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Abstract

Evaluating large language models (LLMs) on their linguistic reasoning capabilities
is an important task to understand the gaps in their skills that may surface during
large-scale adoption. In this work, we investigate the abilities of such models to
perform abstract multilingual reasoning through the lens of linguistic puzzles on
extremely low-resource languages. As these translation tasks involve inductive and
deductive reasoning from reference instances, we examine whether diverse auxil-
iary demonstrations can be automatically induced from seed exemplars, through
analogical prompting. We employ a two-stage procedure, first generating analogi-
cal exemplars with a language model, and then applying them in-context along with
provided target language exemplars. Our results on the modeLing dataset show
that analogical prompting is effective in eliciting models’ knowledge of language
grammar similarities, boosting the performance of GPT-4o by as much as 8.1% and
Llama-3.1-405B-Instruct by 5.9% over chain-of-thought approaches. These gains
are attributable to the analogical demonstrations, both when self-generated as well
as when produced by weaker multilingual models. Furthermore, we demonstrate
that our method generalizes to other tasks present in Linguistics Olympiad com-
petitions, achieving sizable improvements across all problem types and difficulty
levels included in the LINGOLY dataset with GPT-4o. We also report several find-
ings about interesting phenomena which drive linguistic reasoning performance,
suggesting that such puzzles are a valuable benchmark for new reasoning methods.

1 Introduction

As the capabilities of large language models (LLMs) continue to grow, it is necessary to develop ways
of testing the boundaries of their ability to reason over a wide range of languages. Adapting language
models to low-resource languages is challenging due to a lack of high-quality annotated data in the
target language for supervised fine-tuning. This has led to zero-shot and few-shot transfer learning
approaches being more commonly employed (Zoph et al., 2016; Nguyen & Chiang, 2017; Lin et al.,
2019). However, given the emergence of the in-context learning phenomenon, we hypothesize that
this behavior can be used to enable few-shot generalization to new languages at inference time.

In this work, we explore the task of linguistic reasoning, using linguistics puzzles akin to the
International Linguistics Olympiad (IOL). Notably, in these puzzles, the target language is often
extremely low-resource or functionally extinct (Bean et al., 2024). While prior work has largely
examined the effect of vanilla in-context learning with English-target and target-English exemplars,
chain-of-thought prompting, and traditional neural machine translation methods (Chi et al., 2024;
Şahin et al., 2020), we believe that generating auxiliary exemplars can guide the model to more
effectively learn grammar similarities over a language family. We introduce an approach based on
analogical prompting (Yasunaga et al., 2024), which uses strong language models to self-generate
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Figure 1: An illustration of our 2-stage analogical prompting approach, translating a phrase in
Montenegrin to English. While prior works would solely provide exemplars translating between the
source language and English and perform in-context learning, our method seeks diverse exemplars.
Model M1 first identifies the language family (Slavic) and higher-resource languages in the family
which the model has knowledge of (Croatian), then produces exemplars in those languages. Finally,
both the original and generated set of exemplars are passed with the test puzzle to model M2 to
perform the translation. M1 = M2 yields the self-generated analogical reasoning setting.

exemplars of relevant problems given the test instance and performs in-context learning conditioned
on those demonstrations. In our setting, the knowledge retrieval-like nature of analogical prompting
allows us to test models’ parametric understanding of language families, performing inference to
solve with both sets of demonstrations.

We evaluate our approach on the modeLing (Chi et al., 2024) dataset, consisting of unseen IOL-style
problems. We find that strong models such as GPT-4o and Llama-3.1-405B-Instruct can identify the
language family, similar languages within said family, generate exemplars in those similar languages,
and apply them to solve the test puzzle. Furthermore, while weak models do not benefit significantly
from using strong model-generated exemplars, strong models improve from using exemplars produced
by weaker yet specialized multilingual models (e.g. Aya-35B). Our findings show that the ability
of the model to deduce and apply rules, following inductive learning from the exemplars, largely
influences performance; while there still exist gaps relative to the reasoning of human experts. We
suggest that the linguistic reasoning task presents a fertile ground for research on new language model
reasoning methods, to uncover how the skills which drive logical thinking may be imbued to models.

2 Analogical Prompting for Linguistic Reasoning

Analogical prompting (Yasunaga et al., 2024) avoids the need for annotated exemplars by relying
on a strong model to generate exemplars which are related to the test instance, but are sufficiently
diverse relative to one another and the test sample. Our approach of applying analogical prompts
follows the human system 2 thinking framework of slow, deliberate reasoning (Kahneman, 2011).
In chain-of-thought prompting for these puzzles, the model performs in-context learning with the
given exemplars, learning the rules governing the language by induction, including the meaning
of particular words, and using deduction to apply these rules to the test sample. This approach is
supported by prior works demonstrating the ability of LMs to learn rules and attempt to apply them
(Qiu et al., 2024; Zhu et al., 2024). Furthermore, we do not have access to complete grounding
sources of human-written rules governing these low-resource languages, so we must rely on the LM
to identify and generate these rules itself. However, as we expect the model to have little to no prior
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knowledge about the target language2, we seek to leverage other languages with similar grammar
structure which the model has learned in order to guide the language model’s reasoning process.

We use language families as a taxonomically-grounded means of identifying similar languages as
the target. The generated exemplars provide a source of reasoning support to the model, enabling it
to perform inductive reasoning first in a cross-lingual manner over the diverse exemplars, and then
deduce from its shared understanding. In Figure 1, given the test instance and the provided exemplars
in Montenegrin, we leverage the model to (i.) identify the family of Montenegrin (Slavic Language
Family), (ii.) select a few languages in the Slavic Language Family, and (iii.) generate example
puzzles with their solutions in those selected languages, e.g. Croatian. Then, the provided exemplars
and the generated cross-lingual demonstrations are given to the model, to solve the test puzzle.

We desire for the model to produce exemplars from languages it has learned, in accordance with its
pre-training distribution. In (Qiu et al., 2024), models have been shown to improve with more familiar
exemplars (based on inclusion in the pre-training data). Furthermore, their work suggested that noisy
demonstrations hurt performance; as the provided examples from the unseen target language could
be considered as "noisy", we hypothesize that the generated exemplars can help to compensate.

Exemplar Correctness. While one would ideally prefer to have a validator which, given a set of
rules for a language, can determine if they are being appropriately applied for each of the analogical
exemplars, this is very challenging at scale. In the context of Linguistics Olympiad problems, only a
small fraction of the population who are experts in such tasks (equivalent to achieving a high score on
these contests) would be able to reliably annotate solution rationales for these extremely low-resource
translation puzzles. Furthermore, the notion of correctness is ambiguous – we rely on exact match
relative to an annotated "correct" response, but it is unclear if there could be more than "correct"
response which is context-specific, or if partial credit assignment could be possible. Given the models’
lack of zero-shot knowledge of these languages (else, there would likely be leakage), we also cannot
reliably use another LM / instance of the model as a validator. As a result, we leverage all generated
exemplars by the model for inference, and assume each problem has one correct solution.

2.1 Linguistics Puzzles

As noted before, the focus of this work is on linguistics puzzles – in particular, translation problems
from English to a low-resource language and vice versa, given paired examples. Such problems are
also referred to in the literature as Rosetta Stone puzzles, and constitute one of the most frequent
types of problems that appear in Linguistics Olympiad competitions (Şahin et al., 2020; Chi et al.,
2024; Bean et al., 2024). These problems typically consist of a test phrase in language A along with
5-10 exemplars3 of translation from language A to language B and vice versa, and the task is to
translate the given phrase into language B. We include an example of such a problem below, from the
modeLing dataset (Chi et al., 2024).

Example Translations from English to Rapa Nui

English: We see you. → Rapa Nui: tike’a tātou koe
English: I hear you. → Rapa Nui: ŋaro’a au koe
English: I see you. → Rapa Nui: tike’a au koe

English: We hear you. → Rapa Nui: ŋaro’a tātou koe
English: The person hits me. → Rapa Nui: pu’a taŋata au

English: The dog drinks the water → Rapa Nui: unu paiheŋas bai
English: The fish drinks the blood. → Rapa Nui: unu ika toto

English: We bite the bone. → Rapa Nui: ŋau tātou ivi
English: We hit the bird. → Rapa Nui: pu’a tātou manu

Translate Test Phrase
English: The bird bites you. → Rapa Nui: ŋau manu koe

2We design our experiments to avoid leakage, but do not directly analyze test set contamination aside from
zero-shot baselines.

