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Abstract
Large language models (LLMs) acquire informa-
tion from pre-training corpora, but their stored
knowledge can become inaccurate or outdated
over time. Model editing addresses this chal-
lenge by modifying model parameters without
retraining, and prevalent approaches leverage hy-
pernetworks to generate these parameter updates.
However, they face significant challenges in life-
long editing due to their incompatibility with
LLM parameters that dynamically change dur-
ing the editing process. To address this, we
observed that hypernetwork-based lifelong edit-
ing aligns with reinforcement learning model-
ing and proposed RLEdit, an RL-based editing
method. By treating editing losses as rewards
and optimizing hypernetwork parameters at the
full knowledge sequence level, we enable it to
precisely capture LLM changes and generate ap-
propriate parameter updates. Our extensive em-
pirical evaluation across several LLMs demon-
strates that RLEdit outperforms existing meth-
ods in lifelong editing with superior effectiveness
and efficiency, achieving a 59.24% improvement
while requiring only 2.11% of the time compared
to most approaches. Our code is available at:
https://github.com/zhrli324/RLEdit.

1. Introduction
Although large language models (LLMs) have achieved sig-
nificant success in various downstream tasks (Brown et al.,
2020; Zhao et al., 2024), their performance is hindered by
the outdated or erroneous knowledge they may store, lead-
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ing to an ongoing demand for continuous updates to model
parameters (Lazaridou et al., 2021; De Cao et al., 2021). A
straightforward solution is lifelong model editing, which
enables sequential knowledge updates in LLMs without
compromising their core performance (Hartvigsen et al.,
2023; Wang et al., 2024; Fang et al., 2024). For each knowl-
edge K, conventional lifelong editing methods individually
calculate an optimal update, denoted as ∆, to adjust the
LLM parametersW through matrix operation (Meng et al.,
2022; 2023), as illustrated in Figure 1 (a). Since the com-
plexity and approximations involved in repetitive matrix
operation make conventional methods computationally ex-
pensive and error-prone, recently, hypernetwork-based meth-
ods (Mitchell et al., 2022a; Tan et al., 2024) have emerged
as a more efficient and elegant solution. By modeling the
K → ∆ process with a hypernetwork, as shown in Figure
1 (b), the hypernetwork can efficiently map knowledge K
to the required update ∆ once trained on these K-∆ pairs.
This approach eliminates the need for expensive and repet-
itive matrix operations, thus enabling a more concise and
practical model editing process.

However, current hypernetwork-based methods struggle to
handle long-term lifelong editing tasks (e.g., tasks involv-
ing more than 100 edits) (Yang et al., 2024a;b). To ensure
convergence during training, all K-∆ pairs used to train
the hypernetwork must be collected from the same LLM
with identical parameters. Consequently, a single hyper-
network can only model the K → ∆ process for a fixed
LLM, limiting its applicability across evolving models in
lifelong editing scenarios. As illustrated in Figure 1 (b),
while locate-then-edit methods like MEMIT (Meng et al.,
2023) and AlphaEdit (Fang et al., 2024) can effectively
support up to 5,000 edits, hypernetwork-based approaches
tend to fail after only around 100 edits. This limitation
severely restricts the broader use and further advancement
of hypernetwork-based editing approaches.

This leads to a natural question: “How to keep the hyper-
network effective for lifelong editing?” To address this,
the hypernetwork must: 1) capture dynamic changes in the
LLM, and 2) adaptively provide ∆ based on the current
LLM. This inspires us to turn to Reinforcement Learning
(RL) (Arulkumaran et al., 2017), which aims to: 1) capture
dynamic changes in the environment, and 2) adaptively pro-
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Figure 1: Comparison of different lifelong editing
paradigms. Here, Ka and Kb represent two consecutive
new knowledge samples, while ∆a and ∆b are their corre-
sponding parameter updates (K and ∆ with other subscripts
are paired data used for training the hypernetwork). (a) re-
quires independent calculations for each knowledge sample,
resulting in low efficiency. (b) is efficient but the hyper-
network cannot be generalized to the post-edited LLM. (c)
ensures both efficiency and effectiveness, even after more
than 20,000 edits. The time shows both initial setup time
(including covariance matrix computation or hypernetwork
training) and editing time. Best viewed in color.

vide actions based on the current state. Additionally, RL is
typically applied in the context of the Markov Decision Pro-
cess (MDP) (Bellman, 1957). Lifelong editing naturally fits
into this framework, as each edit depends solely on the new
knowledge and the current LLM state, while the existing
loss function and hypernetwork parameters can be modeled
as reward and policy respectively.

Building on these observations, we propose RLEdit, which
applies RL to construct and train the hypernetwork. Specifi-
cally, RLEdit treats the hypernetwork as the agent, defines
∆ as the action, and quantifies the performance of LLM as
the reward function. We employ an offline policy update
approach, enabling RLEdit to recognize the current state of
LLMs and adaptively adjust its output ∆, while retaining the
efficiency of current hypernetwork-based methods. To meet
the requirement that post-edited LLMs must retain previ-
ously edited knowledge in lifelong editing, we optimize the
reward function by incorporating the difference between the
current update and the cumulative sum of previous updates.
This modification serves two key purposes: it accelerates

the RL-based training process, and it reduces interference
between successive updates.

To further validate RLEdit’s capabilities, we conducted ex-
tensive experiments on several LLMs. When compared
to existing parameter-modifying methods (e.g., RECT (Gu
et al., 2024), DAFNet (Zhang et al., 2024b), AlphaEdit
(Fang et al., 2024)), RLEdit consistently outperforms these
approaches across most evaluation metrics, requiring only
2% of the computation time (including the hypernetwork
training overhead) on average. As shown in Figure 1 (c),
RLEdit maintains satisfactory performance even after more
than 20,000 edits, with each edit taking only 0.17s. Addi-
tionally, as the first approach to model lifelong editing as an
RL problem, our ablation studies underscore the critical role
of the RL framework in RLEdit’s performance, paving the
way for broader applications of lifelong editing and further
advancements in hypernetwork-based methods.

2. Preliminary
2.1. Lifelong Model Editing

Lifelong model editing requires continuous and sequen-
tial model editing on the same LLM, with the total num-
ber of edits potentially reaching thousands or even tens of
thousands. It requires the post-edited LLM to remember
the knowledge from recent edits, retain previously edited
knowledge, and maintain comprehensive performance. Let
fW0

: X → Y be the initially pre-trained LLM with
parameters W0, which maps the input set X to the out-
put set Y . In the lifelong editing task, we have an edit-
ing dataset Dn = {(X,Y )|(x1, y1), . . . , (xn, yn)}, where
X = (x1, . . . , xn) is the input stream of knowledge to
be edited, and Y = (y1, . . . , yn) is the target output. For
the entire input stream X , the pre-trained model outputs
fW0

(X) = Y ′, where Y ′ = (y′1, . . . , y
′
n) represents the

ground truth. Through sequential editing, we aim to modify
the model parameters to achieve fWn

(X) = Y . Therefore,
we introduce the model editor (ME). During model editing,
the LLM sequentially reads input-output pairs (x, y) from
dataset D. When editing the t-th knowledge, ME modifies
the LLM parameters according to the following formula:

fWt
= ME(fWt−1

, xt, yt), t = 1, . . . , n. (1)

2.2. Hypernetwork-based Editing Methods

One approach in model editing is hypernetwork-based edit-
ing methods, which involve training an editing hypernet-
work to generate LLM parameter updates. Hypernetwork-
based methods recognize that LLM fine-tuning gradients
contain rich information and use the loss L of the edited
LLM on both edited and unrelated knowledge as the start-
ing point for hypernetwork training. It aims to train a
hypernetwork to map fine-tuning gradients to LLM pa-
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rameter updates. To address the computational burden of
d× d weight matrices, Mitchell et al. (2022a) decomposes
each layer’s gradient matrix into a rank-1 product form
∇Wl
L = δl+1u

⊤
l , where δl+1 is the gradient of the loss

with respect to pre-activations of layer l + 1, and ul is the
input to layer l. Through low-rank decomposition, the hy-
pernetworkH can learn a d→ d mapping:

H : δl+1 × u⊤
l → δ̃l+1 × ũ⊤

l , (2)

where δ̃l+1 and ũl are pseudo-activations and pseudo-
increments respectively, and the final updates applied to
LLM parameters is ∇̃Wl

= δ̃l+1ũ
⊤
l .

In this paper, ∇̃W and ∆ are equivalent, both representing
the parameter updates required for editing. We use ∇̃W
consistently throughout the rest of this paper.

2.3. Reinforcement Learning

A reinforcement learning task is usually formalized as a
Markov Decision Process (MDP). An MDP can be defined
as a tuple (S,A,R, π, γ). At each time step t, the RL
system is in a state st ∈ S, and the agent generates an
action at ∈ A based on its policy π and the current state st,
i.e., at ∼ π(st). The MDP then transitions to state st+1 and
the agent receives a reward rt = R(st, at), rt ∈ R. After
all time steps, the agent optimizes its policy to maximize
the total trajectory return J(τ) =

∑
rt∈τ γ

trt, where γ
represents a discount factor and τ represents one episode
trajectory of the agent in the MDP.

3. Method
In this section, we elaborate RLEdit, a method that achieves
efficient and effective lifelong editing through training a
hypernetwork adapted to knowledge sequences. We begin
by introducing how to establish a reinforcement learning
(RL) paradigm for hypernetworks training in lifelong editing
(Section 3.1), which includes the key component of RLEdit:
reward function design. We then describe RLEdit’s training
strategy in Section 3.2. Finally, in Section 3.3, we detail the
practical implementation and considerations of RLEdit.

