Under review as a conference paper at ICLR 2026

EFFICIENT FINE-TUNING OF QUANTIZED MODELS VIA
ADAPTIVE RANK AND BITWIDTH

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) scale up, model compression is crucial for their
deployment on resource-constrained devices. While methods like QLoRA reduce
resource demands by combining parameter quantization with LoRA fine-tuning,
their use of uniform precision can limit performance by failing to account for layer-
wise variations in parameter sensitivity. Recent advances have explored dynamic
mixed-precision quantization and adaptive LoRA ranks, but these strategies are typ-
ically optimized in isolation. The synergistic integration of these two dimensions
remains an unresolved core challenge. To address this, we introduce QR-Adaptor,
a unified, gradient-free framework that jointly optimizes the per-layer quantization
bit-width and LoRA rank. Instead of indirectly minimizing quantization error, QR-
Adaptor formulates the task as a discrete, multi-objective optimization problem,
directly guided by downstream task performance and memory constraints using a
small calibration dataset. Our extensive experiments show that QR-Adaptor consis-
tently establishes a new Pareto frontier, outperforming state-of-the-art quantized
fine-tuning methods. Notably, our approach can surpass the performance of a 16-bit
LoRA fine-tuned model while operating with a memory footprint comparable to
4-bit models.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success in both language understanding
and generation (Makridakis et al.,|2023; Raiaan et al., [2024; |Chang et al.|, [2024)). However, adapting
these powerful models to specific downstream tasks is often hindered by immense computational
and memory costs (Wan et al., [2023). Parameter-Efficient Fine-Tuning (PEFT) methods, such as
Low-Rank Adaptation (LoRA) (Hu et al., [2022), address these bottlenecks by introducing lightweight
updates, while quantization techniques (Gong et al., [2014} |Gupta et al} 2015) compress model
weights to fewer bits. Building on these two lines of research, QLoRA (Dettmers et al., [2023) has
become a standard paradigm for memory-efficient LLM fine-tuning by integrating a 4-bit quantized
base model with LoRA updates.

While effective, the static nature of QLoRA (i.e., uniform 4-bit quantization and a fixed LoRA
rank) has motivated several lines of research seeking further improvements. One direction focuses
on quantization, employing mixed-precision strategies to assign more bits to sensitive layers (e.g.,
MixLLM (Wang et al., [2025), SliM-LLM (Huang et al.| 2025))). Another direction targets adaptation,
with methods like AdaLoRA (Zhang et al.| [2023b) dynamically allocating LoRA rank based on
parameter importance. A third approach, exemplified by LoftQ (Li et al.| 2023)), focuses on better
initializing LoORA matrices to compensate for quantization error. While valuable, these approaches
tackle the problem from a single dimension—either bits, rank, or initialization—but overlook their
potential interplay. This leaves a critical question unanswered: how to holistically allocate a model’s
limited memory budget between numerical precision (bit-width) and adaptive capacity (rank)
on a per-layer basis?

To bridge this gap, we introduce QR-Adaptor, the first framework to address the joint, discrete
optimization of per-layer bit-widths and LoRA ranks. We posit that treating this as a unified search
problem allows for a more effective allocation of resources. For instance, some layers may preserve
functionality better with higher precision, while others might benefit more from increased adaptive
capacity via a larger rank. QR-Adaptor directly navigates this trade-off by framing it as a multi-

Under review as a conference paper at ICLR 2026

Table 1: Comparison of our QR-Adaptor with existing methods for efficient LLM fine-tuning.

Method Adaptation Strategy Quantization Strategy Joint Optimization? Optimization Space
QLoRA (Dettmers et al.|[2023) Static Rank (Uniform) Static Bit-width (Uniform) No -
AdaLoRA (Zhang et al.[[2023b} Dynamic Rank (Per-layer) Static Bit-width No (Rank only) Continuous
MixLLM/SIM-LLM (Wang et al.}[2025]/Huang et al.||2025] N/A (PTQ only) Dynamic Bit-width (Per-layer) No (Bits only) Discrete
LoftQ (Li et al.||2023] Static Rank (SVD-init) Static Bit-width Indirectly Continuous
QR-Adaptor (Ours) Dynamic Rank (Per-layer) Dynamic Bit-width (Per-layer) Yes (Unified Search) Discrete

objective optimization task: maximizing downstream task performance while minimizing memory
footprint. To solve this efficiently, our method employs a gradient-free search pipeline on a small
calibration dataset, directly optimizing for the final task objective rather than relying on proxy metrics
like quantization error.

To robustly navigate this high-dimensional discrete configuration space, QR-Adaptor adopts a three-
stage optimization pipeline. It begins with a task-informed initialization that estimates layer
importance, followed by a global exploration using a Pareto-ranking genetic algorithm to identify a
diverse set of promising candidates. Finally, it conducts local refinement using Bayesian optimization
to pinpoint the optimal configuration. This systematic approach allows QR-Adaptor to find superior
configurations in the vast search space of bit-width and rank combinations. Our main contributions
are as follows:

* We formulate the efficient fine-tuning of quantized LLMs as a joint, multi-objective
optimization problem, considering per-layer bit-width and LoRA rank as coupled vari-
ables. This new perspective moves beyond the prevailing single-dimension optimization
approaches.

* We propose QR-Adaptor, a novel and practical gradient-free framework to solve this
problem. It efficiently searches the discrete configuration space using a combination of
task-informed initialization, genetic algorithms, and Bayesian optimization.

» Through extensive experiments, we demonstrate that QR-Adaptor significantly advances the
state-of-the-art. It establishes a superior Pareto frontier for the accuracy-memory trade-off
and, in some cases, surpasses the performance of 16-bit LoRA fine-tuning with a memory
footprint comparable to 4-bit models.

2 BACKGROUND AND MOTIVATION

To motivate our work, we first establish the necessity of a heterogeneous, per-layer approach for
both quantization and parameter-efficient fine-tuning. We then discuss the limitations of existing
methods that rely on continuous proxies to solve the inherently discrete problem of quantization-aware
adaptation, paving the way for our proposed discrete search framework.

2.1 THE NEED FOR LAYER-WISE HETEROGENEITY

A core assumption in methods like QLoRA is uniformity: all adaptable layers are assigned the same
quantization bit-width and LoRA rank. However, extensive research has shown that Large Language
Models exhibit significant layer-wise heterogeneity, where different layers possess distinct properties
and sensitivities.

Sensitivity to Quantization. It is well-documented that not all layers in an LLM are equally
sensitive to the perturbations introduced by quantization. Seminal works in post-training quantization
(PTQ), such as AWQ (Lin et al.}|2023) and SmoothQuant (Xiao et al.||2022), identify that certain
"outlier" features, often concentrated in specific layers, are critical for model performance. Conse-
quently, applying a uniform low bit-width across the entire model can disproportionately harm these
sensitive layers. This has led to the development of mixed-precision quantization schemes (Wang
et al.| 2025; Huang et al.||2025)) that allocate more bits to more sensitive layers, thereby achieving a
better balance between compression and accuracy.

Sensitivity to Task Adaptation. Similarly, during fine-tuning, layers contribute unequally to
adapting the model to a new downstream task. The core idea behind methods like AdalLoRA (Zhang
et al.,[2023b) and RankAdaptor (Zhou et al., [2025) is to dynamically allocate more rank (i.e., more

Under review as a conference paper at ICLR 2026

trainable parameters) to layers whose weight updates are more significant for the task at hand. This
demonstrates that a one-size-fits-all rank allocation is suboptimal for maximizing adaptation capacity
under a fixed parameter budget.

The Unaddressed Interplay. These two lines of research highlight a critical, yet largely unad-
dressed, trade-off. For a given layer, how should a limited budget be allocated between numerical
precision (bit-width) and adaptive capacity (rank)? For instance, for a layer identified as sensitive,
is it more effective to increase its bit-width to preserve its original function, or to assign it a higher
rank to allow it to better compensate for quantization effects during fine-tuning? Existing methods
optimize these two dimensions in isolation. This motivates the need for a unified framework that can
holistically solve this joint optimization problem on a per-layer basis.

2.2 LIMITATIONS OF CONTINUOUS PROXIES FOR A DISCRETE PROBLEM

Another line of work, such as LoftQ (Li et al., 2023), attempts to improve upon QLoRA by initializing
the LoRA matrices (A and B) to better compensate for the quantization error, typically by minimizing
the Frobenius norm of the residual:

rjgig |(W — Quantize(W)) — AB|| . (1)

While intuitive, this approach relies on a continuous proxy objective (the Frobenius norm) to address
an inherently discrete problem. The fundamental challenge is that the target space for the quantized
weights is a discrete lattice A = A - Z%**_ A continuous low-rank update AB added to a quantized
matrix Q = Quantize(W) results in a matrix Q + AB that almost certainly lies outside this lattice.
To be used in the model, it must be re-quantized, i.e., projected back onto A.

This two-step process—continuous fitting followed by discrete projection—can be suboptimal. As we
formalize in Appendix [C] even the optimal continuous low-rank correction AB™ does not guarantee
that the final quantized matrix P5(Q + AB¥) is the best possible approximation of the original
weight matrix W. There often exists another discrete matrix Q' € A that is a better representation,
but which is inaccessible via this indirect, residual-fitting procedure.

This observation motivates a paradigm shift: instead of indirectly minimizing a continuous error
metric, a more direct and effective approach is to search within the discrete configuration space
itself, using the final downstream task performance as the direct optimization signal. This is the core
principle behind our proposed QR-Adaptor.

3 QR-ADAPTOR: A MULTI-STAGE FRAMEWORK FOR JOINT OPTIMIZATION

3.1 A MULTI-OBJECTIVE FORMULATION FOR QUANTIZED ADAPTATION

We frame the challenge of efficient LLM fine-tuning as a multi-objective optimization problem. For a
model with L layers, our goal is to find an optimal configuration C' = {(q;,7)}~_,, where ¢, € Q is
the quantization bit-width and r; € R is the LoRA rank for layer [. The sets Q (e.g., {2,4,8}) and R
(e.g., {4,8,16}) define the discrete search space.

The forward pass for a layer [with configuration (g;, ;) is given by:
vy = Quantize(W;,q;) - x + A;B; - x, 2)
where A; € R¥"™ and B; € R™** are the LoORA matrices.

We aim to find a configuration C' that simultaneously maximizes the model’s performance on a
downstream task, denoted P(C'), and minimizes its memory footprint, M (C'). This defines a search
for the Pareto optimal set C* in the solution space C:

¢* = argmin (—P(C), M(C)).)

Since evaluating each candidate C' requires a non-trivial fine-tuning process, this problem constitutes
an expensive, black-box, multi-objective optimization over a high-dimensional, discrete space.

Under review as a conference paper at ICLR 2026

Algorithm 1 The QR-Adaptor Framework

1: Input: Pre-trained model M, calibration data D.,j;,, search spaces Q, R.
2: Output: An optimal configuration C* = {(q;,r}) ;.

Stage 1: Task-Informed Initialization

Compute layer importance scores {I(1)}£_, using an entropy-based criterion on Deyjip-
Generate an initial seed configuration Cy based on importance scores.

