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Abstract

Tool learning enhances Large Language Mod-001
els’ (LLMs) dynamic interaction with external002
tools, improving their ability to solve complex003
problems. However, current empirical methods,004
which primarily focus on isolated tools learn-005
ing, still struggle with accurate multi-tool selec-006
tion due to issues like confusing similar tools007
and neglecting dependencies. To address these008
challenges, we propose the Tool Experience009
Network (ToolExpNet), which integrates tools010
and trial-and-error experiences into a network011
characterized by semantic similarity and de-012
pendency relationships. ToolExpNet iteratively013
conducts simulated experiments using adaptive014
sampling to explore subtle differences and con-015
nections between tools, and summarizes these016
experiences to provide insightful guidance for017
LLM tool selection. Our experiments demon-018
strate that learning the relationships between019
tools helps achieve more comprehensive tool020
learning. Evaluations on multiple real-world021
API datasets show that ToolExpNet effectively022
addresses common challenges in multi-tool se-023
lection, significantly outperforming existing024
baselines across different foundation LLMs.025

1 Introduction026

Tool learning (Qin et al., 2024a; Qu et al., 2025b)027

empowers Large Language Models to dynami-028

cally interact with external tools, enhancing their029

problem-solving capabilities for complex tasks030

(Nakano et al., 2021; Xu et al., 2023; Schick et al.,031

2023; Zhao et al., 2024b). This paradigm signifi-032

cantly boosts performance in knowledge acquisi-033

tion (Gu et al., 2024; Schick et al., 2023), exper-034

tise enhancement (Kadlcík et al., 2023; He-Yueya035

et al., 2023; Bran et al., 2024), automation effi-036

ciency (Schick et al., 2023; Yao et al., 2022a), and037

interaction capabilities (Yang et al., 2023b; Wang038

et al., 2024b). To invoke external tools, LLMs039

typically conduct task planning and tool selection,040

Visual Question Answering is 
the task of answering questions 
based on an image.

DQA (also known as Document 
VQA) is the task of answering 
questions on document images.

Please help me to find the final account balance 
from this bank statement.

Visual Question Answering Doc Question Answering

Too similar to distinguish... Visual Question Answering 
might be the appropriate tool.

I just finished watching Titanic and I want some 
other movie recommendations.

Fail: VQA lacks the understanding of document structure and layout, 
while DQA excels in comprehending document structure. 

Step1: Retrieve detailed information about the movie 
Titanic. Action: GET /movie/{movie_id}

Fail: Before using GET /movie/{movie_id}, it is necessary to use 
GET /search/movie to retrieve the movie_id for Titanic.

(a)

(b)

Figure 1: Two common failure modes in real-world
tool invocation scenarios with existing methods: The
top illustration shows an incorrect tool selection due to
semantic similarity, while the bottom illustration demon-
strates a planning error due to overlooking functional
dependency.

generating final answers based on tool execution 041

results (Song et al., 2023; Shen et al., 2023). 042

While tuning-based methods effectively enable 043

LLMs to use external tools (Lu et al., 2023; Liang 044

et al., 2023; Qiao et al., 2024), tuning-free methods 045

are irreplaceable due to their ability to learn new 046

tools without parameter changes and their applica- 047

bility to closed-source models (Liu et al., 2024c; 048

Zhang et al., 2024; Liu et al., 2024b). These meth- 049

ods primarily rely on feeding tool documentation 050

or memory into the LLM’s context to select the cor- 051

rect tool sequence, highlighting the importance of 052

comprehensive and accurate tool descriptions. Re- 053
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cent studies have improved tool understanding by054

