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Abstract

Resolving ambiguities in questions is key to001
successfully answering them. Focusing on002
questions about images, we create a dataset003
of ambiguous examples; we annotate these ex-004
amples, grouping the answers by the underly-005
ing question they address and rephrasing the006
question for each group to reduce ambiguity.007
An analysis of our data reveals a linguistically-008
aligned ontology of reasons why questions009
can be ambiguous. We then develop a model010
for question generation in English which we011
demonstrate via automatic and human evalua-012
tion produces less ambiguous questions. We013
further show that the question generation ob-014
jective we use allows the model to integrate015
answer group information without any direct016
supervision. Finally, we employ our dataset017
and ontology for linguistic hypothesis testing,018
finding evidence against a previous syntactic019
account of ambiguity in “why” questions.1020

1 Introduction021

The ability to ask questions allows people to effi-022

ciently fill knowledge gaps and convey requests;023

this makes questions a natural interface for interact-024

ing with digital agents. Visual question answering025

(VQA) models more specifically seek to answer026

questions about images, which can be useful in a027

variety of settings, such as assistive tech (Bigham028

et al., 2010). A number of datasets have been pro-029

posed for training VQA models, including VQAv2030

(Goyal et al., 2017), VizWiz (Gurari et al., 2018),031

and GQA (Hudson and Manning, 2019). Such032

datasets are useful not only for training – they rep-033

resent the aggregate judgements of speakers on a034

variety of factors, including ambiguity.035

Ambiguity is a core feature of natural language,036

and can exist at all levels of linguistic analysis.037

In the context of data annotation, ambiguity often038

leads to disagreement between annotators. Given039

1We will release our code and data.
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Figure 1: An ambiguous visual question from our
dataset. Answers are grouped by the underlying ques-
tion they answer, and the question is rephrased for each
group. Answers within a group do not necessarily match,
but do answer the same question.

that this data is typically used in a categorical fash- 040

ion to train and evaluate models, annotator dis- 041

agreements are problematic. Past work has often 042

looked at detecting and resolving disagreements 043

from the perspective of trust (Hovy et al., 2013), 044

where some annotators are assumed to be more or 045

less trustworthy. However, in the case of ambigu- 046

ity, an annotator’s honest effort may still lead to 047

disagreement; in such cases, collecting more an- 048

notations may fail to establish a consensus. This 049

differs from mistakes and cheating, where gath- 050

ering more annotations would effectively outvote 051

low-quality annotations. Ambiguity in the context 052

of questions presents a particularly rich problem: 053

firstly, question semantics are less clear from a 054

formal point of view than the semantics of declar- 055

ative sentences; this makes empirical accounts of 056

questions particularly useful. Secondly, questions 057

are increasingly relevant to natural language pro- 058

cessing (NLP) research. Many NLP tasks are cast 059

as question-answering (QA), including a growing 060

number of tasks which can be cast as few-shot QA. 061

Our four main contributions are: (1) We examine 062

how ambiguity appears in the VQAv2 data by con- 063

structing a dataset of 1,820 annotated visual image- 064

question-answer triples. For each question, we ask 065

annotators to re-group answers according to the un- 066

derlying question they answer, and to rewrite ques- 067
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Figure 2: A visually underspecified question.

tions to unambiguously correspond to that group.068

(2) We create an ontology of causes for linguistic069

ambiguity based on the PropBank ontology (Kings-070

bury and Palmer, 2002; Gildea and Palmer, 2002;071

Palmer et al., 2005), and annotate our data with072

these causes. (3) We develop a visual question gen-073

eration model which learns to rewrite questions;074

we validate this model with the re-grouped answers075

and re-written questions from our dataset. Our076

model can be used to cluster answers into their077

groups without any supervision for answer groups.078

(4) Finally, we use our dataset to test a linguistic079

hypothesis: Chapman and Kučerová (2016) pro-080

pose that “why” questions are ambiguous between081

purpose and reason readings only with dynamic082

predicates and agentive subjects; we find evidence083

challenging this proposal.084

2 Ambiguity085

In the VQAv2 annotations, each image has multiple086

questions, with each question being redundantly an-087

swered by up to 10 annotators. This redundancy is088

crucial for our annotations, as it provides us with089

multiple judgments per question, some of which090

may indicate ambiguity. We define ambiguous ex-091

amples as ones where annotators are responding to092

different underlying questions.2 We contrast this093

definition with visual underspecification and uncer-094

tainty, which are categorized by a lack of visual095

information needed to answer a question, rather096

than ambiguity about what the question is. These097

can appear simultaneously, e.g. in Fig. 3 where098

there is both ambiguity and underspecification.099

For example, the question in Fig. 2 is underspec-100

ified, as this information is absent in the image and101

must be inferred. Past efforts examining reasons102

for annotator disagreement in VQA have addressed103

this distinction: Bhattacharya et al. (2019) intro-104

duce a dataset of 45,000 VQA examples annotated105

with reasons for disagreement, including ambigu-106

ity and lack of visual evidence as two separate107

categories. In practice, however, many examples108

labeled as ambiguous (such as Fig. 2) are cases109

2This definition is not exhaustive, as it relies on the anno-
tations; an example could be ambiguous but have few annota-
tions, resulting in complete agreement between annotators.
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harley	davidson
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dirt	bike

dirtsuzuki

blue	and	white

Figure 3: An underspecified and ambiguous question.