Create an initial population Py by introducing perturbations around Cj.

Stage 2: Global Exploration with PRGA
Initialize population with Py.

wohw

for g = 1to Gux do
9: Evaluate each configuration C' € Py_1 on Dy to get (P(C), M (C)).
10: Generate offspring population 7); via selection, crossover, and mutation.

11: Select the next generation P, using Pareto ranking and crowding distance.

12: end for

13: Obtain the final Pareto front Cpaero from Pg

Stage 3: Local Refinement with Bayesian Optimization

14: Define a scalarized objective f(C) = aP(C) — (1 — a)M(C) with user preference .

15: Build a Gaussian Process surrogate model of f(C') using samples from Cpareto-

16:

17: for t = 1 to Tax do

18: Select next candidate Cy;; by maximizing the Expected Improvement (EI) acquisition
function.

19: Evaluate f(Cy41) and update the surrogate model.

20: end for

21: return The best configuration found C* = arg max¢ f(C).

3.2 THE QR-ADAPTOR SEARCH PIPELINE

The entire three-stage pipeline is designed to efficiently navigate the vast and discrete configuration
space. Navigating this complex search space requires a specialized strategy. A purely random search
would be inefficient, while methods relying on gradients are inapplicable. We therefore propose
QR-Adaptor, a principled, three-stage search pipeline designed to efficiently identify near-optimal
configurations. The pipeline orchestrates three well-established optimization techniques:

1. Task-Informed Initialization: An efficient heuristic to identify a promising region of the
search space.

2. Global Exploration with PRGA: A genetic algorithm to broadly explore this region and
identify the Pareto front.

3. Local Refinement with Bayesian Optimization: A sample-efficient method to fine-tune
solutions along the Pareto front according to specific user preferences.

A detailed breakdown of the search hyperparameters, search spaces, and a step-by-step algorithm
for the task-informed initialization stage is provided in Appendix [E] The entire search process is
conducted on a small calibration subset of the training data to keep the computational overhead
manageable. The overall procedure is summarized in Algorithm|[I}

3.2.1 STAGE l: TASK-INFORMED INITIALIZATION
To avoid a blind start, we first estimate each layer’s importance using an information-theoretic
criterion based on mutual information:

1) = H(Y) = H(Y[X)), @
where Y is the model’s output distribution and X is the representation at layer [, both estimated on

Deaiib- Layers with higher I () have greater influence. We then generate a seed configuration Cy by
allocating higher bit-widths and ranks to more important layers. An initial population Py for the

Under review as a conference paper at ICLR 2026

Algorithm 2 Pareto Ranking Genetic Algorithm (PRGA)

1: Input: Initial population Py, calibration data Deyip,.

2: Output: Pareto front Cpyreto.

3: Evaluate fitness (—P(C), M (C)) for all C' € Py on Deyip-
4: (Fi,Fa,...) + Non-Dominated-Sort(Py).

: for g = 0to Gpax — 1 do

: Q4 +— Create—Offspring(Pg) > Tournament Selection, Crossover, Mutation
Evaluate fitness for all C' € Q.

9: Ry +— Py U Q.

10 (Fi1, Fa,...) « Non-Dominated-Sort(R,).

11: Pyypq 0.

%Y

12: 1+ 1.

13: while ‘Pg+1| + | Fi| < |Po| do
14: Pg+1 + Pyy1 U F.

15: i1+ 1.

16: end while
17: Crowding-Distance-Assignment(F;).

18: Sort F; by descending crowding distance.
19: Pgi1 ¢ Py UFi[L: (|Pol = [Pg1])]-
20: end for

21: return The first Pareto front /; from the final population P,

max *

next stage is created by applying small, random perturbations to Cj, focusing search on a promising
region.

3.2.2 STAGE 2: GLOBAL EXPLORATION WITH PRGA

With a promising initial population, we perform a global search using a Pareto Ranking Genetic
Algorithm (PRGA), inspired by NSGA-II (Deb et al.,|2002). The goal is to discover the Pareto frontier
Cpareto- The core logic is detailed in Algorithm@ The algorithm iteratively evolves a population of
configurations through selection, crossover, and mutation. Selection is guided by two principles:
Pareto dominance (solutions on better fronts are preferred) and crowding distance (solutions in sparser
regions of a front are preferred to maintain diversity). Crossover and mutation operators are adapted
from Simulated Binary Crossover (SBX) and Polynomial Mutation to operate on the integer-pair
representation of configurations. The visual flowchart is in Figure [3]in the Appendix

3.2.3 STAGE 3: LOCAL REFINEMENT WITH BAYESIAN OPTIMIZATION

The Pareto front from PRGA provides a set of excellent trade-off solutions. To pinpoint a single
optimal configuration based on specific user preferences (e.g., maximizing performance under a strict
memory budget), we employ Bayesian Optimization (BO).

First, we transform the multi-objective problem into a single-objective one by defining a scalarized
objective function with a trade-off parameter a € [0, 1]:

max f(C) =a-norm(P(C)) — (1 — «) - norm(M (C)). 5)

We use the solutions on the Pareto front to build a Gaussian Process (GP) surrogate model for the
expensive function f(C'). The GP provides a posterior distribution over the objective function for
any candidate configuration C"*, characterized by its mean and variance:

p(C*) =ki(K+o,D)" 'y
o2(C*) = k(C*,C*) — kT(K + 021) 7 k,,

where K is the kernel matrix of the observed points, k, is the vector of covariances between C* and
observed points, and y are the observed function values.

(©)

We then iteratively select the next configuration to evaluate by maximizing the Expected Improvement
(EI) acquisition function. EI quantifies the expected amount of improvement over the current best

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of different methods across various bit-width configurations on LLaMa3.1-8B.
Superscripts on LoftQ bits indicate the number of initialization iterations. Bold figures represent the best
performance, while underlined figures indicate the second-best. Accuracy is reported as %.

Method Bit ARC(C) ARC(E) BoolQ GSMS8K HellaS OBQA PIQA WinoG Average
LoRA 16 56.14 83.88 83.18 54.36 79.44 4520 82.10 75.30 69.95
QLoRA 8 57.08 83.46 82.48 53.75 79.63 46.00 82.10 74.59 69.89
QLoRA 4 54.35 82.41 82.08 44.35 78.82 4420 8150 73.64 67.67
AdaLoRA 16 52.90 81.99 81.87 50.57 78.65 4500 81.34 7395 68.28
AdaLoRA 8 52.90 81.86 82.05 49.96 78.65 4480 81.34 7443 68.25
AdaLoRA 4 51.28 80.98 80.61 37.83 77.36 42.80 80.74 7253 65.51
o LoftQ 41 54.86 82.74 82.26 51.40 78.65 46.00 8145 73.24 68.82
ll LoftQ 45 52.65 81.82 81.53 39.65 78.50 4340 8139 72.69 66.45
£ LoftQ 410 51.88 81.31 79.66 38.44 78.01 4320 81.12 7198 65.70
& QuaRot 4 54.12 82.15 81.92 50.21 78.45 4520 8132 73.01 68.30
SpinQuant 4 54.45 82.32 82.05 51.03 78.62 45.60 81.41 73.15 68.58
QR-Adaptor (<4-bit) 3.625 56.15 82.78 82.45 54.12 79.58 4560 82.12 75.01 69.73
QR-Adaptor (Optimal) 5.45 56.83 84.12 83.38 56.29 80.93 4580 8292 75.10 70.67
ApiQ 2 48.12 76.45 75.32 28.45 72.15 3820 75.67 65.89 62.53
RILQ 2 48.78 76.98 75.89 29.45 72.78 38.80 76.12 6645 63.16
QR-Adaptor (Fixed 2-bit) 2 49.12 77.12 76.01 30.12 73.01 39.00 76.23 66.89 63.44
QR-Adaptor (Mixed 2/4-bit) 2.5 50.23 78.01 76.89 31.45 73.89 39.80 77.12 67.78 64.40
LoRA 16 56.74 83.63 83.00 54.13 79.51 4440 81.83 7443 69.70
QLoRA 8 56.23 82.91 82.66 53.68 79.46 46.00 81.66 74.74 69.67
QLoRA 4 53.84 81.99 82.11 44.66 78.76 4440 81.72 73.09 67.57
AdaLoRA 16 53.07 82.03 81.99 50.11 78.61 4540 8128 74.11 68.33
2 AdaLoRA 8 53.33 82.03 82.11 49.13 78.57 4520 81.34 73.79 68.19
I AdaLoRA 4 50.85 80.72 80.73 37.98 77.34 4280 80.52 73.16 65.51
E LoftQ 41 55.12 82.58 82.69 49.81 78.82 4580 81.28 74.27 68.80
~ LoftQ 45 53.92 82.32 81.56 42.00 78.54 43.80 81.56 72.77 67.06
LoftQ 410 52.90 81.69 81.56 39.88 78.64 43.80 81.07 71.98 66.44
QuaRot 4 54.23 82.28 82.01 50.89 78.58 4520 8145 73.18 68.48
SpinQuant 4 54.52 82.45 82.15 51.28 78.74 4560 81.56 73.32 68.70
QR-Adaptor (<4-bit) 3.625 56.15 82.78 82.45 54.12 79.58 4560 82.12 75.01 69.73
QR-Adaptor (Optimal) 5.45 56.83 84.12 83.38 56.29 80.93 4580 8292 7510 70.67

observed value f(C™), balancing exploration and exploitation:

EI(C™) = (u(C™) = F(CT))®(Z) + 0(C™)(2)

p(C*) — f(CT) @
o(C*) ’

where ®(-) and ¢(-) are the CDF and PDF of the standard normal distribution. This sample-efficient

process allows us to quickly converge on a refined optimal solution C* that best satisfies the user-
defined preference cv. The visual flowchart is in Figure] in the Appendix

with Z =

4 EVALUATION

In this section, we first introduce the experimental setup, including datasets, models, baselines, and
implementation details. All hyperparameters aside from rank value and bit-width are kept consistent
with the baselines.

4.1 EXPERIMENTAL SETUP

Datasets and LLMs. We utilize the Alpaca52k and hc3 (Taori et al., [2023)) for fine-tuning and
evaluate the zero-shot performance of these LLMs on benchmarks including BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., |2019), WinoGrande (Sakaguchi et al.,
2021)), ARC-easy (Clark et al2018)), ARC-challenge (Clark et al., 2018])), OpenbookQA (Mihaylov
et al.| 2018)), and MMLU Hendrycks et al.| (2021). The models used in our experiments are LLaMA?2
Touvron et al. (2023), LLaMA3.1 |Grattafiori et al.| (2024}, LLaMA3.2, and Qwen2.5 |[Qwen et al.
(2025)). These models cover a range of scales and architectures to demonstrate the generalizability of
our approach across different model families.

Baselines. We compare our method against several baselines: without tuning, LoRA Hu et al.
(2022), QLoRA |Dettmers et al.| (2023), Adalora|Zhang et al.[(2023b)), LoftQ [Li et al.| (2023)), and

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison across different model architectures (r=8). Bold figures represent the best
performance for each model. Accuracy is reported as %.

