
Adaptive Reward Design for Reinforcement Learning

Minjae Kwon1 Ingy ElSayed-Aly1 Lu Feng1

1The Department of Computer Science, University of Virginia, Charlottesville, VA 22904, USA

Abstract

There is a surge of interest in using formal
languages such as Linear Temporal Logic (LTL)
to precisely and succinctly specify complex tasks
and derive reward functions for Reinforcement
Learning (RL). However, existing methods often
assign sparse rewards (e.g., giving a reward of 1
only if a task is completed and 0 otherwise). By
providing feedback solely upon task completion,
these methods fail to encourage successful subtask
completion. This is particularly problematic in
environments with inherent uncertainty, where
task completion may be unreliable despite
progress on intermediate goals. To address this
limitation, we propose a suite of reward functions
that incentivize an RL agent to complete a task
specified by an LTL formula as much as possible,
and develop an adaptive reward shaping approach
that dynamically updates reward functions during
the learning process. Experimental results on a
range of benchmark RL environments demonstrate
that the proposed approach generally outperforms
baselines, achieving earlier convergence to a
better policy with higher expected return and task
completion rate. Code is available at https:
//github.com/safe-autonomy-lab/
AdaptiveRewardRL.git.

1 INTRODUCTION

In reinforcement learning (RL), an agent’s behavior is
guided by reward functions, which are often difficult to
specify manually when representing complex tasks. Alter-
natively, an RL agent can infer the intended reward from
demonstrations Ng and Russell [2000], trajectory compar-
isons Wirth et al. [2017], or human instructions Fu et al.
[2018]. Recent years have seen a surge of interest in using

formal languages such as Linear Temporal Logic (LTL) and
finite automata to specify complex tasks and derive reward
functions for RL (see the extensive list of related work in
Section 1.1). Nevertheless, existing methods often assign
sparse rewards (e.g., giving a reward of 1 only if a task is
completed and 0 otherwise). Sparse rewards may necessitate
hundreds of thousands of exploratory episodes for conver-
gence to a quality policy. Furthermore, many prior works are
only compatible with specific RL algorithms tailored to their
proposed reward structures, such as Q-learning for reward
machines Camacho et al. [2019], modular DDPG Hasanbeig
et al. [2020], and hierarchical RL for reward machines Icarte
et al. [2022].

Reward shaping Ng et al. [1999] is a paradigm where an
agent receives some intermediate rewards as it gets closer to
the goal and has shown to be helpful for RL algorithms to
converge more quickly. Inspired by this idea, we develop a
logic-based adaptive reward shaping approach in this work.
We use the syntactically co-safe fragment of LTL to specify
complex RL tasks, such as “the task is to touch red and
green balls in strict order without touching other colors,
then touch blue balls”. We then translate a co-safe LTL task
specification into a deterministic finite automaton (DFA)
and design reward functions that keeps track of the task
completion status (i.e., a task is completed if an accepting
state of the DFA has been reached).

The principle underlying our approach is to assign inter-
mediate rewards to an agent as it makes progress toward
completing a task. A key challenge is how to measure the
closeness to task completion. We adopt the notion of task
progression defined by Lacerda et al. [2019], which mea-
sures each DFA state’s distance to accepting states. The
smaller the distance, the higher degree of task progression.
The distance is zero when the task is fully completed.

Another challenge is what reward values to assign for vari-
ous degrees of task progression. To this end, we design two
different reward functions. The progression reward function
assigns rewards based on the reduced distance-to-acceptance
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values. The hybrid reward function balances the progres-
sion reward and the penalty for self-loops (i.e., staying in
the same DFA state). However, we find that optimal poli-
cies maximizing the expected return based on these reward
functions may not necessarily lead to the best possible task
progression.

To address this limitation, we develop an adaptive reward
shaping approach that dynamically updates distance-to-
acceptance values to reflect the actual difficulty of activating
DFA transitions during the learning process. We then design
two new reward functions, namely adaptive progression
and adaptive hybrid, leveraging the updated distance-to-
acceptance values. We show that our approach can learn an
optimal policy with the highest expected return and the best
task progression within a finite number of updates.

Finally, we evaluate the proposed approach on various dis-
crete and continuous RL environments. Computational ex-
periments show the compatibility of our approach with a
wide range of RL algorithms. Results indicate our approach
generally outperforms baselines, achieving earlier conver-
gence to a better policy with higher expected return and task
completion rate.

1.1 RELATED WORK

Li et al. [2017] presents one of the first works applying tem-
poral logic to reward function design, assigning reward func-
tions based on robustness degrees of satisfying truncated
LTL formulas. De Giacomo et al. [2019] uses a fragment of
LTL for finite traces (called LTLf ) to encode RL rewards.
Several methods seek to learn optimal policies that maxi-
mize the probability of satisfying an LTL formula Hasanbeig
et al. [2019], Bozkurt et al. [2020], Hasanbeig et al. [2020].
However, these methods assign sparse rewards for task com-
pletion and do not provide intermediate rewards for task
progression.

There is a line of work on reward machines (RMs), a type
of finite state machine that takes labels representing envi-
ronment abstractions as input and outputs reward functions.
Camacho et al. [2019] shows that LTL and other regular
languages can be automatically translated into RMs via the
construction of DFAs. Icarte et al. [2022] describes a collec-
tion of RL methods that exploit the RM structure, including
Q-learning for reward machines (QRM), counterfactual ex-
periences for reward machines (CRM), and hierarchical
RL for reward machines (HRM). These methods are aug-
mented with potential-based reward shaping Ng et al. [1999],
where a potential function over RM states is computed to
assign intermediate rewards. We adopt these methods (with
reward shaping) as baselines for comparison in our experi-
ments. As we will show in Section 5, our approach generally
outperforms baselines, providing more effective design of
intermediate rewards for task progression.