rewriting documentation (Yuan et al., 2024; Chen055

et al., 2024) or incorporating trial-and-error experi-056

ences into the model’s context (Zhao et al., 2024a;057

Wang et al., 2024a; Qu et al., 2025a). However,058

multi-tool selection accuracy remains a challenge059

in real-world complex tasks.060

We observe that, with enhanced foundation061

model capabilities, the proportions of previously062

identified error types (Song et al., 2023; Shi et al.,063

2024a), such as API hallucination and format non-064

compliance, have decreased. However, LLMs still065

face two key challenges in selecting external tools:066

confusing similar tools due to ambiguous documen-067

tation and overlooking tool dependencies. Figure 1068

illustrates examples of these challenges. Previous069

work on LLM tool understanding has typically fo-070

cused on isolated tools (Wang et al., 2024a; Qu071

et al., 2025a), neglecting potential inter-tool asso-072

ciations in real scenarios. This limits the LLMs’073

accurate and comprehensive understanding of tools,074

resulting in suboptimal performance in addressing075

these challenges.076

Inspired by human cognitive learning theories077

(Smelser et al., 2001; Barsalou, 2014), humans inte-078

grate new knowledge by associating it with existing079

knowledge systems, forming structured cognitive080

schemas. This associative mechanism is particu-081

larly helpful in learning similar concepts, where082

comparative analysis enables learners to grasp sub-083

tle differences more accurately. Following this prin-084

ciple, we suggest that LLMs’ tool learning strategy085

should not be limited to the functional attributes of086

individual tools but should focus on establishing a087

network of relationships between tools.088

Based on this concept, we propose the Tool Ex-089

perience Network (ToolExpNet), which organizes090

the available toolset and trial-and-error experiences091

into a network to enhance comprehensive tool learn-092

ing. Specifically, ToolExpNet’s graph structure093

includes two types of edges: semantic similar-094

ity edges (Es), which connect tools with similar095

functional descriptions, and functional dependency096

edges (Ed), representing the sequential invocation097

dependencies between tools. This structure system-098

atically addresses the challenges of distinguishing099

between similar tools (via Es) and captures the100

opportunities for combining tools (via Ed).101

ToolExpNet employs an iterative contrastive-102

relation trial and error process and tool insight re-103

finement to explore tool interactions. Tool pairs are104

sampled based on two types of links with adaptive105

weights. It generates simulated queries to highlight 106

functional differences and dependencies between 107

tool pairs, answers these queries, and updates the 108

weights based on error rates. In the subsequent tool 109

insight refinement stage, the LLM summarizes the 110

usage experiences of tools guided by these links, 111

forming comprehensive tool guidance to enhance 112

the tool selection process. 113

Our contributions are as follows: (1) We propose 114

ToolExpNet, a novel tool network based on sim- 115

ilarity and dependency relationships. It rewrites 116

tool guidance to emphasize inter-tool associations, 117

unlike existing methods focused on isolated tools. 118

This approach highlights the importance of mod- 119

eling tool relationships during tool learning phase 120

and provides insights for future methods. (2) We 121

introduce a holistic tool learning strategy that sim- 122

ulates confusing and dependency queries to guide 123

LLMs through trial-and-error learning, forming 124

tool insights that significantly enhance the accu- 125

racy of multi-tool invocation. (3) Through exten- 126

sive experiments on multiple foundation models 127

and real-world datasets, we demonstrate that Tool- 128

ExpNet outperforms existing methods and provide 129

an in-depth analysis of its mechanisms. 130

2 Tool Experience Network 131

We propose the Tool Experience Network (ToolEx- 132

pNet), as shown in Figure 2, which organizes the 133

available toolset into a network based on similar- 134

ity and dependency relationships, facilitating more 135

systematic and comprehensive tool learning. 136

2.1 Graph Structure 137

Formally, we model the tool ecosystem as a graph 138

G = (V,Es ∪ Ed), where nodes represent indi- 139

vidual tools and edges capture complex inter-tool 140

relationships. Each tool node vi ∈ V is defined as a 141

tuple (ei, φi), where ei includes API metadata and 142

φi represents functional insights distilled through 143

LLM-based experience summarization. These in- 144

sights can serve as empirical knowledge for LLMs 145

during the tool selection phase. The edges explic- 146

itly characterize two fundamental relationships: 147

Semantic Similarity Edges (Es): These edges 148

connect tool pairs (vi, vj) with partial functional 149

overlap or semantically analogous descriptions, 150

which may mislead LLMs into conflating their dis- 151

tinct capabilities during tool selection. 152

Functional Dependency Edges (Ed): These 153

edges denote relationships where one tool’s func- 154
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   Instruction：You need to generate a set of 
confusing questions to simulate user queries to 
distinguish between these two similar tools ......
Tool A: { /search/tv }       Tool B: { /tv/latest }
Explorer：(a).Helper me find some popular 
movies related to 'science fiction'. (b). Show me 
the newest TV show and its reviews.

 Sampling links from ToolExpNet
 semantic similarity links dependency links

   Instruction：You need to generate a set of 
user queries to simulate the use of the following 
two tools to explore whether there is any 
dependency between them ......
Tool A: { /search/tv } | ToolB:{ /tv/{tv_id}/similar }
Explorer：Recommend some TV shows similar 
to Friends.  Dep: /search/tv → /tv/{tv_id}/similar

Actor：(a) GET /tv/polular           (b) GET /tv/latest 

/discover/tv
/tv/latest

/movie/popular

/tv/{tv_id}/
recommendations

/tv/{tv_id}/similar

/search/tv

/tv/popular

/tv/top_rated

/discover/tv
/tv/latest

/movie/popular

/tv/{tv_id}/
recommendations

/tv/{tv_id}/similar

/search/tv

/tv/popular

/tv/top_rated

Contrastive-Relation Trial and Error &
Update Tool-Usage Experience

/discover/tv /tv/latest

/tv/{tv_id}/
recommendations

/tv/{tv_id}/similar

/search/tv

/tv/popular

/tv/top_rated

/movie/popular

> You need to update the usage of the tool 
based on existing trial-and-error experiences 
and tool adjacency information.
> Target Tool: /tv/{tv_id}/similar
> Semantic similarity adjacent nodes: 
/tv/{tv_id}/recommendations
> Functional dependency adjacent nodes: 
/tv/top_rated, /search/tv, 
/tv/{tv_id}/recommendations
> Pairwise trial-and-error experiences: ......

Experience Summary Prompt
/tv/{tv_id}/similar f inds TV shows similar to a 
specified one using keywords and genres, ideal for 
discovering new interests ...
In contrast, /tv/{tv_id}/recommendations offers 
personalized suggestions based on viewing history, 
not strict similarity ...
Unlike /tv/top_rated, which lists shows by ratings, this 
tool focuses on similarity ...
The /search/tv tool is often used first to find the 
necessary TV show IDs for /tv/{tv_id}/similar ...
     ......

Tool Usage Insights
Summarize Each Tool's Trial-and-Error 
Experience Considering Adjacent Tools

Update Node's Tool Usage Insights

Simulating Confusing Queries 
for Similar Tool-Pairs

Simulating Queries for Tool-
Dependent Scenarios

①

②

③④

Figure 2: The ToolExpNet framework enhances tool usage insights by leveraging semantic similarity and dependency
links to guide trial-and-error exploration. Contrastive-relation trial and error experiments simulate user queries,
revealing functional differences and dependencies. These experiences update the tool’s experiential network.
Insights from these trials update node usage profiles, highlighting functional differences and interdependencies.
This structured approach optimizes tool usage through comprehensive relational understanding.