3For more challenging problems, the model may be given as many as 20 translation exemplars.
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3 Methods

We explore a number of sampling methods across various language models to assess their performance
on reasoning over unknown languages.

3.1 Evaluation Settings

We include the following methods as baselines for robust comparison to our method, reflecting prior
work examined in linguistic reasoning (Chi et al., 2024). We explore their results in Section 4.1.

Zero-Shot Prompting. Given the low-resource nature of the languages that we examine, we expect
zero-shot performance to be poor, or even zero, on the exact match metric. However, we include this
setting for two reasons: (1.) a model which gets multiple questions correct for a given language with
zero-shot prompting may be an indication of leakage, and (2.) this serves as a robust check on any
additional metrics examined aside from exact match.

Few-Shot Prompting / In-Context Learning. As in the Linguistic Olympiad competitions, demon-
strations of translation to and from the low-resource language are provided to the model, with the
intention for inductive reasoning to guide the model towards identifying the set of grammar rules the
language follows.

Few-Shot Chain-of-Thought Reasoning. Given the efficacy of chain-of-thought prompting (Wei
et al., 2024; Kojima et al., 2022), we extend the few-shot evaluation setting by including prompts
for the model to "think step-by-step" (Kojima et al., 2022; Yang et al., 2024a). We also include
a chain-of-thought rationale exemplar for English-Spanish translation from (Chi et al., 2024), to
demonstrate how step-by-step reasoning rationales should be produced, and are denoted in Section 4
as "w/ rationale".

3.2 Analogical Prompting Variations

We describe the various analogical prompting methods explored in the experiments; their results are
in Section 4.2.

Analogical Prompting on Language Families. We seek to use language families as a means to
identify similar, auxiliary languages whose exemplars can boost the model’s cross-lingual under-
standing. In a similar environment to the Linguistics Olympiad competition, where one does not have
access to any external resources, we test the model on its latent understanding of language families
and regional associations to generate further puzzles in another language within the same language
subgroup. For a target language L, we prompt the model to identify a few other languages (denote
this list LAux) in the same family as L; then, for each language in LAux, generate a puzzle translating
from it to English, and a puzzle in the reverse direction. Then, we apply these exemplars along with
the given ones for L in a new instruction to the model. We term this 2-stage analogical reasoning.

Separating the two stages of analogical prompting (generation and application) yields an opportunity
to explore how different combinations of models for this approach might perform. While the above
method entails using the same model for both steps, we can also look to contrast the strength of the
models used, to attempt to boost the performance of both frontier and small models.

Inference-time Exemplar Distillation. In our work, inference-time distillation refers to generating
analogical exemplars with a strong model (e.g. GPT-4o) and applying them to a weak model (e.g.
models with roughly 7-8B parameters). Our hypothesis driving this setting is: can higher quality
exemplars produced by strong models enable better deductive abilities with weak models?

Weak-to-Strong Cross-Lingual Analogies. Specialized multilingual models such as the Aya-23
models hold promise for our linguistic reasoning analysis, as they have been fine-tuned for instruction-
following across a wide range of languages. We propose using such models for generating analogical
demonstrations, as they may have a stronger understanding of language families and can produce
diverse exemplars, which we believe strong models may be able to deduce from.
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3.3 Experimental Setup

Datasets. We primarily evaluate our approaches on the modeLing dataset (Chi et al., 2024). This
dataset consists of problems written by the authors and hence uninvolved in prior Linguistics
Olympiads. This benchmark was released in 2024, and we rely on its recency to be more assured that
leakage is not a factor driving performance. We note that all problems examined are purely text-based;
while there exist linguistics puzzles that require deduction from images, filling in diagrams, etc., the
benchmark we evaluate on does not include such problems. This suggests that future work could study
the performance of multimodal models on these problem types. We also evaluate on the LINGOLY
dataset (Bean et al., 2024), which features 1,133 problems and expands beyond "Rosetta Stone"
translation problems detailed in Section 2.1 to include the Pattern (translation based on grammatical
patterns), Match-up (matching translation pairs), Monolingual (text purely in an unknown language),
Computational (identifying errors in machine translation), and Text (longer text in multiple, often
higher-resource languages) problem types. The results are included in Section 4.3.

Models. We evaluate with the following models:

• OpenAI models: GPT-4o, GPT-4, and GPT-3.5-turbo
• Open-weight models: Llama 3.1 8B-Instruct, Llama 3.1 70B-Instruct, Llama 3.1 405B-

Instruct (Dubey et al., 2024), Mixtral 8x7B-Instruct-v0.1 (Jiang et al., 2024), and Mixtral
8x22B-Instruct-v0.1

• Multilingual Instruction-tuned Models: Aya-23 8B and Aya-23 35B (henceforth referred to
as Aya-8B and Aya-35B) (Aryabumi et al., 2024)

OpenAI models are inferenced with the OpenAI API, while the open-weight and multilingual
instruction-tuned models are queried with the Together AI API and Apple MLX, respectively.

4 Results

We report exact match (EM) scores for all experiments performed. ChrF2 (Popović, 2015), a
character n-gram F-score measure, and corpus-level BLEU scores (Papineni et al., 2002) are recorded
in Appendix A. We do not treat these as primary metrics as BLEU ignores word ordering nuances
amidst short responses in machine translation, which is integral to measuring correctness in the
puzzles we explore (Callison-Burch et al., 2006; Chi et al., 2024), and we find the ChrF scores to be
noisy relative to EM scores. Smaller models with weaker instruction-following capabilities often
failed to produce their output in the exact desired format specified in the prompts. To ensure that
reliable exact match scores are reported while some responses may have parsing issues relative to
the expected format, the authors of this work manually examined each response to confirm whether
the output generated contains the target response. To enforce standardization across our evaluation
procedure, this was performed for all experiments; this was not applicable for stronger models whose
responses exactly followed the desired output format.

4.1 Chain-of-Thought Linguistic Reasoning

The results of baseline methods are in Table 1. The prompts for all experiments are included in
Appendix F, and all experiments are averaged over 3 runs. For the "CoT with rationale experiment",
we take the best of using 512 and 4096 max tokens (see Appendix B). For the "few shot" results, we
take the best out of two different prompt settings, ablated on in Appendix C.

We report a few key observations below:

Baseline Results and Zero-Shot Performance. Our strongest baseline result is achieved with
Llama-3.1-405B-Instruct producing CoT rationales, at 65.81%. GPT-4o fails to exceed 60% on any
single run. Among smaller models, Llama-3.1-8B-Instruct performs comparably to Aya-35B and
Mixtral-8x7B-Instruct, outperforming it on some baselines, which may be attributable to a stronger
and more recent base model. We also observe that GPT-4o and Llama-3.1-405B-Instruct do indeed
solve a few puzzles (2 and 4 samples, respectively) in the zero-shot setting. Given the former was
released before the modeLing dataset, and the latter was released just shortly after, we do not believe
this to be a sign of leakage; furthermore, each correct question was from a different language.
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Model Zero-Shot Few-Shot w/o CoT Few-Shot w/ CoT Few-Shot CoT w/ Rationales
GPT 3.5-Turbo 0% 25.74% 26.10% 38.6%
GPT-4 0% 56.25% 45.22% 45.59%
GPT-4o 1.10% 59.19% 58.82% 55.88%

Llama-3.1-8B-Instruct 0% 22.79% 16.91% 23.16%
Llama-3.1-70B-Instruct 0% 45.22% 44.49% 42.28%
Llama-3.1-405B-Instruct 1.47% 61.76% 59.19% 65.81%
Mixtral-8x7B-Instruct 0% 22.43% 22.06% 16.18%
Mixtral 8x22B-Instruct 0% 45.59% 43.38% 39.71%

Aya-23-8B 0% 9.93% 7.35% 5.88%
Aya-23-35B 0% 23.53% 20.59% 14.34%

Table 1: Baseline experimental results using chain-of-thought methods, reporting exact match. The
models have been split into three groups, corresponding to the models noted in Section 3.3. All
results reported are average of 3 runs at a temperature of 0.3, to address sampling variance.