3.1. Modeling Lifelong Editing as an RL Task

Building an RL paradigm for hypernetworks training in life-
long editing aims to capture dynamic changes in LLM and
adaptively generate updates that fit the current parameter
state, as mentioned in Section 1. Two key aspects enable
this: (1) modeling the hypernetwork training process in
lifelong editing as a Markov Decision Process (MDP) (Bell-
man, 1957; Puterman, 1994), which RL excels at solving
(Sutton & Barto, 1998), and (2) carefully designing a reward
function tailored to the lifelong editing task.

Table 1: The correspondence between MDP elements and
hypernetwork-based lifelong editing components.

Markov Decision Process Lifelong Editing
Agent H

Environment fW
Policy π θ
Action A ∇̃W
State S (W, (x, y)) or∇W

RewardR −L

3.1.1. MDP FORMULATION

The training process of hypernetworkH in lifelong editing
can be formalized as the following procedure:

1. At the t-th edit (i.e., time step t), new knowledge sam-
ple (xt, yt) is input to the LLM with parametersWt−1

to collect fine-tuning gradient∇Wt−1
;

2. ∇Wt−1 is fed intoH to get parameter update ∇̃Wt ;

3. ∇̃Wt is used to updateWt−1 to produceWt;

4. The loss of (xt, yt) on the LLM with parametersWt

is computed to update the hypernetwork.

This process iterates until all knowledge in the training
set is traversed. We can observe that the above process
only depends onWt−1 and (xt, yt) at time step t, i.e., it is
independent of states from time step 0 to t− 2. Therefore,
it naturally satisfies the Markov property. Formally:

Pr
[
H(∇Wt−1

)=∇̃Wt
| H(∇Wt−2

)=∇̃Wt−1
,

. . . ,H(∇W0
)=∇̃W1

]
=Pr

[
H(∇Wt−1

)=∇̃Wt
| H(∇Wt−2

)=∇̃Wt−1

]
.

(3)

To further extend the above Markov process into an MDP,
we introduce several concepts: state s ∈ S, action a ∈ A,
reward r ∈ R, and policy π, which are formalized in Table
1. Here, θ donates the parameters ofH and L represents the
loss on LLM for (x, y). Given n new knowledge samples
(xi, yi)

n
i=1 in the training set, the interactions between s, a,

and r over n time steps constitute a trajectory of the MDP:{
(W0, (x1, y1)) , ∇̃W1

,−L1, . . . ,

(Wn−1, (xn, yn)) , ∇̃Wn
,−Ln

}
7→ {s1, a1, r1, . . . , sn, an, rn} .

(4)

More specifically, in each time step, agent H employs pa-
rameters θ as policy π to generate action ∇̃W based on
system state {W, (x, y)}. This action is then applied to
environment fW , resulting in a state transition:

π(st) = at, st + at → st+1. (5)
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(a) Training RLEdit

Pre-trained LLM
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Post-edited LLM

Post-edited LLM

(b) Lifelong Editing via RLEdit
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Figure 2: Overview of lifelong editing with RLEdit. (a) illustrates the training process of RLEdit’s hypernetwork, while (b)
demonstrates how the trained hypernetwork performs lifelong editing. Best viewed in color.

Meanwhile, the reward function R computes the reward ri
for this interaction:

R(st, at) = rt. (6)

This process is illustrated in Figure 2(a). Through this
modeling approach, we have successfully formulated the
training process of hypernetworks in lifelong editing as an
MDP. For more detailed proof, please refer to Appendix D.

3.1.2. DESIGN OF THE REWARD FUNCTION

Next, we focus on the design of the reward function R
mentioned above, which is crucial for RLEdit to achieve
both efficient and effective editing. First, let’s recall the
fundamental objective of RL: to determine an optimal policy
π for the agent, where π specifies which action a ∼ π(s)
the agent should execute in state s (Sutton & Barto, 1998).
The reward function serves as a quantitative measure of
policy performance. Specifically, the optimization objective
of an RL system is to maximize the total reward J over the
entire trajectory. In this work, to align the RL optimization
objective with the lifelong editing objective, we design a
multi-component reward function for RLEdit as follows.

Basic Component. We first incorporate two fundamental
objectives of model editing as the basic components of the
reward function: target knowledge updating and unrelated
knowledge preservation. Formally:

Le = − log pW (ye | xe) ,

Lloc = KL [pW0
(·|xloc) ∥ pW(·|xloc)] ,

(7)

whereLe andLloc measure the effectiveness of target knowl-
edge updating and unrelated knowledge preservation, re-
spectively; (xe, ye) represents the equivalence neighbor-
hood of target knowledge, and xloc represents unrelated

knowledge, both derived from the previously mentioned in-
put knowledge sample (x, y);W0 denotes the pre-trained pa-
rameters of the LLM. Following prior hypernetwork-based
editing methods (Mitchell et al., 2022a; Tan et al., 2024;
Zhang et al., 2024b), we introduce a coefficient λloc to bal-
ance the trade-off between these two terms:

Lbase = Le + λlocLloc . (8)

Memory Backtracking Component. In lifelong editing,
subsequent edits may interfere with previous ones, poten-
tially degrading the effectiveness of earlier modifications.
To address this issue and avoid focusing solely on current
knowledge while ignoring previously edited knowledge, we
propose a memory backtracking component Lback. Specifi-
cally, at time step t, we not only compute the basic loss of
current knowledge (xt, yt) on the current LLM fWt−1

ac-
cording to Equation 8, but also calculate the loss of previous
k knowledge samples (xi, yi)

t−1
i=t−k on fWt−1 as the back-

tracking term using the same equation. In essence, at each
time step, we simultaneously consider the basic losses of
both current knowledge and the previous k pieces of knowl-
edge on the LLM. Considering that previous knowledge
has already been edited and only needs review rather than
re-editing, we introduce a decay factor µ, which assigns
weights to the losses from previous knowledge through ex-
ponential decay based on temporal distance:

Lbackt
=

t−1∑
i=t−k

µt−i
(
Lei,Wt−1

+ λlocLloci,Wt−1

)
, (9)

where Lei,Wt−1
and Lloci,Wt−1

denotes the loss calculated
for the i-th batch of knowledge, evaluated using the LLM
parametersWt−1 from time step t− 1.

4



Reinforced Lifelong Editing for Language Models

Ablation studies in Section 4 demonstrate that the general-
ization improvement from the memory backtracking compo-
nent is one of the key factors enabling RLEdit to maintain
effectiveness through more than 10,000 edits.

Regularization Component. Finally, to constrain the mag-
nitude of updates ∇̃W generated by the hypernetwork at
each time step, we introduce the ℓ2 norm ∥∇̃W∥2 of ∇̃W
as a regularization term. The ablation study in Section 4
shows two benefits of this regularization: First, limiting
the magnitude of ∇̃W minimizes the disruption to the orig-
inal parameter distribution, thereby preserving the LLM’s
general capabilities; Second, it enhances training stability,
ensuring the convergence of the hypernetwork.

Based on the above three components, the reward rt at time
step t is formulated as:

rt = −(Lbaset
+ Lbackt

+ η∥∇̃Wt
∥2), (10)

where η serves as the regularization coefficient. With this
reward function, the hypernetwork-based lifelong editing
task has been completely formulated as an RL problem.

3.2. Training Process of RLEdit

The most straightforward training approach would be to opti-
mize the policy (i.e., hypernetwork parameters θ) using gra-
dient ascent after obtaining rewards via Equation 10 at each
time step. This online reinforcement learning algorithm,
however, becomes computationally expensive when applied
at each time step, given that training sets typically contain
substantial knowledge to ensure generalization. Moreover,
this approach may cause the hypernetwork to overfit specific
knowledge samples, thereby reducing its effectiveness in
generating general parameter updates. We therefore opti-
mize collectively after traversing the dataset and collecting
all rewards along the trajectory. More formally:

θ′ =argmax
θ

J, (11)

J=

n∑
i=1

γiri=−
n∑

i=1

γi(Lbasei+Lbacki
+η∥∇̃Wi

∥2), (12)

where J denotes the total reward over the entire trajectory,
θ′ represents the optimized hypernetwork parameters, and γ
represents the discount factor. Here, we set γ = 1 to ensure
that the importance of all knowledge entries across the entire
sequence is uniformly weighted during the training phase.

This training approach significantly accelerates hypernet-
work convergence. We experimentally demonstrate that
RLEdit achieves a 100-fold efficiency improvement over
current lifelong editing methods primarily due to this strat-
egy. After updates of the hypernetwork using J in Equation
12, it gradually learns how to edit LLMs with varying pa-
rameter states. Moreover, after capturing the intrinsic rela-
tionships between knowledge samples, our offline update

Algorithm 1 RLEdit Hypernetwork Training

Input: Pre-trained LLM fW0
, hypernetworkH with ini-

tial parameter θ, hyperparameters k, γ, λloc and η
Output: Optimized hypernetwork parameter θ′

repeat
Randomly sample (xi, yi, xei , yei , xloci)

n
i=1

for t = 1 to n do
Lt ← − log pWt−1

(yt |xt )
Back-propagate Lt and cache∇Wt−1

∇̃Wt
← H(∇Wt−1

)

Wt ←Wt−1 + ∇̃Wt

for i = t− k to t do
Lei ← − log pWt (yei |xei )
Lloci ← KL (pW0

(· |xloci
)∥pWt

(· |xloci
))

end for
Lt ←

∑t
i=t−k (Lei + λlocLloci

)

rt ← −(Lt + η∥∇̃Wt∥2)
end for
J ←

∑n
t=1 γ

trt
Back-propagate J and update θ

until hypernetwork convergence
return θ′

approach enables policy optimization from a higher-level
sequential perspective. Ablation studies in Section 4 indi-
cate that this update approach substantially enhances the
hypernetwork’s effectiveness in lifelong editing.

