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Abstract

Resolving ambiguities in questions is key to
successfully answering them. Focusing on
questions about images, we create a dataset
of ambiguous examples; we annotate these ex-
amples, grouping the answers by the underly-
ing question they address and rephrasing the
question for each group to reduce ambiguity.
An analysis of our data reveals a linguistically-
aligned ontology of reasons why questions
can be ambiguous. We then develop a model
for question generation in English which we
demonstrate via automatic and human evalua-
tion produces less ambiguous questions. We
further show that the question generation ob-
jective we use allows the model to integrate
answer group information without any direct
supervision. Finally, we employ our dataset
and ontology for linguistic hypothesis testing,
finding evidence against a previous syntactic
account of ambiguity in “why” questions.'

1 Introduction

The ability to ask questions allows people to effi-
ciently fill knowledge gaps and convey requests;
this makes questions a natural interface for interact-
ing with digital agents. Visual question answering
(VQA) models more specifically seek to answer
questions about images, which can be useful in a
variety of settings, such as assistive tech (Bigham
et al., 2010). A number of datasets have been pro-
posed for training VQA models, including VQAv2
(Goyal et al., 2017), VizWiz (Gurari et al., 2018),
and GQA (Hudson and Manning, 2019). Such
datasets are useful not only for training — they rep-
resent the aggregate judgements of speakers on a
variety of factors, including ambiguity.

Ambiguity is a core feature of natural language,
and can exist at all levels of linguistic analysis.
In the context of data annotation, ambiguity often
leads to disagreement between annotators. Given
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dataset. Answers are grouped by the underlying ques-
tion they answer, and the question is rephrased for each
group. Answers within a group do not necessarily match,
but do answer the same question.

that this data is typically used in a categorical fash-
ion to train and evaluate models, annotator dis-
agreements are problematic. Past work has often
looked at detecting and resolving disagreements
from the perspective of trust (Hovy et al., 2013),
where some annotators are assumed to be more or
less trustworthy. However, in the case of ambigu-
ity, an annotator’s honest effort may still lead to
disagreement; in such cases, collecting more an-
notations may fail to establish a consensus. This
differs from mistakes and cheating, where gath-
ering more annotations would effectively outvote
low-quality annotations. Ambiguity in the context
of questions presents a particularly rich problem:
firstly, question semantics are less clear from a
formal point of view than the semantics of declar-
ative sentences; this makes empirical accounts of
questions particularly useful. Secondly, questions
are increasingly relevant to natural language pro-
cessing (NLP) research. Many NLP tasks are cast
as question-answering (QA), including a growing
number of tasks which can be cast as few-shot QA.

Our four main contributions are: (1) We examine
how ambiguity appears in the VQAv2 data by con-
structing a dataset of 1,820 annotated visual image-
question-answer triples. For each question, we ask
annotators to re-group answers according to the un-
derlying question they answer, and to rewrite ques-
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tions to unambiguously correspond to that group.
(2) We create an ontology of causes for linguistic
ambiguity based on the PropBank ontology (Kings-
bury and Palmer, 2002; Gildea and Palmer, 2002;
Palmer et al., 2005), and annotate our data with
these causes. (3) We develop a visual question gen-
eration model which learns to rewrite questions;
we validate this model with the re-grouped answers
and re-written questions from our dataset. Our
model can be used to cluster answers into their
groups without any supervision for answer groups.
(4) Finally, we use our dataset to test a linguistic
hypothesis: Chapman and Kucerova (2016) pro-
pose that “why” questions are ambiguous between
purpose and reason readings only with dynamic
predicates and agentive subjects; we find evidence
challenging this proposal.

2  Ambiguity

In the VQAV2 annotations, each image has multiple
questions, with each question being redundantly an-
swered by up to 10 annotators. This redundancy is
crucial for our annotations, as it provides us with
multiple judgments per question, some of which
may indicate ambiguity. We define ambiguous ex-
amples as ones where annotators are responding to
different underlying questions.” We contrast this
definition with visual underspecification and uncer-
tainty, which are categorized by a lack of visual
information needed to answer a question, rather
than ambiguity about what the question is. These
can appear simultaneously, e.g. in Fig. 3 where
there is both ambiguity and underspecification.
For example, the question in Fig. 2 is underspec-
ified, as this information is absent in the image and
must be inferred. Past efforts examining reasons
for annotator disagreement in VQA have addressed
this distinction: Bhattacharya et al. (2019) intro-
duce a dataset of 45,000 VQA examples annotated
with reasons for disagreement, including ambigu-
ity and lack of visual evidence as two separate
categories. In practice, however, many examples
labeled as ambiguous (such as Fig. 2) are cases
2This definition is not exhaustive, as it relies on the anno-

tations; an example could be ambiguous but have few annota-
tions, resulting in complete agreement between annotators.
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of underspecification or unambiguous questions
paired with visually ambiguous images. We use
the ambiguous examples from Bhattacharya et al.
(2019) as a starting point for our dataset.

3 Data

To properly study linguistic ambiguity in VQA, we
collect a dataset of ambiguous examples, which rep-
resents a resource for categorizing and analyzing
ambiguous questions and contains 1,820 answers
to 241 image-question pairs. The data contains an-
swers grouped by their underlying questions; there
are 629 underlying questions.