of underspecification or unambiguous questions 110

paired with visually ambiguous images. We use 111

the ambiguous examples from Bhattacharya et al. 112

(2019) as a starting point for our dataset. 113

3 Data 114

To properly study linguistic ambiguity in VQA, we 115

collect a dataset of ambiguous examples, which rep- 116

resents a resource for categorizing and analyzing 117

ambiguous questions and contains 1,820 answers 118

to 241 image-question pairs. The data contains an- 119

swers grouped by their underlying questions; there 120

are 629 underlying questions. 121

The size of the ambiguous subset of VQA 122

from Bhattacharya et al. (2019) prohibits our re- 123

annotating the whole dataset, so we employ a num- 124

ber of heuristics to create a subset of data that is 125

likely to be linguistically ambiguous. First, we sort 126

the annotations into a priority queue using several 127

heuristics. To merge synonymous answers (e.g. 128

“cat”, “the cat”, “feline”) we embed each answer 129

into continuous space using GloVe embeddings 130

(Pennington et al., 2014), mean-pooling across 131

words for multi-word answers and apply K-means 132

(MacQueen, 1967; Lloyd, 1982) to the resulting 133

embeddings, iteratively increasing the number of 134

clusters k. Examples are scored by combining the 135

K-means inertia score with a penalty for each ad- 136

ditional cluster, trading off cluster coherence and 137

having as few clusters as possible. These are subse- 138

quently sorted by how balanced their clusters are.3 139

We remove yes-no questions with only “yes” and 140

“no” answers, as they answer the same question. 141

Annotation Interface We introduce a new an- 142

notation interface for re-grouping answers and re- 143

writing questions (cf. Appendix C). We present the 144

annotators with the question, image, and answers; 145

answers are pre-grouped based on the K-means 146

cluster assignments and are drag-able. Each an- 147

swer cluster is paired with an editable text-box 148

containing the original question. For each exam- 149

ple, annotators have 3 tasks: first, they must decide 150

whether the answers provided in the example cor- 151

3Balanced clusters are more likely to be ambiguous, as un-
balanced clusters are often a result of a single bad annotation.
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Category Property PropB. Description Ex.

Property-
based

Location LOC Asks about an object’s location. B.3.1
Time TMP Asks about the time of an event or the time a picture was taken. B.3.2
Kind N/A Ask about what kind of something an object is. B.3.3

Dynamic

Cause CAU Ask for the cause of an event. B.4.1
Purpose PRP Ask for the purpose of an event. B.4.2
Goal GOL Ask for the goal (location or person) of an object or event. B.4.3
Direction DIR Ask for the path being taken by an object. B.4.3
Manner MNR Ask in what manner an event is happening. B.4.4

Pragmatic
and
Other

Multiple N/A Ask annotators to choose one of multiple options. B.5.1
Grouping N/A Ask annotators to group multiple items. B.5.2
Uncertainty N/A Contain visual uncertainty, especially for questions about events. B.5.3
Mistake N/A These involve bad answers or bad questions/images. B.5.4

Table 1: Ontology of reasons why examples are ambiguous. Examples and details in Appendix B.

respond to different questions, or whether they all152

answer the same underlying question, i.e. whether153

the question is ambiguous. If an example is not154

skipped, the second task is to re-group annotations155

by the question they answer. Each answer can be156

dragged into the appropriate cluster or deleted if it157

is spam; new clusters can also be created. Anno-158

tators were instructed to cluster answers by their159

underlying question, not by whether they are se-160

mantically similar. For example, antonyms like161

“good” and “bad” may be in the same answer clus-162

ter. Finally, in the third task, annotators were asked163

to minimally edit the question corresponding to164

each cluster, such that the new question uniquely165

corresponds to that cluster of answers. Instructions166

were presented to the annotators in text and video167

format. A local pilot with trained annotators was168

run to collect data for vetting annotators on Ama-169

zon MechanicalTurk; only annotators with high170

agreement to the local annotators were allowed to171

participate in further annotation. See Appendix B172

for details on the crowdsourcing process, including173

wage information. At least one author manually174

vetted all ambiguous examples, discarding noisy175

examples and editing questions for fluency.176

Statistics Of the 1,249 examples used, MTurk177

annotators skipped 942, identifying 307 as ambigu-178

ous. After cleaning these examples we have 241179

unique image-question combinations, correspond-180

ing to 629 unique rewritten questions (including the181

examples from the pilot.) Each question is paired182

with 1-9 unique answers (mean: 2.9). We split our183

data into 30 dev questions and 211 test questions.184

Inter-annotator Agreement We measure agree-185

ment on two levels: to what extent annotators iden-186

tified the same examples as ambiguous, and the187

overlap between clusters of answers. Note that per-188

fect inter-annotator agreement cannot be expected.189

Given that the examples we are interested in were190

ambiguous to the original set of VQAv2 annotators,191

with some seeing one reading over another, it is 192

likely that some of the annotators in our task would 193

also see only one reading. 194

Ambiguity agreement is defined as the percent- 195

age of examples two annotators both marked as be- 196

ing ambiguous. This number is averaged across an- 197

notator pairs. In the local pilot, the annotators had 198

a pairwise ambiguity agreement score of 79.5%. In 199

the MTurk pilot, 5 annotators had a mean pairwise 200

score of 73.5% with a standard deviation of 6.0% 201

(min 62.5%, max 80.0%). Note that we obtained 202

redundant annotations only for the local and MTurk 203

pilot HITs, and not the main data collection HIT. 204

The cluster agreement between two annotators 205

is defined as the F1 score between the clusters 206

of answers produced. Since the clusters are not 207

aligned a priori, we use the Hungarian algorithm 208

(Kuhn, 1955) to find a maximum overlap bipartite 209

matching between clusters from each annotator and 210

then compute the F1 score between aligned clusters. 211

These scores are averaged across annotator pairs. 212

The local pilot cluster agreement score was 92.2%, 213

and the MTurk pilot’s score was 88.4%, with a stan- 214

dard deviation of 6.0% (min 77.1%, max 94.6%). 215

Ambiguity Ontology After collecting the data, 216

we observed that there were multiple groups within 217

the ambiguous examples, corresponding to the fac- 218

tors that made a question ambiguous. We manually 219

annotated all ambiguous examples according to the 220

following linguistically-grounded ontology, which 221

is largely aligned to PropBank roles (Kingsbury 222

and Palmer, 2002; Gildea and Palmer, 2002; Palmer 223

et al., 2005). The ontology is divided broadly into 224

3 categories. Property-based questions typically 225

have to do with objects with multiple properties, 226

and relate to partition question semantics (Groe- 227

nendijk and Stokhof, 1984); more information can 228

be found in Appendix B.1. Dynamic questions 229

are about dynamic properties of objects or events. 230

Finally, pragmatic ambiguities mainly relate to am- 231
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Figure 4: (Top) Frequency of each category. (Bottom)
Co-occurrence frequency of each category (excluding
frequencies ≤ 1). Some categories are highly correlated,
indicating higher-order ambiguity.