tionality extends or depends on another. This often155

occurs when the input parameters of certain APIs156

are reliant on the outputs from the execution of157

other functions.158

This dual-relational structure enables systematic159

modeling of both the selection challenges (via Es)160

and compositional opportunities (via Ed) inher-161

ent in tool-augmented LLM systems. The explicit162

graph formulation facilitates structured reasoning163

about tool relationships while maintaining compu-164

tational tractability.165

2.2 ToolExpNet Initialization166

Given a toolset Γ, we instantiate each tool as a node167

vi ∈ V , initializing its functional insight φi directly168

from raw API documentation, even when such doc-169

umentation is verbose or incomplete (Yuan et al.,170

2024; Qu et al., 2025a). Semantic edges (Es) are171

formed between tool pairs whose documentation172

embeddings exceed a similarity threshold Φ. De-173

pendency edges (Ed) are established between tools174

where the output data types of one tool overlap175

with the input data types of another tool.176

3 Tool Learning Strategy177

We suggest that the role of a tool within a toolkit178

is determined not only by its intrinsic properties179

but also by its toolset-context. Therefore, during180

the tool learning phase, we iterate the processes 181

of contrastive-relation trial-and-error and tool in- 182

sight refinement. This iterative process, similar 183

to how humans learn through trial and error and 184

then summarize their experiences, helps organize 185

knowledge into structured cognition and memory. 186

The prompts for this section are provided in Ap- 187

pendix A. 188

3.1 Contrastive-Relation Trial and Error 189

Prior studies (Shinn et al., 2024; Anokhin et al., 190

2024; Zhao et al., 2024a) have demonstrated the 191

effectiveness of LLMs in learning through trial- 192

and-error experiences. Experience learning serves 193

as a plug-and-play approach, requiring no explicit 194

gradient updates, making it compatible with closed- 195

source LLMs. However, existing work typically fo- 196

cuses on self-exploration with single tools, lacking 197

structured preservation of cross-tool usage patterns 198

and inter-tool relationships. 199

To address this, we propose a Pairwise Explo- 200

ration framework to capture LLMs’ cross-tool oper- 201

ational knowledge. Each self-exploration iteration 202

generates simulated user queries and golden solu- 203

tions for targeted tool pairs, enabling systematic 204

trial-and-error learning. 205

Explorer (H): During each iteration, the ex- 206

plorer samples a subset of edges (maximum 207
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max_try) from Es and Ed with initial sampling208

weights w0(eij) = 1. For edge eij in iteration t,209

the sampling probability is proportional to wt(eij).210

For semantic similarity edges (Es), H generates211

contrastive user queries emphasizing functional212

distinctions between tools vi and vj . For depen-213

dency edges (Ed), it simulates queries requiring214

sequential tool invocation while pruning spurious215

dependencies. This process outputs query-label216

pairs (Q,L) = H(p, vi, vj), where p denotes task-217

specific prompts. Here, Q represents the simulated218

queries, and L denotes the corresponding labels.219

Actor (A): The actor attempts to answer220

queries using tools Γ, producing responses A =221

A(p,Q,Γ). Execution traces and tool selection222

outcomes are logged into edge-specific experience223

pools. The error rate 1− ACC(A,L) updates the224

sampling weight wt+1(eij), prioritizing challeng-225

ing tool pairs in subsequent iterations. Particularly,226

if A confuses two tools without existing links, a227

new semantic similarity link is added. Conversely,228

if tools linked by Ed show no actual dependencies229

during execution, the edge is removed.230

3.2 Tool Insight Refinement231

To systematically distill cross-tool operational232

knowledge, we propose an experience aggregation233

mechanism inspired by graph-structured message234

passing. For each tool node vi = (ei, φ
t
i), we235

gather its local context from semantic neighbors236

Vs = {vj |eij ∈ Es} and dependency neighbors237

Vd = {vk|eik ∈ Ed}, along with their interac-238

tion histories. This contextualized experience is239

processed through LLM-based reflection to update240

functional insights φt+1
i .241

Formally, the insight refinement process operates242

as:243

φt+1
i = Reflect

(
p, {φt

j |vj ∈ Vs ∪ Vd}︸ ︷︷ ︸
Neighbor informations

,244

{(Q,A,L)|eij ∈ Es ∪ Ed}︸ ︷︷ ︸
Relevant trial experience

)
245

where p is a Chain-of-Thought prompt guiding246

the LLM to: (1) Identify capability boundaries247

by contrasting vi with Vs, analyzing failure/success248

cases in Es edges to clarify functional distinctions.249

(2) Discover compositional patterns by examining250

Vd relationships, synthesizing multi-tool workflows251

from Ed execution traces.252

This graph-aware reflection enables dynamic253

evolution of tool understanding without model re-254

training. The updated φt+1
i is subsequently used 255

as additional contextual information to inform the 256

LLM’s tool selection. 257

4 Experimental Setup 258

4.1 Datasets and Evaluation Metrics 259

Datasets. We conducted experiments on two 260

widely-used benchmarks: RestBench (Song et al., 261

2023) and ToolBench (Qin et al., 2024b), across 262

three scenarios. RestBench comprises two real- 263

world scenarios with manually curated high-quality 264

data. It includes TMDB, featuring 54 movie-related 265

APIs, and Spotify, with 40 music-related APIs. 266

ToolBench is a dataset collected from the RapidAPI 267

and BMTools, containing over 16,000 real APIs 268

spanning multiple categories. Due to budget con- 269

straints, we focused on the most challenging subset 270

of ToolBench, I3-Instruction, which involves com- 271

plex user requests requiring multiple tools from 272

different categories. 273

Evaluation metrics. Following Song et al. 274

(2023); Yuan et al. (2024); Qu et al. (2025a); Shi 275

et al. (2024b), we utilized two common metrics: 276

(1) Correct Path Rate (CP%), which measures the 277

proportion of instances where the model-generated 278

sequence of tool calls includes the golden tool path 279

as a subsequence, to assess the accuracy of the 280

model’s tool invocation. (2) Win Rate (WR%): 281

This metric evaluates the win rate of tool invoca- 282

tion sequences and planning processes generated by 283

different methods compared to ReAct. The assess- 284

ment is conducted through pairwise comparisons 285

using a ChatGPT-based judger. 286

4.2 Baselines 287

We primarily compare our method with well- 288

established baselines, includint:(1) ReAct (Yao 289

et al., 2022b), which integrates CoT reasoning 290

with action selection. It uses feedback to gener- 291

ate subsequent actions.(2) Easytool (Yuan et al., 292

2024), which addresses issues of inconsistency, re- 293

dundancy, and incompleteness in real-world tool 294

documentation. It rewrites documents with Chat- 295

GPT and incorporates guidelines. This enhances 296

the Large Language Models’ understanding of 297

tool functionalities and parameter requirements.(3) 298

DRAFT (Qu et al., 2025a), a trial-and-error-based 299

approach that analyzes feedback from LLMs’ in- 300

teractions with external tools via three stages: ex- 301

perience collection, learning from experience, and 302

document rewriting. This method dynamically re- 303
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fines tool documentation to promote a deeper un-304