The size of the ambiguous subset of VQA
from Bhattacharya et al. (2019) prohibits our re-
annotating the whole dataset, so we employ a num-
ber of heuristics to create a subset of data that is
likely to be linguistically ambiguous. First, we sort
the annotations into a priority queue using several
heuristics. To merge synonymous answers (e.g.
“cat”, “the cat”, “feline”’) we embed each answer
into continuous space using GloVe embeddings
(Pennington et al., 2014), mean-pooling across
words for multi-word answers and apply K -means
(MacQueen, 1967; Lloyd, 1982) to the resulting
embeddings, iteratively increasing the number of
clusters k. Examples are scored by combining the
K -means inertia score with a penalty for each ad-
ditional cluster, trading off cluster coherence and
having as few clusters as possible. These are subse-
quently sorted by how balanced their clusters are.?
We remove yes-no questions with only “yes” and
“no” answers, as they answer the same question.

Annotation Interface We introduce a new an-
notation interface for re-grouping answers and re-
writing questions (cf. Appendix C). We present the
annotators with the question, image, and answers;
answers are pre-grouped based on the K-means
cluster assignments and are drag-able. Each an-
swer cluster is paired with an editable text-box
containing the original question. For each exam-
ple, annotators have 3 tasks: first, they must decide
whether the answers provided in the example cor-

Balanced clusters are more likely to be ambiguous, as un-
balanced clusters are often a result of a single bad annotation.



Category Property PropB. | Description Ex.
Property- chation LoC Asks about an object’s location. . . B.3.1
based Tl'me TMP Asks about the time of an event or the time a picture was taken. B.3.2
Kind N/A Ask about what kind of something an object is. B.3.3
Cause CAU Ask for the cause of an event. B.4.1
Purpose PRP Ask for the purpose of an event. B.4.2
Dynamic Goal GOL Ask for the goal (location or person) of an object or event. B.4.3
Direction DIR Ask for the path being taken by an object. B.4.3
Manner MNR Ask in what manner an event is happening. B.4.4
Pragmatic Multiple N/A Ask annotators to choose one of n_lultiple options. B.5.1
and Grouplnlg N/A Ask annotators to group multlple.ltems. . B5.2
Other Uncertainty | N/A Contain visual uncertainty, especially for questions about events. B.5.3
Mistake N/A These involve bad answers or bad questions/images. B.5.4

Table 1: Ontology of reasons why examples are ambiguous. Examples and details in Appendix B.

respond to different questions, or whether they all
answer the same underlying question, i.e. whether
the question is ambiguous. If an example is not
skipped, the second task is to re-group annotations
by the question they answer. Each answer can be
dragged into the appropriate cluster or deleted if it
is spam; new clusters can also be created. Anno-
tators were instructed to cluster answers by their
underlying question, not by whether they are se-
mantically similar. For example, antonyms like
“good” and “bad” may be in the same answer clus-
ter. Finally, in the third task, annotators were asked
to minimally edit the question corresponding to
each cluster, such that the new question uniquely
corresponds to that cluster of answers. Instructions
were presented to the annotators in text and video
format. A local pilot with trained annotators was
run to collect data for vetting annotators on Ama-
zon MechanicalTurk; only annotators with high
agreement to the local annotators were allowed to
participate in further annotation. See Appendix B
for details on the crowdsourcing process, including
wage information. At least one author manually
vetted all ambiguous examples, discarding noisy
examples and editing questions for fluency.

Statistics Of the 1,249 examples used, MTurk
annotators skipped 942, identifying 307 as ambigu-
ous. After cleaning these examples we have 241
unique image-question combinations, correspond-
ing to 629 unique rewritten questions (including the
examples from the pilot.) Each question is paired
with 1-9 unique answers (mean: 2.9). We split our
data into 30 dev questions and 211 test questions.

Inter-annotator Agreement We measure agree-
ment on two levels: to what extent annotators iden-
tified the same examples as ambiguous, and the
overlap between clusters of answers. Note that per-
fect inter-annotator agreement cannot be expected.
Given that the examples we are interested in were
ambiguous to the original set of VQAv2 annotators,

with some seeing one reading over another, it is
likely that some of the annotators in our task would
also see only one reading.

Ambiguity agreement is defined as the percent-
age of examples two annotators both marked as be-
ing ambiguous. This number is averaged across an-
notator pairs. In the local pilot, the annotators had
a pairwise ambiguity agreement score of 79.5%. In
the MTurk pilot, 5 annotators had a mean pairwise
score of 73.5% with a standard deviation of 6.0%
(min 62.5%, max 80.0%). Note that we obtained
redundant annotations only for the local and MTurk
pilot HITs, and not the main data collection HIT.

The cluster agreement between two annotators
is defined as the F1 score between the clusters
of answers produced. Since the clusters are not
aligned a priori, we use the Hungarian algorithm
(Kuhn, 1955) to find a maximum overlap bipartite
matching between clusters from each annotator and
then compute the F1 score between aligned clusters.
These scores are averaged across annotator pairs.
The local pilot cluster agreement score was 92.2%,
and the MTurk pilot’s score was 88.4%, with a stan-
dard deviation of 6.0% (min 77.1%, max 94.6%).

