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ABSTRACT

We propose a synthetic reasoning task, LEGO (Learning Equality and Group Op-
erations), that encapsulates the problem of following a chain of reasoning, and
we study how the Transformer architectures learn this task. We pay special atten-
tion to data effects such as pretraining (on seemingly unrelated NLP tasks) and
dataset composition (e.g., differing chain length at training and test time), as well
as architectural variants such as weight-tied layers or adding convolutional com-
ponents. We study how the trained models eventually succeed at the task, and in
particular, we manage to understand some of the attention heads as well as how
the information flows in the network. In particular, we have identified a novel
association pattern that globally attends only to identical tokens. Based on these
observations we propose a hypothesis that here pretraining helps for LEGO tasks
due to certain structured attention patterns, and we experimentally verify this hy-
pothesis. We also observe that in some data regime the trained transformer finds
“shortcut” solutions to follow the chain of reasoning, which impedes the model’s
robustness, and moreover we propose ways to prevent it. Motivated by our find-
ings on structured attention patterns, we propose to replace certain attention heads
with hardcoded patterns. This architectural change significantly reduces Flops and
maintains or even improves the model’s performance at large-scale pretraining.

1 INTRODUCTION

The deep learning revolution is about training large neural networks on vast amount of data. The first
field transformed by this methodology was computer vision, crucially leveraging the convolutional
neural network architecture LeCun et al. (1989); Krizhevsky et al. (2012). More recently natu-
ral language processing was revolutionized by the Transformer architecture Vaswani et al. (2017).
Transformers are designed to process input represented as “set of elements” (e.g., the words in a sen-
tence with their positional encoding). This is of course an incredibly generic assumption, and thus
Transformers can be applied to a wide variety of tasks, including vision Dosovitskiy et al. (2021), re-
inforcement learning Chen et al. (2021a), and protein structure prediction Rives et al. (2021); Jumper
et al. (2021) among others, or even jointly across domains to produce generalized agents Reed et al.
(2022). In fact, learning with Transformers is rapidly becoming the norm in deep learning.
Transformer models display excellent performance on the standard criterion “training error/test er-
ror” (e.g., for masked language prediction or translation). However, what makes them particularly
noteworthy, is that large-scale Transformer models seem to exhibit unexpected emergent behaviors,
such as basic reasoning ability Thoppilan et al. (2022); Brown et al. (2020); Chowdhery et al. (2022);
Du et al. (2021); Rae et al. (2021); Hoffmann et al. (2022); Smith et al. (2022); Zhang et al. (2022);
Wei et al. (2022); Nye et al. (2022), excellent fine-tuning performance Hu et al. (2022); Thoppilan
et al. (2022); Nye et al. (2022); Rae et al. (2021); Polu et al. (2022), or zero-shot learning Brown
et al. (2020); Chowdhery et al. (2022); Du et al. (2021); Rae et al. (2021); Hoffmann et al. (2022);
Smith et al. (2022); Zhang et al. (2022). Currently, there is a remarkable community effort towards
at-scale experimental investigation of Transformers, essentially trying to find out what such models
can do when they become large enough and are trained on large/diverse enough datasets. The suc-
cesses are striking and capture the imagination Brown et al. (2020); Ramesh et al. (2022). Yet, for
all of these wonders, there is very little understanding of how these models learn, or in fact what
do they learn. Answering such questions in the at-scale experiments is particularly challenging, as
one has little control over the data when hundreds of billions of tokens are harvested from various
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sources. In this paper, we propose to take a step back, and try to understand how learning occurs and
what is being learned in a more controlled setting that captures important aspects of “reasoning”.
The benefit of such a controlled setting is that we can try to understand some of the most pressing
questions in learning with Transformers, particularly around (i) the architecture and (ii) the impor-
tance of training data. For (i) we probe the role of multiple heads and depth, and we show that we
can successfully understand them in our controlled setting. For (ii) we investigate how much the
dataset composition matters, as well as how pretraining on merely vaguely related tasks makes fine-
tuning successful. In turn, these insights can guide our thinking for large-scale experiments, and we
give some of the lessons learned below. In particular, our insights crystallize into an architectural
change to BERT for faster inference with matching or even better performance (Section 5).