In summary, the training of RLEdit hypernetwork follows
this process. At each time step t: (1) We collect gradi-
ents∇Wt−1

from new knowledge sample (xt, yt) on LLM
fWt−1 through one step of parameter-frozen fine-tuning; (2)
Through hypernetworkH, we map∇Wt−1 to LLM parame-
ter updates ∇̃Wt

, adding it toWt−1 to obtainWt; (3) Cal-
culate reward rt on fWt

using Equation 10; (4) Repeat steps
(1)-(3) until traversing the entire training set, obtaining total
reward J via Equation 12; (5) Optimize hypernetwork pa-
rameters θ using J through stochastic gradient descent; (6)
Repeat steps (1)-(5) until hypernetwork convergence. This
training process yields the final hypernetwork parameters
θ′ that demonstrate strong adaptability to lifelong editing
tasks. The pseudo-code is provided in Algorithm 1.

3.3. Applying RLEdit for Lifelong Editing

After completing the training process in Section 3.2, given
knowledge (x, y) to be edited, RLEdit only needs to per-
form parameter-frozen fine-tuning on LLM fW to collect
gradients∇W , feed them into the hypernetwork to generate
∇̃W , and add it toW , as shown in Figure 2(b).

In this process, the hypernetwork can typically be con-
structed with a simple 4-layer MLP, yet effectively handles
lifelong editing tasks with varying numbers of knowledge
samples. We attribute this excellent performance to the
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Table 2: Comparison of RLEdit and baseline methods on lifelong editing tasks. The upper section represents fine-tuning and
locate-then-edit methods, while the lower represents hypernetwork-based methods. MEND* and MALMEN* represent
methods where the hypernetworks of MEND and MALMEN are retrained for each new knowledge editing.

Methods
FEVER

LLaMA-3-8B Gemma-2-9B Mistral-7B-v0.3
Eff. Gen. Spe. Eff. Gen. Spe. Eff. Gen. Spe. Time↓

FT 1.80±0.10 6.39±0.17 26.33±0.13 34.23±0.31 29.22±0.30 34.23±0.31 17.08±0.24 21.57±0.30 37.47±0.32 0.3358s
ROME 38.56±0.28 44.53±0.29 9.29±0.17 30.07±0.26 25.13±0.11 10.79±0.24 0.00±0.00 0.00±0.00 0.00±0.00 6.0243s
MEMIT 0.18±0.02 0.01±0.01 0.00±0.00 11.12±0.26 10.09±0.25 8.04±0.21 0.00±0.00 0.00±0.00 0.00±0.00 6.3423s
PRUNE 56.64±0.24 43.31±0.18 0.85±0.05 13.34±0.25 11.17±0.27 9.43±0.17 5.27±0.34 3.11±0.16 5.89±0.23 6.3356s
RECT 60.95±0.27 52.40±0.26 1.75±0.07 59.81±0.23 54.89±0.15 0.05±0.01 0.55±0.04 0.05±0.01 0.00±0.00 6.0486s

AlphaEdit 94.22±0.25 94.14±0.18 25.57±0.14 94.37±0.26 88.34±0.13 31.21±0.54 32.74±0.42 30.03±0.29 8.44±0.45 6.2307s
MEND 0.00±0.00 0.00±0.00 0.00±0.00 50.93±0.43 50.76±0.27 0.36±0.04 0.00±0.00 0.00±0.00 0.00±0.00 0.9175s
MEND* 10.37±0.19 9.34±0.22 4.88±0.24 50.87±0.24 52.01±0.11 0.39±0.04 0.00±0.00 0.00±0.00 0.00±0.00 6.1280s

MALMEN 0.01±0.01 0.01±0.01 0.14±0.03 94.56±0.09 91.94±0.16 68.65±0.33 16.67±0.21 16.61±0.18 12.16±0.16 1.9858s
MALMEN* 5.74±0.20 5.29±0.13 1.26±0.18 88.32±0.33 84.29±0.33 69.70±0.27 17.73±0.24 13.30±0.27 13.85±0.21 9.3358s

DAFNet 31.27±0.47 28.82±0.43 66.55±0.41 20.78±0.31 19.99±0.35 53.10±0.56 4.86±0.14 4.21±0.19 41.71±0.48 8.2553s

RLEdit 95.34±0.34 93.58±0.38 70.36±0.29 95.44±0.21 92.83±0.30 68.76±0.18 88.99±0.22 88.25±0.25 73.64±0.11 0.2238s

Methods
ZsRE

LLaMA-3-8B Gemma-2-9B Mistral-7B-v0.3
Eff. Gen. Spe. Eff. Gen. Spe. Eff. Gen. Spe. Time↓

FT 17.10±0.22 16.73±0.22 8.27±0.13 12.90±0.20 13.09±0.20 0.07±0.02 32.84±0.30 33.78±0.30 42.19±0.31 0.3366s
ROME 0.54±0.04 0.57±0.04 0.40±0.02 3.45±0.32 3.33±0.11 8.24±0.29 0.00±0.00 0.00±0.00 0.00±0.00 6.0012s
MEMIT 0.00±0.00 0.00±0.00 0.13±0.02 5.23±0.21 3.11±0.12 5.98±0.12 0.00±0.00 0.00±0.00 0.13±0.02 6.0677s
PRUNE 12.27±0.43 12.01±0.23 9.88±0.29 10.21±0.27 8.88±0.29 11.95±0.55 0.00±0.00 0.00±0.00 0.00±0.00 6.1588s
RECT 11.05±0.41 8.12±0.15 28.12±0.13 12.45±0.45 10.11±0.51 26.09±0.44 8.18±0.33 8.04±0.46 11.32±0.49 6.6558s

AlphaEdit 86.83±0.23 81.48±0.28 29.09±0.22 81.18±0.33 73.24±0.46 30.34±0.19 0.00±0.00 0.00±0.00 0.00±0.00 6.1831s
MEND 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.9686s
MEND* 0.00±0.00 0.00±0.00 0.00±0.00 8.84±0.24 8.45±0.21 10.21±0.19 0.00±0.00 0.00±0.00 0.00±0.00 5.9265s

MALMEN 9.87±0.12 9.00±0.09 2.11±0.15 46.60±0.33 42.50±0.32 19.66±0.35 0.00±0.00 0.00±0.00 0.00±0.00 2.2779s
MALMEN* 12.23±0.11 11.08±0.22 2.43±0.09 56.97±0.24 44.28±0.29 15.02±0.21 0.01±0.01 0.02±0.01 1.25±0.04 9.4277s

DAFNet 21.99±0.47 11.17±0.43 32.21±0.39 5.94±0.24 5.68±0.33 36.29±0.45 1.25±0.08 2.12±0.12 25.27±0.54 8.2383s

RLEdit 89.42±0.34 87.32±0.23 44.78±0.50 84.37±0.22 79.82±0.26 37.15±0.41 71.12±0.31 67.42±0.27 27.43±0.44 0.2224s

enhanced generalization capability brought by RL.

Boosting Current Methods with RLEdit. Since RLEdit’s
superior efficiency and effectiveness primarily stem from its
RL paradigm, it can serve as a plug-and-play module to in-
tegrate with most existing hypernetwork-based approaches.
Specifically, hypernetwork-based methods consist of three
fundamental elements: (1) hypernetwork architecture, (2)
selection of hypernetwork inputs, and (3) loss function for
training the hypernetwork. For the first two elements, we
can directly adopt their corresponding components from
RLEdit. For the third element, we can use it to replace
the basic term in RLEdit’s reward function (Equation 10).
Our experimental results in Section 4.6 demonstrate these
optimizations, further validating the benefits of formulating
hypernetwork training in lifelong editing as an RL paradigm.

4. Experiments
We conduct extensive experiments to evaluate both the ef-
fectiveness and efficiency of our approach. Additionally, we
perform ablation studies to analyze the contribution of each
component in RLEdit, which can be found in Appendix B.1.

4.1. Experimental Settings

We begin with a brief overview of the LLMs, datasets, evalu-
ation metrics, and baseline methods used in our experiments.
More detailed information can be found in Appendix A.

Base LLMs. We conduct experiments on three 8B-scale
autoregressive LLMs: Llama-3-8B1, Gemma-2-9B (Team
et al., 2024), and Mistral-7B-v0.3 (Jiang et al., 2023).

Datasets & Evaluation Metrics. We evaluate RLEdit
on three widely-used datasets: ZsRE (Levy et al., 2017),
FEVER (Thorne et al., 2018), and CounterFact (Meng et al.,
2022). Following previous evaluation standards (Mitchell
et al., 2022a; Meng et al., 2022; 2023), we use three metrics
to assess editing success for each dataset: Efficacy, General-
ization, and Specificity, as described in Appendix A.3.

Baseline Methods. We compare RLEdit against multiple
editing methods, including FT (Zhu et al., 2021), ROME
(Meng et al., 2022), MEND (Mitchell et al., 2022a), MAL-
MEN (Tan et al., 2024), DAFNet (Zhang et al., 2024b),
MEMIT (Meng et al., 2023), PRUNE (Ma et al., 2024),
RECT (Gu et al., 2024), and AlphaEdit (Fang et al., 2024).