Ambiguity Ontology After collecting the data,
we observed that there were multiple groups within
the ambiguous examples, corresponding to the fac-
tors that made a question ambiguous. We manually
annotated all ambiguous examples according to the
following linguistically-grounded ontology, which
is largely aligned to PropBank roles (Kingsbury
and Palmer, 2002; Gildea and Palmer, 2002; Palmer
et al., 2005). The ontology is divided broadly into
3 categories. Property-based questions typically
have to do with objects with multiple properties,
and relate to partition question semantics (Groe-
nendijk and Stokhof, 1984); more information can
be found in Appendix B.1. Dynamic questions
are about dynamic properties of objects or events.
Finally, pragmatic ambiguities mainly relate to am-
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Figure 4: (Top) Frequency of each category. (Bottom)
Co-occurrence frequency of each category (excluding
frequencies < 1). Some categories are highly correlated,
indicating higher-order ambiguity.

biguity in inferring the intention of the questioner,
including choosing which element of the the world
is most salient. Each category contains several sub-
categories — these are summarized in Table 1 and
described in-depth in Appendix B.

Fig. 4 shows the frequency of each category, with
the most common categories being location, kind,
and multiple options, and shows the frequency with
which pairs of categories co-occur (excluding pairs
that only co-occur once). Several categories co-
occur frequently, indicating higher-order ambiguity
(i.e. ambiguity between what type of question is
being asked). For example cause and purpose often
co-occur; this indicates that they are often confused
for each other, with some annotators providing an-
swers consistent with a cause interpretation and
others with a purpose interpretation. Furthermore,
that they do not always co-occur indicates that am-
biguity exists even within one interpretation.

4 Model

The data collected in Section 3 consists of questions
rewritten according to their answer clusters. We
develop a visual question generation (VQG) model
which takes in answers and images and produces
questions. After confirming the performance of the
VQG model for generation generally, we evaluate
the performance of a VQG model with respect to
the answer clusters in our dataset. Specifically, we
examine how the model can be used for clustering
answers within an answer group together. Given
that the answer clusters are based on the underlying
question the answer is answering, we hypothesize
that a good VQG model should not only learn to
generate questions with a high similarity between
the generated and reference questions, but learn in-
put representations that contain answer group infor-
mation. Note that this information would emerge

in an unsupervised fashion, as we do not provide
any answer group information during training.

We present a simple model for VQG consist-
ing of a pre-trained vision-language encoder fol-
lowed by a pretrained text-to-text encoder-decoder
model. We use VIiLT (Kim et al., 2021) as our
vision-language encoder. ViLT is a pre-trained
fully transformer-based 87.4M-parameter model.
The available ViLT model fine-tuned for VQA was
trained on the entirety of the VQAvV2 training data;
since the annotations for Bhattacharya et al. (2019)
come from the training set, our annotations also
are sourced from the VQAV2 training set. To avoid
test-set leakage, we fine-tune our own version of
ViLT on a modified training set that excludes our
annotations. Our input to ViLT is the image I;
and a text answer q; from the set of answers for
instance 7, A;. To generate text, we feed the output
of ViLT to a pre-trained T5-base encoder-decoder
model (Raffel et al., 2020) with ~ 220M parame-
ters, accessed via Huggingface Transformers (Wolf
et al., 2020). We replace the embedding layer of
the model with the output of our ViLT encoder,
and train the model using all answers in the dataset
with “yes” or “maybe” confidence ratings, using
categorical cross-entropy loss computed against the
original question ();. Note that the question Q); is
taken directly from the VQAv2 data, which we re-
fer to as “original data” — we do not train on the
annotations collected in Section 3.

Underspecification is a major challenge in VQG
evaluation: given an image and an answer, there is
often an intractably large set of questions that could
have generated the answer. For example, in Fig. 1,
the answer “purple” could also correspond to the
question, “What color is the bottle’s base?" Further-
more, even when the question is about the same
topic, there are often a large number of semanti-
cally identical ways to phrase the question which
may have very different surface forms. This poses
a problem for surface-level evaluation metrics like
BLEU. Finally, in our task of rephrasing questions,
similarity is not a perfect predictor of quality. At
one extreme, if the model generated the original
question, it would receive a perfect similarity score
when evaluated against the original question, but
be as ambiguous as before. At the other extreme, as
illustrated in the preceding example, a model may
generate a valid question conditioned on the answer
that has no relation to the original question’s intent.

We attempt to tackle this problem by including



positive lexical constraints from the original ques-
tion in our decoding process. In a normal VQG
setting, this would be impossible, since it requires
the question at test time. However, in our setting,
where the goal is to rephrase visual questions, we
can assume access to questions. To generate a
question on the same topic as the original, we use
fast lexically-constrained decoding (Post and Vi-
lar, 2018) with disjunctive positive constraints (Hu
et al., 2019) during test decoding (+c in Table 2).4

Baselines Due to the difference in our train and
validation data as well as our use of constraints,
our results are not directly comparable to previous
VQG models. We instead compare our model to
two baselines: “no image” (-v) and “no answer”
(-t), where we give our model only the answer and
only the image, respectively. These ablations verify
our model’s integration of multimodal information.

Training We use the VQAV2 training set for
training, excluding the examples we annotated,
which came from the train split. Since the answers
for the VQA test split are not public, we use the
validation data for testing and validation. We take
2,000 questions pairs for validation and hold out
the remaining ~ 21K for testing. Each model was
trained to convergence, measured by 5 consecutive
epochs without BLEU score improvement, on four
NVidia Quadro RTX 6000 GPUs; training took
about 40 hours per model. All models were trained
with the same hyperparameters (cf. Appendix D).