Strong models produce rationales without being instructed to. We find that strong models
such as GPT-4o and GPT-4 produce chain-of-thought stepwise rationales for responses, even in the
zero-shot and few-shot settings, without including a chain-of-thought prompt or including rationales
in the exemplars. This is a key reason why the few-shot without chain-of-thought setting performs
the highest for both models. Furthermore, when prompted with rationale-inducing exemplars (see
Appendix F), these strong models produce rule libraries from the exemplars, akin to (Zhu et al.,
2024), leading to very lengthy responses; some models such as Llama-3.1 70B fall into loops of
repeating the same rule many times. This necessitates the use of a higher number of max tokens to be
generated, to ensure that the final answer is indeed outputted, although this makes human verification
of response correctness harder due to their length; we report ablations on this in Appendix B.

Certain models perform uncertainty-based refusal. Some models, such as Mixtral-8x7B-Instruct
and Mixtral-8x22B-Instruct respond to test instances by stating an inability to perform the desired
task. This behavior especially appears in CoT with rationale exemplars; interestingly, this occurs after
the implicit induction stage has been performed. For instance, with Mixtral-8x22B-Instruct, the model
enumerates a set of word-level translations between the target language and English, respectively,
then upon recognizing ambiguity in one of the word-level translations, it claims that solving the
problem is impossible without additional information. By contrast, models such as GPT-4o instead
output multiple candidate answers when it is not entirely certain. We include qualitative examples of
this behavior in Appendix E. This appears to reinforce the findings of the Qiu et al. (2024) in that
models are unable to reliably apply their inductively learned rules.

Our analogical reasoning method introduces an inference-time approach to boost deductive reasoning,
by deliberately using their learned multilingual knowledge to guide puzzle solving.

4.2 Two-Stage Analogical Reasoning

To critically explore the evaluation settings introduced in Section 3.1, we select 2 frontier models –
GPT-4o and Llama-3.1-405B-Instruct – which were the strongest performers in our baselines. We
select 2 weaker models – Aya-35B and Llama-3.1-8B-Instruct – for the inference-time distillation
and weak-to-strong prompting experiments. These models performed comparably to one another in
the baselines, and allow us to contrast multilingual specialization against a generalist model with
multilingual support. The experiments with Llama-3.1-8B-Instruct are included in Appendix I.

We also establish an upper bound on the performance we can attain with our approach, by a pseudo-
open-book method with oracle language families. That is, for each language in the evaluation set,
rather than prompting the model to implicitly infer the language family and other languages which
are a member of it, we abstract away the former by providing the language family in the prompt. We
suggest that a human expert with strong cross-lingual reasoning abilities would be able to deduce such
relationships with similar languages, so providing language family labels eliminates one uncertainty
source in the model’s generations. The results of this are included in Figure 2b.
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Generator
Deducer GPT-4o Llama-3.1-405B-Instruct Aya-23-35B

GPT-4o 66.91% 71.69% 21.32%
Llama-3.1-405B-Instruct 67.28% 67.65% 20.22%
Aya-23-35B 65.44% 71.32% 15.44%

Table 2: Pairwise results with our 2-stage analogical prompting method. The left column denotes the
model generating the analogical exemplars, and the top row denotes the model applying the generated
and provided exemplars to answer test puzzles. These results address the self-generated analogical
reasoning, inference-time distillation, and weak-to-strong prompting settings posed in Section 3.1.

Analogical reasoning boosts frontier models. We find that 2-stage analogical reasoning pushes
the boundaries of the performance of frontier models, relative to their best baseline results. Solely
considering the self-generation setting (where the same model both generates analogical exemplars
and applies them), GPT-4o improves 7.2% (59.19% → 66.91%), and Llama-3.1-405B-Instruct
improves 1.8% (65.81% → 67.65%). We subsequently observe even stronger gains for both models
as the deducer, when selecting different models as the analogical exemplar generator. In the first
stage, both of these frontier models correctly identify the language family at a fairly high rate (see
Appendix H), select a few languages from said family, and generate analogical puzzles for those
auxiliary languages, as intended. Then, in the second stage, the model considers the tokens in the test
phrase, and analyzes how each is to be translated to the target language, and combines them together
in the appropriate order following the syntactical patterns observed from the given exemplars. Thus,
it appears that the model uses the analogical exemplars to better induce the mappings of words in the
target language to words in the source language, which it then applies to the target phrase.

Weak analogical "supervision" improves performance. We find that generating the analogical
exemplars with Aya-35B and applying them to the test sample with Llama-3.1-405B-Instruct yields
71.32%, a 5.5% improvement over the best baseline for Llama-3.1-405B-Instruct (65.81% →
71.32%). We similarly find that leveraging Aya-35B-generated exemplars and applying them with
GPT-4o yields a 6.2% improvement over the best GPT-4o baseline setting (59.19% → 65.44%).
With Llama-3.1-405B-Instruct, using Aya-generated exemplars outperforms using self-generated
exemplars, by 3.7% (67.65% → 71.32%). Our findings suggest that when equipped with the right
tools (analogical demonstrations) from effective multilingual reasoners, strong deducers can thrive.

This claim is further reinforced by the inference-time distillation results: smaller models such as
Aya-35B do not benefit from the analogical exemplars, regardless of the analogical generator. At
the same time, using the GPT-4o exemplars applied by Llama-3.1-405B-Instruct yields 71.69%, our
strongest result across all evaluation settings. Moreover, the reverse direction (Llama-3.1-405B-
Instruct exemplars applied by GPT-4o) yields an 8.09% improvement over the best GPT-4o baseline
result. From these findings, we conclude that analogical exemplars generated by good multilingual
reasoners do not "unlock" deductive reasoning abilities for models without them (Aya-35B); however,
for strong baseline reasoners (Llama-3.1-405B, GPT-4o), better exemplars help performance.4

Frontier models understand language families. We compare model performance with and without
oracle language families, finding that prompting models to infer the language family is superior. We
observe that frontier models such as GPT-4o and Llama-3.1-405B, as well as specialized multilingual
models like Aya-35B, have a strong parametric knowledge of language families, and do not need to
rely on language family labels to identify similar languages. Furthermore, the model performing
retrieval of the language family helps it to identify a few languages within the family that will help
it, bootstrapping from the provided exemplars, whereas providing the language family often leads
to the model listing many languages in the family and attempting to produce exemplars for all of
them. We hypothesize that this is a source of noise; demonstrations beyond a certain number yield
diminishing returns in performance. That is, the oracle language families setting stimulates inductive

4We note that while it would have been beneficial to acquire expert annotations on the correctness of the
exemplars, this is extremely challenging given the many endangered and nearly-extinct languages present in the
dataset, with only a few thousand speakers in the world.
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(a) Best baseline vs. best analogical (b) Inferred families vs. oracle families

Figure 2: Figure (a) contains a comparison of the best baseline (in Table 1) with the best 2-stage
analogical reasoning result (in Table 2), for our two frontier models as the deducer. We find
analogical to improve GPT-4o by 8.1% and Llama-3.1-405B-Instruct by 5.9%. Figure (b) compares
self-generated analogical reasoning methods, with prompt-determined language families ("inferred
families") and human-annotated language family labels ("oracle families").

cross-lingual reasoning, but makes deductive reasoning more challenging from many exemplars.
Specific examples of this behavior are included in Appendix E, and the language families table is in
Appendix G. We also include further discussion on the language families identified by GPT-4o and
Llama-3.1-405B-Instruct in the inferred families setting, in Appendix H, and find that they achieve a
high correctness rate relative to the oracle labels.

Language Isolates and Proxy Languages. Language isolates would appear to pose particular
difficulty to our models, as by definition, they do not belong to any well-defined language family. As
a result, we rely solely on the models’ ability to trace grammatical correspondences based on the
languages it has seen in pre-training, even for our experiments with oracle language family labels.
While in the baseline experiments, our models often believed that the target language is imaginary,
prompting for language families leads models to note that the language is isolate. They then attempt
to either follow syntactic or morphological patterns to induce a new fictitious language which is
similar to the target, or select learned geographically-proximate languages. For the language of
Bangime, spoken in Mali, the model either retrieves languages from families in the same geographical
region, such as Dogon, or creates a new language (e.g. "Xangime") for which it generates analogical
exemplars (see Appendix E). Analyzing at the instance level, this improves the correctness on the
Bangime puzzles from 27.8% to 50% for GPT-4o in the self-generated setting.