1https://llama.meta.com/llama3
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Figure 3: Performance comparison of editing methods
across multiple metrics: Efficacy, Generalization, Speci-
ficity, General Capability, and Efficiency. (a)-(d) show re-
sults for 20×100, 50×100, 100×100, and 150×100 config-
urations. For General Capability, we measure that using the
average of six GLUE metrics in Section 4.5; for Efficiency,
we calculate the ratio between the total editing time of each
method and that of the fastest method. Best viewed in color.

4.2. Performance on Knowledge Update and
Preservation

To evaluate the performance on both updating of target
knowledge and preservation of unrelated information in
lifelong editing tasks, we conducted sequential editing ex-
periments comparing RLEdit against baseline methods on
three LLMs, measuring performance across all metrics. We
randomly sampled 8,000 knowledge samples from ZsRE
and FEVER respectively, performing edits over 400 batches
with 20 knowledge samples per batch (denoted as a 400×20
configuration throughout this paper). Upon completion of
all batch edits, we evaluate all knowledge metrics on the
post-edited LLM. Results are presented in Table 2. The
“Time” column in Table 2 indicates the average editing time
per knowledge sample, including the time spent on covari-
ance matrices computing or hypernetwork training.

In Table 2, conventional single-step methods (e.g., ROME,
MEND, MEMIT) demonstrate poor performance, with Ef-
ficacy and Generalization metrics falling below 50%, re-
vealing their inability to handle knowledge conflicts and
forgetting issues in lifelong editing scenarios. Other sequen-
tial editing methods (e.g., PRUNE, RECT, DAFNet) show
varying limitations across datasets, failing to maintain satis-
factory performance across all metrics. In contrast, RLEdit
achieves superior results across all tested LLMs and datasets,
maintaining strong performance in all three metrics. Specif-

8 7 6 5 4 3 2 1 0 1 2 3 4

Time per Edit (seconds)
RLEditAlphaEdit
RECTPRUNEMEMIT

ROMEDAFNetMALMENMEND

0.145

7.050

7.052

7.051

7.050

7.050

2.023

0.430

0.360

0.028

2.593

2.202

2.588

2.607

2.252

0.034

0.029

0.023Initial Setup Time
Editing Time

Figure 4: Per-sample editing time comparison across meth-
ods. Best viewed in color.

ically, RLEdit demonstrates average improvements of 66%
in Efficacy, 65% in Generalization, and 40% in Specificity
compared to baseline methods, while requiring only 4% of
the time compared to most of them.

4.3. Editing with Varying Numbers of Knowledge

To verify RLEdit’s versatility across different lifelong edit-
ing scenarios, we investigated its performance under multi-
ple configurations. We conducted extensive experiments
on Llama-3-8B using 20×100, 50×100, 100×100, and
150×100 configurations on ZsRE dataset. The results are
presented in Figure 3. We also performed experiments to
investigate the impact of varying knowledge batch sizes on
performance. Detailed results can be found in Appendix B.

Figure 3 shows that as the number of edits increases, base-
line methods show progressive performance degradation,
with catastrophic forgetting occurring beyond certain thresh-
olds. RLEdit, however, consistently demonstrates superior
performance across all configurations, outperforming base-
line methods on most evaluation metrics. RLEdit represents
the first method to successfully scale lifelong editing beyond
10,000 knowledge samples. Unlike existing approaches,
RLEdit maintains stable performance as knowledge quantity
increases, suggesting potential applicability to even longer
sequences. These results demonstrate RLEdit’s effective-
ness for long-term lifelong editing tasks.

4.4. Editing Efficiency

To evaluate RLEdit’s efficiency, we compared the average
editing time per knowledge sample across most methods.
Tests were conducted on 3 LLMs using ZsRE dataset un-
der 20×100 configuration while keeping all other variables
constant (such as the number of LLM editing layers) to en-
sure fair comparison. For locate-then-edit methods, the time
included covariance matrix computation, parameter update
calculation, and edit execution. For hypernetwork-based
methods, we measured hypernetwork training, parameter
update calculation, and edit execution time. Since covari-
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Figure 5: LLM capability assessment using F1 scores on six
GLUE tasks. (a)-(f) shows results for SST, MMLU, MRPC,
CoLA, RTE, and NLI respectively. Best viewed in color.

ance matrices and trained hypernetworks can be reused, we
also analyzed editing time excluding these initial setup costs.
Results are presented in Figure 4.

Hypernetwork-based methods demonstrate superior speed
compared to locate-then-edit approaches, primarily due to
better generalization capabilities. Locate-then-edit methods
require complex matrix operations for each edit, resulting
in slower execution. RLEdit requires only 0.145 seconds
per sample for training, outperforming other hypernetwork-
based methods like MEND, MALMEN, and DAFNet. This
efficiency derives from RLEdit’s sequence-based approach
for training, enabling better generalization with reduced
training data. RLEdit achieves superior editing results while
requiring only 1.14% of the time needed by locate-then-
edit methods, demonstrating its exceptional efficiency and
promising potential in long-term lifelong editing scenarios.

4.5. General Capability Tests

To evaluate how lifelong editing affects LLMs’ general ca-
pabilities, we assessed downstream performance using 6
tests from GLUE (Wang et al., 2019): SST (Socher et al.,
2013), MMLU (Hendrycks et al., 2021), MRPC (Dolan &
Brockett, 2005), CoLA (Warstadt et al., 2019), RTE (Ben-
tivogli et al., 2009), and NLI (Williams et al., 2018). We
measured F1 Scores on Llama-3-8B using ZsRE dataset
under 30×100 configuration, and the results are shown in
Figure 5. Complete tests are available in Appendix B.

Baseline methods show progressive degradation of general
capabilities as edited knowledge samples increase, with
some methods leading to complete performance collapse.
This degradation likely stems from cumulative editing errors,
caused by causal trace instabilities or imprecise hypernet-
work training. In contrast, RLEdit maintains consistent per-
formance across all tests, with LLMs edited for 3,000 knowl-
edge samples performing comparable to their pre-trained
versions. This stability, achieved through regularization,
demonstrates RLEdit’s ability to both effectively edit target
knowledge and preserve the model’s general capabilities.

Llama-3 Gemma-2 Mistral
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(b) MALMEN and Variants
MALMEN
MALMEN*
MALMEN+RLEdit

Figure 6: Performance comparison of hypernetwork-based
methods (MEND and MALMEN) with and without RLEdit
framework integration, including variants with hypernet-
work retraining before each edit. Results presented in the
figure show the weighted average of metrics across Coun-
terFact and ZsRE, where Efficacy and Generalization are
assigned weights of 1, and Specificity is assigned a weight
of 0.5. Best viewed in color.

4.6. Improving MEND/MALMEN

While existing hypernetwork-based editing methods focus
on single-edit scenarios, RLEdit’s RL framework and train-
ing methodology specifically address lifelong editing chal-
lenges, which could integrate with other hypernetwork-
based methods as a plug-and-play module. To demon-
strate this portability, we conducted 20×100 editing ex-
periments across 3 LLMs and 3 datasets, comparing MEND,
MEND*, MEND+RLEdit, MALMEN, MALMEN*, and
MALMEN+RLEdit. Results are shown in Figure 6.

The results demonstrate RLEdit’s portability across several
methods. After incorporating RLEdit’s training methodol-
ogy, MEND and MALMEN showed average improvements
of 22.89% and 51.86% respectively across all metrics, de-
spite their initial suboptimal performance in lifelong editing
tasks. This confirms RLEdit’s effectiveness as a plug-and-
play module for enabling lifelong editing capabilities in
both existing and future hypernetwork-based methods.

5. Related Works
Parameter-modifying Editing. Parameter-modifying meth-
ods modify LLM parameters through various approaches to
achieve knowledge editing. One approach is locate-then-edit
method. Knowledge-neuron (Dai et al., 2022) pioneered the
use of causal analysis to locate knowledge in LLMs. ROME
(Meng et al., 2022) adopted this idea, using causal trace to
identify factual associations and edit knowledge in MLP
layers. MEMIT (Meng et al., 2023) extended this approach
to mass-editing. PMET (Li et al., 2024) specifically investi-
gated the role of MHSA in model editing. ECE (Zhang et al.,
2025c) incorporates LLM explainability into the editing pro-
cess and clusters similar knowledge based on explanation
results. Another approach is meta-learning. KE (De Cao
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et al., 2021) proposed using hypernetwork for knowledge
editing. MEND (Mitchell et al., 2022a) applied low-rank de-
composition to LLM fine-tuning gradients, enabling faster
and more effective training in hypernetworks. MALMEN
(Tan et al., 2024) aggregated parameter shifts using normal
equations, extending hypernetworks to mass-editing.

Parameter-preserving Editing. Parameter-preserving
methods guide LLM outputs by incorporating external mod-
ules or additional parameters. SERAC (Mitchell et al.,
2022b) stores edits in additional memory and uses classi-
fiers for edit matching. T-Patcher (Huang et al., 2023) edits
knowledge by using additional neurons. IKE (Zheng et al.,
2023) improves LLM’s in-context learning capabilities us-
ing memory retrieval-based examples. OneEdit (Zhang
et al., 2024a) proposed a neural-symbolic prototype system
for collaborative knowledge editing using natural language.