5 Visual Question Generation

Before analyzing performance on our dataset, we
verify that the question-generation model we pro-
posed is able to generate reasonable questions
for the dataset more broadly. Here, we follow
past work in reporting several string-based metrics:
BLEU (Papineni et al., 2002), CIDEr (Vedantam
et al., 2015), Rouge-L (Lin, 2004) scores. We also
report BertScore (Zhang et al., 2019).

Table 2 shows the test performance of the mod-
els tested, with and without constrained decoding.
We see that the proposed generation model outper-
forms both baselines by a wide margin, indicating
that it is successfully integrating information from

*We extract all contiguous noun spans from the question
using Spacy’s part-of-speech tagger (Honnibal and Montani,
2017); these are added as disjunctive positive beam search
constraints so that the output contains at least one span. For
example, without constraints, the question “Where are the
people sitting?” (answer: “park”) is rewritten “What kind of
park is this?”, while with it is, “Where are the people?”

Model BLEU-4 CIDEr ROUGE-L BERT
iVQA™ 0.21 1.71 0.47 N/A
VT5-v 0.22 1.51 0.45 0.93
VT5-v+c 0.21 1.82 0.47 0.93
VT5-t 0.16 1.00 0.32 0.92
VT5-t+c 0.18 1.51 0.38 0.92
VT5 0.27 1.98 0.48 0.94
VT5+c 0.26 2.21 0.50 0.94

Table 2: Test performance of the VQG model and base-
lines. Our model is able to integrate multimodal infor-
mation and produce high-similarity questions.

both modalities. Furthermore, we see that in all
cases, constraints improve performance; this is un-
surprising, since the constraints force the model to
include more of the reference question’s n-grams.
Finally, we include the performance of the iVQA
model from Liu et al. (2018) in this table; however,
we stress that the numbers are not directly com-
parable, since the training and evaluation data is
different. Nevertheless, they help assert that our
model is within the correct range for VQG.

Model as an Annotator In Section 3 we mea-
sured the inter-annotator agreement between anno-
tators for clustering. We now compare the model
predictions to these annotations with the same met-
ric. Specifically, we measure how well the model’s
answer clusters align with annotated clusters, as-
suming access to the number of clusters given by
the annotators. While this is a limiting assumption,
it lets us evaluate to what degree the model’s rep-
resentations are useful in grouping answers, inde-
pendently of whether the clustering algorithm can
infer the right number of clusters. We hypothesize
that the VQG loss will result in answer representa-
tions for answers to the same underlying question
being more similar than answer representations for
different underlying questions.

In order to obtain clusters from model represen-
tations, we use the K-means algorithm to group
model representations of each answer a; € A;.
We then compare the F1 overlap between clusters
produced by the model (and different clustering
baseline) to the clusters produced by annotators
using the method detailed in Section 3. We com-
pare against several simple baselines. The random
baseline randomly assigns answers to K clusters.
The perfect precision baseline puts each answer
in a separate cluster, leading to perfect precision
but poor recall. The perfect recall baseline clus-
ters all of the answers together, leading to perfect
recall but poor precision. We also take the initial
clustering of GloVe vectors with K -means, using



Method P R F1

Human* 88.6 917 884
Random 649 704 594
Perfect P 100.0 506 61.1
Perfect R 63.4 1000 76.3
GloVe initial 984 643 724
VIiLT + K-means 659 68.6 60.1
VTS5 + K-means  81.9 84.0 79.0

Table 3: Clustering metrics; Human results included for
indirect comparison only.

an incrementally increasing K, as described in Sec-
tion 3, as a baseline. For a more direct comparison,
we extract the frozen pre-trained ViLT representa-
tion for the answer tokens and use mean pooling
to combine them into a single vector per answer,
clustering them with K-means for the ViLT+K-
means baseline. Note that the ViLT representation
is frozen and not trained for VQG. This baseline is
contrasted with the VTS + K -means system, where
we extract mean-pooled answer token representa-
tions from the final layer of our VQG encoder and
use these for clustering with K -means. Gains over
the ViLT baseline reflect the benefits of the VQG
loss combined with the T5 encoder pre-training.

Table 3 shows the clustering results. We see that
VT5+K-means outperforms all baselines in F1, in-
dicating that the representations learned via a VQG
objective contain answer-group information. This
is surprising, as the objective here does not directly
optimize for answer groups; for a given training
example (I, a;, Q;), there is a single reference out-
put @; for all answers, regardless of the group they
are in. However, the grouping information might
be found in the dataset more broadly; when consid-
ering multiple examples with similar answers, an-
swers in the same group may correspond to similar
questions, leading them to be closer in representa-
tion space and thus in the same K -means cluster. In
other words, the encoder representation for a given
answer, having been trained across many similar
questions and answers, is more similar within an
answer group than across groups.