derstanding and more effective utilization of tools305

by LLMs.306

4.3 Implementation Details307

We selected several leading large language models308

to validate the applicability of our method. These309

include the larger-scale GPT-4o and LLaMA3-70B,310

as well as the smaller-scale Qwen2.5-7B. For the311

initialization of ToolExpNet, we set the similarity312

threshold Φ = 0.8. The temperature of all models313

are set to 0.314

5 Results and Analysis315

5.1 Overall Performance316

We present our experimental results in Table 1.317

Our framework generally outperforms existing318

baselines across various real-world API scenarios.319

Specifically, it achieves superior performance on320

the CP and WR metrics compared to trial-and-error-321

based methods and document-driven tool learning322

approaches. This indicates better accuracy in tool323

selection and more effective multi-tool planning.324

Furthermore, our framework demonstrates robust325

adaptability to different foundation LLMs. Even326

when tested with a smaller model, Qwen2.5-7B,327

which has relatively limited tool comprehension328

capabilities, it consistently delivers performance329

improvements. These improvements validate the330

effectiveness of our model and suggest that our331

tool-learning methods, which summarize the dis-332

tinctions and connections between tools, could be333

more effective in enhancing an LLM’s understand-334

ing of tool capabilities.335

5.2 Error Analysis for Tool Selection336

Success
57%

Incomplete 
Invocation

Tool 
Misselection

Dependency 
Neglect

Others

8%

4%

18%

13%

Figure 3: Statistics of Different Types of Errors in the
ReAct Framework Based on GPT-4o on the TMDB
Dataset.

We meticulously annotated and analyzed the fail-337

ure cases of the ReAct framework based on GPT-4o338

in the TMDB task. These failures are categorized339

into four main types: (1)Incomplete Invocation: 340

Missing critical tool calls due to overlooked user 341

intents or flawed task planning. (2)Dependency 342

Neglect: Ignoring dependencies between function 343

calls, leading to errors or parameter hallucinations. 344

(3)Tool Misselection: Selecting incorrect similar 345

tools due to ambiguous documentation or overlap- 346

ping functionalities. (4)Others: Miscellaneous 347

errors, such as failures in instruction adherence or 348

incorrect invocation formats.The statistics of these 349

failures are illustrated in Figure 3. 350

We also observed that with the improvement in 351

foundation model capabilities, the proportion of 352

failures due to instruction adherence or tool hallu- 353

cination has improved compared to previous obser- 354

vations (Shi et al., 2024a; Song et al., 2023; Wang 355

et al., 2024a). However, a substantial portion of 356

tool selection failures still stemmed from neglect- 357

ing dependencies or being confused by ambiguous 358

intents and similar tool documentation, with these 359

two error types accounting for 72.09% of failures 360

on TMDB. Appendix B provides examples of these 361

error types. 362

This finding suggests that during the tool learn- 363

ing phase, LLMs should place greater emphasis 364

on understanding the relationships and distinctions 365

between tools to enhance comprehension of cross- 366

tool dependencies and similarities. 367

5.3 Why ToolExpNet Works 368

In Section 5.2, we summarize two common error 369

types in LLM tool usage. In this section, we explain 370

how ToolExpNet effectively addresses these issues 371

to achieve optimal outcomes. 372

While methods such as experience-based mem- 373

ory (Zhao et al., 2024a; Wang et al., 2024a) or tool 374

documentation rewriting (Hsieh et al., 2023; Yuan 375

et al., 2024) have been shown to improve LLMs’ 376

ability in task planning and tool selection, previous 377

studies often focus on summarizing trial-and-error 378

processes for isolated tools. However, in most real- 379

world complex scenarios, multiple tools must be 380

invoked in a specific sequence, forming a unidi- 381

rectional flow of information. Although revising 382

documentation for individual tools can help LLMs 383

better understand when and how to use a particular 384

tool, it does not enhance their ability to distinguish 385

between similar tools or plan dependencies among 386

tools directly. This limitation often leads to two key 387

errors: Dependency Neglect and Tool Misselection. 388

We adopt trial-and-error guided by two types 389

of edges, Es and Ed, to establish relationships be- 390
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Model Method RestBench-TMDB RestBench-Spotify ToolBench

CP% WR% CP% WR% CP% WR%

Llama3-70B

ReAct 72.00 50.00 49.12 50.00 41.00 50.00
EasyTool 76.00 58.00 57.89 59.65 46.00 55.00
DRAFT 86.00 59.00 66.67 63.16 53.00 61.50
ToolExpNet (Ours) 86.00 61.00 70.17 64.91 51.00 60.00

GPT-4o

ReAct 57.00 50.00 50.87 50.00 37.00 50.00
EasyTool 74.00 60.50 61.40 57.89 45.00 62.50
DRAFT 86.00 63.00 70.17 64.91 51.00 65.00
ToolExpNet (Ours) 90.00 69.00 75.44 68.42 53.00 68.50

Qwen-2.5-7B

ReAct 38.00 50.00 21.05 50.00 16.00 50.00
EasyTool 49.00 69.00 29.82 66.67 24.00 65.00
DRAFT 46.00 64.00 31.58 70.17 23.00 65.00
ToolExpNet (Ours) 49.00 67.50 38.60 77.19 29.00 69.50

Table 1: Performance comparison of different methods across three datasets. CP% and WR% denote the Correct
Path Rate and Win Rate, respectively. The best result for each LLM is highlighted in bold.

Error Type ReAct ToolExpNet

TMDB
D.N. 0.17 0.03
T.M. 0.13 0.04

Spotify
D.N. 0.30 0.09
T.M. 0.14 0.08

Table 2: Proportion of two common failure types in
total sample count across different datasets and methods.
D.N. and T.M. denote Dependency Neglect and Tool
Misselection, respectively.