Model Method Bit ARC(C) ARC(E) BoolQ GSMSK HellaS OBQA PIQA WinoG Average
LoRA 16 56.01 83.48 82.97 54.03 79.01 4500 8195 7498 69.68
QLoRA 4 54.02 82.04 81.53 44.11 78.02 44.00 81.04 7296 67.22
Qwen-2.5-7B AdaLoRA 4 51.03 80.51 80.04 37.23 77.04 42.60 80.53 7201 65.11
i LoftQ 4t 53.96 82.15 81.87 43.84 77.93 4380 80.72 7254 67.11

QR-Adaptor (< 4bit) 3.875 54.89 82.71 82.25 49.87 78.73 4520 8149 7340 68.56
QR-Adaptor (Optimal) 5.125 56.52 84.01 83.49 56.03 80.52 46.00 82.51 7552 70.58

LoRA 16 52.98 81.03 80.01 45.02 76.01 42.00 79.03 70.99 65.88

QLoRA 4 51.01 79.02 79.03 36.04 75.01 41.00 78.02 68.97 63.51

Qwen-2.5-3B AdaLoRA 4 49.03 78.01 78.02 29.01 74.03 40.00 77.01 68.03 61.64
T LoftQ 41 50.92 79.23 78.87 35.48 74.95 40.60 77.87 68.65 63.32
QR-Adaptor (< 4bit) 3.375 51.87 79.91 79.76 41.03 75.45 41.80 7843 69.41 64.69

QR-Adaptor (Optimal) 4.875 53.53 81.51 80.52 47.01 77.03 43.00 79.51 71.52 66.70

LoRA 16 53.51 81.23 80.51 46.03 76.51 4260 7952 7131 66.39

QLoRA 4 51.52 79.51 79.52 37.01 75.53 41.60 7853 69.51 64.08

LLaMA-3.2-3B AdaLoRA 4 49.53 78.52 7851 30.03 74.52 40.60 7751 68.52 62.21
: LoftQ 41 51.78 79.83 79.87 37.42 75.78 4120 7872 69.84 64.49
QR-Adaptor (< 4bit) 3.75 52.41 80.25 80.17 42.01 75.95 4220 7896 69.95 65.23

QR-Adaptor (Optimal) 5.375 54.01 81.83 81.02 48.01 77.52 43.60 80.01 72.03 67.24

LQ-LoRA Guo et al.|(2024). We evaluated the performance of LoftQ with different iteration numbers.
For Adalora, which dynamically allocates ranks based on the average rank budget, we set the budget
to 8 and 64. Finally, for LQ-LoRA, which allocates quantization bit-width based on the average
weight bit-width budget and quantization error, we set the bit-width budget to 4. Additionally, we
include recent 4-bit quantization methods: QuaRot |Ashkboos et al.| (2024), which uses random
rotations to handle outliers, and SpinQuant Liu et al.|(2024b), which employs learned rotations for
optimal quantization accuracy. For extreme low-bit comparison, we evaluate against 2-bit methods
including ApiQ|Liao et al.|(2024) and RILQ|Lee et al.|(2025), both utilizing LoR A-based quantization
error compensation.

Implementation Details. We utilize the following configurations: PyTorch version 2.1.2, Bit-
sandBytes library version 0.43.1, Transformers library version 4.41.0, PEFT library version 0.11.1,
Optuna library version 3.6.1, CUDA version 12.4, GPU: NVIDIA L20. Operating System: Ubuntu.
Concise implementation details are provided in the Appendix [[] We define the population size as 5
and generate 1 new offspring in each iteration. The second and third phases were iterated 5 times.

4.2 MAIN RESULTS

We present the performance comparison of LLaMA3.1-8B on commonsense understanding tasks in
Table[2] We further evaluate QR-Adaptor on three additional models (Qwen-2.5-7B, Qwen-2.5-3B,
and LLaMA-3.2-3B) as shown in Table[3] For practical deployment considerations, we include both
< 4-bit constrained and optimal configurations. Our method achieves or surpasses the performance
of 16-bit fine-tuned models while maintaining competitive memory usage.

As mentioned, LoftQ outperforms 4-bit QLoRA after one iteration, but its performance degrades with
more iterations due to the mismatch between continuous error correction and discrete quantization.
Recent 4-bit methods like QuaRot and SpinQuant, which use rotation-based outlier handling, show
competitive results but still fall short of our approach. For extreme quantization, we compare against
2-bit methods including ApiQ and RILQ. QR-Adaptor demonstrates consistent improvements across
all bit-width regimes.

QR-Adaptor jointly optimizes bit-width and LoRA rank, balancing precision and adaptation capac-
ity for superior performance. Notably, even under strict < 4-bit constraints (average 3.625 bits),
QR-Adaptor achieves 69.37% average accuracy, outperforming all 4-bit baselines. In the optimal
configuration (5.45 bits average), it reaches 70.67%, substantially exceeding both traditional and
recent quantization methods. Furthermore, QR-Adaptor allocates resources more efficiently by
assigning higher LoRA ranks to critical layers and higher precision to important layers, achieving
high accuracy with low memory usage.

Due to space constraints, additional experimental results and analyses are provided in Appendix
including: (1) extended results across different models (G.1] [G.2]} [G.5} [G.6); (2) evaluations on larger
datasets with higher LoRA ranks (G.3).

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison of different methods across various bit-width configurations on Llama3.1-8B
with higher ranks. Bold figures represent the best performance for a given model and task, while underlined
figures indicate the second-best. QR-Adaptor™ is transferred config. Accuracy is reported as %.

Method Rank Bit ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG MMLU Average
LoRA 32 16 54.86 82.74 8275 79.21 4440 8199 74.11 63.66 70.47
LoRA 64 16 55.46 82.95 8294 79.13 45.00 81.88 74.51 64.34 70.78
QLoRA 32 55.20 83.12 81.93 79.07 46.20 81.88 73.32 63.28 70.50
QLoRA 32 53.41 80.89 82.05 78.42 43.60 8090 73.01 60.97 69.16
QLoRA 64 55.46 83.04 81.96 79.17 4580 81.94 73.01 63.34 70.47

AdaLoRA 32 53.92 81.82 8220 78.57 46.20 81.50 73.40 63.82 70.18
AdaLoRA 32 51.45 81.02 80.86 77.30 4240 8096 72.53 58.15 68.08
AdaLoRA 64 53.92 82.11 81.93 78.74 4620 81.39 73.95 63.88 70.27

8
4
8
QLoRA 64 4 53.41 81.19 81.74 78.35 44.60 80.69 72.06 60.79 69.10
8
4
8
AdaLoRA 64 4 52.13 80.98 81.04 77.20 42.20 80.85 72.77 58.07 68.16

LoftQ 32 4! 53.84 81.36 81.41 78.12 43.00 81.50 73.56 59.40 69.02
LoftQ 32 45 52.56 81.36 81.96 78.05 4280 8145 73.09 59.41 68.84
LoftQ 32 410 51.62 81.31 82.51 78.16 43.60 8134 7230 59.12 68.75
LoftQ 64 4! 52.82 81.40 81.59 7823 4320 8134 73.88 59.78 69.03
LoftQ 64 45 52.39 81.10 81.13 7833 4340 8134 7324 58.69 68.70
LoftQ 64 410 51.71 81.23 81.62 78.37 4320 81.01 72.77 59.25 68.65

QR-Adaptor* 32 3.625 55.23 82.89 82.65 79.12 4540 81.77 73.88 63.78 70.59
QR-Adaptor 32 5.875 56.12 83.45 8321 79.78 4620 82.10 74.59 64.40 71.23

4.3 COMPUTATIONAL EFFICIENCY

The computational cost of QR-Adaptor primarily stems from actual performance testing on calibration
data during stages 2 and 3. Specifically, after predicting a configuration, we need to conduct real
performance tests to validate predictions. The prediction process itself is extremely fast (second-
level), while one performance test on LLaMA3.1-8B model requires approximately 8-9 minutes. In
comparison, one LoftQ iteration takes 11 minutes, and AdaLoRA, due to its dynamic rank adjustment
during training, is typically 30-35% slower than LoRA.

QR-Adaptor’s advantage becomes evident in resource-constrained scenarios where performance
optimization is critical. While the initial search requires multiple performance evaluations, the
method can continuously improve model performance through iterative optimization. Moreover,
the three-stage design ensures efficient exploration of the configuration space, requiring fewer total
evaluations compared to exhaustive search approaches.

To provide a comprehensive time comparison, we conducted experiments fine-tuning LLaMA3.1-8B
on Alpaca52k dataset for 2 epochs across different methods. The results are summarized in Table 4]

To address potential concerns about compu-
tatior%a.l Overheaq, ks investigate(.l the trans- Table 4: Training time comparison of different methods
ferability of optimized configurations across on LLaMA3.1-8B with Alpaca52k dataset (2 epochs).
datasets. We found that configurations opti- All experiments were conducted on L20 GPU.

mized on one dataset exhibit significant transfer-

ability when applied to fine-tuning on different Method Total Time (minutes)
datasets. Specifically, when directly using a

configuration optimized on dataset A for fine- LoRA 300
tuning on dataset B, we still achieve notable per- QLoRA 360-405
formance improvements compared to baseline AdaLoRA 390-405
methods, albeit not as substantial as performing ~ LOftQ (1 iteration) 370-416
optimization specifically for dataset B. LoftQ (5 1t§rat19ns) 415-460
LoftQ (10 iterations) 470-515
As shown in Table[J] the "QR-Adaptor (Trans- QR-Adaptor 445-495

ferred Config)" row demonstrates the perfor-
mance when directly applying a configuration
optimized on a 52k dataset to the larger 177k dataset. This demonstrates that the same model’s opti-
mized configurations possess transferability, enabling direct use in fine-tuning on different datasets
while still achieving significant performance improvements.

Under review as a conference paper at ICLR 2026

4.4 ABLATION STUDY

We use the WinoGrande benchmark to conduct an ablation study assessing the contribution of each
stage in QR-Adaptor. As shown in Figure[I] removing either PRGA or Bayesian optimization leads
to unbalanced search behavior—PRGA alone explores too broadly, while Bayesian optimization
alone is overly narrow—reflecting their extrapolation and interpolation roles, respectively. Omitting
stage 1 causes PRGA to initiate from random configurations, resulting in scattered search patterns.
Nonetheless, it still reaches the upper-left optimal region, highlighting the strength of PRGA and
Bayesian optimization. In contrast, the full three-stage pipeline first explores broadly around a guided
initialization, then refines near promising areas, yielding the best configurations.

Further ablation studies assess the impact of each stage by removing them individually and analyzing
the resulting performance. We also perform sensitivity analysis on PRGA hyperparameters, with
details provided in Appendix

v . . .
e 0700 L] L] L
© o o L] .)) .
o o . LN]
E - L] [} . s e oo
£ 085 L P . o [.. (1] i ¢ .
a
° [} .
i . . ® * b o o* .
® 0690 L] . (1] [} » . .
-
£ [}
o .0 L]
5 . ° e . .
2 0685 ° []
= L]
o [}
a L]
0680

16.0 165 170 175 18.0 16.0 165 170 175 MJ&'BW G 160 165 170 175 18.0 16.0 165 7.0 175 18.0

Figure 1: From left to right, the actual measured performance and memory usage of the configurations generated
by QR-Adaptor, QR-Adaptor without stagel, QR-Adaptor without stage2, and QR-Adaptor without stage3 are
shown. Different colors represent the configurations generated at different stages.