biguity in inferring the intention of the questioner,232

including choosing which element of the the world233

is most salient. Each category contains several sub-234

categories – these are summarized in Table 1 and235

described in-depth in Appendix B.236

Fig. 4 shows the frequency of each category, with237

the most common categories being location, kind,238

and multiple options, and shows the frequency with239

which pairs of categories co-occur (excluding pairs240

that only co-occur once). Several categories co-241

occur frequently, indicating higher-order ambiguity242

(i.e. ambiguity between what type of question is243

being asked). For example cause and purpose often244

co-occur; this indicates that they are often confused245

for each other, with some annotators providing an-246

swers consistent with a cause interpretation and247

others with a purpose interpretation. Furthermore,248

that they do not always co-occur indicates that am-249

biguity exists even within one interpretation.250

4 Model251

The data collected in Section 3 consists of questions252

rewritten according to their answer clusters. We253

develop a visual question generation (VQG) model254

which takes in answers and images and produces255

questions. After confirming the performance of the256

VQG model for generation generally, we evaluate257

the performance of a VQG model with respect to258

the answer clusters in our dataset. Specifically, we259

examine how the model can be used for clustering260

answers within an answer group together. Given261

that the answer clusters are based on the underlying262

question the answer is answering, we hypothesize263

that a good VQG model should not only learn to264

generate questions with a high similarity between265

the generated and reference questions, but learn in-266

put representations that contain answer group infor-267

mation. Note that this information would emerge268

in an unsupervised fashion, as we do not provide 269

any answer group information during training. 270

We present a simple model for VQG consist- 271

ing of a pre-trained vision-language encoder fol- 272

lowed by a pretrained text-to-text encoder-decoder 273

model. We use ViLT (Kim et al., 2021) as our 274

vision-language encoder. ViLT is a pre-trained 275

fully transformer-based 87.4M-parameter model. 276

The available ViLT model fine-tuned for VQA was 277

trained on the entirety of the VQAv2 training data; 278

since the annotations for Bhattacharya et al. (2019) 279

come from the training set, our annotations also 280

are sourced from the VQAv2 training set. To avoid 281

test-set leakage, we fine-tune our own version of 282

ViLT on a modified training set that excludes our 283

annotations. Our input to ViLT is the image Ii 284

and a text answer ai from the set of answers for 285

instance i, Ai. To generate text, we feed the output 286

of ViLT to a pre-trained T5-base encoder-decoder 287

model (Raffel et al., 2020) with ∼ 220M parame- 288

ters, accessed via Huggingface Transformers (Wolf 289

et al., 2020). We replace the embedding layer of 290

the model with the output of our ViLT encoder, 291

and train the model using all answers in the dataset 292

with “yes” or “maybe” confidence ratings, using 293

categorical cross-entropy loss computed against the 294

original question Qi. Note that the question Qi is 295

taken directly from the VQAv2 data, which we re- 296

fer to as “original data” – we do not train on the 297

annotations collected in Section 3. 298

Underspecification is a major challenge in VQG 299

evaluation: given an image and an answer, there is 300

often an intractably large set of questions that could 301

have generated the answer. For example, in Fig. 1, 302

the answer “purple” could also correspond to the 303

question, “What color is the bottle’s base?" Further- 304

more, even when the question is about the same 305

topic, there are often a large number of semanti- 306

cally identical ways to phrase the question which 307

may have very different surface forms. This poses 308

a problem for surface-level evaluation metrics like 309

BLEU. Finally, in our task of rephrasing questions, 310

similarity is not a perfect predictor of quality. At 311

one extreme, if the model generated the original 312

question, it would receive a perfect similarity score 313

when evaluated against the original question, but 314

be as ambiguous as before. At the other extreme, as 315

illustrated in the preceding example, a model may 316

generate a valid question conditioned on the answer 317

that has no relation to the original question’s intent. 318

We attempt to tackle this problem by including 319
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positive lexical constraints from the original ques-320