6 Human Evaluation

The metrics in Section 5 suggest that our model
holds promise as a method for rephrasing ambigu-
ous questions; Table 2 indicates that the model
produces fluent questions conditioned on images
and answers, and Table 3 indicates that the model
rewrites questions in a way that corresponds to the
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Figure 5: % answers rated as acceptable for each ques-
tion type (annotator-rewritten, model-rewritten, origi-
nal). Error bars represent bootstrapped 95% confidence
intervals. Rewritten questions are less ambiguous than
their original counterparts. Model questions are gener-
ally less ambiguous across ambiguity categories.

answer clusters and rewritten questions from hu-
man annotators. However, these automated metrics
fall short of providing a full picture of the qual-
ity of rewritten questions, especially because, as
mentioned before, it is not clear that similarity is a
monotonic measure of success in our case. Thus,
we conduct a human evaluation of 100 rewritten
questions, specifically testing whether rephrased
questions (from annotators and from the model)
are less ambiguous than their original counterparts
from the VQA dataset.

Methods Our evaluation paradigm presents an-
notators with an 3-way ordinal decision (“yes”,
“maybe”, “no”), rating whether an answer is appro-
priate given an image and question. We sample
100 examples from our dataset with 3 questions
each (annotator-generated, model-generated, and
original). The model-generated questions are taken
from the VTS5 model with constraints. For each
image-question-answer triple, we obtain 2 answers
— one from the answer group corresponding to the
question, and a distractor answer from a different
answer group, as determined by the human anno-
tations. An ambiguous question should be rated
as acceptable for both answers (the actual and dis-
tractor), while a question rephrased to be less am-
biguous should be rated as acceptable for the actual
answer but not for the distractor answer, which
corresponds to a different underlying question. An-
notators were paid 0.04 per annotation for a total
of 600 annotations, or ~ $16 per hour.



Results and Analysis Fig. 5 shows the percent-
age of answers rated as acceptable (“yes” as op-
posed to “maybe” and “no’”) across different con-
ditions. The original, unedited question shows no
significant difference between the actual and dis-
tractor answer, as measured by McNemar’s test
(McNemar, 1947). This is expected, given that both
answers were given by annotators in the original
dataset to the original question, and thus are both
likely to be viewed as acceptable. Both types of
edited questions, on the other hand, show a signifi-
cant difference between the actual answer and dis-
tractor answer, indicating that questions rephrased
by annotators and by the model more specifically
select answers from one answer group over, i.e.
they are less ambiguous with respect to the answer
group. The fact that the questions predicted by the
model show only a small drop is promising, as it
indicates that the model outputs are fluent and faith-
ful to the original topic. In the bottom of Fig. 5 we
see the percentage broken out by ambiguity type
for the four most frequent types; here, we plot only
the model-predicted sentences. We see that across
most types there is a drop, with model outputs be-
ing rated as acceptable with the true answer, but
not with the distractor.

7 Cause and Purpose Ambiguity

“Why” questions in English are often ambiguous
between a cause and purpose reading (Chapman
and Kucerovd, 2016). In other words, a question
like “Why did the chicken cross the road?" can be
interpreted as asking for the purpose of the action
(e.g. “to get to the other side”) or as asking for
the impetus for the action (e.g. “because it was
afraid of the fox). Chapman and Kucerova (2016)
examine such questions in English through a syn-
tactic lens, noting that not all English predicates
are ambiguous — for example, “why did the butter
melt” has a cause reading, but no purpose read-
ing. Chapman and Kucerova conclude that for both
readings to exist, the predicate must be dynamic
and the subject agentive, factors corresponding to
a syntactic analysis with two possible positions for
“why”, each resulting in a different reading. Our
dataset contains 24 questions labeled with “cause”
and 16 questions labeled as “purpose”; of these, 11
have both cause and purpose readings. Using this
data, we can examine to what extent the Chapman
and Kucerova (2016)’s hypothesis that ambiguity
exists only with dynamic predicates and agentive
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Figure 6: Count of ambiguous and non-ambiguous ques-
tions, grouped by predicate dynamicity (+d) and subject
agency (+a). Non-dynamic verbs with non-agentive sub-
jects are also ambiguous between purpose and cause.

subjects is borne out in real data.

In light of the small amount of data in our dataset,
we first collect additional examples of possible
ambiguous “why” questions. Using the annota-
tions labeled as ambiguous from Bhattacharya et al.
(2019), we scrape all questions starting with “why”
and randomly sample 100. We manually annotate
these as non-ambiguous (i.e. having answers which
correspond only to a purpose or only a cause read-
ing) or ambiguous (i.e. having answers for both
purpose and cause readings) as well as for dynam-
icity and agency (cf. Appendix F for examples). 9
examples were skipped for having poorly-written
questions, resulting in 117 total examples.

Results and Analysis Fig. 6 shows the counts
of ambiguously and non-ambiguously-interpreted
questions, grouped by whether the predicate is dy-
namic and its subject agentive. Part of the hypothe-
sis from Chapman and Kucerova (2016) is borne
out: we do see often see purpose-reason ambiguity
in examples with dynamic predicates and agentive
subjects. However, we also see this ambiguity in
all other cases; most notably, in the most common
case where the predicate is not dynamic and the
subject non-agentive. Many of these examples are
in fact locative-existential questions, which Chap-
man and Kucerova (2016) identify as only having
a reason reading. Our results show that speakers
disagree with this intuition; for example, for the
question “Why are there cushions on the wall?”
some annotators gave clear reasons (e.g. “‘some-
one put them there”) while others gave purpose

answers: “decoration”, * design”.
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8 Discussion