5 RELATED WORK

LLM Quantization. LLM quantization enables efficient deployment by reducing precision. Notable
methods include GPTQ |[Frantar et al.|(2023), AWQ|Lin et al.|(2023)), SmoothQuant Xiao et al.|(2023)),
ZeroQuant |Yao et al.|(2022), and LLM.int8() Dettmers et al.| (2022). Mixed-precision approaches
such as APTQ |Guan et al.| (2024), MixLLM [Wang et al.|(2025)), and SliM-LLM |Huang et al.| highlight
the importance of per-layer precision allocation, though they focus solely on quantization.

Parameter Efficient Fine-Tuning. PEFT methods enhance LLMs without heavy inference costs.
QLoRA Dettmers et al.|(2023)) and LoftQ L1 et al.[{(2023)) combine quantization with low-rank adapters.
Variants such as AdalLoRA [Zhang et al.|(2023a)), LQ-LoRA |Guo et al.|(2023), RankAdaptor Zhou
et al. (2024), and DoRA |L1u et al.| (2024a) emphasize adaptive allocation across layers, but remain
independent of quantization.

Joint Quantization and Low-Rank Adaptation. LoftQ |Li et al.|(2023) alternates between quan-
tization and low-rank approximation, while LQ-LoRA |Guo et al.| (2023)) combines the two under
memory constraints. However, existing approaches typically optimize quantization and adaptation
separately, leaving joint allocation of precision and rank underexplored. More related work is in the

Appendix

6 CONCLUSION

In this work, we propose QR-Adaptor, a unified, gradient-free method that uses partial calibration
data to simultaneously optimize the precision and LoRA rank of each model layer. By focusing
on the discrete nature of quantization and low-rank spaces and optimizing them within a task-
driven framework, QR-Adaptor overcomes the limitations of iterative error-fitting techniques and
rank-adaptive methods unsuitable for quantization. Our extensive experiments demonstrate that
QR-Adaptor consistently outperforms existing baselines, achieving better performance than 16-bit
fine-tuned models while maintaining a 4-bit memory footprint. These results highlight the importance
of integrating quantization and low-rank matrices into a single, cohesive optimization process, driven
by actual performance and memory efficiency.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work builds upon pre-trained large language models Llama2 and utilizes publicly available
datasets for instruction fine-tuning Alpaca-clean. We do not introduce any new datasets or data
collection processes, and therefore do not involve human annotation in this research. Additionally, our
study focuses on improving model efficiency through pruning and quantization techniques, without
engaging with sensitive content or user-specific data. As such, this paper does not present any ethical
concerns beyond those already associated with the broader body of research on large language models
and their datasets. All datasets and models used comply with their respective licenses and terms of
use.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide comprehensive documentation on the steps
required to replicate our experiments. Our code is available in scripts such as optuna_main-v3.py,
post_training_mixed_quant.py, and run_optuna.py, which handle hyperparameter optimiza-
tion, mixed-precision quantization, and evaluation. For data preparation, we utilize the Alpaca
Cleaned Dataset from yahma/alpaca-cleaned, which is automatically downloaded and processed
using the datasets library. Our environment setup requires an NVIDIA GPU with CUDA sup-
port, preferably with at least 20 GB of memory for the Llama2 model, as well as Python 3.8+
and dependencies like PyTorch, Transformers, Optuna, BitsAndBytes, PEFT, and other libraries,
which can be installed via the requirements. txt file. The model we fine-tune is the Llama2
architecture (NousResearch/Llama-2-7b-hf), using a mixed-precision quantization approach via
bitsandbytes and Low-Rank Adaptation (LoRA) with the pef't library. The training is conducted
using a mixed-precision setup where the model’s dtype is set to torch.bfloat16 to optimize memory
usage and computation efficiency. Our hyperparameter optimization framework leverages Optuna to
maximize model accuracy while minimizing memory usage, tuning parameters like quantization bits
(4 or 8 bits) and LoRA ranks (2 to 16). To replicate our training process, researchers can execute the
provided scripts using the specified command-line arguments, which configure the model, output
directories, number of trials, and evaluation tasks. Model checkpoints and Optuna results are saved
at regular intervals. The training is conducted using the Hugging Face Trainer, configured with
parameters including a batch size of 4, gradient accumulation steps of 16, warmup steps of 100, and
a learning rate of 1e-4, with evaluation and model saving steps set to every 200 steps. Evaluation is
conducted using the Im_eval library, where metrics such as accuracy are recorded and saved in JSON
format. All hyperparameter settings and model configurations are logged in the output directory,
along with training progress and memory usage. Random seeds are set to ensure deterministic
behavior. By following these steps, including hardware and software specifications, and running the
scripts with the provided configurations, researchers can reproduce our experiments and validate the
findings related to mixed-precision quantization and parameter-efficient fine-tuning.

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213-100240, 2024.

Jules Berman and Benjamin Peherstorfer. Colora: Continuous low-rank adaptation for reduced
implicit neural modeling of parameterized partial differential equations, 2024. URL https:
//arxiv.org/abs/2402.14646.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 74327439, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan

Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1-45, 2024.

10

https://arxiv.org/abs/2402.14646
https://arxiv.org/abs/2402.14646

Under review as a conference paper at ICLR 2026

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924-2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiob-
jective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182-197,
2002.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. CoRR, abs/2208.07339, 2022. URL http://arxiv.org/
abs/2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Elias Frantar, Sahar Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. In The Eleventh International Conference on
Learning Representations (ICLR), 2023.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmén, Frank Zhang, Gabriel
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas

11

http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/2208.07339

Under review as a conference paper at ICLR 2026

Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
Shugiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

12

https://arxiv.org/abs/2407.21783

Under review as a conference paper at ICLR 2026

Zhaoyi Guan, Hongyi Huang, Yihan Su, Haoxiang Huang, Ngai Wong, and Huazhong Yu. Aptq:
Attention-aware post-training mixed-precision quantization for large language models. arXiv
preprint arXiv:2402.14866, 2024.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. /CLR 2024, 2023.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. LQ-loRA: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=xw29VvOMmU.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In International conference on machine learning, pp. 1737-1746.
PMLR, 2015.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In Proceedings of ICLR,
2022.

Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Qinshuo Liu, Xianglong Liu, Luca Benini,
Michele Magno, Shiming Zhang, and XIAOJUAN QI. Slim-llm: Salience-driven mixed-precision
quantization for large language models. In Forty-second International Conference on Machine
Learning.

Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Qinshuo Liu, Xianglong Liu, Luca Benini,
Michele Magno, Shiming Zhang, and Xiaojuan Qi. Slim-Ilm: Salience-driven mixed-precision
quantization for large language models, 2025. URL https://arxiv.org/abs/2405.14917,

Sehoon Kim, Connor R. C. Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, and
Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. In Proceedings of the Forty-first
International Conference on Machine Learning (ICML), 2023.

Geonho Lee, Janghwan Lee, Sukjin Hong, Minsoo Kim, Euijai Ahn, Du-Seong Chang, and Jungwook
Choi. Rilqg: Rank-insensitive lora-based quantization error compensation for boosting 2-bit large
language model accuracy. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 18091-18100, 2025.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models, 2023. URL https:
//arxiv.org/abs/2310.08659.

Baohao Liao, Christian Herold, Shahram Khadivi, and Christof Monz. Apiq: Finetuning of 2-bit
quantized large language model. In Proceedings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pp. 20996-21020, 2024.

Ji Lin, Jie Tang, Haotao Tang, Shuxin Yang, Xiaoxia Dang, and Song Han. Awq: Activation-aware
weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978, 2023.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024a.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: LIm quantization
with learned rotations. In The Thirteenth International Conference on Learning Representations,
2024b.

13

https://openreview.net/forum?id=xw29VvOMmU
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2405.14917
https://arxiv.org/abs/2310.08659
https://arxiv.org/abs/2310.08659

Under review as a conference paper at ICLR 2026

Spyros Makridakis, Fotios Petropoulos, and Yanfei Kang. Large language models: Their success and
impact. Forecasting, 5(3):536-549, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381-2391, 2018.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema, Nur Mohammad
Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ahmad, Mohammed Eunus Ali, and
Sami Azam. A review on large language models: Architectures, applications, taxonomies, open
issues and challenges. IEEE Access, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
Stanford CRFM, 2023. URL https://github.com/tatsu-lab/stanford_alpacal

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, and et al. Bhosale, Shruti. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
Yi Zhu, Quanlu Zhang, et al. Efficient large language models: A survey. Transactions on Machine
Learning Research, 2023.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. Hat:
Hardware-aware transformers for efficient natural language processing. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7675-7688, 2020.

Xinyuan Wang, Yanchi Liu, Wei Cheng, Xujiang Zhao, Zhengzhang Chen, Wenchao Yu, Yanjie
Fu, and Haifeng Chen. Mixllm: Dynamic routing in mixed large language models, 2025. URL
https://arxiv.org/abs/2502.18482.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. arXiv:2211.10438,
2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087-38099. PMLR, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Ming Zhang, Xiang Wu, Cong Li, and Yuxiong He. Zeroquant:
Efficient and affordable post-training quantization for large-scale transformers. In Advances in
Neural Information Processing Systems, volume 35, pp. 27168-27183, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4791-4800, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In International Conference
on Learning Representations. Openreview, 2023a.

14

https://arxiv.org/abs/2412.15115
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2502.18482

Under review as a conference paper at ICLR 2026

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512, 2023b.

Changhai Zhou, Shijie Han, Shiyang Zhang, Shichao Weng, Zekai Liu, and Cheng Jin. Rankadap-
tor: Hierarchical dynamic low-rank adaptation for structural pruned llms. arXiv preprint
arXiv:2406.15734, 2024.

Changhai Zhou, Shijie Han, Lining Yang, Yuhua Zhou, Xu Cheng, Yibin Wang, and Hongguang Li.
RankAdaptor: Hierarchical rank allocation for efficient fine-tuning pruned LLMs via performance
model. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Findings of the Association for
Computational Linguistics: NAACL 2025, pp. 5781-5795, Albuquerque, New Mexico, April 2025.
Association for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.
findings-naacl.321. URL https://aclanthology.org/2025.findings-naacl.321/.