tion in our decoding process. In a normal VQG321

setting, this would be impossible, since it requires322

the question at test time. However, in our setting,323

where the goal is to rephrase visual questions, we324

can assume access to questions. To generate a325

question on the same topic as the original, we use326

fast lexically-constrained decoding (Post and Vi-327

lar, 2018) with disjunctive positive constraints (Hu328

et al., 2019) during test decoding (+c in Table 2).4329

Baselines Due to the difference in our train and330

validation data as well as our use of constraints,331

our results are not directly comparable to previous332

VQG models. We instead compare our model to333

two baselines: “no image” (-v) and “no answer”334

(-t), where we give our model only the answer and335

only the image, respectively. These ablations verify336

our model’s integration of multimodal information.337

Training We use the VQAv2 training set for338

training, excluding the examples we annotated,339

which came from the train split. Since the answers340

for the VQA test split are not public, we use the341

validation data for testing and validation. We take342

2, 000 questions pairs for validation and hold out343

the remaining ∼ 21K for testing. Each model was344

trained to convergence, measured by 5 consecutive345

epochs without BLEU score improvement, on four346

NVidia Quadro RTX 6000 GPUs; training took347

about 40 hours per model. All models were trained348

with the same hyperparameters (cf. Appendix D).349

5 Visual Question Generation350

Before analyzing performance on our dataset, we351

verify that the question-generation model we pro-352

posed is able to generate reasonable questions353

for the dataset more broadly. Here, we follow354

past work in reporting several string-based metrics:355

BLEU (Papineni et al., 2002), CIDEr (Vedantam356

et al., 2015), Rouge-L (Lin, 2004) scores. We also357

report BertScore (Zhang et al., 2019).358

Table 2 shows the test performance of the mod-359

els tested, with and without constrained decoding.360

We see that the proposed generation model outper-361

forms both baselines by a wide margin, indicating362

that it is successfully integrating information from363

4We extract all contiguous noun spans from the question
using Spacy’s part-of-speech tagger (Honnibal and Montani,
2017); these are added as disjunctive positive beam search
constraints so that the output contains at least one span. For
example, without constraints, the question “Where are the
people sitting?” (answer: “park”) is rewritten “What kind of
park is this?”, while with it is, “Where are the people?”

Model BLEU-4 CIDEr ROUGE-L BERT

iVQA∗ 0.21 1.71 0.47 N/A
VT5-v 0.22 1.51 0.45 0.93

VT5-v+c 0.21 1.82 0.47 0.93
VT5-t 0.16 1.00 0.32 0.92

VT5-t+c 0.18 1.51 0.38 0.92
VT5 0.27 1.98 0.48 0.94

VT5+c 0.26 2.21 0.50 0.94

Table 2: Test performance of the VQG model and base-
lines. Our model is able to integrate multimodal infor-
mation and produce high-similarity questions.

both modalities. Furthermore, we see that in all 364

cases, constraints improve performance; this is un- 365

surprising, since the constraints force the model to 366

include more of the reference question’s n-grams. 367

Finally, we include the performance of the iVQA 368

model from Liu et al. (2018) in this table; however, 369

we stress that the numbers are not directly com- 370

parable, since the training and evaluation data is 371

different. Nevertheless, they help assert that our 372

model is within the correct range for VQG. 373

Model as an Annotator In Section 3 we mea- 374

sured the inter-annotator agreement between anno- 375

tators for clustering. We now compare the model 376

predictions to these annotations with the same met- 377

ric. Specifically, we measure how well the model’s 378

answer clusters align with annotated clusters, as- 379

suming access to the number of clusters given by 380

the annotators. While this is a limiting assumption, 381

it lets us evaluate to what degree the model’s rep- 382

resentations are useful in grouping answers, inde- 383

pendently of whether the clustering algorithm can 384

infer the right number of clusters. We hypothesize 385

that the VQG loss will result in answer representa- 386

tions for answers to the same underlying question 387

being more similar than answer representations for 388

different underlying questions. 389

In order to obtain clusters from model represen- 390

tations, we use the K-means algorithm to group 391

model representations of each answer ai ∈ Ai. 392

We then compare the F1 overlap between clusters 393

produced by the model (and different clustering 394

baseline) to the clusters produced by annotators 395

using the method detailed in Section 3. We com- 396

pare against several simple baselines. The random 397

baseline randomly assigns answers to K clusters. 398

The perfect precision baseline puts each answer 399

in a separate cluster, leading to perfect precision 400

but poor recall. The perfect recall baseline clus- 401

ters all of the answers together, leading to perfect 402

recall but poor precision. We also take the initial 403

clustering of GloVe vectors with K-means, using 404
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Method P R F1
Human∗ 88.6 91.7 88.4
Random 64.9 70.4 59.4
Perfect P 100.0 50.6 61.1
Perfect R 63.4 100.0 76.3
GloVe initial 98.4 64.3 72.4
ViLT + K-means 65.9 68.6 60.1
VT5 + K-means 81.9 84.0 79.0

Table 3: Clustering metrics; Human results included for
indirect comparison only.

an incrementally increasing K, as described in Sec-405

tion 3, as a baseline. For a more direct comparison,406

we extract the frozen pre-trained ViLT representa-407

tion for the answer tokens and use mean pooling408

to combine them into a single vector per answer,409

clustering them with K-means for the ViLT+K-410

means baseline. Note that the ViLT representation411

is frozen and not trained for VQG. This baseline is412

contrasted with the VT5 + K-means system, where413

we extract mean-pooled answer token representa-414

tions from the final layer of our VQG encoder and415

use these for clustering with K-means. Gains over416

the ViLT baseline reflect the benefits of the VQG417

loss combined with the T5 encoder pre-training.418

Table 3 shows the clustering results. We see that419

VT5+K-means outperforms all baselines in F1, in-420

dicating that the representations learned via a VQG421

objective contain answer-group information. This422

is surprising, as the objective here does not directly423

optimize for answer groups; for a given training424

example (Ii, ai, Qi), there is a single reference out-425

put Qi for all answers, regardless of the group they426

are in. However, the grouping information might427

be found in the dataset more broadly; when consid-428

ering multiple examples with similar answers, an-429

swers in the same group may correspond to similar430

questions, leading them to be closer in representa-431

tion space and thus in the same K-means cluster. In432

other words, the encoder representation for a given433

answer, having been trained across many similar434

questions and answers, is more similar within an435

answer group than across groups.436

6 Human Evaluation437

The metrics in Section 5 suggest that our model438

holds promise as a method for rephrasing ambigu-439

ous questions; Table 2 indicates that the model440

produces fluent questions conditioned on images441

and answers, and Table 3 indicates that the model442

rewrites questions in a way that corresponds to the443

VQA2.0 Human Model
Question Type

0

50

100
% Acceptable by Question Type

Actual Distractor

location kind manner cause
Ambiguity Type

0

50

100
% Acceptable by Ambiguity Type (Model Questions)