In summary, our results suggest that the ability of the model to deduce by leveraging the given and
analogically-generated exemplars is the key performance driver. This is lent credence by the efficacy
of weak-to-strong prompting (i.e. relying on the exemplars of Aya-35b), while the performance
of inference-time distillation remains roughly similar. Thus, we posit that the "strength" of a
linguistic reasoning agent can be decomposed along two lenses, corresponding to our two stages: (1.)
generating analogical exemplars by language identification and multilingual reasoning, and (2.)
deducing from hypotheses in complex evaluation settings.

4.3 Expanding Beyond Rosetta Stone: Diverse Linguistics Olympiad Tasks

To further the generalizability of our findings, we also evaluate our 2-stage analogical reasoning
method on the LINGOLY dataset (Bean et al., 2024). This dataset includes 1,133 subquestions across
90 languages, derived from the UK Linguistics Olympiad (UKLO), featuring several problem types
beyond the Rosetta Stone category which constitutes the primary focus of our work (although Rosetta
Stone problems form 46% of the dataset), as described in Section 3.3. The difficulty levels vary
from Breakthrough (easiest, for newcomers to the UKLO), Foundation, Intermediate, Advanced, and
Round 2 (hardest, invitational qualifier for the IOL). As such, applying our approach with this dataset
serves as a valuable test of the transferability of this method across datasets and cross-lingual tasks.

We report the results for GPT-4o in the self-generated analogical prompting setting, in the bubble plot
style of Bean et al. (2024). We demonstrate the performance (exact match scores) of the model in each
combination (difficulty level and question type), as well as the improvements (denoted ∆Baseline)
over the baseline results reported in Bean et al. (2024), which we have also included in Appendix
D. We followed the same evaluation procedure as we did with modeLing, handling parsing issues
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Figure 3: Two-Stage Analogical Prompting (Ours) Results with GPT-4o on LINGOLY. The size of
the bubbles correspond to the number of subquestions of that type present in the dataset.

accordingly for reliable exact match scoring. Note that all categories for which the table is empty
are those for which no problem of that type exists in the dataset at present (or rather, there has not
been such a problem in the recent history of the UK Linguistics Olympiad, on the basis of which the
dataset was curated).

Computational Text Monolingual Match-up Pattern Rosetta
Breakthrough +0% +33% +7%
Foundation +0% +0% +2% +18%

Intermediate +25% +30%
Advanced +19% +17% +20% +25%
Round 2 +14% +12% +22% +29%

Table 3: ∆Baseline scores, measuring the improvement yielded by our Two-Stage Analogical Prompt-
ing method over the baseline results, included in Appendix D.

We find that our results significantly outperform the baseline by a sizable amount across all difficulty
levels, and across all tasks. Moreover, the results outperform the Claude-3 Opus state-of-the-art scores
reported in the LINGOLY paper on every single setting, with the exception of the Breakthrough
Rosetta Stone (easiest problems). Specifically, we find that our 2-stage analogical prompting method
enables GPT-4o to solve questions of the monolingual type which it could not before (0% → 19%
and 14%); furthermore, the correctness rates jump considerably for some of the hardest categories
over the baseline (1.81x improvement in Round 2 Pattern, 1.96x in Advanced Rosetta Stone, and
3.42x in Round 2 Rosetta Stone). It is especially worth noting that the Round 2 Rosetta Stone results
corroborate with our results on modeLing in Section 4.2; while the other categories often have some
higher-resource languages such as Dutch, the Round 2 problems are often extremely low-resource.
These findings suggest that our method generalizes across both datasets and question types.

5 Related Work

5.1 Large Language Model Reasoning.

Few-shot Chain-of-Thought Reasoning. In-context learning has emerged as an exciting phe-
nomenon in language models, enabling them to learn from few-shot demonstrations at inference-time
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to generalize to various tasks (Brown et al., 2020; Wei et al., 2022). At the same time, the chain-of-
thought (CoT) reasoning method guides language models to think systematically through a problem,
in a step-by-step manner (Wei et al., 2024; Kojima et al., 2022). In particular, applying chain-of-
thought prompting (zero-shot or few-shot) with the goal to induce rationales yields explanations of
why each step was performed, along with performance and faithfulness improvements (Nye et al.,
2021; Lampinen et al., 2022). Various similar approaches (Yao et al., 2023; Wang et al., 2023;
Besta et al., 2024) have been proposed to sample more diverse generations from models, leveraging
test-time compute to improve reasoning performance; we believe such methods make for interesting
lines of future research for the linguistic reasoning task.

Inductive Reasoning in LLMs. Inductive and deductive reasoning skills in language models have
often been studied in the context of logical or abstract reasoning problems. Much of this prior work on
inductive reasoning with language models studies evaluation settings with more clearly defined rules
to be inductively learned and then applied; these works suggest gaps relative to the human intelligence
in performing both inductive and deductive reasoning (Xu et al., 2024; Gendron et al., 2024; Yang
et al., 2024c). In particular, Yang et al. (2024c) notes the need for more challenging tasks in inductive
reasoning to better assess the boundaries of LM capabilities, such as hypothesis generation and
pattern induction. Works such as Tang et al. (2023) demonstrate that models struggle to create rules
by induction when the semantics of the exemplars do not follow in a commonsense manner – in our
work, generating analogical exemplars similar to the models pre-training data may steer the model
towards a relative "commonsense" representation of the rules underlying the exemplars.

Several works dive into the realm of hypothesis search, determining the ability of LMs to pose
hypotheses about the problem (e.g. rules which exemplars follow) before seeking to deductively
apply them (Zhu et al., 2024; Qiu et al., 2024; Wang et al., 2024). Zhu et al. (2024) propose
hypotheses-to-theories (HtT), which learns a rule library from an induction stage, and then applies it
by a deduction stage; this multi-stage method is similar to our analogical approach, although we still
perform both induction and deduction together after analogical generation. Furthermore, their rule
library depends on verification – this is not possible in the linguistic reasoning task due to the lack of
a reliable feedback source to judge responses, aside from expert humans. As discussed earlier, Qiu
et al. (2024) demonstrates that models can propose rules well, but cannot consistently apply them.
Wang et al. (2024) proposes Hypothesis Search, a method which proposes hypotheses, implements a
subset of them as Python programs, and applies them to training samples to verify their correctness.

Exemplar Generation and Automated Reasoning. Analogical prompting (Yasunaga et al., 2024)
has been demonstrated to be an effective inference-time method to produce diverse, task-conditioned
exemplars, improving in-context learning. As noted above, this effectively serves as a knowledge
retrieval method which retrieves exemplars similar to (or directly from) the pre-training distribution
which the model has seen; RECITE (Sun et al., 2023) similarly retrieves passages directly from the
model’s memory. Methods such as SG-ICL (Kim et al., 2022) and Auto-ICL (Yang et al., 2024b)
also self-generate in-context exemplars in a similar manner as analogical prompting.

5.2 Multilingual Reasoning.

Multilingual reasoning in LMs for low-resource languages poses a unique challenge, as the pretraining
corpora and supervised fine-tuning datasets for many models are largely concentrated on a few high-
resource languages. XLT (Huang et al., 2023) introduces a prompt template which translates problems
in other languages to English and solves the problem with chain-of-thought in English. Qin et al.
(2023) aligns each step in the chain-of-thought between the source language and English explanations,
then solves the problem given this alignment; they also apply self-consistency with cross-lingual
alignments with a set of pre-specified target languages. Li et al. (2024) trains on code data with
multilingual comments, while using multilingual code prompts at inference time with symbolic
function API calls as a structured way to solve the reasoning problem.

Linguistic Reasoning Benchmarks. The PuzzLing Machines dataset (Şahin et al., 2020) first
introduced a set of Linguistics Olympiad problems to study the ability of language models to learn
from a small amount of data; they apply RoBERTa-based neural machine translation methods, but
demonstrate a vast gap (attaining less than 4% exact match performance). With concerns of potential
leakage given the vast web scraping performed in procuring pre-training tokens for language model
training, modeLing (Chi et al., 2024) introduced a new set of hand-written Linguistics Olympiad
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problems, demonstrating the performance of current models with CoT methods. The LINGOLY
(Bean et al., 2024) dataset presents problems from the UK Linguistics Olympiad competition, and
studies zero-shot and few-shot performance of current models categorized by question type.