Method TMDB(∆SL) Spotify(∆SL)

ReAct +0.76 +0.53
EasyTool +0.24 +0.25
DRAFT +0.22 +0.37
ToolExpNet +0.17 +0.23

Table 3: Comparison of ∆Solution Length (∆SL)
across different scenarios for various methods, repre-
senting the additional number of API calls relative to
the golden solution.

tween similar and dependent tools. Table 2 demon-391

strates that our model significantly reduces the error392

rates in two common categories: Dependency Ne-393

glect and Tool Misselection. This indicates that394

ToolExpNet effectively optimizes these errors to395

enhance the tool-using capabilities of LLMs.396

In the self-explore stage of tool learning, tools397

with similar or dependent functions are grouped to-398

gether for targeted trial-and-error experiences. Dur- 399

ing the reflection and summary stages, these tools 400

are jointly analyzed to identify subtle differences 401

and explore functional extensions through combina- 402

tions with other tools. This learning process helps 403

extract insights from trial-and-error experiences, 404

highlighting the distinctions and connections be- 405

tween tools. These insights are then injected into 406

the LLM through in-context learning to guide its 407

planning and tool selection processes. 408

Following RestGPT (Song et al., 2023), we
adopt ∆Solution Length(∆SL) to measure the
mean number of additional API calls required to
successfully execute an instruction:

∆SL =
1

Ns

N∑
i=0

(
Li

real − Li
gold

)
· I(i, success)

where Ns is the number of successfully completed 409

instructions, Li
real and Li

gold are the actual and gold- 410

standard API call counts for the i-th instruction, 411

and I(i, success) is an indicator function that equals 412

1 if the i-th instruction is successfully completed, 413

otherwise 0. 414

We evaluate our approach on two real-world 415

datasets, TMDB and Spotify. As shown in Table 3, 416

ToolExpNet outperforms existing baselines on the 417

∆SL metric. This demonstrates that the insights 418

generated by our method enhance its planning and 419

tool selection processes, reducing unnecessary API 420

calls caused by dependency neglect and subsequent 421

backtracking. Detailed examples of this behavior 422
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> The ``/movie/{movie_id}`` tool retrieves 
primary information about a movie, including 
its title, overview, and ... It supports the 
parameter 'append_to_response'  to ... 
> In contrast, tools like /movie/{movie_id}/     
images, /movie/{movie_id}/reviews offer    
more specific information related to images,  
reviews...  For example ...
> If the movie_id is not known,  use /search/
movie tool to find it first. This tool can be  co
mbined with other tools  like ...

A Movie Details API allows developers to 
retrieve comprehensive primary information 
about a specific movie by providing its 
unique movie_id. This includes metadata such 
as  t i t le ,  re lease date ,  genres ,  runt ime, 
production companies ,  languages,  and 
popular i ty .  This  api  a lso  suppor ts  the 
append_to_response parameter, enabling 
users to include additional related data in the 
same request.

4 1

3

25

no relevant 
information.

missing 
movie_id

1 32

Tool Guidance ( /movie/{movie_id} ) Tool Invocation Sequence

DRAFT

ToolExpNet (Ours)

∆SL = 2

∆SL = 0

 GET /search/movie

 GET /movie/{movie_id}/credits

 GET /person/{person_id}/images

 GET /movie/{movie_id}

 GET /person/{person_id}

1
2
3

4

5

Relevant APIs

Figure 4: Case Study: This figure compares the tool
guidance and performance of DRAFT and ToolExpNet
in solving the query "What does the lead actor of Titanic
look like?". DRAFT, lacking dependency modeling,
results in backtracking and an increased sequence length
(∆SL = 2). In contrast, ToolExpNet’s tool guidance
provides a detailed description of semantic similarity
tools and dependency tools to efficiently plan the tool
sequence, avoiding unnecessary steps and achieving an
optimal sequence length (∆SL = 0).

are provided in Appendix B.423

Figure 4 shows a concrete example. It compares424

the tool-calling process guided by our method’s425

tool insights with the process using DRAFT’s tool426

documentation as context. Specifically, we com-427

pare the tool guidance for the same API endpoint428

movie/{movie_id} revised by DRAFT and ToolEx-429

pNet, as well as their performance on a given user430

query. The case demonstrates that our model, by431

summarizing the distinctions and connections be-432

tween tools during the tool learning phase, achieves433

better task planning and tool selection.434

5.4 Ablation Study435

We conducted ablation studies on TMDB and Spo-436

tify, to evaluate the impact of different components437

in ToolExpNet . Specifically, we assessed the con-438

tributions of semantic similarity links Es, func-439

tional dependency links Ed, and the contrastive-440

relation trial-and-error phase to the overall perfor-441

mance. The results in Table 4 show that removing442

any of these components leads to a performance443

drop. To further understand the role of these com-444

Model TMDB(CP) Spotify(CP)

ToolExpNet 90.00 75.44
w/o Es 85.00 70.17
w/o Ed 83.00 63.16
w/o Trial 82.00 70.17

Table 4: Ablation Study Results on TMDB and Spotify.

ponents, we analyzed how the tool usage insights 445

generated under different settings influence the re- 446

sults. 447

Semantic similarity links (Es) enhance the 448

LLM’s capacity to differentiate between simi- 449

lar tools. A comparison of experiments with and 450

without Es reveals that the absence of Es leads to 451

a higher rate of Tool Misselection errors (4% → 452

10%). When Es is removed from ToolExpNet , the 453

LLM, during the reflection phase, can only con- 454

sider tools dependency relationships. It also cannot 455

leverage the error experiences where confusion oc- 456

curred between two similar tools. This hinders 457

the reflection on subtle differences between similar 458

tools, making the LLM more prone to interference 459

from similar tool documentation and more likely 460

to select the wrong tool during the tool selection 461

phase. 462

Functional dependency links Ed improve the 463

efficiency of tool planning. The use of certain 464

tools often depends on the results obtained from 465

other tools. This dependency may stem from the 466

inherent nature of the tools (e.g., parameter fill- 467

ing related to IDs) or the task logic implied by the 468

user’s intent. When Ed is removed, it leads to a 469

higher rate of Dependency Neglect errors (3% → 470

12%). Ed enables the LLM to perform more effec- 471

tive planning before executing a task. As shown 472

in Table 3 and the examples (Figure 4), Ed encour- 473

ages the LLM to plan dependencies before invoking 474

the target tool. A smaller ∆SL indicates a more 475

efficient tool invocation process. 476

5.5 Further Analysis 477

Furthermore, we discuss the impact of different 478

learning iterrations in the tool learning strategy on 479

final performance. We conducted experiments us- 480

ing the models GPT-4o and Qwen2.5-7B-Instruct 481

on the I3 subset of ToolBench. Each iteration al- 482

lows a maximum sample size of 100, with all pro- 483

cesses using greedy decoding. As illustrated in 484

Figure 5, performance improves with more itera- 485

tions and saturates around the third iteration. 486
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Figure 5: Performance of GPT-4o and Qwen2.5-7B on
the I3 subset of ToolBench across different iterations.