1.1 LEGO: A SYNTHETIC REASONING TASK

Core components of reasoning include the ability to associate concepts, and to manipulate them.
We propose a simple task that captures these two aspects, which we call LEGO (Learning Equality
and Group Operations). In LEGO, the input describes a sequence of variable assignments as well
as operations on these variables by a fixed (mathematical) group. One needs to be able to deal with
both long-range assignments (the same variable appearing in different parts of the input should be
viewed as a being equal to same quantity), as well as short-range operations (describing what group
element is applied to which variable). A key parameter of an input sequence will be its length,
which is proportional to the number of sequential reasoning steps one has to do in order to resolve
the value of each variable. We will mostly train with a fixed sequence length (say 12). We often
provide supervision only on part of the sequence (say the first 6 variables). We do so in order to test
the generalization capabilities from smaller length sequences to longer length sequences without
introducing potential errors due to the positional encoding in Transformers.

1.2 SOME TAKEAWAYS

In LEGO, we are interested in both classical generalization (i.e., training and test distribution are
the same) and out-of-distribution generalization. For the latter we focus on distribution shifts that
vary the length of the chain of reasoning, and thus we refer to this type of generalization as length
extrapolation. Specifically, the setting for length extrapolation is to train with supervision on shorter
sequence lengths (e.g., supervision on only the first 6 variables) and test on a long sequences (e.g.,
accuracy computed on 12 variables). A summary of our empirical observations is as follows:

1. First, classical generalization happens reliably for all architectures and data regimes.
2. More interestingly, length extrapolation seems to depend on architectural/data composition

choices. Specifically, BERT-like models without special data preparation do not extrapolate
to longer sequences, while other models like ALBERT, or BERT with carefully selected data
(such as diverse sequence lengths, or pre-trained BERT) do extrapolate.

3. The extrapolating models all seem to evolve attention heads dedicated to either association
(long-range identity matching) or manipulation (short-range operations). We provide evidence
that pre-trained BERT (which is pre-trained on a seemingly unrelated dataset) generalizes be-
cause it has learned such heads.

4. The non-extrapolating models seem to solve the classical generalization problem using a cer-
tain shortcut-like solution, whereby using the specificity of the group operations they are able
to jump to the end of the chain of reasoning, and then complete the rest of the variables by
following the reasoning both from the start and the end of the chain.

We interpret our findings as follows:

(i) Classical generalization can be a deceptive metric, as there might be unexpected ways to solve
the problem. This is famously related to the issue of embedding machine learning systems with
common sense reasoning. Namely, we hope that when an ML system solves a task, it does
so in “the way humans do it”, but of course, nothing guarantees that this will happen. Our
findings are consistent with the current methodology of increasing the diversity of the training
data, which seems crucial for generalization.

(ii) ALBERT-like models, where a layer is repeated several times, seem to be an ideal structure for
problems that could be described algorithmically as a “for loop” (as is the case with following
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a chain of reasoning). Indeed we find that ALBERT extrapolates in data regimes where BERT
does not, clearly separating these two architectures.

(iii) The success of pretraining/fine-tuning in vastly different tasks might actually come from a
“simple” better initialization, rather than complex knowledge encoded during pre-training.

(iv) The interplay between short-range (close-by information in a sentence) and long-range (the
same concept appearing in different places in the sentence) is relevant more broadly than in our
synthetic task. We observe that the networks effectively learn to deal with short-range/long-
range information by implementing specific attention patterns. This motivates us to study a new
architecture where these patterns are hardcoded, and we show it matches or even outperforms
its baseline on the large-scale pretraining but with significantly less computational cost.