6 Discussion

We propose applying analogical prompting as a test of inductive reasoning from diverse exemplars
for challenging linguistic puzzles. We find that language models can indeed follow grammar rule
similarities to generate analogical exemplars, and attempt to apply them adeptly. This yields improved
performance in self-generated analogical prompting with GPT-4o and Llama-3.1-405B, as well as
weak-to-strong prompting for those models employing Aya-35B-generated demonstrations. We also
show that Llama-3.1-405B-Instruct is the best current model for linguistic reasoning, as the first
model to achieve over 70% on the modeLing benchmark with our approach. The gains achieved are
attributable to the auxilary exemplars generated, which are in turn due to the model’s understanding
of language families and grammar rules from the vast pre-training data or its multilingual adaptation.

Furthermore, the ability of smaller and specialized multilingual models (Aya) to generate coherent
analogical exemplars, which improve frontier models over their own self-generated exemplars, is
promising towards developing widely-available multilingual reasoners. We find that the improvements
observed can be attributed to the auxiliary exemplars generated, which are in turn due to the model’s
understanding of language families and grammar rules from the pre-training data or its multilingual
adaptation. The errors made by current models due to an inability to apply diverse and complex
exemplars suggest that the linguistic reasoning task is an exciting and challenging evaluation setting
for LM reasoning at large. That is, seeking to emulate human reasoning, where deduction involves a
clear application of recognized patterns, provides a ripe space for future work.

The interesting phenomenon identified with language isolates also provides a glimpse of model
capabilities to follow grammatical similarities, rather than relying on knowledge retrieval of language
families. That is, the multilingual language understanding abilities of frontier models expand beyond
typological knowledge, going so far as to create proxy fictitious languages which enable it to solve the
problem correctly. We suggest that future efforts in multilingual adaptation be placed in identifying
techniques to guide languages models to support typologically unique languages.

Research at the intersection of machine translation and reasoning is important from a societal
perspective. With large language models being adopted widely, the need for multilingual capabilities
and rapid adaptation grows, and our work proposes an effective method by which this can be
performed at test-time, notably demonstrating evidence that models can follow language similarities.
The errors made by current models due to an inability to deductively apply rules induced from
exemplars suggest that the linguistic reasoning task is an exciting and challenging evaluation setting
for LM reasoning at large. That is, seeking to emulate human reasoning, where deduction involves a
clear application of recognized patterns, provides a ripe space for future work. We hope that these
findings can inspire future models releases to include evaluation on challenging multilingual tasks
such as these puzzles, and research on reasoning can explore the multilingual setting further in depth.

Limitations. We note that the reliance on exact match scoring as our primary signal of performance
is not ideal, as it is a binary indicator. We have sought to examine other metrics which correspond
to "partial credit" such as ChrF2 and BLEU; however, there are flaws in these methods as well. A
stronger human understanding of the rules which these extremely low-resource languages follow
could guide us to better metrics, especially capturing semantic meaning and word ordering inversions,
where appropriate. For instance, some languages might retain the same meaning while inverting the
word order – exact match is sensitive to this, and while ChrF2 and BLEU are not, we should only be
insensitive to ordering for languages which follow this property. We also recognized that the IOL
2024 problems could not be used as a benchmark with our method, as they require multimodality
– our method only analyzes unimodal text problems. Another limitation of our work is that we do
not have a reliable means of verifying the correctness of analogical exemplars, nor contrasting the
quality of exemplars generated across models to determine the best analogical generator model. An
expert annotator who could identify where a mistake was made in the model’s reasoning process
also would have been helpful to yield further insights into the fallacies of current models’ linguistic
reasoning.Nonetheless, our most effective deducer models are able to leverage exemplars generated
by models of various sizes for improved linguistic reasoning.
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Reproducibility Statement. We include all prompts used for generating our baseline experimental
results, and all analogical prompting methods, in Appendix F. We have also broken down the two
stages of our analogical reasoning method for clarity on how the method should be applied with two
separator models (e.g. weak-to-strong prompting, inference-time exemplar distillation). We evaluate
our work on the modeLing dataset, which is publicly available. We have included details of the
platforms through which the models we evaluate have been queried (OpenAI API, TogetherAI API,
Apple MLX), along with the list of models studied.
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A Results with ChrF and BLEU Metrics

While our primary results are included in Section 4 with exact match scoring, we also include the
ChrF2 and BLEU scores for those experiments. Although exact match is helpful for assessing
performance on absolute terms, character and word-level metrics can help in determining partial
progress. BLEU ignores word ordering nuances amidst short responses in machine translation, which
is integral to measuring correctness in the puzzles we explore (Callison-Burch et al., 2006; Chi
et al., 2024). Despite these challenges of using BLEU, we include the corpus-level scores as it is
a commonly-employed metric in machine translation settings. We use the ChrF2 score (Popović,
2015) as implemented in SACREBLEU (Post, 2018); this metric doubles the precision value in the
denominator of the F-score, placing more value on the recall. The inclusion of a character-level metric
is useful for robustness to morphologically rich languages in our low-resource setting. However, we
find the ChrF2 scores to be noisy relative to EM scores, which are the gold standard of performance
most akin to human judges for the Linguistics Olympiad competitions.

A.1 ChrF2 Scores for Baseline Experiments

Table 4: Baseline experiments as reported in Table 1, but with the ChrF2 metric instead.

Model Zero-Shot Few-Shot w/o CoT Few-Shot w/ CoT Few-Shot CoT w/ Rationales
GPT 3.5-Turbo 4.37 30.61 12.93 37.50
GPT-4 32.61 38.46 35.71 40.54
GPT-4o 37.50 39.47 40.54 40.54

Llama-3.1-8B-Instruct 0.25 40.54 48.39 45.45
Llama-3.1-70B-Instruct 38.46 34.09 38.46 41.67
Llama-3.1-405B-Instruct 27.27 38.46 38.46 38.46
Mixtral-8x7B-Instruct 39.47 4.10 1.49 12.30
Mixtral 8x22B-Instruct 42.86 38.46 2.42 34.88

Aya-23-8B 21.13 39.47 30 41.67
Aya-23-35B 27.27 46.88 46.88 45.45

These results seem to suggest that while they do not perform as well as the frontier models on exact
match, Llama-3.1-8B-Instruct and Aya-35B attain high ChrF2 scores, due to being close to the target
translation, but e.g. making a few character insertions or deletions, or word order changes. To that
effect, ChrF2 serves as a useful measure of "partial credit".

A.2 BLEU Scores for Baseline Experiments

Table 5: Baseline experiments as reported in Table 1, with corpus-level BLEU scores.

Model Zero-Shot Few-Shot w/o CoT Few-Shot w/ CoT Few-Shot CoT w/ Rationales
GPT 3.5-Turbo 0.06 5.33 14.65 19.96
GPT-4 0.52 40.07 16.70 6.14
GPT-4o 0.75 50.53 34.76 36.33
Llama-3.1-8B-Instruct 0.02 0.54 0.09 0.06
Llama-3.1-70B-Instruct 0.47 0.65 0.57 0.36
Llama-3.1-405B-Instruct 0.19 3.34 1.22 6.28
Mixtral-8x7B-Instruct 0.04 0.52 0.32 0.31
Mixtral 8x22B-Instruct 0.09 11.36 3.84 7.45

Aya-23-8B 0.04 4.54 4.24 5.88
Aya-23-35B 0.12 11.37 11.55 0.58

We find that BLEU scores are highest for GPT-4o. However, this is a somewhat noisy signal, as
Llama-3.1-405B attains the highest exact match performance, but very low corpus-level BLEU scores,
below several models which it outperforms on the stricter (EM) metric.

16



A.3 ChrF2 Scores for Analogical Reasoning Experiments

Table 6: Analogical reasoning experiments as reported in Table 2, with ChrF2 scores.

Generator
Deducer GPT-4o Llama-3.1-405B-Instruct Aya-23-35B

GPT-4o 40.54 38.46 46.88
Llama-3.1-405B-Instruct 40.54 42.86 46.88
Aya-23-35B 38.46 32.86 46.88

A.4 BLEU Scores for Analogical Reasoning Experiments

Table 7: Analogical reasoning experiments as reported in Table 2, with corpus-level BLEU scores.

Generator
Deducer GPT-4o Llama-3.1-405B-Instruct Aya-23-35B

GPT-4o 39.50 6.95 3.66
Llama-3.1-405B-Instruct 41.76 2.35 2.82
Aya-23-35B 30.27 3.11 3.81

B Ablations on Max Token Lengths for Rationale Generation

For the chain-of-thought baseline where English-Spanish translation with rationales is provided (from
Chi et al. (2024)), we observe that frontier models produce verbose outputs. These outputs include
explaining the meaning of each word in the exemplars for the target language (inductive learning),
before applying them to the test sample. We find that including a max token length of 4096 as
opposed to 512 yields vastly different results.