Limitations Our primary limitation is the size of
our collected dataset; we have collected a quality
dataset which we demonstrated is useful for analy-
sis, but which is too small for training large-scale
neural models. Another limitation on our dataset is
the relative subjectivity of the task; in completing
the annotation, we found that identifying ambiguity



and isolating the different underlying questions of-
ten involves a Gestalt shift. Once an interpretation
of the question is chosen, it becomes increasingly
hard to see any other. This makes the annotation
task subjective; where one annotator might see am-
biguity leading to multiple valid answers, another
might see one correct answer group and a number
of invalid ones. We are also limited by the quality
of the underlying data. Our dataset builds on the
VQAV2 dataset (Goyal et al., 2017) and the anno-
tations from Bhattacharya et al. (2019), both of
which were large-scale annotation efforts intended
for training. Due to their scale, individual datapoint
quality is often quite low. Finally, in Chapman and
Kucerova (2016) (and thus, in our analysis) dynam-
icity and agency are binary categories; however,
they are better cast as scalars, following White
et al. (2020), with agency having multiple factors
(Dowty, 1991). Recasting them as scalars would
allow us to use crowdworkers for annotation.
Future Work In addition to addressing these lim-
itations, we leave exploiting the rewriting model to
future work. In Table 2 and Fig. 5 we demonstrated
that our question rephrasing model works well for
producing fluent questions that reduce ambiguity.
Furthermore, in Table 3 we showed that the model’s
representations contain information about the un-
derlying question being asked, even though this in-
formation is not directly present in the training data
and we do not include any supervision from our
dataset. Future work could examine utilizing the
rephrasing model in a search-engine environment,
where users are actively querying about images.
Given an ambiguous question identified and a set
of answers to it from a VQA model, our model
could be used to rephrase the question according to
each answer. Just as a presenter will often rephrase
a question from the audience, the model might
present the user with the rephrased question it is
actually answering, which would result in better in-
terpretability. This improved interpretability might
teach users how to interact with the model.

9 Related Work

Disagreement in VQA  After the introduction of
VQA datasets such as VQAv2 (Goyal et al., 2017)
and VizWiz (Gurari et al., 2018), several papers
focused on describing and diagnosing annotator
disagreement in VQA. One line of work with deep
ties to ours focuses on modeling annotator disagree-
ment. Gurari and Grauman (2017) and Yang et al.
(2018) present models for predicting annotator dis-

agreement, which they use to reduce annotation
cost. They both offer preliminary explorations of
the features of high-disagreement questions. Bhat-
tacharya et al. (2019) explore the reasons for dis-
agreement in greater depth, annotating ~ 45, 000
examples for the reason of disagreement. We use
these in our collection (cf. Section 3).

Visual Question Generation Our work also re-
lates to visual question generation (VQG). While
VQG was first introduced as a task of generating
unconstrained questions about images (Mora et al.,
2016; Mostafazadeh et al., 2016), subsequent work
has explored conditioning on images and answers
to produce questions, as in Liu et al. (2018). Li
et al. (2018) propose to generate questions as a
dual auxiliary task for VQA, and Shah et al. (2019)
use cycle consistency between generation and an-
swering for improving VQA. Some past work has
conditioned on partial answer information: Krishna
et al. (2019) condition on answer categories rather
than full answers, and Vedd et al. (2022) present a
latent variable model which allows answers to be
imputed at test-time. Terao et al. (2020) condition
on answer-distribution entropy; in a similar vein to
our work, Terao et al. focus on VQG for ambiguous
questions. However, Terao et al. define ambiguity
according to the entropy of their trained model and
rely on user-specified entropy values for inference;
we define it in a model agnostic way, according to
features of the input. They also do not distinguish
between linguistic and visual ambiguity.

10 Conclusion

We have presented a dataset of ambiguous VQA
questions, annotated with reasons why they are am-
biguous, as well as answers grouped by the under-
lying disambiguated question they are answering.
We then introduced a model for rephrasing ambigu-
ous questions according to their answers, finding
that the model, which is trained purely on visual
question generation, is able to recover information
about the underlying question. We validate both
our dataset and model using automatic and human
evaluations, where we find that both reduce ques-
tion ambiguity. Finally, we illustrate the utility of
our dataset by using it to explore Chapman and
Kucerova (2016)’s account of ambiguous “why”
questions in English, where we find evidence con-
tradicting the syntactic explanation given.
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A Crowdsourcing

To collect a set of vetted data, a pilot task (or HIT)
was run. A local annotator was paid $15 for one
hour of annotation time (including watching the
instruction video). The same annotations were then
annotated by one of the authors. During this phase,
the authors themselves ensured that there was no
personally identifiable or offensive material in the
data. From this data, we generated a set of exam-
ples for a pilot HIT to be run on Amazon’s Mechan-
icalTurk (MTurk).

To identify high-quality MTurk annotators, we
ran pilot HIT of 41 examples from the local anno-
tations, with 28 examples marked as ambiguous in
the pilot and 13 examples marked as unambiguous
(e.g. skipped). Workers were restricted to be lo-
cated in the US. The annotations were presented
sequentially, so that annotators had to complete all
41 examples to complete the HIT. Annotators were


https://aclanthology.org/2022.naacl-main.118
https://aclanthology.org/2022.naacl-main.118
https://aclanthology.org/2022.naacl-main.118

paid $0.10 per example and received a 100% bonus
for completing all examples ($8 per HIT, roughly
$16 per hour of annotation).