Figure 5: % answers rated as acceptable for each ques-
tion type (annotator-rewritten, model-rewritten, origi-
nal). Error bars represent bootstrapped 95% confidence
intervals. Rewritten questions are less ambiguous than
their original counterparts. Model questions are gener-
ally less ambiguous across ambiguity categories.

answer clusters and rewritten questions from hu- 444

man annotators. However, these automated metrics 445

fall short of providing a full picture of the qual- 446

ity of rewritten questions, especially because, as 447

mentioned before, it is not clear that similarity is a 448

monotonic measure of success in our case. Thus, 449

we conduct a human evaluation of 100 rewritten 450

questions, specifically testing whether rephrased 451

questions (from annotators and from the model) 452

are less ambiguous than their original counterparts 453

from the VQA dataset. 454

Methods Our evaluation paradigm presents an- 455

notators with an 3-way ordinal decision (“yes”, 456

“maybe”, “no”), rating whether an answer is appro- 457

priate given an image and question. We sample 458

100 examples from our dataset with 3 questions 459

each (annotator-generated, model-generated, and 460

original). The model-generated questions are taken 461

from the VT5 model with constraints. For each 462

image-question-answer triple, we obtain 2 answers 463

– one from the answer group corresponding to the 464

question, and a distractor answer from a different 465

answer group, as determined by the human anno- 466

tations. An ambiguous question should be rated 467

as acceptable for both answers (the actual and dis- 468

tractor), while a question rephrased to be less am- 469

biguous should be rated as acceptable for the actual 470

answer but not for the distractor answer, which 471

corresponds to a different underlying question. An- 472

notators were paid 0.04 per annotation for a total 473

of 600 annotations, or ∼ $16 per hour. 474
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Results and Analysis Fig. 5 shows the percent-475

age of answers rated as acceptable (“yes” as op-476

posed to “maybe” and “no”) across different con-477

ditions. The original, unedited question shows no478

significant difference between the actual and dis-479

tractor answer, as measured by McNemar’s test480

(McNemar, 1947). This is expected, given that both481

answers were given by annotators in the original482

dataset to the original question, and thus are both483

likely to be viewed as acceptable. Both types of484

edited questions, on the other hand, show a signifi-485

cant difference between the actual answer and dis-486

tractor answer, indicating that questions rephrased487

by annotators and by the model more specifically488

select answers from one answer group over, i.e.489

they are less ambiguous with respect to the answer490

group. The fact that the questions predicted by the491

model show only a small drop is promising, as it492

indicates that the model outputs are fluent and faith-493

ful to the original topic. In the bottom of Fig. 5 we494

see the percentage broken out by ambiguity type495

for the four most frequent types; here, we plot only496

the model-predicted sentences. We see that across497

most types there is a drop, with model outputs be-498

ing rated as acceptable with the true answer, but499

not with the distractor.500

7 Cause and Purpose Ambiguity501

“Why” questions in English are often ambiguous502

between a cause and purpose reading (Chapman503

and Kučerová, 2016). In other words, a question504

like “Why did the chicken cross the road?" can be505

interpreted as asking for the purpose of the action506

(e.g. “to get to the other side”) or as asking for507

the impetus for the action (e.g. “because it was508

afraid of the fox”). Chapman and Kučerová (2016)509

examine such questions in English through a syn-510

tactic lens, noting that not all English predicates511

are ambiguous – for example, “why did the butter512

melt” has a cause reading, but no purpose read-513

ing. Chapman and Kučerová conclude that for both514

readings to exist, the predicate must be dynamic515

and the subject agentive, factors corresponding to516

a syntactic analysis with two possible positions for517

“why”, each resulting in a different reading. Our518

dataset contains 24 questions labeled with “cause”519

and 16 questions labeled as “purpose”; of these, 11520

have both cause and purpose readings. Using this521

data, we can examine to what extent the Chapman522

and Kučerová (2016)’s hypothesis that ambiguity523

exists only with dynamic predicates and agentive524

+d +a -d +a +d -a -d -a
0

10

20

30

40 ambiguous
non-ambiguous

Figure 6: Count of ambiguous and non-ambiguous ques-
tions, grouped by predicate dynamicity (+d) and subject
agency (+a). Non-dynamic verbs with non-agentive sub-
jects are also ambiguous between purpose and cause.

subjects is borne out in real data. 525

In light of the small amount of data in our dataset, 526

we first collect additional examples of possible 527

ambiguous “why” questions. Using the annota- 528

tions labeled as ambiguous from Bhattacharya et al. 529

(2019), we scrape all questions starting with “why” 530

and randomly sample 100. We manually annotate 531

these as non-ambiguous (i.e. having answers which 532

correspond only to a purpose or only a cause read- 533

ing) or ambiguous (i.e. having answers for both 534

purpose and cause readings) as well as for dynam- 535

icity and agency (cf. Appendix F for examples). 9 536

examples were skipped for having poorly-written 537

questions, resulting in 117 total examples. 538

Results and Analysis Fig. 6 shows the counts 539

of ambiguously and non-ambiguously-interpreted 540

questions, grouped by whether the predicate is dy- 541

namic and its subject agentive. Part of the hypothe- 542

sis from Chapman and Kučerová (2016) is borne 543

out: we do see often see purpose-reason ambiguity 544

in examples with dynamic predicates and agentive 545

subjects. However, we also see this ambiguity in 546

all other cases; most notably, in the most common 547

case where the predicate is not dynamic and the 548

subject non-agentive. Many of these examples are 549

in fact locative-existential questions, which Chap- 550

man and Kučerová (2016) identify as only having 551

a reason reading. Our results show that speakers 552

disagree with this intuition; for example, for the 553

question “Why are there cushions on the wall?” 554

some annotators gave clear reasons (e.g. “some- 555

one put them there”) while others gave purpose 556

answers: “decoration”, “padding”, “design”. 557

8 Discussion 558

Limitations Our primary limitation is the size of 559

our collected dataset; we have collected a quality 560

dataset which we demonstrated is useful for analy- 561

sis, but which is too small for training large-scale 562

neural models. Another limitation on our dataset is 563

the relative subjectivity of the task; in completing 564

the annotation, we found that identifying ambiguity 565
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and isolating the different underlying questions of-566