Lifelong Model Editing. To meet the requirements of
lifelong model editing, researchers have studied sequential
editing methods. T-Patcher (Huang et al., 2023) achieves se-
quential editing by continuously introducing additional cor-
rection neurons. GRACE (Hartvigsen et al., 2023) enables
sequential knowledge editing through dynamic updates of
external codebook modules. WISE (Wang et al., 2024) uses
a knowledge-sharding mechanism to optimize the balance of
various metrics in sequential editing. RECT (Gu et al., 2024)
studies the impact of regularization on sequential editing,
using smaller parameter shifts to maintain stability. PRUNE
(Ma et al., 2024) reduces disturbance to original knowledge
by limiting singular values of the edit update matrix. O-
Edit (Cai & Cao, 2024) orthogonalizes knowledge update
directions to reduce mutual interference. AlphaEdit (Fang
et al., 2024) maintains knowledge stability by projecting
existing knowledge into null space. NSE (Jiang et al., 2024)
employs neuron-level sorting to selectively identify and up-
date influential neurons, while utilizing weights rewinding
to prevent model failures during sequential editing.

6. Conclusion
In this work, we represent RLEdit, a hypernetwork-based
editing method designed for lifelong editing. RLEdit for-
mulates lifelong editing as an RL task, employing an offline
update approach to enhance the model’s retention of entire
knowledge sequences. Additionally, RLEdit proposes the
use of memory backtracking to review previously edited
knowledge and applies regularization to mitigate knowledge
forgetting over long sequences. Through extensive testing
on several LLMs across multiple datasets, our experimental
results demonstrate that RLEdit significantly outperforms
existing baseline methods in lifelong editing tasks, show-
ing superior performance in editing effectiveness, editing
efficiency, and general capability preservation.

Limitations
While RLEdit demonstrates promising results in lifelong
editing tasks, several limitations should be acknowledged.
Our evaluation methodology follows conventional datasets
from existing model editing literature, primarily focusing
on factual knowledge modifications without exploring other
data domains. Furthermore, the capability of post-edited
LLMs in processing multi-hop information remains unex-
plored in our current study. Although achieving robust
lifelong editing capabilities continues to pose significant
challenges, our future work will extend these experiments,
potentially providing valuable insights for advancing re-
search in lifelong editing.

Impact Statement
RLEdit significantly enhances the capabilities of lifelong
model editing, making it invaluable for updating and main-
taining knowledge in real-world applications. Given that
the ability to directly modify model parameters introduces
potential risks, such as the injection of false or harmful in-
formation, we strongly urge researchers to implement strict
validation and oversight to ensure the ethical use of these
techniques. The original goal of our work is positive, aiming
to facilitate efficient knowledge updates in large language
models. We encourage researchers to leverage this technol-
ogy responsibly while maintaining appropriate safeguards
for its deployment.
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A. Detailed Experimental Setup
In this section, we elaborate on our experimental setup, which consists of five parts: baseline methods, datasets, evaluation
metrics, GLUE benchmarks, and hyperparameter configuration. Most experiments were conducted on a single NVIDIA
A100 (80GB) GPU. Editing time for all methods was measured using LLMs in half-precision mode. To better simulate
real-world applications, we used the instruction tuning versions of LLMs.

A.1. Baseline Methods

We utilized the code from AlphaEdit and MALMEN to evaluate the performance of baseline methods. The baseline methods
used in this paper are as follows:

• FT-L (Zhu et al., 2021) is a knowledge editing approach that focuses on fine-tuning specific layers of the LLM through
autoregressive loss. We implemented this baseline method using the hyperparameter settings from the original paper.

• MEND (Mitchell et al., 2022a) is an efficient editing method based on hypernetworks. It trains a hypernetwork to
learn patterns in knowledge editing by mapping low-rank decomposed fine-tuning gradients to LLM parameter updates.
This approach enables efficient and localized knowledge editing. We implemented this baseline method using the
hyperparameter settings from the original paper, completing training over the entire training set. Additionally, we
introduce MEND* as a baseline. To address the mismatch between the initial hypernetwork and post-edited LLM
in lifelong editing scenarios, we periodically retrain the hypernetwork using post-edited parameters. We adopted a
strategy of retraining the hypernetwork every three editing batches.

• ROME (Meng et al., 2022) is a method for updating specific factual associations in LLM parameters. It identifies key
neuron activations in MLP layers through perturbation-based knowledge localization, then modifies MLP layer weights
by computing Lagrange remainders to edit knowledge. Since ROME doesn’t support massive editing, we followed the
original paper’s configuration and evaluated it through multiple batches of single editing.

• MEMIT (Meng et al., 2023) is a method supporting large-batch knowledge updates. Building upon ROME’s modeling
approach, MEMIT extends it by using least squares approximation to directly manipulate parameters at specific layers,
enabling multi-layer updates. This allows MEMIT to simultaneously update hundreds or thousands of knowledge facts.
We evaluated MEMIT’s performance in lifelong editing using the original configuration from its paper.

• MALMEN (Tan et al., 2024) is a hypernetwork-based method designed for massive editing. To aggregate parameter
shifts across large batches of knowledge, MALMEN employs a least squares approach, deriving optimal parameter shifts
by solving normal equations. This algorithm effectively addresses knowledge conflicts in massive editing scenarios.
We implemented this baseline method using the original paper’s hyperparameter configuration and completed training
across the entire training set. Similar to MEND, we also introduce MALMEN* as a baseline.

• DAFNet (Zhang et al., 2024b) is a model editing method specifically designed for sequential editing. It features a
dynamic auxiliary fusion network that enhances semantic interactions between knowledge triples in the sequence,
enabling continuous mistake rectification. Through this auxiliary network, DAFNet improves the performance of
hypernetwork approaches in sequential editing tasks. We implemented this baseline method using the original paper’s
hyperparameter configuration and completed training across ZsRE and CounterFact datasets.

• PRUNE (Ma et al., 2024) is an editing method focused on sequential editing scenarios. By imposing conditional
restraints on edited matrices, PRUNE limits the interference of new knowledge on previously stored model knowledge,
thereby addressing the problem of model performance decline during multiple sequential edits. We implemented this
baseline method using the hyperparameter configuration from their original paper.

• RECT (Gu et al., 2024) is an editing method designed to minimize the impact of editing on LLM’s general capabilities.
It investigates the role of regularization in lifelong editing and prevents editing overfitting by regularizing weight
updates during the editing process. This enables RECT to achieve high editing performance while maintaining the
LLM’s general capabilities. We implemented this baseline method using the hyperparameter configuration from their
original paper.

• AlphaEdit (Fang et al., 2024) is an editing method aimed at mitigating knowledge disruption in LLM lifelong editing.
By introducing the concept of null space, AlphaEdit projects parameter updates onto a knowledge-preserving null space
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before applying them, thus reducing interference between different knowledge updates. AlphaEdit has been proven to
achieve SOTA performance across multiple metrics while maintaining strong transferability. We implemented this
baseline method using the hyperparameter configuration from their original paper.

A.2. Datasets

Next, we introduce the datasets used in this paper.

• ZsRE (Zero-shot Relation Extraction) (Levy et al., 2017) dataset serves as a benchmark dataset in the field of
language model editing research. The dataset’s structure incorporates three distinct components for each entry: a
primary question and its corresponding answer intended for editing purposes, multiple paraphrased variations of the
original question created using back-translation techniques, and locality questions that are semantically unrelated to
the original query. This comprehensive structure enables researchers to evaluate model editing performance across
three critical dimensions: accuracy in incorporating new information, robustness when faced with differently worded
but semantically equivalent queries, and precision in maintaining unrelated knowledge without interference. For
locate-then-edit methods, we use the version from MEMIT; for hypernetwork-based methods, we use the version from
MEND, where ZsRE is divided into training and test sets for hypernetwork training and editing performance evaluation
respectively.

• CounterFact (Meng et al., 2022) represents an advanced dataset specifically designed to evaluate language models’
ability to handle contradictory factual information. The dataset’s distinctive feature lies in its use of false statements
that require correction, making it particularly challenging since models typically provide incorrect answers before
editing. Each entry in the dataset contains three elements: an original false statement requiring editing, semantically
equivalent rephrased versions of the statement, and unrelated statements for locality purposes. For locate-then-edit
methods, we use the version from MEMIT; for hypernetwork-based methods, we also use the version from MEMIT
and divide it into training and test sets, each containing approximately 10,000 knowledge instances.

• FEVER (Fact Extraction and VERification) (Thorne et al., 2018) dataset is a comprehensive dataset for fact-checking
tasks, constructed through systematic modification of Wikipedia content. The dataset contains claims that were created
by altering original Wikipedia sentences and then independently verified without reference to their source material. In
its structure, FEVER implements a three-category classification system: claims can be marked as Supported, Refuted,
or NotEnoughInfo. For claims classified as either Supported or Refuted, the dataset includes supporting evidence
sentences that justify the classification decision. When used in editing tasks, the dataset is often simplified to a
binary classification problem, where the editing targets are equally distributed between two possible labels (1 and 0),
representing the veracity of the claims. For locate-then-edit methods, we extract the subject from queries to adapt to
(s, r, o) modeling; for hypernetwork-based methods, we use the version from MEND, where FEVER is divided into
training and test sets.