From the pool of MTurk annotators who com-
pleted the pilot, we identified the top annotators.
We then presented them with 850 examples in a
non-sequential format, where each annotator could
do as many as desired. No examples were flagged
as offensive in this stage. Two annotators com-
pleted the task, which paid $0.10 per example, with
an $8 bonus for every 300 examples. This corre-
sponded to roughly $16 per hour.

B VQA Ambiguity Ontology

B.1 Question Semantics

Formal semantics often focuses on variants of truth-
conditional semantics, where knowing the meaning
of an utterance is equated to knowing the condi-
tions that would make the utterance true (Davidson,
1967). This account handles propositions well;
however, evaluating the truth conditions of ques-
tions, an equally central feature of human language,
seems more challenging. A rich literature has ex-
plored the meaning of questions (Hamblin, 1958;
Belnap and Steel, 1976; Groenendijk and Stokhof,
1984, i.a.); for the purposes of this overview, we
will briefly touch on one proposal which is of par-
ticular relevance to several categories outlined in
Section 3. Under the partition semantics proposed
by Groenendijk and Stokhof (1984), the meaning
of a question is a set of utterances which partition
the set of possible worlds. This is best illustrated
with an example: assuming there were only two
people in the whole universe (“John” and “Mary”),
then the meaning of the question “Who walks?” is
the partition introduced by the propositions “Only
John walks”, “Only Mary walks”, “Both walk”,
“Neither walks”. Each cell in the partition contains
all possible worlds where the proposition is true,
i.e. the “John walks” cell might contain a world
where he walks outside, or on a treadmill, or one
where the moon is made of cheese.

This proposal will describe a core feature of one
type of disagreement we find. In certain cases,
different answerers may have a different set of
propositions in mind, leading to incompatible par-
titions. For example, given a picture of a blue
children’s tshirt, the question, “What kind of shirt
is this” might be answered with “blue”, “child’s”,
or “small”. In each of these cases, the partition
function may be different, i.e. the “blue” answer is
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given as opposed to other colors, while the answer
“child’s” stands against “adult”.

B.2 Property-based

Property-based ambiguities stem from annotators
choosing to report different properties of objects
or events with multiple properties. Another way
to think of property-based ambiguities is in terms
of the partition-based question semantics of Groe-
nendijk and Stokhof (1984). Under partition seman-
tics, the meaning of a question is a partition over
possible worlds. These partitions can be described
in terms of equivalence classes; for example, given
a universe of two people (“John”, “Mary”) the par-
tition induced by the question “Who walks?" has 4
cells, containing all worlds where only John walks,
only Mary walks, both walk, and neither walk.
In property-based ambiguities, annotators seem to
choose different equivalence classes, which corre-
spond to different cells in a partition and different
sets of alternatives. For example, in Fig. 9, the
annotator who says “white” is partitioning accord-
ing to colors (e.g. “white sweater” as opposed to
“blue sweater” or “black sweater”’) while the annota-
tor who says “long sleeve” is partitioning possible
worlds according sleeve style.

B.3 Property-based

There are three sub-classes of property-based am-
biguities: location, kind, and time. (Back to table)

B.3.1 Location

Location maps to the PropBank tag ARGM—-LOC.
Answers here typically differ in terms of frame-of-
reference, tracking with the observations of Viethen
and Dale (2008).

Figure 7: Question: Where is the fan? Answers: “on

table”; “[1]eft side of counter in kitchen”

B.3.2 Time

This category maps to the PropBank tag
ARGM-TMP. Answers often differ in terms of gran-



ularity and frame-of-reference (e.g. “morning”,
“breakfast time”, “8am”).

Figure 8: Question: What time of day is it? Answers:
“morning”’; “4 o’clock”

B.3.3 Kind

These do not map to PropBank, and ask about what
type or kind of something an object is. Answers
differ in terms of property class chosen.

Figure 9: Question: What kind of top is she wearing?

Answers: “white”’; “button up to”; “sweater”; “long

sleeve”

B.4 Dynamic

Dynamic questions are typically about properties
of dynamic objects or events. Annotators often
disagree on the type of question being asked (e.g.
cause vs. purpose), as well as the underlying ques-
tion within a type. These questions commonly
correspond to “why” and “how” questions. (Back
to table)

B.4.1 Cause

Maps to ARGM-CAU. These ask for the cause of
an event. Since cause and purpose are often am-
biguous (Chapman and Kucerové, 2016) annotators
may differ here, and since cause is often under-
specified from a static image, annotators may im-
pute different causes. Even when causes are not
imputed, annotators often may choose one of mul-
tiple causes, or report causes at different levels of
granularity.
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Figure 10: Question: Why is this blue and green? An-

swers: “it’s vegetables”; “cold”; “photosynthesis”; “gar-

den”

B.4.2 Purpose

maps to ARGM—PRP. Purpose questions ask for the
purpose of an event, and share their features with
the cause examples.

Figure 11: Question: What is the netting for? Answers:

“baseball”; “ball”; “protect public”; “protect spectators”;

“safety”’; “don’t get hit by ball”;

B.4.3 Goal and Direction

Goal maps to ARGM-GOL and asks for the even-
tual goal (location or person) of an object or event.
When the goal is a person, it is often the person who
benefits from an action. Goals are often imputed,
and can often be ambiguous with direction. Di-
rection maps to ARGM-DIR and asks for the path
being taken by an object. This is often ambiguous
with goal, and is also often imputed or dependent
on the frame-of-reference.

