Solar Cells with Enhanced Stability and Efficiency

Problem: Develop stable and highly efficient perovskite solar cells for commercial
applications

Solution: Novel passivation strategies and interface engineering to enhance stability and
efficiency

Results: Achieved over 25% efficiency with improved long-term stability under operational
conditions

Authors: Solar Researcher, Perovskite Expert

Brain-Computer Interfaces and Neural Engineering

overarching problem domain: Neural engineering and brain-computer interfaces

challenges/difficulties: Low accuracy and high variability in neural signal decoding for brain-computer interface
applications; developing robust and reliable neural interfaces for medical and enhancement

applications

research question/goal: Develop robust neural decoding algorithms and brain-computer interface systems
for high-precision control of external devices and improved quality of life for

patients with neurological disorders

Neuropharmacology and Neurological Disorders

overarching problem domain: Neuropharmacology and treatment of neurological disorders

challenges/difficulties: Limited effectiveness of current treatments for neurological and psychiatric disorders;
understanding complex neural mechanisms underlying these conditions

research question/goal: Develop more effective treatments for neurological and psychiatric disorders
through better understanding of neural mechanisms and drug action

Advanced Neural Decoding for High-Precision Brain-Computer Interfaces

Problem: Develop robust neural decoding algorithms for high-precision control of external
devices

Solution: Machine learning-based neural decoding with adaptive signal processing and real-
time calibration

Results: Achieved significant improvement in decoding accuracy and reduced calibration
time for BCI systems

Authors: Neural Engineer, BCI Researcher

Novel Therapeutic Targets for Alzheimer's Disease Treatment

Problem: Identify novel therapeutic targets and develop more effective treatments for
Alzheimer's disease

Solution: Multi-target drug design approach targeting neuroinflammation, amyloid
clearance, and synaptic function

Results: Demonstrated significant improvement in cognitive function and reduced
neurodegeneration in preclinical models

Authors: Neurologist, Drug Discovery Expert

Quantum Computing and Quantum Information Processing

overarching problem domain: Quantum computing and quantum information processing

challenges/difficulties: Quantum decoherence, error rates, and scalability issues in quantum computing systems; developing
fault-tolerant quantum algorithms and hardware

research question/goal: Develop practical quantum computing systems with low error rates and scalable
architectures for quantum information processing

Advanced Materials and Photonic Devices

overarching problem domain: Advanced materials and photonic device development

challenges/difficulties: Developing novel materials with tailored optical and electronic properties; challenges in
fabricating high-performance photonic devices and systems

research question/goal: Design and synthesize advanced materials with unique properties for next-
generation photonic and electronic devices

Error Correction in Superconducting Quantum Processors

Problem: Develop effective quantum error correction methods for superconducting quantum
processors

Solution: Novel surface code implementations with optimized qubit connectivity and real-
time error syndrome detection

Results: Achieved significant reduction in logical error rates and extended quantum
coherence times

Authors: Quantum Computing Expert, Superconducting Device Researcher

Two-Dimensional Materials for Next-Generation Electronics

Problem: Develop scalable synthesis methods and control electronic properties of 2D
materials for advanced electronic devices

Solution: Chemical vapor deposition techniques with controlled growth conditions and post-
synthesis engineering of electronic properties

Results: Achieved large-area synthesis of high-quality 2D materials with tunable
electronic properties for device applications

Authors: 2D Materials Expert, Electronic Device Researcher

Figure 13: Above is a small example of a final hierarchy generated by SCYCHIC on the SciPileLarge dataset. The
original hierarchy has 4 levels, use papers’ problem contribution. Due to space constraints, this snippet shows only
two levels of clusters above the individual papers.
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