A.3. Metrics

A.3.1. ZSRE METRICS

Following previous research (Meng et al., 2022; Mitchell et al., 2022a), we evaluate various model editing methods using
standard metrics on the ZsRE dataset. Specifically, given an LLM fW , an editing knowledge pair (x, y), equivalent
knowledge xe, and unrelated knowledge pairs (xloc, yloc), we examine the following three metrics:

Efficacy. This metric measures the success rate of editing knowledge x in fW . It compares the top-1 logits output
y′ = fW(x) with the target output y when inputting x into fW :

E
{
y = argmax

y′
PfW (y′ |x )

}
. (13)

Generalization. This metric measures the success rate of editing equivalent knowledge xe in fW . It evaluates whether
the LLM has truly learned the intrinsic relationships of the knowledge and can extend to other equivalent knowledge. We
compare the top-1 logits output y′ = fW(xe) with the target output y when inputting xe into fW :

E
{
y = argmax

y′
PfW (y′ |xe )

}
. (14)
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Specificity. This metric measures the retention rate of unrelated knowledge xloc after editing, examining whether the
knowledge editing maintains locality and only modifies the target knowledge. We compare the top-1 logits output
y′ = fW(xloc) with the original output yloc when inputting xloc into fW :

E
{
yloc = argmax

y′
PfW (y′ |xloc )

}
. (15)

A.3.2. COUNTERFACT METRICS

Similarly, following previous research (Meng et al., 2022; 2023), we evaluate various model editing methods using standard
metrics on the CounterFact dataset. We follow ROME’s original setup, comparing the probabilities of different answers
in the logits for measurement. Specifically, given an LLM fW , an editing knowledge pair (x, y), original knowledge pair
(x, y0), equivalent knowledge xe, and unrelated knowledge pairs (xloc, yloc), we examine the following three metrics,
calculated following ROME and MEMIT:

Efficacy. This metric measures the success rate of editing knowledge x in fW . We compare whether the probability of the
target output y is higher than the probability of the original answer y0 in the logits when inputting x into fW :

E [PfW [y |x ] > PfW [y0 |x ]] . (16)

Generalization. This metric measures the success rate of editing equivalent knowledge xe in fW . We compare whether the
probability of the target output y is higher than the probability of the original answer y0 in the logits when inputting xe into
fW :

E [PfW [y |xe ] > PfW [y0 |xe ]] . (17)

Specificity. This metric measures the retention rate of unrelated knowledge xloc after editing. We compare whether the
probability of the original answer yloc is higher than the probability of the edited output y in the logits when inputting xloc

into fW :

E [PfW [yloc |xloc ] > PfW [y |xloc ]] . (18)

A.3.3. FEVER METRICS

We also evaluate various model editing methods using standard metrics on the FEVER dataset. Specifically, given an LLM
fW , an editing knowledge pair (x, y), equivalent knowledge xe, and unrelated knowledge pairs (xloc, yloc), we examine the
following three metrics:

Efficacy. This metric measures the success rate of editing knowledge x in fW . It compares whether the top-1 logits output
y′ = fW(x) matches the target output y when inputting x into fW :

E
{
y = argmax

y′
PfW (y′ |x )

}
. (19)

Generalization. This metric measures the success rate of editing equivalent knowledge xe in fW . Since we need to examine
whether a knowledge edit is truly successful, we must verify if the LLM has genuinely learned the intrinsic relationships of
the knowledge and can extend to other equivalent knowledge. We compare whether the top-1 logits output y′ = fW(xe)
matches the target output y when inputting xe into fW :

E
{
y = argmax

y′
PfW (y′ |xe )

}
. (20)

Specificity. This metric measures the retention rate of unrelated knowledge xloc after editing, examining whether the
knowledge editing maintains locality and only modifies the target knowledge. We compare whether the top-1 logits output
y′ = fW(xloc) matches the original output yloc when inputting xloc into fW :

E
{
yloc = argmax

y′
PfW (y′ |xloc )

}
. (21)
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A.4. GLUE Benchmark

GLUE (General Language Understanding Evaluation) (Wang et al., 2019) benchmark is a collection of resources for training,
evaluating, and analyzing natural language understanding systems. We selected 6 metrics from this benchmark to evaluate
how well different methods maintain general language capabilities.

• Stanford Sentiment Treebank (SST) (Socher et al., 2013) is a dataset consisting of movie review sentences with their
associated sentiment labels. This binary classification task requires models to categorize the sentiment expressed in
each individual sentence.

• Massive Multi-task Language Understanding (MMLU) (Hendrycks et al., 2021) is a comprehensive benchmark
designed to assess language models’ capabilities across multiple domains. It specifically evaluates model performance
in zero-shot and few-shot learning scenarios.

• Microsoft Research Paraphrase Corpus (MRPC) (Dolan & Brockett, 2005) serves as a benchmark for evaluating
semantic similarity. The task challenges models to identify whether two given sentences convey the same meaning.

• Recognizing Textual Entailment (RTE) (Bentivogli et al., 2009) examines logical relationships between sentences.
The task requires determining whether a given premise sentence logically implies a hypothesis sentence.

• Corpus of Linguistic Acceptability (CoLA) (Warstadt et al., 2019) focuses on grammatical judgment. This single-
sentence classification task uses sentences extracted from linguistics publications, requiring models to distinguish
between grammatically acceptable and unacceptable sentences.

• Natural Language Inference (NLI) (Williams et al., 2018) evaluates natural language understanding capabilities. The
benchmark requires models to analyze sentence pairs and determine their logical relationships.

A.5. Hyperparameter Configuration

Now we describe the hyperparameter configurations in our experiments.

For the hyperparameters in RLEdit training and editing, we set the memory backtracking decay factor µ to 0.95, the
backtracking depth k to 10, the regularization coefficient η to 1e-4 and the discount factor γ to 1 in the total reward
formula. Additionally, the initial learning rate was set to 1e-6, while the meta-learning rate was set to 1e-5. The specific
hyperparameter configurations for different models and datasets are shown in Table 3, where rank refers to the rank of linear
transformation in hypernetwork, loc coef refers to the weight coefficient λloc of the locality loss function Lloc. Table 3
represent settings that were empirically selected based on their strong experimental performance. Our analysis revealed that
the performance of RLEdit is notably sensitive to the choice of the “Layer” parameter, while exhibiting limited sensitivity to
variations in “Rank” and “loc coef”.

Table 3: The specific hyperparameter configurations for different models and datasets.

Datasets Models Layer Rank loc coef λloc

ZsRE
Llama-3-8B gate[11-15], up[18-24] 1024 0.6

Gemma-2-9B gate[32-40], up[32-40] 512 0.6
Mistral-7B down[17, 18] 1024 0.8

CounterFact
Llama-3-8B gate[22-30], up[22-30] 512 0.6

Gemma-2-9B gate[32-40], up[32-40] 1024 0.6
Mistral-7B down[17, 18, 19] 1024 0.8

FEVER
Llama-3-8B gate[22-30], up[22-30] 1024 0.6

Gemma-2-9B gate[32-40], up[32-40] 1024 0.6
Mistral-7B down[17, 18] 1024 0.6
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B. More Experimental Results
In this section, we present additional experimental results.

B.1. Ablation Study

To assess the contribution of each component in RLEdit, we conducted ablation studies on 3 models and 3 datasets by
removing the RL training framework, memory backtracking, and regularization respectively. Table 4 shows the contribution
of each component to RLEdit under the 20×100 task.

Table 4: Ablation Study Results for RLEdit.

Model
CounterFact ZsRE FEVER

Method
Dataset

Eff.↑ Gen.↑ Spe.↑ Eff.↑ Gen.↑ Spe.↑ Eff.↑ Gen.↑ Spe.↑

L
la

m
a-

3 RLEdit 91.75 62.40 52.38 88.65 83.91 47.61 94.46 91.56 69.01
w/o RL training framework 50.30↓ 41.45 49.55↓ 12.85 49.63↓ 2.75 0.62↓ 88.03 0.53↓ 83.38 2.36↓ 45.25 21.28↓ 73.18 21.15↓ 70.41 13.63↓ 55.38

w/o memory backtracking 89.84↓ 1.91 60.42↓ 1.98 50.23↓ 2.15 88.62↓ 0.03 81.23↓ 2.68 44.43↓ 3.18 93.02↓ 1.44 87.29↓ 4.27 68.87↓ 0.14

w/o regularization 92.12↑ 0.37 60.99↓ 1.41 52.45↑ 0.07 88.63↓ 0.02 83.12↓ 0.79 48.43↑ 0.82 94.01↓ 0.45 91.58↑ 0.02 68.68↓ 0.33

G
em

m
a-

2 RLEdit 90.11 61.34 48.57 89.22 79.85 35.57 95.13 91.70 71.83
w/o RL training framework 18.13↓ 71.98 20.73↓ 40.61 80.49↑ 31.92 12.98↓ 76.24 10.49↓ 69.36 9.12↓ 26.45 0.00↓ 95.13 0.00↓ 91.70 0.00↓ 71.83

w/o memory backtracking 89.37↓ 0.74 60.93↓ 0.41 48.68↑ 0.11 87.13↓ 2.09 78.29↓ 1.56 35.27↓ 0.30 95.10↓ 0.03 90.98↓ 0.72 69.28↓ 2.55

w/o regularization 89.87↓ 0.24 62.03↑ 0.69 48.74↑ 0.17 89.21↓ 0.01 77.25↓ 2.60 33.60↓ 1.97 94.95↓ 0.18 92.33↑ 0.63 73.98↑ 2.15

M
is

tr
al

RLEdit 84.24 63.93 60.79 84.60 78.00 50.18 97.78 96.34 83.71
w/o RL training framework 50.95↓ 33.29 49.93↓ 14.00 51.11↓ 9.68 6.66↓ 77.94 6.58↓ 71.42 2.10↓ 48.08 46.38↓ 51.40 45.26↓ 51.08 30.16↓ 53.55

w/o memory backtracking 82.14↓ 2.10 60.51↓ 3.42 58.99↓ 1.80 84.61↑ 0.01 76.89↓ 1.11 48.47↓ 1.71 97.10↓ 0.68 94.29↓ 2.05 81.99↓ 1.72

w/o regularization 84.31↑ 0.07 63.89↓ 0.04 59.88↓ 0.91 85.17↑ 0.57 77.73↓ 0.27 48.21↓ 1.97 97.79↑ 0.01 96.28↓ 0.06 82.92↓ 0.79

As observed, the RL training framework in RLEdit is crucial for adapting hypernetworks to lifelong editing. After ablating
the RL training framework, RLEdit’s performance metrics significantly decrease, essentially losing its lifelong editing
capability. Memory backtracking effectively enhances long-sequence editing performance, as evidenced by the decline
in Efficacy and Generalization metrics when it is ablated. Regularization primarily serves to maintain LLM’s general
capabilities after sequential editing, as ablating regularization results in a decrease in the post-edited LLM’s general
capabilities.