6 Related Work487

6.1 LLM Tool learning488

Recent studies have demonstrated that large lan-489

guage models can significantly enhance their capa-490

bilities and tackle complex problems by leverag-491

ing external tools (Qu et al., 2025b; Shen et al.,492

2023; Qin et al., 2024b). Specifically, with the493

assistance of external tools, LLMs can acquire up-494

to-date information (Schick et al., 2023; Komeili495

et al., 2022; Gou et al., 2024), enhance their exper-496

tise (Inaba et al., 2023; Bran et al., 2024), and auto-497

mate various tasks (Schick et al., 2023; Yao et al.,498

2022a; Zhuang et al., 2023). Existing methods be499

broadly categorized into two types: tuning-based500

and tuning-free (Qu et al., 2025b). Tuning-based501

methods involve further training LLMs on tool-502

related datasets to improve their tool usage capabil-503

ities (Liu et al., 2024a; Yang et al., 2023a; Hao et al.,504

2023; Patil et al., 2024). However, these methods505

are typically applicable only to open-source mod-506

els and require substantial computational resources.507

In contrast, non-fine-tuning methods rely on the508

context learning ability of LLMs by providing tool509

documentation or a small number of usage exam-510

ples, enabling the LLMs to understand how to use511

the tools (Wei et al., 2022; Hsieh et al., 2023; Qu512

et al., 2025a; Zhao et al., 2024a). These methods513

offer greater flexibility but are prone to errors in514

tool selection and parameter filling due to insuf-515

ficient tool understanding (Shi et al., 2024a; Qu516

et al., 2025a). In this paper, we propose a novel517

approach that organizes tools and trial-and-error518

experiences into a network structure to facilitate519

more comprehensive tool understanding by LLMs.520

6.2 Experience Enhenced LLM521

Large Language Models face significant chal-522

lenges in multi-tool calling tasks (Qu et al., 2025b;523

Anokhin et al., 2024). To enhance the performance 524

of LLMs in complex real-world tasks, researchers 525

are exploring how to enable LLMs to learn from 526

their own experiences and thereby strengthen their 527

tool-calling capabilities (Shinn et al., 2024; Zhao 528

et al., 2024a; Wang et al., 2024a). For instance, 529

Reflexion (Shinn et al., 2024) allows LLMs to re- 530

flect on their actions after task completion, identify 531

the causes of failures, and improve subsequent at- 532

tempts. ExpeL (Zhao et al., 2024a) enables LLMs 533

to gather experiences through trial and error across 534

multiple tasks, extract lessons from both successes 535

and failures, and use these insights to optimize 536

decision-making in subsequent tasks. Wang et al. 537

(2024a) enhance LLMs’ understanding of tools 538

by incorporating trial and error, imagination, and 539

memory mechanisms. Other methods often in- 540

volve summarizing and updating tool documen- 541

tation from trial experiences, transforming ambigu- 542

ous, redundant, or incomplete tool documentation 543

into more structured tool memories with model in- 544

sights (Yuan et al., 2024; Qu et al., 2025a; Wu et al., 545

2024). Such approaches exhibit enhanced adapt- 546

ability to new tools. However, prior work has pre- 547

dominantly focused on single-tool trial-and-error 548

processes. In real-world multi-tool task scenarios, 549

LLMs are required to accurately select and execute 550

tools in sequence from a pool of interdependent and 551

potentially confusing tools (Lu et al., 2023; Li et al., 552

2023; Gao et al., 2024). This raises higher demands 553

on the LLM’s ability to comprehend cross-tool in- 554

teractions. To address this, we explicitly model 555

two common types of tool relationships, namely 556

dependency and similarity, to enhance LLMs’ com- 557

prehensive understanding of cross-tool utilization 558

in real-world scenarios. 559

7 Conclusion 560

In this paper, we propose ToolExpNet, a novel 561

framework that organizes tool usage insights and 562

trial-and-error experiences into a network based 563

on semantic similarity and dependency relations, 564

addressing the limitations of existing methods that 565

focus on isolated tools learning. Experimental re- 566

sults on various foundation models and real-world 567

datasets demonstrate that ToolExpNet outperforms 568

existing methods, providing a comprehensive un- 569

derstanding of tool usage and improving multi-tool 570

invocation accuracy. 571
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Limitations572

Although our method significantly reduces the num-573

ber of tokens in tool usage guidelines compared to574

redundant original documents (Yuan et al., 2024;575

Qu et al., 2025a), it results in a larger token length576

than single-tool-focused trial-and-error and docu-577

ment rewriting methods (e.g., +42.86% compared578

to DRAFT (Qu et al., 2025a) using the Qwen2.5-579

7B-Instruct tokenizer). This increase is due to the580

detailed tool distinctions and dependency informa-581

tion that our method incorporates to enhance tool582

selection and invocation accuracy. While these en-583

hancements improve tool invocation outcomes, the584

larger context length may pose challenges for Large585

Language Models with limited context windows.586

Future work will focus on optimizing the genera-587

tion of tool guidelines to achieve higher informa-588

tion density and exploring the use of rewritten tool589

guidelines in the tool retrieval phase (Qu et al.,590

2025b) to improve efficiency. These advancements591

aim to balance the trade-off between detailed tool592

descriptions and the practical constraints of large593

language models, ultimately enhancing the applica-594

bility and performance of our method in real-world595

scenarios.596
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A Prompts in Tool Learning Strategy897