1.3 RELATED WORKS

In (Zhang et al., 2021), the PVR (Pointer Value Retrieval) task is introduced, with a similar high-
level goal to ours in introducing the LEGO task, namely to study how neural networks learn to
reason in a controlled setting. In a PVR task, part of the input indicates another part of the input
where a function of potentially varying complexity has to be computed. Like us, they use distri-
bution shift to investigate how various network architectures learn this task, and they observe that
networks can learn the task at hand (“classical generalization”) yet fail to extrapolate to mild dis-
tribution shift. They then ask the following questions: “Are there architectural changes that can
enforce better priors and withstand distribution shift? Can novel learning objectives prevent these
adversarial correlations? Progress on these questions holds promise for greater robustness.” Our
study attacks these questions directly in the context of the LEGO task (e.g., ALBERT versus BERT,
and training set composition investigations), and our preliminary results indicate that this is indeed a
fruitful direction to obtain better models in some aspects (e.g., more interpretable). Other examples
of recent synthetic benchmark with a similar philosophy include SCAN (Simplified version of the
CommAI Navigation) (Lake & Baroni, 2018), CFQ (Compositional Freebase Questions) Keysers
et al. (2020), LIME Wu et al. (2021), PCFG SET Hupkes et al. (2020), and BONGARD-LOGO
(Nie et al., 2020). In SCAN for example, one has to “translate” a command of the form “turn left
twice and jump” into a sequence of actions “LTURN LTURN JUMP” (see Patel et al. (2022) for
more recent progress on this dataset). Again, similarly to the PVR tasks, these works focus on un-
derstanding generalization (in these cases, compositional generalization). Another related line of
works is on studying Transformers to recognize various formal languages, see e.g., Bhattamishra
et al. (2020); Yao et al. (2021). A contemporary work (Csordás et al., 2021) proposed modifications
to Transformer architectures to achieve significantly better length extrapolation (other works study-
ing this important class of distribution shifts include Anil et al. (2022)). As far as we know, none
of these works try to probe the inner workings of the networks in the same depth as we do here.
On the other hand, networks trained on real data are being extensively scrutinized, see for example
Rogers et al. (2020) where they try to understand some of the attention heads of BERT (see also
Saha et al. (2020b)). However, making sense of these real-data-trained networks is a daunting task,
and a key contribution of ours is to show in a limited setting one can obtain a clearer picture of what
Transformers learn.
The LEGO task is also naturally related to the growing literature on testing mathematical/coding
abilities of Transformers (e.g., Saha et al. (2020a)), specifically the simpler tasks of checking the
correctness of a proof (or simplifying one, such as in Agarwal et al. (2021) which studies simplifica-
tion of polynomials), or executing code for a given input Chen et al. (2021b). It would be interesting
to see if some of the insights we derive in the present paper apply to currently challenging mathe-
matical tasks such as MATH Hendrycks et al. (2021) and IsarStep Li et al. (2021).
There are an abundance of studies on attention heads that have identified the importance of local,
convolutional, attention patterns Voita et al. (2019); Correia et al. (2019); Clark et al. (2019); Ra-
ganato et al. (2020); You et al. (2020). However, to the best of our knowledge, we are the first
to demonstrate the importance of the association pattern that globally attends to identical tokens,
thanks to the LEGO task.

2 LEARNING EQUALITY AND GROUP OPERATIONS (LEGO)

We propose the following synthetic task, which we call LEGO. Let G be a finite (semi)group acting
on a finite set X , and denote g(x) for the action of g 2 G on x 2 X . We define a formal language
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Figure 1: The graph representation of the sentence a = +1; b = �a; e = +b; d = �f ; c = +d; f = +e

using the symbols from G and X as well as symbols from a finite alphabet A which we refer to as
the variables. A sentence in our formal language is made of clauses separated by a semi-colon. A
clause is of the form a = gx with a 2 A, g 2 G and either x 2 X or x 2 A. If x 2 X , such a
clause means that the variable a is assigned the element g(x) 2 X . On the other hand if x 2 A and
the variable x was assigned an element y 2 X through another clause (or chain of clauses) in the
sentence, then the clause a = gx assigns variable a to the element g(y) 2 X . The task’s goal is to
take in input a sentence with a fixed number n of clauses, given in an arbitrary order, and to output
the assigned element to each variable that appear in the sentence (the formal language will have a
further restriction that ensures that each variable is assigned one and only one element).
We can view a sentence as a directed graph on the vertex set X [ A with labelled edges as follows:
a clause a = gx corresponds to a directed edge from the vertex x to the vertex a, and the edge is
labelled with g. We restrict our attention to sentences corresponding to a line graph directed away
from some fixed root vertex r 2 X , and whose non-root vertices are all in A, see Figure 1 for an
example. In particular such sentences are “consistent”, meaning that a variable is assigned a unique
element (the assignment is obtained by simply “following the chain”).
Task 1. The most basic instantiation of LEGO is when G is the unique group of 2 elements acting
on a set X also of 2 elements, that is G = {+,�} and X = {1,�1}. Our sentences thus consists
of n clauses of the form ai = ±ai�1, where ai 2 A for i = 1, 2, . . . , n and a0 = 1 (we fix r = 1).
Note that in this case our formal language has well over a billion unique valid sentences when
n � 10. Example of a sentence with n = 6 is (see Figure 1 for the graph depiction): a = +1; b =
�a; e = +b; d = �f ; c = +d; f = +e. Our task’s goal is to report the elements or values from X
assigned to the variables appearing in the sentence. In the above example, assignments for variables
a, b, c, d, e, f are 1,�1,�1,�1, 1, 1.
Task 2. One can think of Task 1 as the case of LEGO for the permutation group on N = 2 elements
(acting on itself). Our second task will correspond to N = 3, which is qualitatively different since
the permutation group on 3 elements is non-abelian.
We will focus on Task 1 in the main paper and include in Appendix E experiments on this
Task 2. Our training and test data for the task consists of n length chains as described above
with the order of clauses in the sentence randomized. A sample input sentence to a transformer
looks like [BOS] j=-f; f=-b; y=+t; o=+e; d=+y; v=+d; h=-o; b=-i; i=+1;
t=+l; e=-j; l=-h; [EOS]. See appendix for further data generation details.