Jothimurugan et al. [2019] proposes a new specification
language that can be translated into reward functions and
later applies it for compositional RL in Jothimurugan et al.
[2021]. These methods use a task monitor to track the degree
of specification satisfaction and assign intermediate rewards.
However, they require users to encode atomic predicates
into quantitative values for reward assignment. In contrast,
our approach automatically assigns intermediate rewards
using DFA states’ distance to acceptance values, eliminating
the need for user-provided functions.

Jiang et al. [2021] presents a reward shaping framework for
average-reward learning in continuing tasks. Their method
automatically translates a LTL formula encoding domain
knowledge into a function that provides additional reward
throughout the learning process. This work has a different
problem setup and thus is not directly comparable with our
approach.

Cai et al. [2023a] proposes an approach that decomposes
an LTL mission into sub-goal-reaching tasks solved in a
distributed manner. The same authors also present a model-
free RL method for minimally violating an infeasible LTL
specification in Cai et al. [2023b]. Both works consider the
assignment of intermediate rewards, but their definition of
task progression requires additional information about the
environment (e.g., geometric distance from each waypoint
to the destination). In contrast, we define task progression
based solely on the task specification, following Lacerda
et al. [2019], which is a work on robotic planning with
MDPs (but not RL).

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

Consider an RL agent interacting with an environment
modeled as an episodic Markov decision process (MDP),
where each learning episode terminates within a finite hori-
zon H . Formally, an MDP is denoted as a tuple M =
(S, s0, A, T,R, γ, L) where S is a set of states, s0 ∈ S is an
initial state, A is a set of actions, T : S × A × S → [0, 1]
is a probabilistic transition function, R is a reward func-
tion, γ ∈ [0, 1] is a discount factor, and L : S → 2AP

is a labeling function with a set of atomic propositions
AP . The reward function can be Markovian, denoted by
R : S×A×S → R, or non-Markovian (i.e., history depen-
dent), denoted by R : (S × A)∗ → R. Both the transition
function T and the reward function R are unknown to the
agent.

At each timestep t, the agent selects an action at given the
current state st and reward rt. The environment transitions
to a subsequent state st+1, determined by the probability
distribution T (·|st, at), and yields a reward rt+1. A (memo-
ryless) policy is defined as a mapping from states to probabil-



ity distributions over actions, denoted by π : S×A → [0, 1].
The agent seeks to learn an optimal policy that maximizes
the expected return, represented by E[

∑H−1
t=0 γtrt+1].

2.2 CO-SAFE LTL SPECIFICATIONS

We utilize Linear Temporal Logic (LTL) Pnueli [1981],
which is a form of modal logic that augments propositional
logic with temporal operators, to specify complex tasks for
the robotic agent. We focus on the syntactically co-safe LTL
fragment, defined as follows.

φ := α | ¬α | φ1∧φ2 | φ1∨φ2 | ⃝φ | φ1Uφ2 | ♢φ

where α ∈ AP is an atomic proposition, ¬ (negation), ∧
(conjunction), and ∨ (disjunction) are Boolean operators,
while ⃝ (next), U (until), and ♢ (eventually) are temporal
operators. Intuitively, ⃝φ means that φ has to hold in the
next step; φ1Uφ2 means that φ1 has to hold at least until φ2

becomes true; and ♢φ means that φ becomes true at some
time eventually. A co-safe LTL formula φ can be converted
into a DFA Aφ accepting exactly the set of good prefixes for
φ Kupferman and Vardi [2001]. Formally, a DFA is denoted
as a tuple Aφ = (Q, q0, QF , 2

AP , δ), where Q is a finite set
of states, q0 is the initial state, QF ⊆ Q is a set of accepting
states, 2AP is the alphabet, and δ : Q × 2AP → Q is the
transition function.

Example 1. Consider a robot aiming to complete a task
in a gridworld (Figure 1a). The task is to collect an or-
ange flag and a blue flag (in any order) while avoiding the
yellow flag. We describe this task using a co-safe LTL for-
mula φ = (¬y)U((o∧((¬y)Ub))∨(b∧((¬y)Uo))), where
o, b and y represent collecting orange, blue and yellow
flags, respectively. Figure 1b shows the corresponding DFA
Aφ, which has five states including the initial state q0 de-
picted with an incoming arrow, a trap state q3 from which
no transitions to other states exist, and the accepting state
QF = {q4} depicted with double circle. A transition is
enabled when its labelled Boolean formula holds. Starting
from the initial state q0, a path ending in the accepting state
q4 represents a good prefix of satisfying φ, indicating that
the task has been successfully completed. ■

2.3 TASK PROGRESSION

We adopt the notion of “task progression” introduced in Lac-
erda et al. [2019] to measure the degree to which a robotic
task defined by a co-safe LTL formula φ is completed.

Given a DFA Aφ = (Q, q0, QF , 2
AP , δ), let Sucq ⊆ Q be

the set of successors of state q, and |δq,q′ | ∈ {0, . . . , 2|AP |}
denote the number of possible transitions from q to q′. We
write q →∗ q′ if there is a path from q to q′, and q ̸→∗ q′ if
q′ is not reachable from q.

(a) Gridworld (b) DFA Aφ

Figure 1: Example gridworld and a DFA Aφ for a co-safe
LTL formula φ = (¬y)U((o∧((¬y)Ub))∨(b∧((¬y)Uo))).