ten involves a Gestalt shift. Once an interpretation567

of the question is chosen, it becomes increasingly568

hard to see any other. This makes the annotation569

task subjective; where one annotator might see am-570

biguity leading to multiple valid answers, another571

might see one correct answer group and a number572

of invalid ones. We are also limited by the quality573

of the underlying data. Our dataset builds on the574

VQAv2 dataset (Goyal et al., 2017) and the anno-575

tations from Bhattacharya et al. (2019), both of576

which were large-scale annotation efforts intended577

for training. Due to their scale, individual datapoint578

quality is often quite low. Finally, in Chapman and579

Kučerová (2016) (and thus, in our analysis) dynam-580

icity and agency are binary categories; however,581

they are better cast as scalars, following White582

et al. (2020), with agency having multiple factors583

(Dowty, 1991). Recasting them as scalars would584

allow us to use crowdworkers for annotation.585

Future Work In addition to addressing these lim-586

itations, we leave exploiting the rewriting model to587

future work. In Table 2 and Fig. 5 we demonstrated588

that our question rephrasing model works well for589

producing fluent questions that reduce ambiguity.590

Furthermore, in Table 3 we showed that the model’s591

representations contain information about the un-592

derlying question being asked, even though this in-593

formation is not directly present in the training data594

and we do not include any supervision from our595

dataset. Future work could examine utilizing the596

rephrasing model in a search-engine environment,597

where users are actively querying about images.598

Given an ambiguous question identified and a set599

of answers to it from a VQA model, our model600

could be used to rephrase the question according to601

each answer. Just as a presenter will often rephrase602

a question from the audience, the model might603

present the user with the rephrased question it is604

actually answering, which would result in better in-605

terpretability. This improved interpretability might606

teach users how to interact with the model.607

9 Related Work608

Disagreement in VQA After the introduction of609

VQA datasets such as VQAv2 (Goyal et al., 2017)610

and VizWiz (Gurari et al., 2018), several papers611

focused on describing and diagnosing annotator612

disagreement in VQA. One line of work with deep613

ties to ours focuses on modeling annotator disagree-614

ment. Gurari and Grauman (2017) and Yang et al.615

(2018) present models for predicting annotator dis-616

agreement, which they use to reduce annotation 617

cost. They both offer preliminary explorations of 618

the features of high-disagreement questions. Bhat- 619

tacharya et al. (2019) explore the reasons for dis- 620

agreement in greater depth, annotating ∼ 45, 000 621

examples for the reason of disagreement. We use 622

these in our collection (cf. Section 3). 623

Visual Question Generation Our work also re- 624

lates to visual question generation (VQG). While 625

VQG was first introduced as a task of generating 626

unconstrained questions about images (Mora et al., 627

2016; Mostafazadeh et al., 2016), subsequent work 628

has explored conditioning on images and answers 629

to produce questions, as in Liu et al. (2018). Li 630

et al. (2018) propose to generate questions as a 631

dual auxiliary task for VQA, and Shah et al. (2019) 632

use cycle consistency between generation and an- 633

swering for improving VQA. Some past work has 634

conditioned on partial answer information: Krishna 635

et al. (2019) condition on answer categories rather 636

than full answers, and Vedd et al. (2022) present a 637

latent variable model which allows answers to be 638

imputed at test-time. Terao et al. (2020) condition 639

on answer-distribution entropy; in a similar vein to 640

our work, Terao et al. focus on VQG for ambiguous 641

questions. However, Terao et al. define ambiguity 642

according to the entropy of their trained model and 643

rely on user-specified entropy values for inference; 644

we define it in a model agnostic way, according to 645

features of the input. They also do not distinguish 646

between linguistic and visual ambiguity. 647

10 Conclusion 648

We have presented a dataset of ambiguous VQA 649

questions, annotated with reasons why they are am- 650

biguous, as well as answers grouped by the under- 651

lying disambiguated question they are answering. 652

We then introduced a model for rephrasing ambigu- 653

ous questions according to their answers, finding 654

that the model, which is trained purely on visual 655

question generation, is able to recover information 656

about the underlying question. We validate both 657

our dataset and model using automatic and human 658

evaluations, where we find that both reduce ques- 659

tion ambiguity. Finally, we illustrate the utility of 660

our dataset by using it to explore Chapman and 661

Kučerová (2016)’s account of ambiguous “why” 662

questions in English, where we find evidence con- 663

tradicting the syntactic explanation given. 664
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A Crowdsourcing 864