Table 8: Ablations on max token length, comparing max tokens to generate values of 512 and 4096.

Model 512 Max Tokens 4096 Max Tokens

GPT 3.5-Turbo 30.51% 38.60%
GPT-4 41.91% 45.59%
GPT-4o 55.51% 55.88%

Llama-3.1-8B-Instruct 19.85% 23.16%
Llama-3.1-70B-Instruct 42.28% 1.1%
Llama-3.1-405B-Instruct 37.87% 65.81%
Mixtral-8x7B-Instruct 16.18% 11.76%
Mixtral 8x22B-Instruct 30.88% 39.71%

In particular, we find that Llama-3.1-405B-Instruct, Mixtral-8x22B-Instruct-v0.1, and GPT-3.5-Turbo
improve significantly, by over 8%. Notably, Llama-3.1-405B-Instruct with the ability to generate up
to 4096 tokens yields our strongest baseline result of 65.81%. Conversely, Llama-3.1-70B-Instruct
surprisingly drops to 1.1%, performing almost as poorly as the zero-shot baseline. Upon manual
inspection, we find this to be due to entering loops of repeating the same rationale step until the max
token limit is reached.
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C Few-Shot Prompt Ablations

We also include the results with the provided few-shot exemplars, while using two different instruc-
tions. The "zero-shot prompts" are the system prompt and instruction used for zero-shot evaluation,
where no reference is made to the existence of few-shot exemplars. The few-shot prompt used is a
close adaptation of that used in Chi et al. (2024). Surprisingly, we find that this makes a slight, yet
noticeable difference in results. The prompts used can be found in Appendix F.

Table 9: Comparison between two different few-shot prompting scenarios; the first involves providing
the exemplars to the model, but making no mention of them in the instruction. The later also provides
the exemplar, but instructs the model to only use those to solve the problem.

Model "Zero-Shot" Prompts 4096 "Few-Shot" Prompts

GPT 3.5-Turbo 25.74% 12.50%
GPT-4 56.25% 53.68%
GPT-4o 58.09% 59.19%

Llama-3.1-8B-Instruct 21.32% 22.79%
Llama-3.1-70B-Instruct 42.65% 45.22%
Llama-3.1-405B-Instruct 60.29% 61.76%
Mixtral-8x7B-Instruct 11.76% 22.43%
Mixtral 8x22B-Instruct 45.59% 44.49%

Notably, GPT-3.5-Turbo and GPT-4 perform better with the "zero-shot prompts"; we believe this
to be attributable to the few-shot prompt specifying to solve the puzzle only using the in-context
exemplars. This perhaps could be limiting the model from drawing from its knowledge base to solve
the problem. At the same time, Mixtral-8x7B performs much better with the few-shot prompts.

D Baseline and Two-Stage Analogical Prompting Results on LINGOLY

We include below the baseline results with GPT-4o in both tabular (Table 11) and bubble plot (Figure
4) format, as reported in Bean et al. (2024), to serve as a counterpart for the figure included in Section
4.3. We also include a tabular version of the results of our method, corresponding to our bubble plot
in 4.3, in Table 11.

Table 10: Baseline results with GPT-4o, as reported in LINGOLY (Bean et al., 2024), on exact match.

Computational Text Monolingual Match-up Pattern Rosetta
Breakthrough 100% 47% 79%
Foundation 0% 100% 67% 62%

Intermediate 58% 34%
Advanced 0% 33% 53% 26%
Round 2 0% 30% 27% 12%

Table 11: Results with Two-Stage Analogical Prompting (Ours) with GPT-4o on exact match.

Computational Text Monolingual Match-up Pattern Rosetta
Breakthrough 100% 80% 86%
Foundation 0% 100% 69% 80%

Intermediate 83% 64%
Advanced 19% 50% 73% 51%
Round 2 14% 42% 49% 41%
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Figure 4: Baseline Results with GPT-4o on LINGOLY. The size of the bubbles correspond to the
number of subquestions of that type present in the dataset.

E Qualitative Examples

E.1 Analogical Demonstrations

Analogical exemplars generated by GPT-4o for target language Ngadha:

"Based on the provided translations, it appears that Ngadha is a language that belongs to the
Austronesian family, specifically within the Central-Eastern Malayo-Polynesian group. Other
languages in this subgroup include those from the Flores-Lembata languages, such as Rembong
and Lamaholot.are some example puzzles translating from Rembong and Lamaholot to English,
and vice versa. Translating from Rembong to English: ua gina : big house : ga’e buin : small
flower : kafi gala : black chair : watu lin : long stone : regu boku : white cloud : poa mina
: green forest Translating from English to Rembong: big river : rehu gina : small bird : ki’i
buin : black mask : meke gala : long road : jalan lin : white sky : ara boku : green grass : lea
mina Translating from Lamaholot to English: mawar gete : big rose : sarik wena : small rock :
moto wulan : black moon : jalan rake : long street : lopo puti : white hut: nara hoban : red boat
Translating from English to Lamaholot: big tree : po’o gete : small river : wae wena : black
cloud : lero wulan : long valley : tana rake : white mountain : weling puti : red fruit : bua
hoban"

GPT-4o generated analogical exemplars for target language:

"**[Example Puzzle: Quechua to English]**: 0̆0f1awi: eye : hamuy: come : wasi: house :
sacha: forest : yacu: water **[Test Puzzle: Quechua to English]**: llapa: **[all]** : pacha:
**[time]** : chay: **[that]** : pu0̆0f1uy: **[sleep]** : qhari: **[man]****[Example Puzzle:
Nahuatl to English]**: atl: water : calli: house : mixtli: cloud : teotl: god : cuauhtli: eagle
**[Test Puzzle: Nahuatl to English]**: tlitl: **[fire]** : yollotl: **[heart]** : in: **[the]** :
michin: **[fish]** : huitzilin: **[hummingbird]**"

Analogical exemplars generated by Aya-23-35B for target language Kalam (an example of generating
new languages which it believes to be similar as Kalam):
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"Here are some puzzles for translating from and to languages in the same family as Kalam:
**Puzzle 1: Translating from Languge X to English**: fey: fly: fey-gaw: (fly) away: gaw:
go: gaw-fey: (go) away: nack: take: nack-fey: take (and) fly: nack-gaw: take (and) go: nack-
fey-gaw: take, fly, and go**Puzzle 2: Translating from English to Language Y**: walk: yack:
walk quickly: yack-yack: run: yack-fey: run away: yack-fey-gaw: take and walk: nack-yack:
take and fly: nack-fey: take, walk, and fly: nack-yack-fey**Puzzle 3: Translating from English
to Language Z**: eat: ze: eat quickly: ze-ze: drink: ze-fey: drink water: ze-fey-gaw: take
and eat: nack-ze: take, eat, and drink: nack-ze-ze-feypuzzles help establish the relationships
between the languages and English, with each puzzle focusing on a specific theme (going/flying,
eating/drinking, and taking) to illustrate the translation patterns. note that the languages X, Y,
and Z are fictional and used for illustrative purposes only."

Analogical exemplars generated by Aya-23-35B for target language Bangime:

"Here are some puzzles translating from and to languages in the same family as Bangime:
**Puzzle 1: Translating from Mande languages to English**- Manding: M̈i na soo.¨: Ï see
you.¨- Manding: T̈a na firi.¨: Ẅe hear you.¨- Manding: T̈a na biri.¨: Ẅe bite the bone.¨**Puzzle
2: Translating from English to Mande languages**- English: Ï am flying.¨: M̈i na fodoo.¨-
English: T̈he dog drinks.¨: D̈ugul0̆0fc na kur0̆0fc.¨- English: T̈he fish sleeps.¨: P̈ishul0̆0fc na
sara.¨**Puzzle 3: Translating from Niger-Congo languages to English**- Igbo: M̈ uwe.¨: Ï
see you.¨- Igbo: M̈ nwunye.¨: Ẅe hear you.¨- Igbo: M̈ gbuo.¨: Ẅe bite the bone.¨**Puzzle
4: Translating from English to Niger-Congo languages**- English: Ï am hitting.¨: M̈ uwu.¨-
English: T̈he person drinks.¨: Öme na kur0̆0fc.¨- English: T̈he bone sleeps.¨: Ëji na sara.¨puzzles
showcase the translation relationships between Bangime and other languages in the same
language family, helping to establish patterns and rules for accurate translation."