B.2. More Results of Editing with Varying Numbers of Knowledge

To evaluate the generalization capabilities of RLEdit across various editing tasks and sequence lengths, we conducted
additional experiments. Specifically, we examined the editing performance on tasks of dimensions 20×100, 50×100,
100×100, and 150×100 using Llama-3-8B on three datasets2, as shown in Table 5.

Comparisons with baseline methods demonstrate that RLEdit maintains relatively stable editing performance across
knowledge sequences of any length, while most baselines lose their effectiveness beyond 5,000 samples.

B.3. General Capability Test on CounterFact

To comprehensively analyze RLEdit’s effectiveness in maintaining LLM’s general capabilities, to complement the down-
stream task evaluations on ZsRE presented in Section 4.5, we conducted GLUE task testing on CounterFact for all methods.
All experiments were performed on LLama-3-8B, as illustrated in Figure 7.

The results demonstrate that on CounterFact, LLMs edited with RLEdit for 3,000 knowledge samples maintained general
capabilities comparable to the pre-trained model, whereas most other methods showed significant degradation in performance.

B.4. Impact of Different Edit Frequencies and Batch Sizes on RLEdit

In lifelong editing, the frequency of edits and batch size are crucial parameters that significantly impact editing success rates.
In this section, we investigate how these parameters affect RLEdit’s performance. Using the ZsRE dataset, we edited 5,000
knowledge samples on Llama-3-8B with seven different configurations: 10×500, 25×200, 50×100, 100×50, 200×25,

2Since RLEdit and other hypernetwork-based methods require at least half of the dataset as training data, and given the limited size of
the CounterFact dataset, we could only test knowledge editing up to 10,000 samples in the table.
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Table 5: Lifelong editing results under different numbers of edited knowledge samples. ♠ denotes locate-then-edit methods
while ♥ denotes hypernetwork-based methods. The best results are highlighted in bold, while the second-best results are
underlined.

TASK
COUNTERFACT ZSRE FEVER

METHOD
DATASET

EFF.↑ GEN.↑ SPE.↑ EFF.↑ GEN.↑ SPE.↑ EFF.↑ GEN.↑ SPE.↑

20
✕

10
0

=
20

00

FT 83.33±0.37 67.79±0.40 46.63±0.37 30.54±0.27 30.29±0.27 15.49±0.18 7.35±0.18 6.00±0.16 24.10±0.15

MEND♥ 49.20±0.42 50.10±0.33 50.05±0.23 0.00±0.00 0.00±0.00 0.00±0.00 37.75±0.21 37.78±0.30 29.10±0.27

ROME♠ 64.45±0.37 61.42±0.44 49.46±0.40 2.00±0.11 1.68±0.15 0.68±0.07 – – –

MEMIT♠ 65.05±0.48 64.68±0.43 52.33±0.39 57.72±0.37 52.48±0.37 25.78±0.22 – – –

PRUNE♠ 68.25±0.28 64.75±0.01 49.82±0.24 24.77±0.37 23.87±0.03 20.69±0.43 – – –

RECT♠ 64.00±0.48 61.20±0.43 60.88±0.37 86.02±0.24 81.81±0.27 32.04±0.23 – – –

ALPHAEDIT♠ 98.90±0.10 94.22±0.19 67.88±0.29 94.47±0.13 91.13±0.19 32.55±0.22 – – –

RLEDIT♥ 91.75±0.21 62.40±0.18 52.38±0.19 88.65±0.19 83.91±0.24 47.61±0.23 94.46±0.18 91.56±0.29 69.01±0.29

50
✕

10
0

=
50

00

FT 82.10±0.19 66.08±0.29 40.35±0.36 21.05±0.24 20.80±0.24 9.69±0.14 8.40±18.72 6.01±16.38 23.69±0.15

MEND♥ 49.71±0.32 49.63±0.33 50.23±0.49 0.00±0.00 0.00±0.00 0.00±0.00 33.49±0.31 28.26±0.22 26.77±0.35

ROME♠ 48.62±0.50 49.78±0.48 51.65±0.46 1.25±0.11 1.30±0.11 1.65±0.06 – – –

MEMIT♠ 64.21±0.23 60.07±0.43 46.64±0.37 0.07±0.01 0.07±0.01 31.67±0.22 – – –

PRUNE♠ 56.07±0.34 54.58±0.39 50.32±0.28 0.09±0.01 0.08±0.01 1.35±0.04 – – –

RECT♠ 52.64±0.50 50.02±0.46 53.59±0.42 0.07±0.01 0.07±0.01 1.34±0.03 – – –

ALPHAEDIT♠ 94.66±0.15 92.35±0.22 62.00±0.31 93.76±0.15 88.65±0.21 31.71±0.22 – – –

RLEDIT♥ 85.54±0.43 60.96±0.27 48.60±0.29 85.46±0.39 80.68±0.44 43.35±0.21 94.37±0.18 91.84±0.22 67.58±0.27

10
0

✕
10

0
=

10
00

0

FT 79.99±0.20 62.02±0.29 38.86±0.36 14.80±0.22 14.50±0.22 5.22±0.10 23.02±0.28 8.38±0.19 22.16±0.16

MEND♥ 47.24±0.32 47.19±0.23 53.10±0.35 0.00±0.00 0.00±0.00 0.00±0.00 27.24±0.27 28.93±0.32 27.56±0.34

ROME♠ 46.43±0.39 40.99±0.31 46.68±0.23 1.87±0.12 1.84±0.12 1.65±0.06 – – –

MEMIT♠ 47.53±0.50 43.59±0.49 51.30±0.48 0.00±0.00 0.00±0.00 0.00±0.00 – – –

PRUNE♠ 48.29±0.23 48.01±0.37 50.91±0.43 0.09±0.01 0.06±0.02 1.26±0.09 – – –

RECT♠ 49.95±0.29 50.11±0.32 46.27±0.25 0.08±0.01 0.08±0.01 1.36±0.04 – – –

ALPHAEDIT♠ 80.17±0.21 75.34±0.45 52.78±0.39 89.60±0.17 86.75±0.23 30.96±0.22 – – –

RLEDIT♥ 80.69±0.23 62.31±0.27 45.16±0.31 86.45±0.32 83.07±0.19 41.96±0.34 95.06±0.21 92.26±0.18 69.19±0.30

15
0

✕
10

0
=

15
00

0

FT 89.79±0.43 70.05±0.32 36.64±0.22 13.95±0.20 13.49±0.20 3.93±0.08 44.84±0.43 32.19±0.42 33.54±0.41

MEND♥ – – – 0.00±0.00 0.00±0.00 0.00±0.00 21.70±0.43 20.30±0.24 13.86±0.25

ROME♠ 46.51±0.50 47.10±0.47 53.36±0.45 1.47±0.11 1.43±0.11 0.72±0.06 – – –

MEMIT♠ 52.07±0.45 50.23±0.48 48.89±0.47 0.00±0.00 0.00±0.00 0.00±0.00 – – –

PRUNE♠ 52.19±0.24 52.87±0.39 44.43±0.27 0.00±0.00 0.00±0.00 0.00±0.00 – – –

RECT♠ 54.49±0.30 53.24±0.31 46.22±0.27 0.02±0.01 0.03±0.01 1.02±0.21 – – –

ALPHAEDIT♠ 79.35±0.35 69.28±0.17 42.01±0.35 84.43±0.25 78.28±0.30 28.48±0.21 – – –

RLEDIT♥ – – – 87.81±0.43 85.13±0.22 40.98±0.37 95.11±0.26 91.85±0.24 68.59±0.29

20
0

✕
10

0
=

20
00

0

FT 86.23±0.49 69.77±0.31 38.94±0.33 13.21±0.30 11.11±0.27 4.24±0.15 55.89±0.37 50.07±0.52 49.79±0.30

MEND♥ - - – 0.00±0.00 0.00±0.00 0.00±0.00 11.08±0.27 8.01±0.11 15.38±0.53

ROME♠ 44.43±0.39 46.21±0.27 50.77±0.33 1.56±0.21 1.34±0.19 1.04±0.08 – – –

MEMIT♠ 49.98±0.29 46.55±0.30 45.23±0.33 0.00±0.00 0.00±0.00 0.00±0.00 – – –

PRUNE♠ 50.21±0.22 47.43±0.32 47.11±0.22 0.00±0.00 0.00±0.00 0.00±0.00 – – –

RECT♠ 43.32±0.29 42.21±0.37 42.01±0.20 0.00±0.00 0.00±0.00 0.00±0.00 – – –

ALPHAEDIT♠ 74.22±0.57 63.94±0.46 39.12±0.45 77.74±0.42 70.01±0.34 27.96±0.28 – – –

RLEDIT♥ – – – 91.38±0.43 89.93±0.29 41.98±0.30 94.03±0.37 90.67±0.42 68.71±0.41
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Figure 7: General Capability Test on CounterFact.

500×10, and 1000×5. Figure 8 shows how various metrics vary across these configurations.

