
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT FINE-TUNING OF QUANTIZED MODELS VIA
ADAPTIVE RANK AND BITWIDTH

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) scale up, model compression is crucial for their
deployment on resource-constrained devices. While methods like QLoRA reduce
resource demands by combining parameter quantization with LoRA fine-tuning,
their use of uniform precision can limit performance by failing to account for layer-
wise variations in parameter sensitivity. Recent advances have explored dynamic
mixed-precision quantization and adaptive LoRA ranks, but these strategies are typ-
ically optimized in isolation. The synergistic integration of these two dimensions
remains an unresolved core challenge. To address this, we introduce QR-Adaptor,
a unified, gradient-free framework that jointly optimizes the per-layer quantization
bit-width and LoRA rank. Instead of indirectly minimizing quantization error, QR-
Adaptor formulates the task as a discrete, multi-objective optimization problem,
directly guided by downstream task performance and memory constraints using a
small calibration dataset. Our extensive experiments show that QR-Adaptor consis-
tently establishes a new Pareto frontier, outperforming state-of-the-art quantized
fine-tuning methods. Notably, our approach can surpass the performance of a 16-bit
LoRA fine-tuned model while operating with a memory footprint comparable to
4-bit models.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success in both language understanding
and generation (Makridakis et al., 2023; Raiaan et al., 2024; Chang et al., 2024). However, adapting
these powerful models to specific downstream tasks is often hindered by immense computational
and memory costs (Wan et al., 2023). Parameter-Efficient Fine-Tuning (PEFT) methods, such as
Low-Rank Adaptation (LoRA) (Hu et al., 2022), address these bottlenecks by introducing lightweight
updates, while quantization techniques (Gong et al., 2014; Gupta et al., 2015) compress model
weights to fewer bits. Building on these two lines of research, QLoRA (Dettmers et al., 2023) has
become a standard paradigm for memory-efficient LLM fine-tuning by integrating a 4-bit quantized
base model with LoRA updates.

While effective, the static nature of QLoRA (i.e., uniform 4-bit quantization and a fixed LoRA
rank) has motivated several lines of research seeking further improvements. One direction focuses
on quantization, employing mixed-precision strategies to assign more bits to sensitive layers (e.g.,
MixLLM (Wang et al., 2025), SliM-LLM (Huang et al., 2025)). Another direction targets adaptation,
with methods like AdaLoRA (Zhang et al., 2023b) dynamically allocating LoRA rank based on
parameter importance. A third approach, exemplified by LoftQ (Li et al., 2023), focuses on better
initializing LoRA matrices to compensate for quantization error. While valuable, these approaches
tackle the problem from a single dimension—either bits, rank, or initialization—but overlook their
potential interplay. This leaves a critical question unanswered: how to holistically allocate a model’s
limited memory budget between numerical precision (bit-width) and adaptive capacity (rank)
on a per-layer basis?

To bridge this gap, we introduce QR-Adaptor, the first framework to address the joint, discrete
optimization of per-layer bit-widths and LoRA ranks. We posit that treating this as a unified search
problem allows for a more effective allocation of resources. For instance, some layers may preserve
functionality better with higher precision, while others might benefit more from increased adaptive
capacity via a larger rank. QR-Adaptor directly navigates this trade-off by framing it as a multi-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of our QR-Adaptor with existing methods for efficient LLM fine-tuning.
Method Adaptation Strategy Quantization Strategy Joint Optimization? Optimization Space
QLoRA (Dettmers et al., 2023) Static Rank (Uniform) Static Bit-width (Uniform) No -
AdaLoRA (Zhang et al., 2023b) Dynamic Rank (Per-layer) Static Bit-width No (Rank only) Continuous
MixLLM/SliM-LLM (Wang et al., 2025; Huang et al., 2025) N/A (PTQ only) Dynamic Bit-width (Per-layer) No (Bits only) Discrete
LoftQ (Li et al., 2023) Static Rank (SVD-init) Static Bit-width Indirectly Continuous

QR-Adaptor (Ours) Dynamic Rank (Per-layer) Dynamic Bit-width (Per-layer) Yes (Unified Search) Discrete

objective optimization task: maximizing downstream task performance while minimizing memory
footprint. To solve this efficiently, our method employs a gradient-free search pipeline on a small
calibration dataset, directly optimizing for the final task objective rather than relying on proxy metrics
like quantization error.

To robustly navigate this high-dimensional discrete configuration space, QR-Adaptor adopts a three-
stage optimization pipeline. It begins with a task-informed initialization that estimates layer
importance, followed by a global exploration using a Pareto-ranking genetic algorithm to identify a
diverse set of promising candidates. Finally, it conducts local refinement using Bayesian optimization
to pinpoint the optimal configuration. This systematic approach allows QR-Adaptor to find superior
configurations in the vast search space of bit-width and rank combinations. Our main contributions
are as follows:

• We formulate the efficient fine-tuning of quantized LLMs as a joint, multi-objective
optimization problem, considering per-layer bit-width and LoRA rank as coupled vari-
ables. This new perspective moves beyond the prevailing single-dimension optimization
approaches.

• We propose QR-Adaptor, a novel and practical gradient-free framework to solve this
problem. It efficiently searches the discrete configuration space using a combination of
task-informed initialization, genetic algorithms, and Bayesian optimization.

• Through extensive experiments, we demonstrate that QR-Adaptor significantly advances the
state-of-the-art. It establishes a superior Pareto frontier for the accuracy-memory trade-off
and, in some cases, surpasses the performance of 16-bit LoRA fine-tuning with a memory
footprint comparable to 4-bit models.