3 TRANSFORMERS FOR LEGO

Figure 2: Illustration of a transformer model applied to LEGO Task 1 on input sentence d=-c;b=-a;
c=+b; a=+1;. We apply a linear classification head to the output representations of each clause’s first
token to generate predictions for the variables assignment.

We apply transformer models in the token classification pipeline to predict the assignments of the
variables in the input sentence, depicted in Figure 2. To evaluate the out-of-distribution generaliza-
tion (referred to simply as generalization), we introduce the notation of ntr  n, such that during
training, supervision is provided only on the first ntr clauses (first in the graph representation of the
input sentence). We mainly focus on BERT Devlin et al. (2018) and ALBERT Lan et al. (2019) ar-
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(a)

(b)

Figure 3: Solving LEGO (Task 1) using BERT and ALBERT, trained from random initialization. Each
curve corresponds to the test accuracy of a single variable appearing in the sentence over the course of train-
ing. The variable numbers in the legend are their position in the reasoning chain (or graph representation)
of the input sentence, rather than the position in the sentence itself. For example, on the input sentence:
b=-a;d=-c;c=+b;a=+1;, variable #0 is a, #1 is b, #2 is c, and #3 is d. Top a): models are trained to
fit all variables (n = 12, ntr = 12). Bottom b): models are trained to fit the first 6 variables but test on all 12
variables (n = 12, ntr = 6). Dashed curves represent variables not supervised during training.

chitectures. These two models are representative large transformer architectures for NLP tasks, and
we observe they exhibit intriguing behavior difference on our tasks which we will detail in Section 4.
See appendix for training hyper-parameters and dataset construction details.
In Figure 3, we report initial results on LEGO with n = 12 and ntr = 6, 12. Both BERT and AL-
BERT are able to achieve good classical generalization, while only ALBERT appears to generalize
even to slightly longer sequence length. We observe similar behavior across different lengths of
inputs too. This suggests that classical generalization might be a deceptive metric to evaluate learn-
ing of true logic/reasoning tasks. Motivated by these initial results, in the next section we focus on
breaking down the learning dynamics of BERT and ALBERT for the LEGO task towards carefully
understanding their strengths and weaknesses.

4 UNVEILING TRANSFORMERS WITH LEGO

4.1 BERT VS. ALBERT: ITERATIVE REASONING IN ITERATIVE ARCHITECTURES

A salient feature of many reasoning tasks is an iterative component, meaning they can (or must)
be solved by sequentially repeating certain operations. In this section, we use LEGO to study and
compare Transformer architectures through the lens of iterative reasoning.
A natural solution to LEGO—and arguably the go-to solution for a human—is to implement a “for-
loop”, where each iteration resolves one step in the reasoning chain. The iteration could look for the
next unresolved variable token whose value could be resolved in one step. Iterative Transformer ar-
chitectures such as ALBERT and Universal Transformers Dehghani et al. (2018), where the weights
are shared across different layers, inherently implement a for-loop with a number of iterations equal
to the number of layers. If the model manages to learn to implement one such iteration during train-
ing, the network would immediately be capable of performing length extrapolation. If this indeed
occurs, it would point to a clear advantage of ALBERT over BERT in our setting. This leads to the
following questions.