From Figure 8, we observe that RLEdit demonstrates excellent editing performance across all configurations. However, we
find that under extreme conditions with very large batch sizes, the hypernetwork training in RLEdit consumes substantial
GPU memory, leading to high resource utilization. Similarly, under extreme conditions with very high edit frequencies,
the hypernetwork training becomes unstable and often fails to converge. These observations suggest that appropriate edit
frequencies and batch sizes should be selected to achieve more effective and stable editing results.

C. Algorithms
In Sections 3.2 and Section 3.3, we introduced the hypernetwork training and editing procedures of RLEdit. The correspond-
ing pseudocode for RLEdit’s editing algorithms is presented in Algorithm 2.

Algorithm 2 RLEdit Editing

Input: Knowledge sequence (xi, yi)
n
i=1 ∈ D, pre-trained LLM fW0 , post-trained hypernetwork H with parameter θ′,

hyper-parameters k, γ, λloc and η
Output: Post-edited LLM with parametersWn

for t = 1 to n do
Lt ← − log pWt−1 (yt |xt )
Back-propagate Lt and cache∇Wt−1

∇̃Wt
← H(∇Wt−1

)

Wt ←Wt−1 + ∇̃Wt

end for
returnWn

19



Reinforced Lifelong Editing for Language Models

10x500 25x200 50x100 100x50 200x25 500x10 1000x5
Configuration

30

40

50

60

70

80

90

100
M

et
ri

cs
(%

)
Efficacy
Generalization
Specificity

Figure 8: RLEdit’s final metric scores when editing 5,000 knowledge instances under 7 different configurations.

D. Detailed Proof
In Section 3.1, we briefly introduced how hypernetwork-based lifelong editing can be modeled as an MDP. Here we provide
detailed proof that hypernetwork-based lifelong editing is indeed an MDP.

In Section 3.1.1, we stated that hypernetwork-based lifelong editing is a Markov process (MP). An MP consists of several
elements: (1) a well-defined state space, (2) stationary state transitions, and (3) satisfaction of probability axioms. For (1), we
model the state as (W, (x, y)) in hypernetwork-based lifelong editing, or specifically, the fine-tuning gradient∇W . This state
is defined in a continuous parameter space that can take tensors of fixed dimensions. Each state has a concrete mathematical
representation. For (2), we modify LLM parameters through hypernetwork-generated parameter updates, corresponding to
state transitions in MDP; when we add Gaussian noise from a fixed distribution to the hypernetwork output, our transition
function’s probability distribution becomes stationary. For (3), Gaussian noise satisfies probability axioms (probabilities are
non-negative and sum to 1), thus state transitions also satisfy these axioms. In conclusion, hypernetwork-based lifelong
editing perfectly aligns with MP modeling and its characteristics.

We now prove that this MP is an MDP. Compared to MP, MDP introduces concepts of action space, state transition function,
and reward function. Regarding action space, hypernetwork-based lifelong editing’s actions are continuous parameter
change matrices with dimensions matching the parameter matrices, which are fixed; since actions are controlled through
hypernetwork parameters, they satisfy controllability; parameter change matrices in finite-dimensional real space possess
complete metric structure, thus are well-defined. For the state transition function, we have already proven it is well-defined
and satisfies probability axioms. The non-deterministic component in the state transition function is Gaussian noise,
whose distribution remains unchanged over time, proving state transition stationarity. Regarding the reward function,
Section 3.1 explicitly detailed its computation method. Since rewards are derived from losses that have bounds, the reward
function is bounded; furthermore, the computation method remains constant over time, demonstrating stability. Therefore,
hypernetwork-based lifelong editing process constitutes a standard MDP.

E. More Discussion
RLEdit training achieves impressive results with relatively few trajectory samples. This suggests that the lifelong editing
task may be simpler than classic RL tasks, while also demonstrating RLEdit’s strong generalization capability. This insight
inspired us to explore simpler few-shot knowledge editing paradigms.

In our experiments, we found that different choices of LLM editing layers significantly impact editing effectiveness. While
locate-then-edit methods (Meng et al., 2023) typically choose to edit the first few layers of LLM due to their optimal editing
performance, we discovered that RLEdit performs best when editing the middle and final layers of LLM. We believe this
insight motivates further research on lifelong editing from the perspective of sequential knowledge localization. Additionally,
we will investigate the use of advanced approaches of LLM interpretability (He et al., 2024; Zhou et al., 2024) to identify and
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extract crucial layers within the model, enabling targeted editing and refinement for improved performance and adaptability.

Furthermore, in the future, we aim to apply the reinforcement learning paradigm to a broader range of model editing methods,
such as locate-and-edit (Jiang et al., 2025) and memory-based (Wang et al., 2024) approaches. Additionally, to address the
challenges of updating multi-hop and related knowledge, we plan to enhance RLEdit by integrating external knowledge
bases or knowledge graphs (Chen et al., 2023; 2024b; Zhang et al., 2025b;a), which is crucial for further advancements. We
will continue to investigate the hallucination and security issues (Chen et al., 2024a; Yang et al., 2024a;b; Liu et al., 2024;
Huang et al., 2025) brought by model editing, striving to enhance the reliability and safety of this technology to achieve
more responsible AI development.
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F. Dataset Visualization through Examples
To help readers better understand the lifelong editing task and our implementation approach, we provide 3 examples from
the ZsRE, FEVER, and CounterFact datasets, as illustrated in Figures 9, 10, and 11.

{
"subject": "Lahti Town Hall",
"src": "Which person is the architect of Lahti Town Hall?",
"rephrase": "Who was the architect of Lahti Town Hall?",
"alt": "Willem Marinus Dudok",
"loc": "nq question: who plays alec ramsay in the black stallion",
"loc_ans": "Kelly Reno",
"ans": "Eliel Saarinen"

},
{

"subject": "Phantom Stranger",
"src": "In which fictional universe is Phantom Stranger a character?",
"rephrase": "In what fictitious universe is Phantom Stranger part?",
"alt": "Forgotten Realms",
"loc": "nq question: who was the successful commanding general of the northern forces in the civil war",
"loc_ans": "George B. McClellan",
"ans": "DC Universe"

},
{
 "subject": "1963 BAC One-Eleven test crash",

"src": "What is the full date that 1963 BAC One-Eleven test crash crashed on?",
"rephrase": "What's the date on which 1963 BAC One-Eleven test crash happened?",
"alt": "11 March 1963",
"loc": "nq question: what is the current rate of interest on ppf",
"loc_ans": "7.6%",
"ans": "22 October 1963"

}

Figure 9: A sample of ZsRE dataset.

{
"prompt": "The Faroe Islands were part of the Hereditary Kingdom of Norway between 1035 and 1814.",
"equiv_prompt": [

"The Faroe Islands were part of the Kingdom of Norway between 1035 and 1814.",
"The Faroes were part of the Kingdom of Norway between 1035 and 1814.",
"The Faroe Islands were part of the Kingdom of Norway from 1035 to 1814.",
"The Faroe Islands were part of Norway between 1035 and 1814.",
"The Faroe Islands were part of the Hereditary Kingdom of Norway from 1035 to 1814."

],
"ans": "SUPPORTS",
"alt": "SUPPORTS",
"unrel_prompt": "Prague's historic center was first included in the UNESCO list of World Heritage Sites in the ninties of the twentieth century.",
"unrel_ans": "SUPPORTS"

}

Figure 10: A sample of FEVER dataset.
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{
    "case_id": 7285,
    "pararel_idx": 18788,
    "requested_rewrite": {
        "prompt": "The language of {} is",
        "relation_id": "P407",
        "target_new": {
            "str": "Norwegian",
            "id": "Q9043"
        },
        "target_true": {
        "str": "Dutch",
        "id": "Q7411"
        },
        "subject": "Goede Tijden, Slechte Tijden"
    },
    "paraphrase_prompts": [
        "The story is an adaptation of Swan Lake. Goede Tijden, Slechte Tijden was written in",
        "Winnie YU Tsang (\u4fde\u7424, b. Goede Tijden, Slechte Tijden is written in"
    ],
    "neighborhood_prompts": [
        "Counter-Strike: Global Offensive was written in",
         "Marie Claire is written in",
        "The language of Magdalena was",
        "Adobe Flash Player was written in",
        "The language of Marie Claire is",
        "The language of Eva is",
        "Betsy was written in",
        "The language of Ben is",
        "The language of Treaty of Accession 2003 was",
        "The language of Treaty of Accession 2003 is"
    ],
    "attribute_prompts": [
        "The language of Kristin Lavransdatter is",
        "Kristin Lavransdatter is written in",
        "The language of 20 \u00e5r med oss \u2013 Vem \u00e9 d\u00e9 du vill ha is",
        "Mikkel is written in",
        "For all tid was written in",
        "The language of Klassekampen is",
        "Ove is written in",
        "The language of Ghosts was",
        "The language of Jakobsen is",
        "The language of Morgenbladet was"
    ],
    "generation_prompts": [
        "Goede Tijden, Slechte Tijden's author is from",
        "Goede Tijden, Slechte Tijden's author is from",
        "The language Goede Tijden, Slechte Tijden was written in is called",
        "Goede Tijden, Slechte Tijden's author is from",
        "Goede Tijden, Slechte Tijden's author is from",
        "The language Goede Tijden, Slechte Tijden was written in is called",
        "The language Goede Tijden, Slechte Tijden was written in is called",
        "The language Goede Tijden, Slechte Tijden was written in is called",
        "Goede Tijden, Slechte Tijden's author is from",
        "The language Goede Tijden, Slechte Tijden was written in is called"
    ]
}

Figure 11: A sample of CounterFact dataset.
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