The distance-to-acceptance function dφ : Q → R≥0 is
defined as:

dφ(q) =


0 if q ∈ QF

min
q′∈Sucq

dφ(q
′) + h(q, q′) if q ̸∈ QF , q→∗ QF

|AP | · |Q| otherwise
(1)

where h(q, q′) := log2

({
2|AP |

|δq,q′ |

})
represents the difficulty

of moving from q to q′ in the DFA Aφ.

The progression function ρφ : Q×Q → R≥0 between two
states of Aφ is defined as:

ρφ(q, q
′) =

{
max{0, dφ(q)− dφ(q

′)} if q′ ∈ Sucq , q′ ̸→∗ q

0 otherwise
(2)

The first condition mandates q′ ̸→∗ q to ensure that there
is no cycle in the DFA with a non-zero progression value,
which is crucial for the convergence of infinite sums of
progression Lacerda et al. [2019].

Example 2. In the DFA Aφ (Figure 1b), the distance-to-
acceptance values of the trap state q3 and the accepting state
q4 is dφ(q3) = 3×5 = 15 and dφ(q4) = 0, respectively. Ap-
plying Equation 1 recursively yields dφ(q0) = 2, dφ(q1) =
1, and dφ(q2) = 1. The progression from the initial state
q0 to q1 is ρφ(q0, q1) = max{0, dφ(q0) − dφ(q1)} = 1,
indicating that a positive task progression has been made. ■

3 PROBLEM FORMULATION

The objective of this work is to create reward functions
that encourage an RL agent to achieve the best possible
progression in accomplishing a task specified by a co-safe
LTL formula φ. To this end, we define a product MDP M⊗

that augments the environment MDP M with information
about the task specification φ.



Product MDP. Given an episodic MDP
M = (S, s0, A, T,R, γ, L) and a DFA Aφ =
(Q, q0, QF , 2

AP , δ), the product MDP is defined as
M⊗ = M ⊗ Aφ = (S⊗, s⊗0 , A, T⊗, R⊗, γ, AP,L⊗),
where S⊗ = S × Q, s⊗0 = ⟨s0, δ(q0, L(s0))⟩,
L⊗(⟨s, q⟩) = L(s),

T⊗ (⟨s, q⟩, a, ⟨s′, q′⟩) =

{
T (s, a, s′) if q′ = δ(q, L(s′))

0 otherwise.

This work focuses on designing Markovian reward functions
R⊗ : S⊗×A×S⊗ → R for the product MDP M⊗, whose
projection onto M yields non-Markovian reward functions.

In practice, the product MDP is built on-the-fly during learn-
ing. At each timestep t, given the current state ⟨st, qt⟩, an
RL agent selects an action at and transits to a successor
state ⟨st+1, qt+1⟩, where st+1 is given by the environment,
sampling from the distribution T (·|st, at), and qt+1 is de-
rived from the DFA’s transition function δ(qt, L(st+1)). The
agent receives a reward rt+1 determined by the reward func-
tion R⊗ (⟨st, qt⟩, a, ⟨st+1, qt+1⟩).

An RL agent aims to learn an optimal policy that max-
imizes the expected return in the product MDP M⊗. A
learned memoryless policy for M⊗ equates to a finite-
memory policy in the environment MDP M, denoted by
π : S ×Q×A → [0, 1], with the DFA states Q delineating
various modes.

Task progression for a policy. We define a partition of the
state space of DFA Aφ = (Q, q0, QF , 2

AP , δ) based on an
ordering of distance-to-acceptance values. Let B0 = QF

and Bi = {q ∈ Q \
⋃i−1

j=0 Bj | dφ(q) is minimal} for i > 0.
The task progression for a policy π of the product MDP,
denoted by b(π), is the lowest index of reachable partitioned
sets Bi from the initial state. A value of b(π) = 0 signifies
the task has been successfully completed. The best possible
task progression across all feasible policies Π in the product
MDP is defined as b∗ = min{b(π) |π ∈ Π}.

Example 3. The state space of the DFA Aφ shown in
Figure 1b can be partitioned into four sets: B0 = {q4},
B1 = {q1, q2}, B2 = {q0}, and B3 = {q3}.

Let gi,j denote a grid cell in row i and column j in the
gridworld (Figure 1a). The agent’s initial location is g8,5.
Consider the following three candidate policies:

• π1: The agent takes 10 steps to collect the blue flag
in g2,1, avoiding the yellow flag, but fails to reach the
orange flag within the 25-step episode timeout.

• π2: The agent moves 16 steps to collect the orange flag
and then moves 4 more steps to collect the blue flag in
g6,5. The task is completed.

• π3: The agent moves directly to the yellow flag in 5
steps. The task is failed and the episode ends.

We have b(π1) = 1 as DFA state q1 ∈ B1 is reached with
policy π1, b(π2) = 0 upon task completion, and b(π3) = 2
due to a direct transition from initial state q0 ∈ B2 to trap
state q3 ∈ B3. The best possible task progression across all
policies is b∗ = b(π2) = 0. ■

Problem. This work aims to solve the following problem:
Given an episodic MDP M with unknown transition and
reward functions, along with a DFA Aφ representing a co-
safe LTL task specification φ, the objective is to construct
a Markovian reward function R⊗ for the product MDP
M⊗ = M⊗Aφ. This reward function should be designed
such that an optimal policy π∗, learned by an RL agent
via maximizing the expected return, also achieves the best
possible task progression, that is, b∗ = b(π∗).

4 APPROACH

To solve this problem, we design two reward functions that
incentivize an RL agent to improve the task progression
(cf. Section 4.1), and develop an adaptive reward shaping
approach that dynamically updates these reward functions
during the learning process (cf. Section 4.2).