Q1. DO ITERATIVE ARCHITECTURES INDEED EXHIBIT BETTER LENGTH EXTRAPOLATION?

The bottom plots of Figure 3 display the length extrapolation result for BERT and for ALBERT.
They show the clear advantage of recurrence: While the non-iterative BERT achieves only some-
what better-than-random accuracy for one variable (#6) beyond the ones accounted for during train-
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Figure 4: Visualization of information percolation within the fine-tuned models. The color indicates the test
accuracy of the probing classifier at each layer. Brighter is higher. We observe ALBERT’s information perco-
lation is linear than BERT’s, which implies ALBERT is biased towards learning a for-loop.

ing (#0- -#5), the iterative ALBERT reaches near-perfect accuracy on two additional variables (#6
and #7), and nontrivial accuracy on the third (#8). These results clearly support that iterative archi-
tectures do generalize better in the iterative LEGO reasoning task.

Q2. DOES THE ALBERT ARCHITECTURE ACTUALLY IMPLEMENT THE FOR-LOOP?

To a lesser extent, Figure 3 also hints at a positive answer to Q2. Observe that ALBERT exhibits
length extrapolation to variable #6 immediately (in terms of epochs) as soon as it fits the training
variables (#0 – #5), whereas for BERT, the corresponding plot (#6) climbs gradually even after the
training variables are predicted perfectly. This suggests that once it manages to learn the operations
required for one step of reasoning, it can immediately implement those operations over a few more
iterations not required in training.
In order to gain stronger evidence, we measure the dependence between the location of a variable
token in the chain and the layer in which its value is typically resolved. To this end, given a trained
model, we train one linear classifier per layer which predicts the value of a variable token based
only on its token representation at the corresponding layer (without using other information), while
keeping the original model unchanged. This allows us to gauge the rate of information percolation
along the reasoning chain in terms of layers per reasoning step. If the model indeed implements
a for-loop in its forward pass, one expects a linear relationship between the number of layers and
the number of reasoning steps already completed. We visualize in Figure 4 the test accuracy of
prediction as a function of the layer in the network and depth in the chain. While not perfectly
linear, the relation clearly looks closer to linear in ALBERT, suggesting that the ALBERT model
has an inductive bias towards learning to implement the “natural” for-loop with its forward pass.

Q3. HOW CAN WE INCENTIVIZE MODELS TO LEARN ITERATIVE SOLUTIONS?

We attempt to incentivize the model to implement the “natural” for-loop solution. We rely on the
observation that if each iteration of the for-loop simply percolates the information one more step
(assigning a value to the next variable), then adding more layers with the same weights should not
affect the output, and in fact, one should be able to read out the output of the calculation from any
layer of the neural network, as long as its depth exceeds the length of the chain. With this observation
in mind, we train a ALBERT model with stochastic depth Huang et al. (2016). We uniformly sample
depth between 6 and 12 per batch during training while fixing it at 12 during test. Figure 5 shows a
clear improvement in generalization to longer lengths using stochastic depth.

Figure 5: Generalization of ALBERT trained with stochastic depth. The stochastic depth improves the length
extrapolation to longer sequence lengths.
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Figure 6: Pretrained BERT exhibits significant performance advantages over its Rand-Init counterpart, while
the mimicking procedure (a simple initialization scheme we describe below) heads closes the gap.

4.2 RAND-INIT VS. PRETRAINED: STRUCTURAL ADVANTAGES FROM PRETRAINING

Pretraining large models has emerged as a prominent and highly successful paradigm in large-scale
deep learning. It advocates first training the model on a large dataset to perform a generic task,
followed by task-specific fine-tuning on the task at hand. Our goal here is to use LEGO as a testing
ground for this paradigm. To this end, we compare (a) training the BERT architecture for LEGO
from random initializations to (b) fine-tuning the standard pre-trained BERT model to solve LEGO.
Figure 6 (left and center plots) shows that pretraining helps generalization in LEGO dramatically:
the pre-trained model generalizes to unseen sequence lengths (the dashed plots) much better, and
within a far smaller number of epochs, than the randomly initialized model.