E.2 Uncertainty-Based Refusal

Mixtral-8x22B-Instruct-v0.1 expressing an inability to answer the question, despite producing a
"rule library" based on the given exemplars. This is due to the incompleteness of the library in
understanding what the phrase "mise" means, from the exemplars.

Based on the given examples, we can infer the following:

1. "eni" means "we" 2. "moni" means "see" 3. "syiene" means "hear" 4. "wo" means "you"
5. "fyani" means "fly" 6. "dhi" means "eat" 7. "ubhwo" means "bird" 8. "mise" is not given a
direct translation in the examples, but we can infer that it is a noun because it follows the pattern
of other nouns in the sentences.

Given the sentence "eni mise", we can break it down as follows:

1. "eni" means "we" 2. "mise" is a noun, but we don’t have a direct translation for it.

Therefore, the sentence "eni mise" translates to "We [mise]". Without more context or examples,
we cannot provide a more specific translation for "mise".

F Prompts Used in Experiments

F.1 Zero-Shot Prompts

F.1.1 System Prompt

’You are an experienced linguist with background in a wide variety of languages, and translating
them to and from English. You have been asked to translate a series of phrases from a language
to English, or from English to that language. You have never seen this language before, but you
are confident in your ability to translate the phrases accurately.’

F.1.2 Instruction
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’This is a translation puzzle. Here is a phrase in Language (a never-seen-before foreign language)
or in English. If the test phrase is in English, your task is to translate it into Language. If the test
phrase is in Language, your task is to translate it into English. When you are done with your
answer, provide your outputs in the format of **[your answer]**.’

F.2 Few-Shot and Analogical Reasoning System Prompt

’You are an experienced linguist with background in a wide variety of languages, and translating
them to and from English. You have been asked to translate a series of phrases from a language
to English, or from English to that language. You have never seen this language before, but you
have been given a few examples of phrases in the language and their English translations to help
you. You are confident in your ability to translate the phrases accurately.’

F.3 Few-Shot, no Chain-of-Thought

’This is a translation puzzle. Below are example phrases in Language (a never-seen-before
foreign language) as well as their English translations. Some test phrases follow them. If the
test phrase is in English, translate it to Language; if the test phrase is in Language, then translate
it to English. Your task is to look closely at the example phrases and use only the information
from them to translate the test phrases. When you are done with your answer, provide your
outputs in the format of **[your answer]**.’

F.4 Few-Shot with Chain-of-Thought, no Rationale

’This is a translation puzzle. Below are example phrases in Language (a never-seen-before
foreign language) as well as their English translations. Some test phrases follow them. Your task
is to look closely at the example phrases and use only the information from them to translate
the test phrases. If the test phrase is in English, translate it to Language; if the test phrase is in
Language, then translate it to English. Take a deep breath and work on this problem step-by-step
in a logical way, using careful analytical reasoning to get the correct result. When you are done
with your answer, provide your outputs in the format of **[your answer]**.’

F.5 Few-shot Chain-of-Thought with rationale prompt

’This is a translation puzzle. In a moment, you will use logic and analytical reasoning to
translate from a never-seen-before language (Language) to English. If the test phrase is in
English, translate it to Language; if the test phrase is in Language, then translate it to English.
As a training example, here are some expressions in Spanish and their translations in English.1.
Spanish: ventana roja: red window2. Spanish: ventana azul: blue window3. Spanish: manzana
azul: blue applethe above examples, translate the following.: manzana roja: The first step we
notice is that the word “ventana” must mean window because (1) the word “ventana” appears
twice between sentences 1 and 2, and (2) the only word that appears twice in the English
translation is “window.” Next, we infer that “roja” must be “red” and “azul” must be “blue”
by process of elimination. Next, we guess that in Spanish, the noun precedes the adjective
because “ventana” comes before “roja” and “azul.” Therefore, the noun in sentence 3 (“apple”)
must correspond to the word preceding the adjective (“manzana”) in the Spanish translations.
Putting this together, “manzana roja” must mean “red apple” in English.ANSWER: English: red
apple.Now, given the following test phrase, please translate it. Take a deep breath and work on
this problem step-by-step in a logical way, using careful analytical reasoning to get the correct
result. When you are done with your answer, provide your outputs in the format of **[your
answer]**.’

F.6 One-Stage Analogical Prompting
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"This is a translation puzzle. In a moment, you will use logic and analytical reasoning to
translate from a never-seen-before language (Language) to English. Given a few example
puzzles translating from Language to English (or English to Language), generate 3 similar
puzzles translating other languages in the same family as Language to English, and 3 similar
puzzles translating from English to those languages in the same family as Language. The
puzzles that you generate should be distinct from one another, the example puzzles, and the test
puzzle. They also should be from a diverse set of languages within the same language family
as the test puzzle. Your task is to look closely at the example puzzles and the puzzles that you
have generated in order to solve the test puzzle. Take a deep breath and work on this problem
step-by-step in a logical way, using careful analytical reasoning to get the correct result. When
you are done with your answer, provide your outputs in the format of **[your answer]**."

F.7 Two-Stage Analogical Prompting

F.7.1 Analogical Exemplar Generation Prompt, Inferred Language Families

"Given a few example puzzles translating from {name} to English (or English to {name}),
identify few other languages in the same family as {name}, generate a puzzle similar to
translating other languages in the same family as {name} to English, and another puzzle
translating from English to those languages in the same family as {name}. The puzzles that you
generate should be distinct from one another than the example puzzles, and the test puzzle but
should help establish the relationships for translation between {name} and English. They also
should be from a diverse set of languages within the same language family as the test puzzle.
Provide your outputs in the format of **[your answer]**."

F.7.2 Analogical Exemplar Generation Prompt, Oracle Language Families

"Given a few example puzzles translating from name to English (or English to {name}), identify
few other languages in the {lang_family} family, generate a puzzle similar to translating other
languages in the same family as {name} to English, and another puzzle translating from English
to those languages in the same family as {name}. The puzzles that you generate should be
distinct from one another than the example puzzles, and the test puzzle but should help establish
the relationships for translation between {name} and English. They also should be from a
diverse set of languages within the same language family as the test puzzle. Provide your outputs
in the format of **[your answer]**."

F.7.3 Deduction Step Prompt

"This is a translation puzzle. In a moment, you will use logic and analytical reasoning to translate
from a never-seen-before language ({name}) to English. Your task is to look closely at the
example puzzles and the puzzles that you have generated in order to solve the test puzzle. Take
a deep breath and work on this problem step-by-step in a logical way, using careful analytical
reasoning to get the correct result. When you are done with your answer, provide your outputs
in the format of **[your answer]**."
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G Oracle Language Families

We include here the table of oracle language family labels used for the oracle vs inferred families
experiments in Section 4.2. These labels were curated by the authors, and are generally faithful to
their respective language taxonomies. For instance, for the language of Seri, which some linguists
consider to be a member of the Hokan language family while others treat it as an isolate, we provide
the "Hokan" label when prompting the model to produce exemplars from the same family.

Table 12: Oracle language families used for the results in Figure 2b, where we present a language
family label to the model rather than (implicitly) instructing it to infer the language family.

Target Language Oracle Language Family

Abun West Papuan
Ainu Ainu / Language Isolate

Ayutla Mixe Mixe-Zoque
Bangime Language Isolate

Chimalapa Zoque Mixe-Zoque
Dogon Niger-Congo

Engenni Niger-Congo
Guugu Yimithirr Pama-Nyungan

Kalam Kalam
Komi-Ziran Uralic

Kutenai Language Isolate
Mapudungan Araucanian

Misantla Totonac Totonacan
Mixtepec Zapotec Oto-Manguean

Ngadha Austronesian Malayo-Polynesian
Niuean Malayo-Polynesian

Rapa Nui Austronesian Malayo-Polynesian
Seri Hokan / Language Isolate

Totonac Totonacan

H Language Identification in Analogical Prompting with Inferred Families

We analyze the ability for frontier models (GPT-4o, Llama-3.1-405B-Instruct) to produce the correct
language family labels solely by being prompted to produce exemplars in the same language family.
The results for Llama-3.1-405B-Instruct are included in Table 13, and the results for GPT-4o are
included in Table 14. The phrase "synthetic" is used as a catch-all for the model determining that the
language is "constructed", "synthetic", "fictional", "hypothetical", or any similar synonym. There
are some instances where the model does not produce any label for the language family, and begins
immediately producing exemplar puzzles from some implicitly chosen set of languages, without
stating that list; this is listed in the tables as "None".