4.1 BASIC REWARD FUNCTIONS

Progression reward function. First, we propose a progres-
sion reward function based on the task progression function
defined in Equation 2, representing the degree of reduction
in distance-to-acceptance values.

R⊗
pg (⟨s, q⟩, a, ⟨s′, q′⟩) = ρφ(q, q

′)

=

{
max{0, dφ(q)− dφ(q

′)} if q′ ∈ Sucq , q′ ̸→∗ q

0 otherwise
(3)

Example 4. Assuming a deterministic environment for the
gridworld shown in Figure 1a, the MDP has a discount
factor of γ = 0.9. We calculate the expected returns for poli-
cies from Example 3 using the progression reward function.
V π1
pg (s⊗0 ) = 0.99 ≈ 0.39, V π2

pg (s⊗0 ) = 0.915+0.919 ≈ 0.34,
and V π3

pg (s⊗0 ) = 0. Among these policies, π1 yields the high-
est expected return, yet it fails to achieve the best possible
task progression, as b(π1) = 1 > b∗ = 0. ■

Hybrid reward function. The progression reward function
rewards only transitions that progress toward acceptance,
without penalizing those that stay in the same DFA state. To



address this issue, we define a hybrid reward function:

R⊗
hd (⟨s, q⟩, a, ⟨s

′, q′⟩) =

{
η · −dφ(q) if q = q′

(1− η) · ρφ(q, q′) otherwise
(4)

where η ∈ [0, 1] balances the trade-offs between penalties
and progression rewards.

Example 5. We calculate the expected returns of policies in
Example 3 using the hybrid reward function (with η = 0.1).
V π1

hd (s⊗0 ) ≈ −1.15, V π2

hd (s⊗0 ) ≈ −1.33, and V π3

hd (s⊗0 ) ≈
−0.69. Although π3 yields the highest expected return, it
falls short in the task progression with b(π3) = 2. Increasing
η emphasizes penalties without altering the optimal policy
in this example. Conversely, reducing η moves closer to the
progression reward function, especially when η = 0. ■

4.2 ADAPTIVE REWARD SHAPING

While reward functions defined in Section 4.1 motivate an
RL agent to complete a task specified by a co-safe LTL
formula, Examples 4 and 5 show that the learned optimal
policies that maximize the expected return do not achieve the
best possible task progression. A potential reason is that the
distance-to-acceptance function dφ, as defined in Equation 1,
may not precisely reflect the difficulty of activating desired
DFA transitions within a specific environment. To tackle this
limitation, we develop an adaptive reward shaping approach
that dynamically updates distance-to-acceptance values and
reward functions during the learning process.

Updating distance-to-acceptance values. After every N
learning episodes, with N being a hyperparameter, we eval-
uate the average success rate of task completion. An episode
is deemed successful if it concludes in an accepting state
of the DFA Aφ. If the average success rate falls below a
predefined threshold λ, we proceed to update the distance-
to-acceptance values accordingly.

We derive initial values d0φ(q) for each DFA state q ∈ Q
from Equation 1. The distance-to-acceptance values for the
k-th update round are calculated recursively as follows:

dkφ(q) =

{
dk−1
φ (q) + θ if q ∈ Bi,∀i ≥ bk

dk−1
φ (q) otherwise

(5)

where bk is the task progression of the optimal policy
learned after k · N episodes, and θ is a hyperparameter,
also used later in Equation 8, requiring that θ > 1.

Example 6. We have d0φ(q0) = 2, d0φ(q1) = d0φ(q2) =
1, d0φ(q3) = 15, and d0φ(q4) = 0 following Example 2.
Suppose π1 is the optimal policy learned after the first N
episodes and thus b1 = 1. Let θ = 100. For states in B1 ∪
B2 ∪ B3 = {q0, q1, q2, q3}, We update their distance-to-
acceptance values as follows: d1φ(q1) = d1φ(q2) = 101,

d1φ(q0) = 102, and d1φ(q3) = 115. For state q4 ∈ B0, we
retain its distance-to-acceptance value as d1φ(q4) = 0. ■

Note that Equation 5 does not alter the order of distance-to-
acceptance values, so the DFA state partitions {Bi} remain
unchanged. We present two new reward functions that lever-
age the updated distance-to-acceptance values as follows.

Adaptive progression reward function. Given the updated
distance-to-acceptance values dkφ(q), we apply the progres-
sion function defined in Equation 2 and obtain

ρkφ(q, q
′) =

{
max{0, dkφ(q)− dkφ(q

′)} if q′ ∈ Sucq , q′ ̸→∗ q

0 otherwise
(6)

Then, we define an adaptive progression reward function
for the k-th round of updates as:

R⊗
ap,k (⟨s, q⟩, a, ⟨s

′, q′⟩) = max{ρ0φ(q, q′), ρkφ(q, q′)} (7)

When k = 0, the adaptive progression reward function R⊗
ap,0

coincides with the progression reward function R⊗
pg defined

in Equation 3.

Example 7. Using the updated distance-to-acceptance val-
ues from Example 6, we calculate the adaptive progression
rewards R⊗

ap,1 for the first round of update. For instance,
we have ρ1φ(q1, q4) = max{0, d1φ(q1) − d1φ(q4)} = 101.
Recall ρ0φ(q1, q4) = 1 from Example 2. Thus,

R⊗
ap,1 (⟨g6,4, q1⟩, right, ⟨g6,5, q4⟩) = max{1, 101} = 101.