Here, we present the primary prompts used in the898

Tool Learning Strategy. These prompts are de-899

signed to guide the Explorer in generating sim-900

ulated queries involving pairs of similar tools, cre-901

ating queries that require multiple tools to solve902

a problem to explore potential dependencies, and903

facilitating the reflection process of summarizing904

tool usage experience to form concise tool guid-905

ance through a Chain of Thought process.906

Simulating Confusing Queries for Seman-
tic Similar Tool-Pairs

# Instruction
You have an opportunity to further explore
the subtle differences between the follow-
ing two similar tools. You need to imagine
scenarios where users might use these tools
and produce simulated queries.
# Tool Pair
Below are two similar tools and their de-
scriptions:
1. {tool1_info}
2. {tool2_info}
# Requirements
- Create a diverse set of user request exam-
ples (at least 5) for each tool to simulate
its usage scenarios. Note that user requests
typically do not mention the specific name
of the tool, as the tool is abstracted from the
user’s perspective.
- The generated user requests should be as
diverse as possible, covering different usage
scenarios.
- There should be a certain level of complex-
ity and potential for confusion between the
two sets of simulated queries, highlighting
the subtle differences between the two tools.
# Output Format
The output user request examples should be
in a JSON format, as in the example below:
{output_example}

907

Simulating Queries for Tool-Dependent
Scenarios

# Instruction
You have an opportunity to further explore
the dependencies between the following two
tools. You need to imagine scenarios where

908

users might use these tools and generate
simulated subtasks. Subtasks are part of a
task planning decomposition.
# Tool Pair
Below are two potentially dependent tools
and their descriptions:
1. {tool1_info}
2. {tool2_info}
# Requirements
- Generate a set of subtasks for these two
tools to simulate their usage scenarios.
These problems must be solved using both
tools. Note that user requests typically do
not mention the specific name of the tool,
as the tool is abstracted from the user’s per-
spective.
- The generated user requests should be as
diverse as possible, covering different usage
scenarios and input-output conditions.
- Additionally, you need to indicate whether
there is a parameter dependency or func-
tional expansion relationship between the
two tools, and whether they must be called
in sequence.
- Provide the specific parameters necessary
for calling the API, especially if the param-
eter cannot be obtained from the result of
any API.
# Output Format
The user request examples should be a
JSON, indicating the sequence of tool calls.
For example: {output_format}

909

Process of Tool Guidance Refinement

# Instruction
You need to leverage existing tools’ trial-
and-error experience and related informa-
tion to optimize the guidance for the tool
{tool_name}.
# Background
- Tool documentation: {tool_doc}
- Potentially dependent adjacent tools:
{composition_tools}
- Functionally similar adjacent tools: {simi-
lar_tools}
- Trial-and-error experience, each record in-
cludes the user question (question), your
decision result (pred), and the golden path:
{trial_exp}
# CoT Guideline

910
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1. Analyze the subtle differences between
this tool and similar tools, determine under
what circumstances to use which tool, and
how to distinguish them.
2. Analyze how this tool forms more com-
plex functions with dependent tools and
whether it needs to depend on other tools
before being called.
3. Summarize the typical scenarios in which
this tool is used in user requests.
4. Rewrite and optimize the tool’s descrip-
tion to make it more concise and clear. Re-
move redundancy, distinguish easily con-
fused tools, explain dependencies on other
tools, and possible use cases.
# Output Format
Generate a JSON dictionary in the follow-
ing format: {output_example}

911

B Error Type Examples912

Table 5 shows specific cases corresponding to sev-913

eral types of errors in the tool selection phase of914

LLMs. Note that IDs and other parameters have915

been anonymized to protect privacy. To enhance916

readability, we have only presented the effective917

tool invocation paths, omitting the intermediate918

thought processes and retries caused by issues such919

as API call exceptions.920

C Tool Insight Refinement Examples921

In Table 6, we present several specific examples.922

During the tool insight refinement phase, the LLM923

identifies tools that share semantic similarities and924

dependencies with the tool that requires refinement.925

It also reviews related trial-and-error records to926

facilitate reflection and synthesis, leading to the927

creation of tool guidance.928

D Ablation Studies929

Table 7 shows the differences in the insights formed930

for tool usage after removing semantic dependency931

links and dependency links in the ablation experi-932

ments.933

Removing a type of edge implies that in both the934

trial-and-error phase and the Tool Insight Refine-935

ment phase, the LLM cannot perceive the presence936

of other tools that have relevant associations with937

the given tool. This results in a fragmented tool938

usage insight, where only the retained type of con-939

nection can be perceived. Removing any type of940

edge leads to a decline in the overall performance 941

of multi-tool invocation and an increase in the fail- 942

ure rate related to those specific error types. This 943

indicates the effective role of modeling inter-tool 944

relationships in facilitating tool learning. 945

13



Error Type: Dependency Neglect

Question: I’m watching the tv series The Last of Us and I need some more recommendations.
Golden Path: "GET /search/tv" → "GET /tv/{tv_id=1024}/recommendations"
LLM Path: "GET /tv/ {tv_id=3566} /recommendations" → "GET /tv/{tv_id=3566}"
Reason: The function of /search/tv is to search for a TV show, while /tv/{tv_id} retrieves a show’s
details by ID. To find the ID for "The Last of Us", the process should start with /search/tv. However,
the LLM ignored this dependency, hallucinated a fictional tv_id, and produced an incorrect result.

Error Type: Tool Confusion

Question: Please recommend me some TV shows similar to Breaking Bad.
Golden Path: "GET /search/tv" → "GET /tv/{tv_id}/similar"
LLM Path: "GET /search/tv" → "GET /tv/{tv_id}/recommendations"
Reason: The failure occurred because the LLM confused two similar tools. The endpoint
/tv/{tv_id}/similar is intended to find TV shows similar to a given show by analyzing keywords
and genres, while /tv/{tv_id}/recommendations is used for getting recommendations based on the
show’s existing data. The LLM incorrectly used the recommendations endpoint instead of the
similar endpoint.