15

https://aclanthology.org/2025.findings-naacl.321/

Under review as a conference paper at ICLR 2026

Table of Contents

A Extended Related Workl

B Use of LILMs

|C On the Suboptimality of Continuous Proxies for Discrete Quantization|

|C.1" Problem Formulation: Quantization as Projection|.
|C.2 Analysis of Iterative Low-Rank Refinement
|IC.3 Formal Argument for Suboptimality|.

|C.4 The Discontinuous Optimization Landscape]

D Quantization

[E " QR-Adaptor Search Process Details|

[E.1 ~ Search Hyperparameters and Configuration|
IE.2 " Task-Informed Initialization Algorithm|

[Pseudo code of the specific algorithm in the QR-Adaptor framework]|

iG__More Results

|G.1 Experiment Scope Expansion: Llama 2 Series|

|G.3 Effectiveness on Larger Datasets with Higher Ranks|

|G.4 " Fairer Comparison: Matching Bit-width Configurations|

|G.5 Impact of Longer Fine-tuning Epochs on Unfixed Parameters|
|1G.6 Impact of 2-Bit Quantization and LoftQ Iterations|

H Version of LL.Ms

[T"More Implementation Details|

J More Ablatio;

J.1 " Gradient Norms vs. Relative Entropy|

J.2 Sensitivity to Iteration Counts and Population Size|

[K™ Visualization of Optimization Stages|

[L"TLimitation|

17

17

17
18
18
18
19

19

20
20
20

21

21
21
22
23
24
25
26

27

27

27
27
28

28

29

16

Under review as a conference paper at ICLR 2026

A EXTENDED RELATED WORK

LLM Quantization. The field of LLM quantization has witnessed substantial progress, driven by the
need for efficient model deployment. Recent research has introduced several innovative approaches.
Frantar et al.|(2023)) developed GPTQ, achieving 4-bit precision with layer-wise quantization. [Lin
et al.|(2023) proposed AWQ, improving accuracy for heavily quantized models. Xiao et al.| (2023)
introduced SmoothQuant, addressing quantization of both weights and activations. |Yao et al.|(2022)
introduced ZeroQuant, preserving zero-shot capabilities at low bit widths. [Dettmers et al.| (2022)
presented LLM.int8(), enabling 8-bit quantization on consumer hardware. |[Kim et al.|(2023) combined
quantization with pruning and knowledge distillation in SqueezeLLM. Mixed-precision quantization
has further advanced the field: APTQ |Guan et al.| (2024) balances compression and performance,
MixLLM [Wang et al.| (2025) employs dynamic strategies, and SliM-LLM Huang et al.| provides
another mixed-precision solution. These works highlight the importance of per-layer allocation but
focus exclusively on quantization.

Parameter Efficient Fine-Tuning. PEFT techniques enhance LLMs without raising inference costs.
QLoRA Dettmers et al.[(2023)) combines 4-bit quantization with low-rank adapters, while LoftQ Li
et al.[(2023) alternates between quantization and low-rank steps. CoLoRA Berman & Peherstorfer
(2024) accelerates predictions under new parameters. AdaLoRA Zhang et al.[|(2023a) adaptively
allocates update budgets; LQ-LoRA |Guo et al|(2023) merges decomposition and quantization;
RankAdaptor|Zhou et al.|(2024) enables hierarchical dynamic adaptation; DoRA [Liu et al.| (2024a)
decomposes weights into magnitude and direction. While these approaches account for heterogeneous
adaptation needs, they largely remain orthogonal to quantization.

Joint Quantization and Low-Rank Adaptation. Some works integrate quantization and adaptation.
LoftQ|Li et al.[(2023) alternates quantization with low-rank approximation using SVD initialization,
but iterative error fitting may degrade performance. LQ-LoRA |Guo et al.[(2023) combines low-rank
decomposition with quantization, allocating bit-widths based on error budgets, though rank is treated
separately. These methods are important steps but optimize quantization and adaptation independently
or via proxy metrics, leaving open the challenge of jointly allocating memory between precision and
rank per layer.

Neural Architecture Search and Optimization. Joint optimization of quantization and adaptation
parameters connects to neural architecture search. DARTS [Liu et al.| introduced differentiable
architecture search, and HAT Wang et al.| (2020) proposed hardware-aware transformers. However,
they primarily explore architecture design, not the discrete per-layer precision-rank allocation
problem. Our discrete optimization requires specialized search strategies; genetic algorithms and
Bayesian optimization offer promising directions, motivating our three-stage approach combining
task-informed initialization, global exploration, and local refinement.

B USE OoF LLMs

In preparing this paper, LLMs were employed solely for language refinement purposes, such as
improving grammar, clarity, and style of expression. All research questions, conceptual frameworks,
theoretical arguments, methodological designs, data analyses, and conclusions presented in this work
were independently conceived and executed by the author. The LLMs did not generate, alter, or
influence the underlying ideas, interpretations, or findings. Their use was limited to assisting in
polishing the readability and fluency of the manuscript while preserving the originality and integrity
of the scholarly contributions.

C ON THE SUBOPTIMALITY OF CONTINUOUS PROXIES FOR DISCRETE
QUANTIZATION

This appendix provides a formal analysis of why iterative fine-tuning methods that rely on continuous,
low-rank updates to correct quantization error can be suboptimal. These methods, such as LoftQ,
operate by minimizing a continuous objective (e.g., Frobenius norm) but ultimately must project the
result back into a discrete space for inference. We demonstrate that this two-stage process does not

17

Under review as a conference paper at ICLR 2026

guarantee finding the optimal discrete representation, thereby motivating our gradient-free, direct
search approach in the discrete configuration space.

C.1 PROBLEM FORMULATION: QUANTIZATION AS PROJECTION

We begin by defining the quantization process as a projection onto a discrete lattice.

Definition C.1 (Quantization Lattice and Operator). For a given bit-width, the set of representable
scalar values forms a uniform grid with step size A. For a weight matrix W € R%*¥_ the correspond-
ing quantization lattice A is the set of all matrices whose elements belong to this grid:

A ={M e R¥* | M,;; = n;; A for some n;; € Z}. 8)

The standard quantization operator, Quantize(-), performs an element-wise rounding operation that
maps a continuous matrix to the nearest point in the lattice A. This operator is equivalent to a
projection onto A:

W, = Quantize(W) = Py (W) = argmin |W — M|| .)
MeA

The core objective of quantization-aware fine-tuning is to find a matrix W; € A that not only

minimizes the memory footprint but also maximizes downstream task performance. Ideally, this
W/, should be a good approximation of the optimal full-precision weights W* for a given task. For
simplicity in this analysis, we consider the goal to be finding the closest lattice point to a target
full-precision matrix W, i.e., finding Py (W).

C.2 ANALYSIS OF ITERATIVE LOW-RANK REFINEMENT

Methods like LoftQ attempt to improve upon the initial quantization W, = P (W) by adding a
continuous low-rank correction. The process can be described as follows:

1. Initial Quantization: Start with the baseline quantized matrix W, = P (W).

2. Continuous Error Correction: Define the quantization error as E = W — W, Find a
low-rank approximation AB* to this error by minimizing a continuous objective:

AB* = argmin [|[E - ABJ, = argmin |[W —(W,+ AB)|,. (10)
rank(AB)<r rank(AB)<r

The solution is typically found via Singular Value Decomposition (SVD) of the error matrix
E.

3. Final Discretization: The resulting matrix, W pgaed = W4 + AB*, is continuous and not
in A. For inference, it must be re-quantized:

W = PA(Wipdaea) = PA(W4 + AB¥). (11)

The critical question is whether this process reliably yields the best possible discrete approximation.
That is, does Wfl equal the true optimal solution, Py (W)?

C.3 FORMAL ARGUMENT FOR SUBOPTIMALITY

The procedure described above is suboptimal because the continuous optimization in Step 2 is
disconnected from the final discrete projection in Step 3.
Proposition C.2. Let W,,, = PA(W) be the optimal discrete approximation of W. Let W =

Pr(W, + AB*) be the matrix obtained from the iterative refinement process. It is not guaranteed
that W; = W,,.. In high-dimensional spaces, they are often different.

Justification. The projection operator P, partitions the continuous space R?** into a set of disjoint
Voronoi cells, one for each lattice point M € A. A point Y is projected to M if and only if it lies
within the Voronoi cell of M, denoted V' (M).

18

Under review as a conference paper at ICLR 2026

1. By definition, the optimal discrete solution is Wy, = Py (W), which means the original
matrix W lies inside the Voronoi cell V(Wopt). In our simplified case where W is the
initial rounding, Wo, = W, s0 W € V(W,).

2. The iterative method computes an updated continuous matrix Wypgaed = W4 + AB*.
Substituting the definitions, we have:

Wupdated =W-E+AB" =W — (E_AB*) (12)

Here, E — AB* is the residual error from the low-rank approximation of the quantization
error E.

3. The final quantized matrix is Wi = PA(Wypdgatea). This means Wypgaeq must lie in the
Voronoi cell V(W¢).

4. For the method to be optimal (i.e., W; = W), the updated point W pdaeq must lie in
the same Voronoi cell as the original point W. However, the term § = E — AB* acts as a
perturbation on W. The quantization error E is typically a dense, noisy, high-rank matrix.
Its low-rank approximation error d is therefore also a high-rank matrix.

Adding this high-rank perturbation § to W can easily push the vector across a Voronoi boundary into
an adjacent cell. When W — ¢ falls into a different cell V(M) where M # Wy, the final projection
becomes suboptimal: PA(Wupdated) = M # W,,.. This occurs generically in high dimensions, as
even a small perturbation has many dimensions in which it can push the vector across a boundary.
The assumption that minimizing the continuous error [|[W — W pgaeq|| - Will keep W pgareq in the
correct Voronoi cell is unfounded. n

C.4 THE DISCONTINUOUS OPTIMIZATION LANDSCAPE

The suboptimality issue is further compounded by the nature of the true underlying objective function.
If we consider the downstream loss £, the function we implicitly want to optimize with respect to A
and B is:

f(A,B) = L(PA(W, + AB)). (13)
Due to the discrete nature of the projection Py, this function is piecewise constant. Small, continuous
changes to A and B will not change the output of Py (W, + AB) as long as the matrix remains
within its current Voronoi cell. The function value only changes when W, + AB crosses a boundary
into a new cell.

This has a critical implication for optimization:

* Vanishing Gradients: The gradient VA g f(A, B) is zero almost everywhere (within the
interior of each Voronoi cell).

* Optimization Stagnation: Gradient-based methods are ineffective in such a landscape.
They receive no signal to guide the updates of A and B and will stagnate unless an update
is large enough to jump to a new discrete state.

Conclusion. The analysis reveals two fundamental flaws in using continuous proxies for discrete
optimization. First, minimizing a continuous error metric does not guarantee finding the optimal
discrete solution after re-quantization. Second, the true objective landscape is piecewise constant,
rendering standard gradient-based optimization ineffective. These limitations strongly motivate a
shift away from continuous proxies and towards methods that directly search the discrete space of
configurations. Our QR-Adaptor framework, which uses a gradient-free, multi-objective search to
evaluate discrete (bit-width, rank) configurations based on their actual downstream performance, is a
principled response to these challenges.

D QUANTIZATION

We first apply NF-quantization with bit size by and bucket size By to obtain the quantized matrix
A; and the absmax values for each block s = [sq, ..., Ssizeot(a,) |. These absmax values are further
Bo

19

Under review as a conference paper at ICLR 2026

quantized to b; bits via uniform integer quantization with bucket size B; to obtain the quantized
vector S, along with the absmax values for s, i.e., v = [v1, ... Usizeor(4,) |. Finally, we cast v to by bits
BoB1

to obtain v.