To collect a set of vetted data, a pilot task (or HIT) 865

was run. A local annotator was paid $15 for one 866

hour of annotation time (including watching the 867

instruction video). The same annotations were then 868

annotated by one of the authors. During this phase, 869

the authors themselves ensured that there was no 870

personally identifiable or offensive material in the 871

data. From this data, we generated a set of exam- 872

ples for a pilot HIT to be run on Amazon’s Mechan- 873

icalTurk (MTurk). 874

To identify high-quality MTurk annotators, we 875

ran pilot HIT of 41 examples from the local anno- 876

tations, with 28 examples marked as ambiguous in 877

the pilot and 13 examples marked as unambiguous 878

(e.g. skipped). Workers were restricted to be lo- 879

cated in the US. The annotations were presented 880

sequentially, so that annotators had to complete all 881

41 examples to complete the HIT. Annotators were 882
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paid $0.10 per example and received a 100% bonus883

for completing all examples ($8 per HIT, roughly884

$16 per hour of annotation).885

From the pool of MTurk annotators who com-886

pleted the pilot, we identified the top annotators.887

We then presented them with 850 examples in a888

non-sequential format, where each annotator could889

do as many as desired. No examples were flagged890

as offensive in this stage. Two annotators com-891

pleted the task, which paid $0.10 per example, with892

an $8 bonus for every 300 examples. This corre-893

sponded to roughly $16 per hour.894

B VQA Ambiguity Ontology895

B.1 Question Semantics896

Formal semantics often focuses on variants of truth-897

conditional semantics, where knowing the meaning898

of an utterance is equated to knowing the condi-899

tions that would make the utterance true (Davidson,900

1967). This account handles propositions well;901

however, evaluating the truth conditions of ques-902

tions, an equally central feature of human language,903

seems more challenging. A rich literature has ex-904

plored the meaning of questions (Hamblin, 1958;905

Belnap and Steel, 1976; Groenendijk and Stokhof,906

1984, i.a.); for the purposes of this overview, we907

will briefly touch on one proposal which is of par-908

ticular relevance to several categories outlined in909

Section 3. Under the partition semantics proposed910

by Groenendijk and Stokhof (1984), the meaning911

of a question is a set of utterances which partition912

the set of possible worlds. This is best illustrated913

with an example: assuming there were only two914

people in the whole universe (“John” and “Mary”),915

then the meaning of the question “Who walks?” is916

the partition introduced by the propositions “Only917

John walks”, “Only Mary walks”, “Both walk”,918

“Neither walks”. Each cell in the partition contains919

all possible worlds where the proposition is true,920

i.e. the “John walks” cell might contain a world921

where he walks outside, or on a treadmill, or one922

where the moon is made of cheese.923

This proposal will describe a core feature of one924

type of disagreement we find. In certain cases,925

different answerers may have a different set of926

propositions in mind, leading to incompatible par-927

titions. For example, given a picture of a blue928

children’s tshirt, the question, “What kind of shirt929

is this” might be answered with “blue”, “child’s”,930

or “small”. In each of these cases, the partition931

function may be different, i.e. the “blue” answer is932

given as opposed to other colors, while the answer 933

“child’s” stands against “adult”. 934

B.2 Property-based 935

Property-based ambiguities stem from annotators 936

choosing to report different properties of objects 937

or events with multiple properties. Another way 938

to think of property-based ambiguities is in terms 939

of the partition-based question semantics of Groe- 940

nendijk and Stokhof (1984). Under partition seman- 941

tics, the meaning of a question is a partition over 942

possible worlds. These partitions can be described 943

in terms of equivalence classes; for example, given 944

a universe of two people (“John”, “Mary”) the par- 945

tition induced by the question “Who walks?" has 4 946

cells, containing all worlds where only John walks, 947

only Mary walks, both walk, and neither walk. 948

In property-based ambiguities, annotators seem to 949

choose different equivalence classes, which corre- 950

spond to different cells in a partition and different 951

sets of alternatives. For example, in Fig. 9, the 952

annotator who says “white” is partitioning accord- 953

ing to colors (e.g. “white sweater” as opposed to 954

“blue sweater” or “black sweater”) while the annota- 955

tor who says “long sleeve” is partitioning possible 956

worlds according sleeve style. 957

B.3 Property-based 958

There are three sub-classes of property-based am- 959

biguities: location, kind, and time. (Back to table) 960

B.3.1 Location 961

Location maps to the PropBank tag ARGM-LOC. 962

Answers here typically differ in terms of frame-of- 963

reference, tracking with the observations of Viethen 964

and Dale (2008). 965

Figure 7: Question: Where is the fan? Answers: “on
table”; “[l]eft side of counter in kitchen”

B.3.2 Time 966

This category maps to the PropBank tag 967

ARGM-TMP. Answers often differ in terms of gran- 968
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ularity and frame-of-reference (e.g. “morning”,969

“breakfast time”, “8am”).970

Figure 8: Question: What time of day is it? Answers:
“morning”; “4 o’clock”

B.3.3 Kind971

These do not map to PropBank, and ask about what972

type or kind of something an object is. Answers973

differ in terms of property class chosen.974

Figure 9: Question: What kind of top is she wearing?
Answers: “white”; “button up to”; “sweater”; “long
sleeve”

B.4 Dynamic975

Dynamic questions are typically about properties976

of dynamic objects or events. Annotators often977

disagree on the type of question being asked (e.g.978

cause vs. purpose), as well as the underlying ques-979

tion within a type. These questions commonly980

correspond to “why” and “how” questions. (Back981

to table)982

B.4.1 Cause983

Maps to ARGM-CAU. These ask for the cause of984

an event. Since cause and purpose are often am-985

biguous (Chapman and Kučerová, 2016) annotators986

may differ here, and since cause is often under-987

specified from a static image, annotators may im-988

pute different causes. Even when causes are not989

imputed, annotators often may choose one of mul-990

tiple causes, or report causes at different levels of991

granularity.992

Figure 10: Question: Why is this blue and green? An-
swers: “it’s vegetables”; “cold”; “photosynthesis”; “gar-
den”

B.4.2 Purpose 993

maps to ARGM-PRP. Purpose questions ask for the 994

purpose of an event, and share their features with 995

the cause examples. 996

Figure 11: Question: What is the netting for? Answers:
“baseball”; “ball”; “protect public”; “protect spectators”;
“safety”; “don’t get hit by ball”;