Error Type: Incomplete Invocation

Question: When is the lead actor of The Mandalorian born?
Golden Path: "GET /search/tv" → "GET /tv/{tv_id}/credits" → "GET /person/{person_id}"
LLM Path: "GET /search/tv" → "GET /person/{person_id}"
Reason: The LLM overlooked the user’s implicit need to find the lead actor’s information. This
required retrieving the TV show’s credits to identify the lead actor’s person_id. By skipping this
step, the LLM failed to gather sufficient information to correctly answer the question.

Error Type: Others

Question: Add the first song of The Dark Side of the Moon in my playback queue.
Golden Path: "/search" → "/albums/{id}/tracks" → "/me/player/queue"
LLM Path: None
Reason: The LLM misunderstood the task, producing an incorrect and unparsable call format that
cannot be executed.

Table 5: Examples of failure types for ReAct using GPT-4o as the backbone model on the TMDB and Spotify
datasets. Note that for privacy reasons, all sensitive function parameters, such as specific IDs, have been anonymized.
The parameters in the examples are fictional. Placeholders such as {id} represent specific parameters.
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Table 6: Examples of tool trial-and-error experience summaries. The process of Chain-of-Thought (CoT) reflection
and forming insightful tool guidance during the tool insight refinement stage.

Tool Name: /search/collection

> Semantic similarity: The /search/collection tool is used to search for collections based on a text query,
which is useful when you dont́ have specific collection IDs. In contrast, /collection/{collection_id} and
/collection/{collection_id}/images are used when you already know the collection ID and need detailed
information or images for that specific collection. Use /search/collection to find collections by keywords,
and use the other two tools to get detailed information or images once you have the collection ID.
> Dependency and composition: To perform a comprehensive search and retrieve detailed information
about collections, you can first use /search/collection to find collections based on a query. Once you
have the collection IDs from the search results, you can use /collection/{collection_id} to get detailed
information about each collection and /collection/{collection_id}/images to get images associated with
the collections. Typically, users can provide the query for /search/collection, but they will need to use the
search results to obtain the collection IDs required for the other two tools.
> Examples: 1. I want to find collections related to modern art. 2. I need detailed information about the
collection with A. 3. Can you show me the images for the collection with A?
> Tool guidance: The /search/collection tool allows you to search for collections using a text query. This
tool is particularly useful when you do not have specific collection IDs and need to find collections
based on keywords. The query parameter is required and should be URI encoded. You can also
specify the page number for paginated results. Once you have the collection IDs from the search
results, you can use /collection/{collection_id} to get detailed information about a specific collection and
/collection/{collection_id}/images to retrieve images associated with that collection.

Tool Name: /movie/{movie_id}/similar

> Semantic similarity: The /movie/{movie_id}/similar tool is specifically designed to fetch a list of
movies that are similar to a given movie based on keywords and genres. This is different from the
/movie/{movie_id}/keywords tool, which only retrieves the keywords associated with a movie, and the
/search/movie tool, which allows for a broader search of movies based on a text query and various filters.
The /movie/{movie_id} tool provides comprehensive information about a specific movie, but does not
focus on finding similar movies.
> Dependency and composition: To use the /movie/{movie_id}/similar tool effectively, you may need
to first retrieve the movie ID using the /search/movie tool if you do not already have it. Once you have
the movie ID, you can use it to get similar movies. This tool does not directly depend on other tools,
but combining it with /movie/{movie_id}/keywords can provide a deeper understanding of why certain
movies are considered similar.
> Examples: 1. Can you show me movies similar to Inception? (First, use /search/movie to find the movie
ID for Inception, then use /movie/{movie_id}/similar with the obtained ID)
2. I want to find movies like The Matrix. What are some recommendations? (First, use /search/movie to
get the ID for The Matrix, then use /movie/{movie_id}/similar with the obtained ID)
> Tool guidance: Fetch a list of movies similar to a specified movie based on keywords and genres. This
tool is distinct from the recommendation system and focuses on similarity in terms of content. To use this
tool, you need the movie ID, which can be obtained using the /search/movie tool if not already known.
The response includes a paginated list of similar movies. Example usage: "Find movies similar to The
Godfather."
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ToolExpNet w/o Es

Tool Name:/person/{person_id}
Experience Insights:Retrieve primary details of a person using their ID. This tool supports
the /append_to_response parameter for additional data. It can be used in conjunction with
other tools like /search/person to find the person ID, and /person/{person_id}/tv_credits, /per-
son/{person_id}/movie_credits, and /person/{person_id}/images for more detailed information.
Recent updates include the addition of the /known_for_department field and support for transla-
tions.
Cases: The tool /person/{person_id} can be used in combination with other tools to provide
comprehensive details about a person. For instance, to get a person’s TV show credits, you can
use /person/{person_id}/tv_credits. If you need to find a person’s ID, you can use /search/person
with a query parameter to search for the person by name. Once you have the person ID, you can
use /person/{person_id} to get primary details, /person/{person_id}/images to get images, and
/person/{person_id}/movie_credits to get movie credits.

ToolExpNet w/o Ed

Tool Name: /movie/{movie_id}/reviews
Experience Insights: Fetch user reviews for a specific movie using its movie_id. This tool allows
you to retrieve detailed feedback and opinions from users about a particular movie. It is useful
for understanding audience reception and sentiments. To specify which page of reviews to query,
use the page parameter. This tool is distinct from /search/movie, which is used for finding movies
based on search criteria.
Cases: The tool /movie/{movie_id}/reviews is specifically designed to fetch user reviews for a
particular movie identified by its movie_id. In contrast, the /search/movie tool is used to search for
movies based on various criteria such as title, release year, and other filters. While /search/movie
helps in finding movies, /movie/{movie_id}/reviews provides detailed user feedback for a specific
movie. Use /movie/{movie_id}/reviews when you need to gather opinions and reviews about a
particular movie, and use /search/movie when you need to find movies that match certain search
criteria.

Table 7: Examples comparing the tool usage experiences and insights formed by the LLM after removing the two
different types of edges, Es and Ed from ToolExpNet .
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