The expected returns of policies in Example 3 with R⊗
ap,1 are

V π1
ap,1(s

⊗
0 ) ≈ 0.39, V π2

ap,1(s
⊗
0 ) ≈ 13.85, and V π3

ap,1(s
⊗
0 ) = 0.

Policy π2 yields the highest expected return while complet-
ing the task (i.e., b(π2) = 0). ■

Adaptive hybrid reward function. We define an adaptive
hybrid reward function for the k-th round of updates as:

R⊗
ah,k (⟨s, q⟩, a, ⟨s

′, q′⟩) ={
ηk · −dkφ(q) if q = q′

(1− ηk) ·max{ρ0φ(q, q′), ρkφ(q, q′)} otherwise
(8)

with η0 ∈ [0, 1], and ηk = ηk−1

θ where θ is the same hyper-
parameter used in Equation 5. We require θ > 1 to ensure
that the weight value ηk is reduced in each update round,
avoiding undesired behavior from increased self-loop penal-
ties. At k = 0, the adaptive hybrid reward function R⊗

ah,0

aligns with the hybrid reward function R⊗
hd as defined in

Equation 4.

Example 8. Let η0 = 0.1, and θ1 = 100. The initial distance-
to-acceptance values d0φ are the same as in Example 6. Sup-
pose the agent’s movement during the episodes follows



a policy π such that b(π) = 1. Following Equation 5,
we update the distance-to-acceptance values of states in
B1∪B2∪B3 = {q0, q1, q2, q3} to d1φ(q1) = d1φ(q2) = 101,
d1φ(q0) = 102, and d1φ(q3) = 115. We compute R⊗

ah,1 with
η1 = 0.001, which yields V π1

ah,1(s
⊗
0 ) ≈ −0.52, V π2

ah,1(s
⊗
0 ) ≈

12.97, and V π3

ah,1(s
⊗
0 ) ≈ −0.35. The optimal policy π2 not

only yields the highest expected return but also completes
the task with b(π2) = 0. ■

Correctness. The correctness of the proposed adaptive re-
ward shaping approach, as it pertains to the problem formu-
lated in Section 3, is stated below, with the proof provided
in Appendix A.

Theorem 1. Given an episodic MDP M and a DFA Aφ

corresponding to a co-safe LTL formula φ, there exists
an optimal policy π∗ of the product MDP M⊗ = M ⊗
Aφ that maximizes the expected return based on a reward
function R⊗ ∈ {R⊗

ap,k, R
⊗
ah,k} for some k ∈ N, where the

task progression for policy π∗ matches the best possible task
progression b∗ across all feasible policies in the product
MDP M⊗, that is, b∗ = b(π∗).

5 EXPERIMENTS

We evaluate the proposed adaptive reward shaping approach
in a variety of benchmark RL domains. We describe the
experimental setup including environments, RL algorithms,
baselines, and evaluation metrics in Section 5.1, and analyze
the experimental results in Section 5.2.

5.1 EXPERIMENTAL SETUP

Environments. The following RL domains are used: the
taxi domain from OpenAI Gym [Brockman et al., 2016],
and three other domains adapted from Icarte et al. [2022].

• Office world: The agent navigates a 12×9 grid world
to: get coffee and mail (in any order), deliver them to
the office, and avoid obstacles. The test environment
assigns a reward of 1 for each sub-goal: (i) get coffee,
(ii) get coffee and mail, and (iii) deliver coffee and mail
to the office, all while avoiding obstacles.

• Taxi world: The agent drives around a 5×5 grid world
to pick up and drop off a passenger, starting from a ran-
dom location. There are five possible pickup locations
and four possible destinations. The task is completed
when the passenger is dropped off at the target desti-
nation. The test environment assigns a reward of 1 for
each sub-goal: (i) pick up the passenger, (ii) reach the
target destination, and (iii) drop off the passenger.

• Water world: The agent moves in a continuous 2D
box with six colored floating balls, changing velocity

toward one of the four cardinal directions each step.
The task is to touch red and green balls in strict order
without touching other colors, then touch blue balls.
The test environment assigns a reward of 1 for touching
each target ball.

• HalfCheetah: The agent is a cheetah-like robot with a
continuous action space, controlling six joints to move.
The task is completed by reaching the farthest location.
The test environment assigns a reward of 1 for reaching
each of the five locations along the way.

For each domain, we consider three types of environments:
(1) deterministic environments, where each state-action pair
leads to a single success state only; (2) noisy environments,
where each action has a certain control noise; and (3) infea-
sible environments, where some sub-goals are impossible to
complete (e.g., a blocked office that the agent cannot access,
or missing blue balls in the water world).

Baselines. We compare the proposed approach with the
following methods as baselines: Q-learning for reward ma-
chines (QRM) with reward shaping [Camacho et al., 2019],
counterfactual experiences for reward machines (CRM)
with reward shaping and hierarchical RL for reward ma-
chines (HRM) with reward shaping [Icarte et al., 2022]. We
also evaluate RM-based algorithms incorporating partial
rewards, which are detailed in Appendix C. We use the code
accompanying publications.

Moreover, we consider a naive baseline that rewards tran-
sitions that decrease the distance to acceptance. For each
transition (⟨s, q⟩, a, ⟨s′, q′⟩) in the product MDP, assign a
reward of 1 if dφ(q) > dφ(q

′) and there is a path from q to
accepting states QF , otherwise assign a reward of 0.