Figure 12: Question: Where is the bus going? Answers:

“station”; “around corner”

B.4.4 Manner

Manner maps to ARGM-MNR and asks in what man-
ner an event is happening. Manner questions can



be ambiguous with cause questions.

Figure 13: Question: How is the plane flying? Answers:

“IOW”; 13 ln air”

99, G

engines”;

B.5 Pragmatic/Other

Pragmatic ambiguities are typically characterized
by an underspecified question which requires the
answerer to infer a preference on the part of the
questioner. For example, in the “Multiple Options”
ambiguity, there are several valid responses, and
different answerers might infer that different op-
tions are more or less salient to the questioner.
None of the pragmatic ambiguities are aligned with
PropBank. (Back to table)

B.5.1 Multiple Options

A common source of disagreement is when anno-
tators are asked to choose one of multiple options.
For example, a question like “what color is X?7”
when X has multiple colors will often result in a
variety of answers. Here, the ambiguity is with
respect to the inferred intent of the questioner; the
answerer must infer which option is most salient to
the questioner.

Figure 14: Multiple options ambiguity example. Ques-
tion: What team is the man holding the bat playing for?

Answers: “matadors”; “yankees”

B.5.2 Grouping

Grouping ambiguity often co-occurs with multi-
ple options, and involves grouping several options;
different annotators may include or exclude items
from their groups.
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Figure 15: Question: What is on the right of the picture?

Answers: “sky posts”; “mountain”; “electric tower, ski

pole, and mountain top”;

B.5.3 Uncertainty

Many examples contain visual uncertainty, espe-
cially for questions about events, which are inher-
ently hard to capture in a static image.

Figure 16: Uncertainty example. Question: Where is

the white wine bottle? Answers: “not visible”; “empty”

B.5.4 Annotator mistakes

Some annotators provide bad or unreasonable an-
swers to questions.

Figure 17: Annotator mistake. Question: How high is

the water? Answers: “2-3 inches”; “rain water”

B.5.5 Bad question/bad image

Some questions are nonsensical and some images
are extremely low quality, making answering any
question about them impossible.



Figure 18: Bad image or data. Question: Which bird
looks about to take off the ground? Answers: “middle
bird”; “left 17

C Interface

Fig. 19 shows the annotation interface used to col-
lect the dataset. Answers are drag-able objects
and can be moved across columns. New answer
groups can be added. Questions are auto-populated
with the original question and then edited by the
annotator. Skipping opens up a text box with an
auto-populated reason (“All answers to the same
question”) that can be edited.

D Hyperparameters

Models were trained with the AdamW optimizer
(Loshchilov and Hutter, 2018) using a learn rate
of le — 4 with linear weight decay of 0.01. The
learn rate followed a linear warmup schedule with
4,000 warmup steps. The batch size was set to 32
per GPU, leading to an effective batch size of 128.
As fine-tuning ViLT for VQG had no substantial
impact, we freeze the ViLT encoder during training.

E Validation Performance

Table 4 shows the validation performance for all
metrics reported in Table 2. Trends mirror those
seen in the test data.

F Why Ambiguity

Fig. 20 gives an example of each possible com-
bination of dynamicity and agency. Answers are
grouped by whether they are cause or purpose an-
swers. Note that grouping these answers is an un-
derspecified task — in many cases, both readings
can be coerced using context.
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-DYNAMIC +DYNAMIC

Why are these people on their cell phones Why is the girl holding an umbrella?

Purpose

talk to people..,
taking calls,
talking

talking to someone,
posing

Reason

boredom,
poor real life social skills

Purpose

keep sun off,

block sun,
sunscreen,

sun protection,
protection from sun

Reason

it's sunny, sun

+AGENTIVE

Why does the horse have a blanket on? Why is the man mid-air?

Purpose Reason Purpose
to warm its body,  co1g tricl

ks,
waruth it is cold making ski jump,
jumping

Reason

snowboarding,
he went off jump,
snowboarding” down hill,
snowboarding jump,

~AGENTIVE

Figure 20: Example of an ambiguous annotation for
each category in our “why” question analysis
G License

Code and data will be released under an MIT li-
cense.



Annotator Disagreement

Question: What sits on the left hand side of  apo answer Grour  REsET
the bowl? Qo: Q1:

What sits to the left of the bowl? ] What sits in the left hand side of |

DELETE DELETE
DELETE DELETE

DELETE

DELETE

DELETE

[ skip Next

Figure 19: The annotation interface.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE-L METEOR BERT

iVQA® 0.43 0.33 0.26 0.21 1.71 0.47 0.21 N/A
VT5-v 0.47 0.31 0.22 0.16 1.05 0.42 0.41 0.93
VT5-t 0.39 0.21 0.14 0.10 0.48 0.29 0.30 0.91
VTS5 0.53 0.37 0.28 0.22 1.51 0.46 0.47 0.94
VT5-v+c 0.47 0.30 0.21 0.15 1.33 0.43 0.45 0.93
VT5-t4+c 0.42 0.25 0.17 0.12 0.95 0.34 0.38 0.92
VT5+c 0.53 0.37 0.27 0.21 1.73 0.47 0.50 0.94

Table 4: Validation performance of the VQG model and baselines. Our model is able to integrate visual and textual
information and output questions with high similarity to reference questions.
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