This quantization scheme requires storing A;, s, ¥ to represent A;. We can thus quantify the memory
cost (number of bits) for storing A; given a configuration ¢; = (bg, b1, ba, By, By) as:

b b
memory_cost(A;, ¢;) = sizeof (4;) - (bo + Ez + B02B1) (14)

The original NF-4 double quantization is a special case with gnrs = (4, 8, fp32,64,256) and
memory_cost(A;, gnra) = 4.127 - sizeof (4;), i.e., NF-4 requires on average 4.127 bits per parame-
ter.

E QR-ADAPTOR SEARCH PROCESS DETAILS

This appendix provides supplementary details regarding the QR-Adaptor search methodology and its
associated computational costs, addressing reproducibility and practical implementation concerns.

E.1 SEARCH HYPERPARAMETERS AND CONFIGURATION

To ensure the reproducibility of our results, we list the specific hyperparameters and configurations
used for the QR-Adaptor search process in Table[6] These settings were kept consistent across all
main experiments unless otherwise noted.

Table 6: Hyperparameters for the QR-Adaptor search process.

Parameter Stage Value / Description

General Search Configuration

Bit-width Search Space (Q) All {2,4,8}

LoRA Rank Search Space (R) All {0,2,4,6,8,...,64}

Calibration Dataset All A random subset of 1024 samples from the C4 dataset.
Fine-tuning Epochs (per evaluation) All 1 epoch on the calibration dataset.

Stage 1: Task-Informed Initialization

Importance Score Metric (I (1)) Initialization ~ Gradient-based saliency score (magnitude of Fisher Information).

Initial Population Size (Npop) Initialization 1

Stage 2: Global Exploration (PRGA)

Algorithm PRGA NSGA-II (Non-dominated Sorting Genetic Algorithm IT)

Number of Generations PRGA 5

Population Size PRGA 20

Selection Mechanism PRGA Tournament selection based on non-dominated rank and crowding distance.
Crossover Operator PRGA Uniform Crossover with a probability of 0.9.

Mutation Operator PRGA Per-layer random mutation: for each layer, with probability 0.1,

re-sample its bit-width and rank from Q and R.

Stage 3: Local Refinement (Bayesian Optimization)

Surrogate Model BO Gaussian Process (GP)

GP Kernel BO Matérn 5/2 kernel with Automatic Relevance Determination (ARD).
Acquisition Function BO Expected Improvement (EI).

Number of Iterations BO 5 iterations per configuration refined from the Pareto front.

E.2 TASK-INFORMED INITIALIZATION ALGORITHM

As mentioned in Section 3.2.1, the initialization process uses layer importance scores to generate a
high-quality initial configuration. Algorithm [3|provides a concrete step-by-step description of this
procedure. The core idea is to map higher importance scores to a higher probability of allocating
more resources (i.e., higher bit-widths and ranks). This single seed configuration C, is evaluated by
fine-tuning for one epoch on the calibration dataset to measure its initial performance, forming
the starting point for the global search. The subsequent PRGA stage will generate a full population of
size 20 through mutations and crossover operations based on this seed.

20

Under review as a conference paper at ICLR 2026

Algorithm 3 Task-Informed Initialization Process

Input: Layer importance scores {1(1)}%_,, Bit-width space Q, Rank space R.
Output: Seed configuration Cj.

> Step 1: Normalize importance scores to create a sampling distribution
Normalize scores: p; < I(1)/ Zle I(j)forl=1,...,L.

> Step 2: Generate the seed configuration Cjy based on importance
Initialize Cy = [(bity,ranky), ..., (bity,ranky)].
for!=1to Ldo
// Map normalized importance p; to the search spaces.
9: // The higher the importance, the higher the index in the sorted space.

10: Sort Q and R in ascending order.
11: Bit index idxy < |[p; - (]Q] — 1)]. Clamp to [0, |Q] — 1].
12: Rank index idz, < |p; - (|R| — 1)]. Clamp to [0, |R| — 1].
13: bit; « Qlidxyp]; rank; «+ Rlidz,].
14: end for
15: > Step 3: (Optional) Apply budget constraints if a target budget is predefined
16: return Cj.

A A T e

F PSEUDO CODE OF THE SPECIFIC ALGORITHM IN THE QR-ADAPTOR
FRAMEWORK

Due to page limitations, we present the pseudocode of the algorithm.

Algorithm 4 Pareto Rank Calculation Algorithm 5 Crowding Distance Calculation

1: Input: Ranked individuals F' with N indi-
viduals, M objectives

1: Input: Population P with n individuals
2: Calculate the number of dominated individ-
uals n,, and the set of solutions dominated

S,, for each individual p 2: for each individualn € 1... N do
P : i
3: Place individuals with n, = Ointoset 7y, . hitialize dn €0
4: for each individual 7 in F; do) f h obiective functi d
5. for each individual j € S; do 5: for each objective function fm do
6: N e — 1 ! 6: Sort individuals based on f,
7 lf]’n, —6then 7: f;:;baa:’f:;;nn <;Inax.fmarninfm
: g, . 8: dl, dy + 00

S: end:?t('id individual j to set F5 9 form — 2 to N . 1(dfl)if -
10: end for 10: dy = dn + =
11: end for 11: end for
12: Repeat for Iy, Fs, ..., until all individuals ~ 12: end for o

are ranked 13: Output: Crowding distances d,, for each

13: Output: Pareto-ranked individuals individual 7

G MORE RESULTS

Due to page limitations, we present remaining results across various models here.

G.1 EXPERIMENT SCOPE EXPANSION: LLAMA 2 SERIES

In the original experiments, the focus was primarily on Llama3.1, considering that its updated
architecture present new challenges for quantization. Compared to Llama?2 series, Llama3.1 is
significantly harder to quantize, especially under low-bit configurations, as they incorporate more
sophisticated architectural features. Additionally, to comprehensively demonstrate the superiority
of QR-Adaptor, we have also conducted extensive performance experiments on the Llama?2 series
models, with the results presented in Table[7]and Table

21

Under review as a conference paper at ICLR 2026

Algorithm 6 Simulated Binary Crossover (SBX)

Algorithm 7 Polynomial Mutation

Require: Two parent individuals P; and Ps,
each with L real-valued genes
1: Initialize offspring O; and O as empty

Require: Individual P with L real-valued
genes, mutation probability p,,
. Initialize mutated individual P’ as a copy of

—_

2: for! =1to L do P

3: Generate a random number v € [0, 1] 2 forl = 1to L do

4 if u < 0.5 theln/(nH) 3: Generate a random number u € [0, 1]

> B (2u) 4: if u < p,,, then

o else 1/(n+1) 5: Generate a random number § €
7 6 A (2(11—u)) [_17 1] ,

8: end if 6: |6|)”*1xl — 21+ (Timazs — Tmin) -0 - (1 —
o yu < 05-((1+8)-pu+(1-5)-par) 7: Replace x; with 2/ in P’

10: Yo < 0.5-((1=B) -pu+(1+8) - pa) g d'fp ! !

11: Append y1; to O1 and yz; to Oa 9: ende;(l)r 1

12: end for : o

13: Output: O, and O, 10: Output: Mutated individual P’

Table 7: Performance comparison of different methods across various bit-width configurations on Llama2-7B.
Superscripts on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for optimal
bit number and rank value for each layer based on different tasks with its bit number averaged across tasks.
Bold figures represent the best performance for a given model and task, while underlined figures indicate the
second-best. Accuracy is reported as %.

Method Bit ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG Average
LoRA 16 46.93 77.36 7847 7693 4480 7938 69.38 67.61
QLoRA 8 48.21 77.36 7792 76.88 4480 79.82 68.75 67.70
QLoRA 4 46.25 76.26 7743 7642 46.20 78.67 69.85 67.30
oo AdaLoRA 16 46.08 76.77 7746 75.89 4420 79.16 69.22 66.97
L AdaLoRA 8 46.08 76.73 7749 75.93 4420 79.00 69.06 66.93
£ AdaLoRA 4 46.33 75.25 76.39 75.45 4440 7791 69.14 66.41
& LoftQ 4! 46.16 77.10 7743 76.68 4480 7933 69.30 67.26
LoftQ 4° 47.35 76.64 76.33 76.36 45.60 79.05 69.06 67.20
LQ-LoRA 4 47.18 76.60 76.54 76.24 45.00 78.84 68.90 67.04
QR-Adaptor 5.45 48.04 77.44 78.96 76.84 46.00 7986 69.97 68.15
LoRA 16 46.93 71.57 78.41 76.81 45.00 7938 69.06 67.59
QLoRA 8 47.61 77.44 78.41 76.93 4540 79.05 69.06 67.70
QLoRA 4 46.67 76.35 7725 76.40 45.00 78.84 70.01 67.22
2 AdaLoRA 16 46.16 76.68 7758 7592 4420 79.11 69.38 67.00
Il AdaLoRA 8 46.16 76.68 7740 7591 4440 79.11 69.06 66.96
E AdaLoRA 4 46.33 75.29 7645 7544 4420 7791 69.46 66.47
~ LoftQ 4! 47.10 77.19 77.89 76.61 4480 79.43 69.69 67.53
LoftQ 4° 47.95 76.47 76.79 76.25 45.60 78.51 69.61 67.31
LQ-LoRA 4 47.10 76.39 7722 76.33 46.40 78.78 70.09 67.47

QR-Adaptor 5.45 48.04 77.44 7896 76.84 46.00 79.86 69.97 68.15

Our results show that QR-Adaptor consistently demonstrates superior performance across all tasks
and outperforms existing methods, such as AdaLoRA and LoftQ, on Llama 2 series. The robustness
of QR-Adaptor is also evident, especially on tasks that typically cause performance degradation for
other methods.

G.2 VISUALIZATION RESULTS FOR THE MMLU TASK

The results for the MMLU task in LLaMA?2 are shown in Figure 2 QR-Adaptor demonstrates
outstanding performance across various benchmarks. Due to the rank value selection ranging from 2
to 16, in some cases, QR-Adaptor consumes less memory than the fine-tuned 4-bit quantized models.
Moreover, the low-precision models fine-tuned by QR-Adaptor outperform the fine-tuned 16-bit

22

Under review as a conference paper at ICLR 2026

Table 8: Performance comparison of different methods across various bit-width configurations on Llama2-13B.
Superscripts on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for optimal
bit number and rank value for each layer based on different tasks with its bit number averaged across tasks.
Bold figures represent the best performance for a given model and task, while underlined figures indicate the
second-best. Accuracy is reported as %.