RL Algorithms. We use DQN Mnih et al. [2015] for
learning in discrete domains (office world and taxi world),
DDQN [Van Hasselt et al., 2016] for water world with con-
tinuous state space, and DDPG [Lillicrap et al., 2016] for
HalfCheetah with continuous action space. Note that QRM
implementation does not work with DDPG, so we only use
HRM and CRM as the baselines for HalfCheetah. We also
apply PPO [Schulman et al., 2017] and A2C [Mnih et al.,
2016] to HalfCheetah (QRM, CRM and HRM baselines
are not compatible with these RL algorithms) and report
results in Appendix B due to the page limit. Our imple-
mentation was built upon OpenAI Stable-Baselines3 [Raffin
et al., 2021].

Metrics. We pause the learning process every 100 training
steps in the office world and every 1,000 training steps in
other domains, then evaluate the current policy in the test en-
vironment over 5 episodes. We evaluate the performance us-
ing two metrics: success rate of task completion, calculated
by counting the frequency of successful episodes where the
task is completed, and normalized expected return, which



Figure 2: Results for deterministic environments.

Figure 3: Results for noisy environments.

is normalized using the maximum possible return for that
task. The only exception is taxi world, where the maximum
return varies for different initial states and we normalize by
averaging the maximum return of all initial states.

5.2 RESULTS ANALYSIS

We ran 10 independent trials for each method. Figures 2, 3
and 4 plot the mean performance with a 95% confidence
interval (the shaded area) in deterministic, noisy, and infea-
sible environments, respectively. The success rate of task
completion is omitted in Figure 4 because it is zero for all
trials (i.e., the task is infeasible to complete).

Performance comparison. These results show that the
proposed approach using adaptive progression or adaptive
hybrid reward functions generally outperforms baselines,
achieving earlier convergence to policies with a higher suc-
cess rate of task completion and a higher normalized ex-
pected return.

The significant advantage of our approach is best illustrated
in Figure 4, where baselines fail to learn effectively in en-

vironments with infeasible tasks. Although baselines apply
potential-based reward shaping [Ng et al., 1999] to assign
intermediate rewards, they cannot distinguish between good
and bad terminal states (e.g., completing a sub-goal and
colliding with an obstacle have the same potential value). In
contrast, our approach provides more effective intermediate
rewards, encouraging the agent to learn and maximize task
progression.

The only outlier is the noisy office world where QRM and
CRM outperform the proposed approach. One possible rea-
son is that our approach gets stuck with a sub-optimal pol-
icy in this environment, which opts for fetching coffee at
a closer location but results in a longer route to complete
other sub-goals (i.e., getting mail and delivering to office).

Comparing the proposed reward functions, we observe that
the adaptive hybrid reward function has the best overall
performance. Comparing different RL environments, the
proposed approach can achieve a success rate of 1 and the
maximum possible return in most deterministic environ-
ments, but its performance is degraded in noisy environ-
ments due to control noise and in infeasible environments
due to environmental constraints.



Figure 4: Results for infeasible environments.

Ablation study. Additionally, we conduct an ablation study
to investigate the sensitivity of the hyperparameters θ and
N used for updating distance-to-acceptance values (cf. Sec-
tion 4.2). Figure 5 shows the normalized reward for two in-
feasible environments: Taxi World and Water World. The re-
sults demonstrate that the proposed approach converges with
a sufficiently large value of θ ∈ {2, 000, 5, 000, 10, 000}.
Moreover, it takes more training steps to achieve policy
convergence with larger values of N , indicating longer in-
tervals between consecutive updates of reward functions.
Figure 6 shows the success rates for the feasible version of
Taxi World and Water World. These results suggest that fea-
sible environments benefit from longer update intervals N ,
as the agent has more time to explore and gather experience
before the reward function is modified.

Hyperparameter Selection: Practical Guidance. We offer
the following heuristics for selecting key hyperparameters
in our framework. For the reward update interval N , a useful
starting point is the total training budget divided by the num-
ber of distinct task stages (e.g., states in a task-governing
DFA), as this aims to provide the agent with sufficient in-
teraction episodes within each task stage before potential
reward adjustments. The reward scaling factor θ can be ini-
tially set to the sum of progression rewards,

∑
q,q′ pϕ (q, q

′),
which approximates the cumulative effort. Insights from the
ablation study further suggest that task feasibility can guide
these choices: potentially infeasible tasks may benefit from
smaller θ values and more frequent updates (smaller N ) to
enable regular progress assessment and dynamic reward ad-
justment in challenging settings. In contrast, feasible tasks
often accommodate larger θ and N to allow for the col-
lection of more meaningful data before reward function
modification. When employing hybrid reward functions, we
recommend small magnitudes for step-wise penalties (e.g.,
10−3 or 10−4) to avoid overwhelming the positive shaping
signals. These guidelines serve as practical starting points,
though optimal settings can be task-dependent.

6 CONCLUSION

We have developed a logic-based adaptive reward shaping
approach for RL. Our approach uses reward functions de-

Figure 5: Results of the ablation study on the sensitiv-
ity of hyperparameters θ and N for updating distance-to-
acceptance values in infeasible environments.

signed to incentivize an agent to complete a task specified
by a co-safe LTL formula as much as possible, and dynam-
ically updates these reward functions during the learning
process. This dynamic reward shaping is beneficial for sce-
narios where environmental uncertainties can lead to task
failure despite successful subtask progress.

Computational experiments demonstrate that our approach
is applicable to various discrete and continuous RL domains
and is compatible with a wide range of RL algorithms such
as DQN, DDQN, DDPG, PPO, and A2C. Experimental
results also show that the proposed approach generally out-
performs state-of-the-art baselines, achieving faster conver-
gence to a better policy with higher expected return and task
completion rate.