4.2.1 WHY DOES PRETRAINING HELP IN LEGO?

One simple explanation is that pre-trained BERT is already aware of the semantics of tokens like ‘=’
or ‘-’. We have easily ruled out this possibility, by replacing those tokens with arbitrary ones that
do not encompass the same semantics; this does not affect the performance of pre-trained BERT. A
more intriguing explanation pertains to the attention mechanism itself. At its basis, LEGO requires
two fundamental types of information transfer:
• Association: encoding long-range dependencies that transfer a value between two occurrences of

the same variable. For example, if the input contains the two clauses “a = +1” and “b = �a”
(with arbitrary separation between them), the architecture must associate the two occurrences of
the variable a in order to correctly set b to �1.

• Manipulation: encoding short-range dependencies of transferring a value from the right-hand to
the left-hand side of the clause. For example, to successfully process the clause “b = �a”, the
architecture must associate these particular occurrences of a and b with each other, in order to
transfer the value of a (after applying to it the group element �1) into b.

Association corresponds to a purely global attention pattern, completely reliant on the identity or
content of the tokens and oblivious to their positions in the input sequence. Manipulation, in con-
trast, corresponds to a purely local attention pattern, where nearby positions attend to each other.

Figure 7: Visualization of two representative attention maps from a pre-trained BERT model not yet fine-tuned
on LEGO. A complete visualization of all attention patterns of the pre-trained BERT is in Appendix F. On
the LEGO input sequence, certain heads implement local, convolution-like manipulation operators (left), while
some others implement global, long-range association operators (right). Note that the sample input sequence is
presented in the reasoning chain order for visualization purposes only.
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It is natural to ask whether they are indeed manifested in the pre-trained model’s attention heads in
practice. Indeed, Fig. 7 shows two exemplar attention heads of pre-trained BERT on an input LEGO
sequence without any fine-tuning. The right head clearly depicts association: each token attends
to all other occurrences of the same token in the input sequence. This motivates us to make the
following hypothesis: the advantage of pre-trained models on LEGO can be largely attributed to

the association and manipulation heads learned during pretraining.

Note that merely the existence of the heads does not fully validate the hypothesis yet. To rule out
other factors, we carefully design controlled experiments to test this hypothesis in the section below.

4.2.2 VERIFYING THE HYPOTHESIS WITH MIMICKING

To test this hypothesis, we conduct the following mimicking experiments.
Mimicking BERT We ‘initialize’ certain attention heads to perform association and manipulation,
without access to pretraining data. We achieve this by specifying the target attention matrices (one
for association and one for manipulation), and training the model on random data to minimize a
“mimicking loss” that measures how well the actual attention matrices at every layer match the
target matrices. The precise mimicking loss and training protocol are specified in the Appendix B.3.
The rightmost plot in Figure 6 shows that BERT with mimicking initialization attains significant
advantage in generalization over randomly initialized BERT, despite not being pre-trained on any
real data (and thus not having learned to “reason”). This confirms that much of the advantage of
pre-trained BERT stems from having learned these information transfer patterns.

4.3 SHORTCUT SOLUTIONS AND THEIR EFFECT ON GENERALIZATION

As discussed in Section 4.1, a natural solution to LEGO is to resolve variables iteratively by the
order of their depth in the chain. Surprisingly, we find that the Rand-Init BERT and ALBERT
models first learn a “shortcut” solution: they immediately resolve the last variable in the reasoning
chain, perhaps by counting the total number of minus signs. Indeed, the last variable can be easily
identified as it appears only once whereas every other variable appears twice, and its value is fully
determined by the parity of the number of minus signs. This behavior is observed in Figure 3a: the
randomly initialized models are trained to fit all 12 variables: the last variable (#11, indicated by the
brightest green curves) improves earlier than almost all other ones.
This behavior may be related to the well-observed phenomenon of spurious features: a model suc-
ceeds in training not relying on any actual features of cows and circumventing the intended solu-
tion McCoy et al. (2019); Srivastava et al. (2020); Gururangan et al. (2018); Nguyen et al. (2021).
We use LEGO as a case study of shortcut solutions and their effect on generalization. Instead of
training the model to fit the first six variables (as in bottom Figure 3 in Appendix), we train it to fit
the first five (#0–#4) and the last variable (#11). This allows us to measure length extrapolation (to
#5–#10) in a setting where models can learn the shortcut. The results show significantly degraded
performance, implying that shortcut solutions impede generalization. We then study ways to prevent
models from learning them, by pretraining and mimicking. The full section appears in Appendix A.