Method Bit ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG Average
LoRA 16 52.56 80.18 81.44 79.98 4640 81.12 71.98 70.52
QLoRA 8 52.39 80.18 8122 79.92 45.00 80.47 73.09 70.32
QLoRA 4 51.54 78.91 81.41 79.46 4540 80.30 71.82 69.83
o AdaLoRA 16 49.15 79.46 80.37 79.25 4540 8047 7230 69.49
_'L AdalLoRA 8 49.32 79.34 80.43 79.29 45.60 80.47 72.22 69.52
£ AdaLoRA 4 48.29 77.78 80.40 78.12 4420 80.14 71.74 68.67
& LoftQ 41 50.68 78.79 81.16 79.12 45.80 80.41 71.35 69.62
LoftQ 45 50.34 78.87 80.24 78.81 45.20 80.25 70.80 69.22
LQ-LoRA 4 50.60 78.79 80.67 7891 45.00 80.14 71.11 69.32
QR-Adaptor 6.125 52.82 80.64 81.84 80.08 4580 8145 72.69 70.76
LoRA 16 52.13 79.84 81.50 80.07 46.20 81.23 71.98 70.42
QLoRA 8 51.54 80.01 81.13 79.86 46.20 81.18 72.22 70.31
QLoRA 4 51.45 79.04 81.04 79.48 45.60 80.47 71.82 69.84
L AdaLoRA 16 49.40 79.34 80.46 79.28 45.40 80.47 7230 69.52
Il AdaLoRA 8 49.49 79.29 80.40 79.27 4540 80.52 72.38 69.54
é AdalLoRA 4 48.29 77.69 80.43 78.10 4420 80.09 71.67 68.64
~ LoftQ 41 50.68 78.87 80.86 79.18 45.80 80.30 71.90 69.66
LoftQ 4° 50.60 78.96 8092 79.15 45.40 80.41 71.59 69.58
LQ-LoRA 4 50.09 78.79 80.43 79.06 4540 80.14 71.67 69.37

QR-Adaptor 6.125 52.82 80.64 81.84 80.08 4580 8145 72.69 70.76

models. Another advantage of the QR-Adaptor is that it can be implemented without any additional
technical measures to optimize performance, apart from spending some time (about 15 minutes to get
one data point). This simple but effective method is very useful in practical applications.

--- QR-Adaptor (13B) [LLaMA2-13B
--- QR-Adaptor (7B) [LLaMA2-7B

o
0
o]

o
w
o

MMLU Accuracy
o o
Y
o

Methods

Figure 2: Performance comparison on MMLU benchmark. QR-Adaptor outperforms other methods.

G.3 EFFECTIVENESS ON LARGER DATASETS WITH HIGHER RANKS

To address the concern regarding the effectiveness of small LoRA ranks on larger datasets, we
conducted additional experiments on the LLaMA3.1-8B model using a larger dataset consisting of
177k samples. We tested our method with higher LoRA ranks (32 and 64) to evaluate its performance
in handling large-scale data.

Our results are summarized in Table[9] The table compares the performance of QR-Adaptor with
other baseline methods, including LoRA, QLoRA, AdalLoRA, and LoftQ, across various tasks. The

23

Under review as a conference paper at ICLR 2026

Table 9: Performance comparison of different methods across various bit-width configurations on Llama3.1-8B
with higher ranks. Bold figures represent the best performance for a given model and task, while underlined
figures indicate the second-best. QR-Adaptor™ is transferred config. Accuracy is reported as %.

Method Rank Bit ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG MMLU Average
LoRA 32 16 54.86 82.74 8275 79.21 4440 8199 74.11 63.66 70.47
LoRA 64 16 55.46 82.95 8294 79.13 45.00 81.88 74.51 64.34 70.78

QLoRA 32 8 55.20 83.12 81.93 79.07 46.20 81.88 7332 63.28 70.50
QLoRA 32 4 53.41 80.89 82.05 78.42 43.60 80.90 73.01 60.97 69.16
QLoRA 64 8 55.46 83.04 81.96 79.17 45.80 8194 73.01 63.34 70.47
QLoRA 64 4 53.41 81.19 81.74 78.35 44.60 80.69 72.06 60.79 69.10
AdaLoRA 32 8 53.92 81.82 8220 78.57 46.20 81.50 73.40 63.82 70.18
AdaLoRA 32 4 51.45 81.02 80.86 77.30 4240 8096 72.53 58.15 68.08
AdaLoRA 64 8 53.92 82.11 81.93 78.74 4620 81.39 73.95 63.88 70.27
AdaLoRA 64 4 52.13 80.98 81.04 77.20 4220 8085 72.77 58.07 68.16

LoftQ 32 4! 53.84 81.36 81.41 78.12 43.00 81.50 73.56 59.40 69.02
LoftQ 32 45 52.56 81.36 81.96 78.05 4280 8145 73.09 59.41 68.84
LoftQ 32 410 51.62 81.31 82.51 78.16 43.60 8134 7230 59.12 68.75
LoftQ 64 4! 52.82 81.40 81.59 7823 4320 8134 73.88 59.78 69.03
LoftQ 64 45 52.39 81.10 81.13 7833 4340 8134 7324 58.69 68.70
LoftQ 64 410 51.71 81.23 81.62 78.37 4320 81.01 72.77 59.25 68.65

QR-Adaptor* 32 3.625 55.23 82.89 82.65 79.12 4540 81.77 73.88 63.78 70.59
QR-Adaptor 32 5.875 56.12 83.45 8321 79.78 4620 82.10 74.59 64.40 71.23

performance metrics include accuracy scores on datasets such as ARC (Challenge), ARC (Easy),
BoolQ, HellaSwag, OpenBookQA, PIQA, WinoGrande, and MMLU.

KEY OBSERVATIONS

* Effectiveness of LoRA Initialization: Despite using higher ranks (32 and 64) and larger
datasets, methods like LoftQ and LQ-LoRA do not consistently outperform the standard
QLoRA baseline or the quantized models without fine-tuning. Increasing iterations in LoftQ
(from LoftQ-1 to LoftQ-10) to better fit quantization errors leads to performance degradation,
especially on challenging tasks like MMLU and GSM8K. These results suggest that fitting
quantization errors using LoRA initialization is not universally effective and may introduce
noise that hinders model performance.

» Effectiveness on Larger Datasets: Our method, QR-Adaptor, consistently achieves supe-
rior performance across all tasks and outperforms other methods, confirming its robustness
and scalability. The results validate that QR-Adaptor is effective even when small LoRA
ranks might not suffice for larger datasets.

e Impact of Adaptive LoRA Rank Reduction: AdalLoRA exhibits performance drops, par-
ticularly with lower bit-widths and on more challenging tasks. This supports our observation
that dynamically adjusting the rank during fine-tuning can lead to convergence issues in
quantized models, which are less robust due to quantization errors.

These results reinforce our initial observations and highlight the limitations of methods that attempt to
fit quantization errors through LoRA initialization. The inability of LoftQ and AdaLLoRA to improve
performance significantly, even with higher ranks and larger datasets, underscores the challenges
associated with such approaches. In contrast, QR-Adaptor, guided by our proposed constraints,
demonstrates consistent performance improvements.

G.4 FAIRER COMPARISON: MATCHING BIT-WIDTH CONFIGURATIONS

Another important consideration for a fair comparison of quantization methods is the bit-width
configuration used. To ensure that prior methods are evaluated under the same conditions as QR-
Adaptor, we have re-evaluated AdaLLoRA and LoftQ using the same mixed-precision configurations
that were optimized through QR-Adaptor’s framework. The updated results for Llama 2-13B are
shown in Table [IQl

The results indicate that the initialization constraints applied by QR-Adaptor provide substantial
improvements over the original configurations of AdaLoRA and LoftQ. Despite these improvements,
QR-Adaptor still outperforms these methods in terms of overall task performance. The constraints,

24

Under review as a conference paper at ICLR 2026

Table 10: Performance comparison with fair bit-width configurations for Llama2-13B. Accuracy is reported as

%
Method BoolQ PIQA HellaS WinoG ARC(E) ARC(C) OBQA Average
AdaLoRA 81.08 80.13 79.21 71.74 79.51 50.12 45.60 69.77
LoftQ 8093 7947 79.02 71.34 79.26 51.20 45.60 69.98

QR-Adaptor 81.84 8145 80.08 72.69 80.64 52.82 45.80 70.76

specifically ensuring stable initialization and fixing trainable parameters, contribute significantly to
the enhanced performance of QR-Adaptor.

G.5 IMPACT OF LONGER FINE-TUNING EPOCHS ON UNFIXED PARAMETERS

While increasing the fine-tuning epochs for AdaLoRA can lead to some performance improvements,
these gains are marginal and AdalLoRA still does not outperform other methods like LoRA, QLoRA,
or our proposed QR-Adaptor.

FINDINGS

* Marginal Improvement with Increased Epochs: Extending the training of AdaLoRA from
2 epochs to 5 epochs results in a slight performance increase. However, this improvement is
not substantial and comes at the cost of significantly longer training times.

* Need for Mixed-Precision with Adaptive Rank: The results suggest that adaptive rank
adjustment alone, as in AdaLoRA, may not be the most effective approach. The combination
of adaptive rank with mixed-precision quantization, as in QR-Adaptor, yields superior
performance.

SUPPORTING DATA

We provide an updated table below that includes an "Epochs" column, showing the results for LoRA,
QLoRA, Adal.oRA (at 2 and 5 epochs), and QR-Adaptor.

Table 11: Performance comparison of different methods with varying fine-tuning epochs on Llama3.1-8B.
Accuracy is reported as %

Method Rank Bit-width Epochs ARC(C) ARC(E) BoolQ GSMS8K(S) GSMSK (F) HellaS OBQA PIQA WinoG
LoRA 8 16 2 56.14 83.88 83.18 54.36 54.28 79.44 45.20 82.10 75.30
QLoRA 8 8 2 57.08 83.46 82.48 53.75 53.90 79.63 46.00 82.10 74.59
QLoRA 8 4 2 54.35 82.41 82.08 44.35 44.50 78.82 44.20 81.50 73.64
AdaLoRA 8 16 2 52.90 81.99 81.87 50.57 50.57 78.65 45.00 81.34 73.95
AdaLoRA 8 16 5 53.50 82.25 82.05 51.00 50.90 78.75 45.20 81.40 74.10
AdaLoRA 8 8 2 52.90 81.86 82.05 49.96 49.96 78.65 44.80 81.34 74.43
AdaLoRA 8 8 5 53.10 82.00 82.10 50.20 50.10 78.70 45.20 81.38 74.50
AdaLoRA 8 4 2 51.28 80.98 80.61 37.83 38.36 71.36 42.80 80.74 72.53
AdaLoRA 8 4 5 51.50 81.10 80.75 38.00 38.50 77.40 43.20 80.78 72.60
QR-Adaptor 8 5.375 2 56.83 84.12 83.38 56.29 56.11 80.93 4580 82.92 75.10
OBSERVATION

* AdaLoRA’s Performance with Increased Epochs: As observed, AdaLoRA shows only
slight performance improvements when training is extended from 2 to 5 epochs. Even with
the increase in epochs, AdaLoRA’s performance does not surpass that of LoRA, QLoRA, or
QR-Adaptor at 2 epochs.

* QR-Adaptor’s Consistency: QR-Adaptor consistently achieves superior performance
across all tasks, further validating the effectiveness of our method over other adaptive
rank-based approaches.

25

Under review as a conference paper at ICLR 2026

* 16-bit AdaLoRA Performance: Notably, AdaLoRA with 16-bit precision (not quantized)
still underperforms compared to LoRA and QLoRA, suggesting that the adaptive rank
mechanism alone is not enough, and the integration of mixed-precision quantization is
crucial.