B.4.3 Goal and Direction 997

Goal maps to ARGM-GOL and asks for the even- 998

tual goal (location or person) of an object or event. 999

When the goal is a person, it is often the person who 1000

benefits from an action. Goals are often imputed, 1001

and can often be ambiguous with direction. Di- 1002

rection maps to ARGM-DIR and asks for the path 1003

being taken by an object. This is often ambiguous 1004

with goal, and is also often imputed or dependent 1005

on the frame-of-reference. 1006

Figure 12: Question: Where is the bus going? Answers:
“station”; “around corner”

B.4.4 Manner 1007

Manner maps to ARGM-MNR and asks in what man- 1008

ner an event is happening. Manner questions can 1009
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be ambiguous with cause questions.1010

Figure 13: Question: How is the plane flying? Answers:
“low”; “engines”; “in air”

B.5 Pragmatic/Other1011

Pragmatic ambiguities are typically characterized1012

by an underspecified question which requires the1013

answerer to infer a preference on the part of the1014

questioner. For example, in the “Multiple Options”1015

ambiguity, there are several valid responses, and1016

different answerers might infer that different op-1017

tions are more or less salient to the questioner.1018

None of the pragmatic ambiguities are aligned with1019

PropBank. (Back to table)1020

B.5.1 Multiple Options1021

A common source of disagreement is when anno-1022

tators are asked to choose one of multiple options.1023

For example, a question like “what color is X?”1024

when X has multiple colors will often result in a1025

variety of answers. Here, the ambiguity is with1026

respect to the inferred intent of the questioner; the1027

answerer must infer which option is most salient to1028

the questioner.1029

Figure 14: Multiple options ambiguity example. Ques-
tion: What team is the man holding the bat playing for?
Answers: “matadors”; “yankees”

B.5.2 Grouping1030

Grouping ambiguity often co-occurs with multi-1031

ple options, and involves grouping several options;1032

different annotators may include or exclude items1033

from their groups.1034

Figure 15: Question: What is on the right of the picture?
Answers: “sky posts”; “mountain”; “electric tower, ski
pole, and mountain top”;

B.5.3 Uncertainty 1035

Many examples contain visual uncertainty, espe- 1036

cially for questions about events, which are inher- 1037

ently hard to capture in a static image. 1038

Figure 16: Uncertainty example. Question: Where is
the white wine bottle? Answers: “not visible”; “empty”

B.5.4 Annotator mistakes 1039

Some annotators provide bad or unreasonable an- 1040

swers to questions. 1041

Figure 17: Annotator mistake. Question: How high is
the water? Answers: “2-3 inches”; “rain water”

B.5.5 Bad question/bad image 1042

Some questions are nonsensical and some images 1043

are extremely low quality, making answering any 1044

question about them impossible. 1045
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Figure 18: Bad image or data. Question: Which bird
looks about to take off the ground? Answers: “middle
bird”; “left 1”

C Interface1046

Fig. 19 shows the annotation interface used to col-1047

lect the dataset. Answers are drag-able objects1048

and can be moved across columns. New answer1049

groups can be added. Questions are auto-populated1050

with the original question and then edited by the1051

annotator. Skipping opens up a text box with an1052

auto-populated reason (“All answers to the same1053

question”) that can be edited.1054

D Hyperparameters1055

Models were trained with the AdamW optimizer1056

(Loshchilov and Hutter, 2018) using a learn rate1057

of 1e − 4 with linear weight decay of 0.01. The1058

learn rate followed a linear warmup schedule with1059

4, 000 warmup steps. The batch size was set to 321060

per GPU, leading to an effective batch size of 128.1061

As fine-tuning ViLT for VQG had no substantial1062

impact, we freeze the ViLT encoder during training.1063

E Validation Performance1064

Table 4 shows the validation performance for all1065

metrics reported in Table 2. Trends mirror those1066

seen in the test data.1067

F Why Ambiguity1068

Fig. 20 gives an example of each possible com-1069

bination of dynamicity and agency. Answers are1070

grouped by whether they are cause or purpose an-1071

swers. Note that grouping these answers is an un-1072

derspecified task – in many cases, both readings1073

can be coerced using context.1074

Why is the girl holding an umbrella?

keep sun off, 
block sun, 
sunscreen, 
sun protection, 
protection from sun

it’s sunny, sun

Purpose Reason

+DYNAMIC-DYNAMIC

+A
GE

NT
IV

E
-A

GE
NT

IV
E

Why are these people on their cell phones

boredom,
poor real life social skills

Purpose Reason
talk to people…,
taking calls,
talking,
talking to someone,
posing
 

Why is the man mid-air?

tricks,
making ski jump,
jumping

snowboarding,
he went off jump,
snowboarding down hill,
snowboarding jump,
ramp

Purpose Reason

Why does the horse have a blanket on?

to warm its body,
warmth cold,

it is cold

Purpose Reason

Figure 20: Example of an ambiguous annotation for
each category in our “why” question analysis

G License 1075

Code and data will be released under an MIT li- 1076

cense. 1077
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Figure 19: The annotation interface.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE-L METEOR BERT

iVQA∗ 0.43 0.33 0.26 0.21 1.71 0.47 0.21 N/A
VT5-v 0.47 0.31 0.22 0.16 1.05 0.42 0.41 0.93
VT5-t 0.39 0.21 0.14 0.10 0.48 0.29 0.30 0.91
VT5 0.53 0.37 0.28 0.22 1.51 0.46 0.47 0.94
VT5-v+c 0.47 0.30 0.21 0.15 1.33 0.43 0.45 0.93
VT5-t+c 0.42 0.25 0.17 0.12 0.95 0.34 0.38 0.92
VT5+c 0.53 0.37 0.27 0.21 1.73 0.47 0.50 0.94

Table 4: Validation performance of the VQG model and baselines. Our model is able to integrate visual and textual
information and output questions with high similarity to reference questions.
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