For Language Isolates that are debated (e.g. Seri, which is considered an isolate by some linguists,
and a member of the Hokan language family by others), we specify which label was provide, but
assign either as correct when determining each model’s correctness rate. Furthermore, the model may
not necessarily produce the leaf-level language family, but rather, a larger family which includes the
leaf-level one (e.g. producing the label of Trans-New Guinea instead of Kalam, which is a member
of the Trans-New Guinea family).

Our analysis reveals that both models are quite adept at identifying language families reliably. In fact,
Llama-3.1-405B-Instruct’s language family correctness out of the 272 samples, relative to the oracle
labels in Appendix G is an astounding 249

272 = 91.54%, while GPT-4o’s rate is 202
272 = 74.26%.
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Table 13: Inferred language families by Llama-3.1-405B-Instruct, where the model is prompted in
our 2-stage approach to first produce exemplars in the same language family and then apply them to
solve the test phrase. The model often identifies the language family which the target language is a
member of ("label") which we report below, prior to identifying languages within that family, that are
geographically proximal, or if the model predicted that it is an isolate or believes the language to be
synthetic, produces similar synthetic languages.

Target Language Number of Questions Inferred Language Family

Abun 4 West Papuan (4)
Ainu 8 Language Isolate (8)

Ayutla Mixe 4 Mixe-Zoque (4)
Bangime 36 Isolate (25), Niger-Congo (11)

Chimalapa Zoque 12 Zoquean (12)
Dogon 8 Niger-Congo (6), None (2)

Engenni 25 Niger-Congo (25)
Guugu Yimithir 10 Pama-Nyungan (10)

Kalam 6 Trans-New Guinea (6)
Komi-Ziran 6 Uralic (6)

Kutenai 5 Language Isolate (5)
Mapudungan 24 Araucanian (14), Synthetic (10)

Misantla Totonac 4 Totonacan (4)
Mixtepec Zapotec 24 Oto-Manguean (24)

Ngadha 14 Austronesian (14)
Niuean 18 Polynesian (18)

Rapa Nui 37 Polynesian (37)
Seri 21 Hokan / Isolate (17), Isolate (4)

Totonac 6 Totonacan (6)

We report anecdotally that while both models appear to have a strong understanding of the leaf-
level language families (e.g. the Edoid family), Llama-3.1-405B-Instruct seems to have a stronger
taxonomical understanding, producing outputs such as "Chimalapa Zoque is a member of the Zoquean
branch of the Zoque-Tzeltalan language family, which is part of the larger Mayan language family."
By contrast, GPT-4o often would solely identify the direct parent of the language in question,
producing outputs such as "Chimalapa Zoque belongs to the Mixe-Zoque language family." It appears
that by the statements made at the start of the response, GPT-4o appears to (at least claim to) base its
choice of language family based on the structure of the source-target provided exemplar translations,
such as the following: "Based on the examples provided in Mapudungan 3, it seems to encode simple
noun phrases with an adjective-noun structure. To generate similar puzzles from other languages
potentially in the same family (Araucanian), we should maintain this structure and ensure variety in
the adjectives and nouns used." Similarly, it produces statements such as "Based on the examples
provided in Rapa Nui, I can infer common Polynesian morphological and syntactical patterns that
will help in generating puzzles for other related languages within the Austronesian language family,
specifically the Polynesian subfamily." Nonetheless, both models appear to select a similar set of
languages within each family when correctly identified, which appears to yield useful exemplars
applied by the deducer model.

Furthermore, through the process of obtaining the counts in the tables listed here, we observed that
both models struggled when it was specified that there were multiple separate problems for a given
language. For instance, both models do not struggle much with identifying the correct language
family for "Mapudungan 1" as Araucanian, but completely either fail to identify any language family
(GPT-4o) or suggest that the language is synthetic when given "Mapudungan 4". This is an interesting
phenomenon that we propose merits further study.
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Table 14: Inferred language families by GPT-4o.

Target Language Number of Questions Inferred Language Family

Abun 4 West Papuan (3), Lakes Plain (1)
Ainu 8 Language Isolate (8)

Ayutla Mixe 4 Mixe-Zoque (4)
Bangime 36 Isolate (18), Niger-Congo (2), Synthetic (16)

Chimalapa Zoque 12 Mixe-Zoque (12)
Dogon 8 Niger-Congo (6), Isolate (1), None (1)

Engenni 25 Niger-Congo (21), Synthetic (2), None (2)
Guugu Yimithir 10 Pama-Nyungan (10)

Kalam 6 Trans-New Guinea (5), Austronesian (1)
Komi-Ziran 6 Uralic (4), Synthetic (2)

Kutenai 5 Language Isolate (5)
Mapudungan 24 Araucanian (3), Synthetic (3), None (18)

Misantla Totonac 4 Totonacan (4)
Mixtepec Zapotec 24 Oto-Manguean (24)

Ngadha 14 Austronesian (14)
Niuean 18 Polynesian (16), Synthetic (1), None (1)

Rapa Nui 37 Polynesian (30), Synthetic (3), None (4)
Seri 21 Isolate (6), Hokan (3), Synthetic (6), None (6)

Totonac 6 Totonacan (6)

I Ablations with Llama-3.1-8B-Instruct

We also examine the performance of another weak model, namely Llama-3.1-8B-Instruct. This
model achieves similar performance on the baseline experiments as Aya-35B, and despite not being a
specialized multilingual model like Aya, has seen 15T tokens of multilingual pre-training data, as
well as large volumes of multilingual SFT and post-training data, leveraging human annotations by a
constructed multilingual expert pre-trained model. We report these results in a 3x3 grid as in Section
4.2, where the model on the left side is the analogical exemplar generator, and the right hand side
is the model which applies inductively learned rules; this includes the self-generation (diagonal),
inference-time distillation, and weak-to-strong settings. Note that the results of the top left 2x2
(between GPT-4o and Llama-3.1-405B-Instruct) are the same as those reported in Section 4.2.

Table 15: The results of Table 2, mixing-and-matching the generator and deducer models, with
Llama-3.1-8B-Instruct in place of Aya-35B.

Generator
Deducer GPT-4o Llama-3.1-405B-Instruct Llama-3.1-8B-Instruct

GPT-4o 66.91% 71.69% 22.30%
Llama-3.1-405B-Instruct 67.28% 67.65% 19.12%
Llama-3.1-8B-Instruct 63.36% 70.96% 20.10%

Like Aya-35B, Llama-3.1-8B-Instruct does not improve with inference-time exemplar distillation.
However, despite smaller gains (4.2% over baseline) in the weak-to-strong setting with GPT-4o as
the deducer, we achieve nearly 71% with Llama-3.1-405B as the deducer. This further reinforces the
notion that Llama-3.1-405B is the strongest current model at inductive and deductive reasoning, as it
attains higher results than the next best model, GPT-4o, across all analogical generator models.
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J 1-Stage Analogical Prompting

We study the 1-stage analogical prompting setting as posed in Yasunaga et al. (2024), where analogical
exemplars are generated and applied through the same instruction, all at once.

Table 16: Results with 1-stage analogical prompting (where both generation and application occur
through a single instruction).

Model 1-Stage Analogical Prompting

GPT-3.5-Turbo 2.21%
GPT-4 34.93%
GPT-4o 38.60%
Llama-3.1-8B-Instruct 3.31%
Llama-3.1-70B-Instruct 27.21%
Llama-3.1-405B-Instruct 22.43%
Mixtral-8x7B-Instruct 1.1%
Mixtral-8x22B-Instruct 34.56%

From our error analysis, we observe that even our strongest models such as GPT-4o are confused
by the 1-stage analogical reasoning prompt. That is, prompting models to identify the language
family of the test sample, identify multiple languages in that family, produce several puzzles of
exemplars translating to and from English to those languages such that they are sufficiently diverse
from one another, and apply all of the exemplars to the test puzzle made for an overloaded instruction.
Splitting the instruction into 2 stages – generating analogical exemplars, then prompting with both
the provided and generated exemplars – is a natural solution. Evidently, as shown in Table 2, using
2-stage analogical prompting proves effective.
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