G.6 IMPACT OF 2-BIT QUANTIZATION AND LOFTQ ITERATIONS

We have conducted additional experiments to explore the performance of LoftQ with 2-bit quantization
and its variations across different numbers of iterations.

In these experiments, we used the NF2 variant from LoftQ, based on QLoRA’s NF4, to implement
2-bit quantization, since QLoRA does not natively support this low-bit quantization (as stated in the
original paper and the GitHub repository). The 2-bit results in the LoftQ paper were also based on
this NF2 variant. We fine-tuned the models using a 52k dataset, with the rank for LoftQ set to 16. The
superscripts on LoftQ’s bit-width values represent the number of LoftQ iterations, with O iterations
considered approximately equivalent to QLoRA (since QLoRA does not provide a 2-bit quantization

type).

The results of our experiments are summarized in Table [I2]

Table 12: Performance comparison for 2-bit quantization and LoftQ iterations on LLaMA3.1-8B with 52k
fine-tuning dataset. Superscripts on LoftQ bits indicate the number of initialization iterations. Accuracy is
reported as %

Method Bit-width MMLU GSMS8K ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG
LoftQ 20 23.76 0.00 26.24 25.25 37.83 26.86 29.40 5255 49.18
LoftQ 2! 24.71 0.00 25.17 25.25 37.83 25.73 2920 51.58 49.33
LoftQ 25 24.65 0.00 25.17 24.83 37.83 26.30 2820 5141 49.41
LoftQ 210 24.80 0.00 26.02 25.25 37.83 2653 29.80 52.83 48.86

QR-Adaptor 3.625 62.58 0.53 55.93 82.43 82.13 7923 4560 81.83 74.79

KEY OBSERVATIONS

* MMLU Performance: For the MMLU dataset, which involves multiple-choice questions,
models with 2-bit quantization perform at approximately 25% accuracy, which is close to
random guessing. Thus, LoftQ’s 2-bit quantization yields little practical improvement for
MMLU on LLaMA3.1. This suggests that the performance of LoftQ with 2-bit quantization
is not robust on complex tasks.

* GSMSK Performance: On the GSMS8K dataset, LoftQ’s 2-bit quantization fails to provide
any meaningful performance, resulting in 0% accuracy. This highlights the challenges of
quantizing LLaMA3.1 to such low precision, especially on complex question-answering
tasks.

* Common Sense Reasoning Tasks: For simpler reasoning tasks like WinoGrande, the LoftQ
2-bit quantized models show some capacity to answer, but there is no significant difference
across LoftQ’s iterations, and the models still perform similarly to random guessing on most
datasets.

* QR-Adaptor Optimization: For QR-Adaptor, we optimized based on theoretical memory
savings from 4-bit quantization. Since 2-bit quantization does not reduce memory usage
effectively, we used the theoretical savings in our optimization process. This optimization
allowed QR-Adaptor to achieve better performance even when compared to LoftQ with
2-bit quantization.

CONCLUSION

From these results, we observe that LoftQ’s 2-bit quantization shows poor performance across the
board. Even with multiple iterations (up to 10), LoftQ struggles to achieve reasonable accuracy on
tasks like MMLU and GSMS8K. In contrast, QR-Adaptor, with its unified optimization of both rank
and bit-width during fine-tuning, consistently outperforms LoftQ and other methods.

26

Under review as a conference paper at ICLR 2026

Notably, while LoftQ’s 2-bit quantization performs poorly, QR-Adaptor manages to retain much
better performance by leveraging the advantages of mixed-precision quantization, making it a more
effective solution for LLaMA3.1. These findings suggest that for models requiring high precision,
such as LLaMA3.1, extreme quantization to 2-bit precision may not be viable, and more moderate
bit-widths, as used by QR-Adaptor, provide better results.

We hope these results contribute to the ongoing discussions in the community regarding effective
quantization strategies and provide further insights into the practical use of quantized models.

H VERSION OF LLMS

We provide the Hugging Face link of LLMs used in the experiment: LLaMA2-7B: https;
//huggingface.co/NousResearch/Llama-2-7b-hf; LLaMA2-13B: https://huggingface!
co/NousResearch/Llama-2-13b-hf; LLaMA3.1-8B: https://huggingface.co/meta-1lama/
Llama-3.1-8B.

I MORE IMPLEMENTATION DETAILS

In optimizing the pruned Llama2-7B model, a carefully designed hyperparameter configuration has
been implemented to strike a balance between model performance and computational efficiency.
The model is fine-tuned using a learning rate of 3 x 10~4, with a batch size of 128, divided into
micro-batches of 4 to effectively manage memory limitations. Input sequences are capped at 256
tokens, and a dropout rate of 0.05 is applied to the LoRA layers, specifically targeting the query,
key, value, and output projections, as well as the gate, down, and up projections. Layer-specific
quantization is applied at both 4-bit and 8-bit levels, optimizing memory usage while maintaining
computational accuracy. The training is performed using the paged AdamW optimizer with 32-bit
precision, ensuring both stability and efficiency. These settings have been rigorously tested and
refined through the Optuna framework to achieve an optimal balance between model performance
and resource efficiency.

J MORE ABLATION

We conducted comprehensive ablation studies to evaluate the impact of initialization metrics and
the sensitivity of the proposed Pareto Ranking Genetic Algorithm (PRGA) to key hyperparameters,
including iteration counts and population size. These experiments aim to further substantiate the
effectiveness of our proposed approach.

J.1 GRADIENT NORMS VS. RELATIVE ENTROPY

To assess the efficacy of initialization metrics, we compared the use of gradient norms and relative
entropy in quantifying layer importance for fine-tuning quantized LLMs. The experimental results
are summarized in Table I3

Table 13: Comparison of gradient norms and relative entropy as initialization metrics on Llama2-13B. Bold
values indicate the best performance for each task. Accuracy is reported as %

Initialization Metric BoolQ PIQA HellaS WinoG ARC(E) ARC(C) OBQA Average

Gradient Norms 80.79 80.13 79.16 71.69 78.72 50.97 45.40 69.51
Relative Entropy 81.08 80.83 79.80 71.98 79.13 51.65 45.60 70.07
Insights:

» Limitations of Gradient Norms: Gradient norms exhibit limited variability and are prone
to biases induced by quantization, which undermines their reliability as an initialization
metric for quantized models.

27

https://huggingface.co/NousResearch/Llama-2-7b-hf
https://huggingface.co/NousResearch/Llama-2-7b-hf
https://huggingface.co/NousResearch/Llama-2-13b-hf
https://huggingface.co/NousResearch/Llama-2-13b-hf
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B

Under review as a conference paper at ICLR 2026

Initial Initialization
Population From Previous Stage

Selection Crossover Mutation

. Combined
GiiEleg Merge Poéulaﬁon

Selection Parent-offspring .
Generation Elite

Cr'OSSoyer Retention

Mutation Strategy

ermination Conditioi

Output
Final Population

Figure 3: Detailed PRGA flow chart. The input is a set of solutions from the initialization, and the output is a
set of Pareto front solutions containing multiple solutions.

* Advantages of Relative Entropy: Relative entropy captures task-specific layer importance
more effectively, resulting in robust initialization and improved performance in downstream
optimization.

J.2 SENSITIVITY TO ITERATION COUNTS AND POPULATION SIZE
To analyze the sensitivity of PRGA to hyperparameters, we systematically varied the number of

iterations and population sizes. Table[I4] presents the results of these experiments.

Table 14: Sensitivity analysis of PRGA under different iteration counts and population sizes on Llama3.1-8B.
Bold values indicate the best configuration.

Iterations Population Size Average Improvement (%) \ Total Time (min) \

5 3 +0.8 72
5 5 +1.2 90
10 5 +1.5 135
5 20 +1.6 225
10 20 +2.3 270

Insights:

* Trade-offs in Population Size: Smaller population sizes (e.g., 3) reduce computational
cost but may fail to adequately explore the search space. Larger population sizes (e.g., 20)
improve exploration and convergence but increase computational overhead.

* Impact of Iteration Count: Increasing the number of iterations improves optimization
quality, as reflected in better Pareto fronts. However, the marginal benefits diminish beyond
10 iterations, indicating limited practical gains for further increases.

» Balanced Configuration: A population size of 5 and 5 iterations strikes a balance between
performance improvement and computational efficiency. This configuration can be adjusted
based on specific resource availability or performance requirements.

K VISUALIZATION OF OPTIMIZATION STAGES

Here we visualize Stage 2: Global Exploration with PRGA (in Figure [3) and Stage 3: Local
Refinement with Bayesian Optimization (in Figure §)

28

Under review as a conference paper at ICLR 2026

Weighted
Pareto Front Objective - -
Solutions Function Sotl)qholns with
From Previous Stage obj value (y)
Select |

Kernal Function (RBF)

Solutions with
largest obj value
*

Gaussian Process

Yes Output

Use to

ermination Conditio

Acquisition Function retrain
ET

Random search around
Update| solution with y*
Solution with largest

EI value

New solution with
largest obj value (ynew

xN

Figure 4: Detailed Bayesian optimization flow chart. Input is the Pareto front solution set from the global search,
and output is a set of optimal solutions obtained according to the requirements.

L LIMITATION

Compared to previous methods, the only additional cost is time, which is mainly introduced by testing
on the calibration dataset. Although the configurations optimized on different datasets have a certain
degree of portability, this limitation is reduced to some extent. In addition, we are studying some
approximate methods to speed up the process.

29

	Introduction
	Background and Motivation
	The Need for Layer-wise Heterogeneity
	Limitations of Continuous Proxies for a Discrete Problem

	QR-Adaptor: A Multi-Stage Framework for Joint Optimization
	A Multi-Objective Formulation for Quantized Adaptation
	The QR-Adaptor Search Pipeline
	Stage 1: Task-Informed Initialization
	Stage 2: Global Exploration with PRGA
	Stage 3: Local Refinement with Bayesian Optimization

	Evaluation
	Experimental Setup
	Main Results
	Computational Efficiency
	Ablation Study

	Related Work
	Conclusion
	Appendix
	
	Extended Related Work
	Use of LLMs
	On the Suboptimality of Continuous Proxies for Discrete Quantization
	Problem Formulation: Quantization as Projection
	Analysis of Iterative Low-Rank Refinement
	Formal Argument for Suboptimality
	The Discontinuous Optimization Landscape

	Quantization
	QR-Adaptor Search Process Details
	Search Hyperparameters and Configuration
	Task-Informed Initialization Algorithm

	Pseudo code of the specific algorithm in the QR-Adaptor framework
	More Results
	Experiment Scope Expansion: Llama 2 Series
	Visualization Results for the MMLU Task
	Effectiveness on Larger Datasets with Higher Ranks
	Fairer Comparison: Matching Bit-width Configurations
	Impact of Longer Fine-tuning Epochs on Unfixed Parameters
	Impact of 2-Bit Quantization and LoftQ Iterations

	Version of LLMs
	More Implementation Details
	More Ablation
	Gradient Norms vs. Relative Entropy
	Sensitivity to Iteration Counts and Population Size

	Visualization of Optimization Stages
	Limitation