There are several directions for future work. First, we will
evaluate the proposed approach on a broader range of RL
domains beyond the benchmarks used in our experiments.
Second, we will explore extending the approach to multi-
agent RL. Finally, we aim to apply the proposed approach
to real-world RL tasks, such as autonomous driving.



Figure 6: Results of the ablation study on the sensitiv-
ity of hyperparameters θ and N for updating distance-to-
acceptance values in feasible environments.
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A CORRECTNESS

Here, we prove the correctness of our approach, as stated in Theorem 1. We start by proving the following auxiliary lemmas.

Lemma 1. Adaptive hybrid reward function R⊗
ah,k tends to adaptive progression reward function R⊗

ap,k with an increasing
number of updates k, that is, limk→∞ R⊗

ah,k = R⊗
ap,k.

Proof. By the definition of adaptive hybrid reward function R⊗
ah,k (cf. Equation 8), η0 ∈ [0, 1] and ηk = ηk−1

θ with
θ > 1. We have limk→∞ ηk = 0. The first case of Equation 8, ηk · −dkφ(q), tends to 0; and the second case tends to
max{ρ0φ(q, q′), ρkφ(q, q′)}. Thus, it holds that limk→∞ R⊗

ah,k = R⊗
ap,k.

Lemma 2. Given an episodic MDP M and a DFA Aφ for a co-safe LTL formula φ, let π∗
k and π∗

k+1 denote the optimal
policies of the product MDP M⊗ = M ⊗ Aφ, maximizing the expected return based on adaptive progression reward
functions R⊗

ap,k and R⊗
ap,k+1, respectively. If a policy exists that achieves a higher expected return than π∗

k based on R⊗
ap,k+1,

then π∗
k+1 achieves better task progression than π∗

k, that is, b(π∗
k+1) < b(π∗

k).

Proof. For the sake of contradiction, suppose that b(π∗
k+1) ≥ b(π∗

k). Let τ be a path through the product MDP M⊗ under
policy π∗

k+1. For any state ⟨s, q⟩ in the path τ , we have q ∈ Bi where i ≥ b(π∗
k+1) ≥ b(π∗

k) = bk. For every transition
(⟨s, q⟩, a, ⟨s′, q′⟩) ∈ τ , it holds that:

R⊗
ap,k+1 (⟨s, q⟩, a, ⟨s

′, q′⟩)

=max{ρ0φ(q, q′), ρk+1
φ (q, q′)}

=max{ρ0φ(q, q′),max{0, dk+1
φ (q)− dk+1

φ (q′)}}
=max{ρ0φ(q, q′),max{0, dkφ(q) + θ − dkφ(q

′)− θ}}
=max{ρ0φ(q, q′),max{0, dkφ(q)− dkφ(q

′)}}
=max{ρ0φ(q, q′), ρkφ(q, q′)}
=R⊗

ap,k (⟨s, q⟩, a, ⟨s
′, q′⟩)

Thus, we have V
π∗
k+1

ap,k+1(s
⊗
0 ) = V

π∗
k+1

ap,k (s⊗0 ), meaning that the expected return stays the same. Similarly, we can show that

V
π∗
k

ap,k+1(s
⊗
0 ) = V

π∗
k

ap,k(s
⊗
0 ).

Since π∗
k is the optimal policy maximizing the expected return based on R⊗

ap,k, we have

V
π∗
k

ap,k(s
⊗
0 ) ≥ V

π∗
k+1

ap,k (s⊗0 ) = V
π∗
k+1

ap,k+1(s
⊗
0 ). (9)



Given that there exists a policy that achieves a higher expected return than π∗
k based on R⊗

ap,k+1, it holds that

V
π∗
k

ap,k(s
⊗
0 ) = V

π∗
k

ap,k+1(s
⊗
0 ) < V

π∗
k+1

ap,k+1(s
⊗
0 ). (10)

Equation 9 contradicts with Equation 10. Thus, we have b(π∗
k+1) < b(π∗

k).

Now we are ready to prove Theorem 1 as stated in Section 4 and repeated here.

Theorem 1. Given an episodic MDP M and a DFA Aφ corresponding to a co-safe LTL formula φ, there exists an
optimal policy π∗ of the product MDP M⊗ = M⊗Aφ that maximizes the expected return based on a reward function
R⊗ ∈ {R⊗

ap,k, R
⊗
ah,k} for some k ∈ N, where the task progression for policy π∗ matches the best possible task progression

b∗ across all feasible policies in the product MDP M⊗, that is, b∗ = b(π∗).

Proof. Without loss of generality, we focus on the adaptive progression reward function R⊗
ap,k, as Lemma 1 shows that

limk→∞ R⊗
ah,k = R⊗

ap,k.

Let π∗
k denote an optimal policy of the product MDP M⊗ that maximizes the expected return based on R⊗

ap,k. Suppose
that b(π∗

k) > b∗. There exists a policy π in the product MDP that achieves the best possible task progression b∗, where
V π
ap,k(s

⊗
0 ) ≤ V

π∗
k

ap,k(s
⊗
0 ). If V π

ap,k(s
⊗
0 ) = V

π∗
k

ap,k(s
⊗
0 ), then π is the desired optimal policy π∗ that maximizes the expected

return based on R⊗
ap,kwhile achieving the best possible task progression b∗. This theorem is thus proved.