5 ATTENTION WITH HARDCODED PATTERNS

Our analysis in Section 4.2 reveals that the advantage of the pre-trained BERT model on LEGO orig-
inates from two specific types of attention structures emerging from pre-training — the association
and manipulation patterns. A quick examination of all the attention heads depicted in Appendix F
suggests that there is one more clearly identifiable attention pattern: broadcasting on the [CLS]
token or the [SEP] token (sometimes both). Namely, it ‘broadcasts’ the value inside the special
tokens to the others. Even though [CLS], [SEP] play no role on LEGO per se, they are vital to
the pretraining objective as well as many downstream tasks. Thus the broadcasting attention pattern
is presumably important for many real-life NLP tasks beyond LEGO. Association, manipulation,
and broadcasting consist of a considerable portion of the pre-trained BERT’s attention heads, and
they are so structured that we can in fact hardcode them efficiently. Hardcoding can be viewed as an
extreme version of the previous mimicking procedure.

BERT with hardcoded attention For the association, manipulation, and broadcasting heads, we
can efficiently construct the sparse attention matrix based on the input token IDs only, without learn-
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Figure 8: Left: Our proposed architecture in a generic form consisting of 3 pathways. BERT has pathway (b)
only; the Hardcode model has (a) and (b); the Hybrid model has (a), (b), and (c). See Appendix C. Right:

Comparison of inference Flops and model size. Flops are measured on a batch of 64 sequences of 512 tokens.

ing Q and K or the expensive attention probability computation. For manipulation maps, due to their
intrinsic locality, we decide to implement them directly with temporal convolutions (along the time
dimension). For the other global maps, given a raw input sequence of T tokens, u1, u2, . . . , uT 2 N,
we manually construct the association and broadcasting maps Aasso, Acls, Asep 2 RT⇥T such that
(Aasso)ij = 1 [ui = uj ] , (Acls)ij = 1 [uj = [CLS]] , (Asep)ij = 1 [uj = [SEP]] where 1 [·] is
the indicator function which outputs 1 if the argument is true and 0 otherwise. In the end, we nor-
malize them to have row-wise unit `1 norm. Notably, the latter three hardcoded attention patterns
require no training (other than a value map for each layer) and are shared across all layers.

Figure 9: Training and validation performance on BERT pertaining task (Masked Language Modelling+Next
Sentence Prediction). As a standard, the training sequence length increases from 128 to 512 around the 7k-th
step, where the BERT training loss exhibits a sudden bump in response, while the hardcode/hybrid models
exhibit remarkable resilience. The hybrid model learns faster and (slightly) outperforms BERT in validation.

On the standard BERT pertaining benchmark, we compare the following three models: BERT-base
model, Hardcode model, and Hybrid model. We use convolutional kernel size 21 for the latter two.
In Figure 9, we show that the Hardcode model learns fast in the beginning but falls short later on.
However, the Hybrid model not only reduces model size and accelerates inference, but also renders
models that are extremely competitive with the base model in terms of the final performance of
large-scale pertaining. We follow precisely the training pipeline and hyperparameters of Devlin
et al. (2018). See Appendix C for architecture details of the Hardcode and Hybrid models.
We observe that the Hardcode model learns faster but gradually falls short, while the hybrid model
achieves the best of both worlds: it learns faster at the beginning and achieves even (slightly) lower
validation loss at the end. The Hybrid model’s validation loss curve appears to be a lower envelope
of the others. The BERT/Hardcode/Hybrid models achieve 1.49/1.66/1.47 final pertaining vali-
dation loss and 88.2/82.5/88.1 Dev F1 score on SQuAD v1.1 Rajpurkar et al. (2016). We leave
comprehensive evaluations for future work.

6 CONCLUSION

In this work, we study Transformers by constructing LEGO, a controllable synthetic logical reason-
ing task. With LEGO, we have gained insights into their inductive bias, the role of pertaining, etc.
Based on these insights, we proposed the hardcoding attention mechanism which both accelerates
inference and leads to comparable or even better performance. There are many important attention
heads beyond just manipulation and association, and their roles remain to be discovered. We believe
LEGO will continue to deepen our understanding on Transformers’ inner working and to inspire
better algorithms/architectures for tasks beyond LEGO.
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