Otherwise, when V π
ap,k(s

⊗
0 ) < V

π∗
k

ap,k(s
⊗
0 ), we proceed to prove the theorem as follows. Let the difference in expected

returns be denoted by σ = V
π∗
k

ap,k(s
⊗
0 ) − V π

ap,k(s
⊗
0 ) > 0. Consider a worst-case scenario where policy π reaches a state

with the best possible task progression only at the end of an episode. Formally, there is only one path τ of length |τ | = H
through the product MDP M⊗ under policy π that ends with a transition (⟨s, q⟩, a, ⟨s′, q′⟩) where q ∈ Bi, q′ ∈ Bj ,
and i > j = b∗. Based on the definition of adaptive progression reward function, we have R⊗

ap,k+1 (⟨s, q⟩, a, ⟨s′, q′⟩) =
R⊗

ap,k (⟨s, q⟩, a, ⟨s′, q′⟩) + θ. Thus, V π
ap,k+1(s

⊗
0 ) = V π

ap,k(s
⊗
0 ) + p · γH−1 · θ, where p is the probability of path τ and

γ is the MDP’s discount factor. Following the argument in Lemma 2, it holds that V π∗
k

ap,k+1(s
⊗
0 ) = V

π∗
k

ap,k(s
⊗
0 ). When

the hyperparameter value θ is sufficiently large, more precisely, θ > σ
p·γH−1 , we have V π

ap,k+1(s
⊗
0 ) > V

π∗
k

ap,k+1(s
⊗
0 ).

Let π∗
k+1 denote an optimal policy of the product MDP M⊗ that maximizes the expected return based on R⊗

ap,k+1. If

V π
ap,k+1(s

⊗
0 ) = V

π∗
k+1

ap,k+1(s
⊗
0 ), then π is the desired optimal policy π∗ and the theorem is thus proved. Otherwise, following

Lemma 2, it holds that b(π∗
k+1) < b(π∗

k), meaning that the task progression for π∗
k+1 has improved compared to that of

policy π∗
k. Since a task progression value is bounded by the state partition size of DFA Aφ, it takes only a finite number of

updates before an optimal policy yielding b∗ is learned.

In conclusion, there exists an optimal policy π∗ for the product MDP M⊗ that achieves the best possible task progression
b∗ while maximizing the expected return based on R⊗

ap,k for some k ∈ N, which is an adaptive progression reward function
updated in a finite number of rounds with a sufficiently large hyperparameter value θ.



B COMPATIBILITY WITH ON-POLICY LEARNING

Results for HalfCheetah. Figure 7 shows the results of applying three different RL algorithms, DDPG [Lillicrap et al.,
2016], PPO [Schulman et al., 2017], and A2C [Mnih et al., 2016], to HalfCheetah environments. The comparison between
the proposed approach and all baselines using DDPG has already been discussed in Section 5. Since the QRM, CRM, and
HRM baselines are not compatible with PPO and A2C, we only compare with the naive baseline here.

Comparing the results of the three RL algorithms, we observe that DDPG exhibits relatively higher variance than the others.
This is likely due to its off-policy nature, relying heavily on a replay buffer and exploration driven by control noise. In
our experiments, we used a replay buffer with a capacity of 106 while sampling only 100 experiences for each update,
introducing significant randomness as most samples in the large replay buffer do not yield positive rewards. Exploration
also adds to the randomness. In contrast, PPO and A2C are on-policy algorithms, where updates depend solely on the
current policy. These algorithms tend to maintain their behavior once the current policy achieves partial task completion.
Additionally, PPO incorporates a stabilizing technique that helps reduce variance.

Comparing different reward functions, we find that the Naive baseline achieves comparable performance with the proposed
reward functions in all HalfCheetah environments. However, as noted in Section 5, it usually performs the worst in other
domains. One possible explanation is that the HalfCheetah task has a unique structure, where each sub-goal requires moving
forward by the same distance. The Naive reward function assigns a reward of 1 for each sub-goal, maintaining consistency
in the learning process.

Figure 7: Results of applying various RL algorithms to HalfCheetah environments.



C PARTIAL REWARDS IN REWARD MACHINES

This ablation study investigates the effect of incorporating partial rewards into Reward Machine (RM) structures along with
the use of potential-based reward shaping. While RMs are theoretically capable of representing and utilizing partial rewards
(e.g., in the Office World environment, the RM transitions through states u0 [initial], u1, u2 [intermediate], and u3 [goal],
as depicted in Figure 2 (b) Icarte et al. [2022], our empirical evaluation reveals that their inclusion does not consistently
enhance performance and can lead to performance degradation.

To evaluate the impact of partial rewards on RM-based algorithms, we conducted experiments in deterministic environments:
Office World and Taxi World. We define "Partial Reward Q-learning Reward Machine" (PR QRM) as the QRM algorithm
variant that incorporates partial rewards. For consistency across algorithms, we similarly introduce PR CRM and PR HRM,
denoting CRM and HRM variants also utilizing partial rewards. All baselines in this study are equipped with potential-based
reward shaping. Across both Office World and Taxi World environments, all RM-based algorithms suffered a performance
degradation when supplemented with partial rewards of 1 for each intermediate step.

These findings suggest that the algorithms, particularly in their current configurations, may not be inherently designed to
effectively leverage partial rewards in conjunction with potential reward shaping. One plausible explanation for the observed
performance degradation is that, as discussed in Icarte et al. [2022], potential reward shaping can assign positive rewards to
actions that lead to undesirable "violation" states within the RM, potentially exacerbating the negative effects of partial
rewards. Therefore, careful consideration and potentially algorithm modifications are necessary to effectively harness the
benefits of partial rewards within Reward Machine frameworks, especially when integrated with reward shaping techniques.
In contrast to these observations, our proposed algorithms are designed to effectively incorporate partial rewards across
diverse environments without performance degradation, while ensuring both task completion and reward maximization.

Figure 8: Results in Office World and Taxi World for RM algorithms using partial rewards.
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