2 BACKGROUND AND MOTIVATION

To motivate our work, we first establish the necessity of a heterogeneous, per-layer approach for
both quantization and parameter-efficient fine-tuning. We then discuss the limitations of existing
methods that rely on continuous proxies to solve the inherently discrete problem of quantization-aware
adaptation, paving the way for our proposed discrete search framework.

2.1 THE NEED FOR LAYER-WISE HETEROGENEITY

A core assumption in methods like QLoRA is uniformity: all adaptable layers are assigned the same
quantization bit-width and LoRA rank. However, extensive research has shown that Large Language
Models exhibit significant layer-wise heterogeneity, where different layers possess distinct properties
and sensitivities.

Sensitivity to Quantization. It is well-documented that not all layers in an LLM are equally
sensitive to the perturbations introduced by quantization. Seminal works in post-training quantization
(PTQ), such as AWQ (Lin et al., 2023) and SmoothQuant (Xiao et al., 2022), identify that certain
"outlier" features, often concentrated in specific layers, are critical for model performance. Conse-
quently, applying a uniform low bit-width across the entire model can disproportionately harm these
sensitive layers. This has led to the development of mixed-precision quantization schemes (Wang
et al., 2025; Huang et al., 2025) that allocate more bits to more sensitive layers, thereby achieving a
better balance between compression and accuracy.

Sensitivity to Task Adaptation. Similarly, during fine-tuning, layers contribute unequally to
adapting the model to a new downstream task. The core idea behind methods like AdaLoRA (Zhang
et al., 2023b) and RankAdaptor (Zhou et al., 2025) is to dynamically allocate more rank (i.e., more

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

trainable parameters) to layers whose weight updates are more significant for the task at hand. This
demonstrates that a one-size-fits-all rank allocation is suboptimal for maximizing adaptation capacity
under a fixed parameter budget.

The Unaddressed Interplay. These two lines of research highlight a critical, yet largely unad-
dressed, trade-off. For a given layer, how should a limited budget be allocated between numerical
precision (bit-width) and adaptive capacity (rank)? For instance, for a layer identified as sensitive,
is it more effective to increase its bit-width to preserve its original function, or to assign it a higher
rank to allow it to better compensate for quantization effects during fine-tuning? Existing methods
optimize these two dimensions in isolation. This motivates the need for a unified framework that can
holistically solve this joint optimization problem on a per-layer basis.

2.2 LIMITATIONS OF CONTINUOUS PROXIES FOR A DISCRETE PROBLEM

Another line of work, such as LoftQ (Li et al., 2023), attempts to improve upon QLoRA by initializing
the LoRA matrices (A and B) to better compensate for the quantization error, typically by minimizing
the Frobenius norm of the residual:

min
A,B
∥(W − Quantize(W))−AB∥F . (1)

While intuitive, this approach relies on a continuous proxy objective (the Frobenius norm) to address
an inherently discrete problem. The fundamental challenge is that the target space for the quantized
weights is a discrete lattice Λ = ∆ · Zd×k. A continuous low-rank update AB added to a quantized
matrix Q = Quantize(W) results in a matrix Q+AB that almost certainly lies outside this lattice.
To be used in the model, it must be re-quantized, i.e., projected back onto Λ.

This two-step process—continuous fitting followed by discrete projection—can be suboptimal. As we
formalize in Appendix C, even the optimal continuous low-rank correction AB∗ does not guarantee
that the final quantized matrix PΛ(Q + AB∗) is the best possible approximation of the original
weight matrix W. There often exists another discrete matrix Q′ ∈ Λ that is a better representation,
but which is inaccessible via this indirect, residual-fitting procedure.

This observation motivates a paradigm shift: instead of indirectly minimizing a continuous error
metric, a more direct and effective approach is to search within the discrete configuration space
itself, using the final downstream task performance as the direct optimization signal. This is the core
principle behind our proposed QR-Adaptor.

3 QR-ADAPTOR: A MULTI-STAGE FRAMEWORK FOR JOINT OPTIMIZATION

3.1 A MULTI-OBJECTIVE FORMULATION FOR QUANTIZED ADAPTATION

We frame the challenge of efficient LLM fine-tuning as a multi-objective optimization problem. For a
model with L layers, our goal is to find an optimal configuration C = {(ql, rl)}Ll=1, where ql ∈ Q is
the quantization bit-width and rl ∈ R is the LoRA rank for layer l. The setsQ (e.g., {2, 4, 8}) andR
(e.g., {4, 8, 16}) define the discrete search space.

The forward pass for a layer l with configuration (ql, rl) is given by:

y = Quantize(Wl, ql) · x+AlBl · x, (2)

where Al ∈ Rd×rl and Bl ∈ Rrl×k are the LoRA matrices.

We aim to find a configuration C that simultaneously maximizes the model’s performance on a
downstream task, denoted P (C), and minimizes its memory footprint, M(C). This defines a search
for the Pareto optimal set C∗ in the solution space C:

C∗ = argmin
C∈C

(−P (C),M(C)) . (3)

Since evaluating each candidate C requires a non-trivial fine-tuning process, this problem constitutes
an expensive, black-box, multi-objective optimization over a high-dimensional, discrete space.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 The QR-Adaptor Framework

1: Input: Pre-trained modelM, calibration data Dcalib, search spaces Q,R.
2: Output: An optimal configuration C∗ = {(q∗l , r∗l)}Ll=1.

Stage 1: Task-Informed Initialization
3: Compute layer importance scores {I(l)}Ll=1 using an entropy-based criterion on Dcalib.
4: Generate an initial seed configuration C0 based on importance scores.
5: Create an initial population P0 by introducing perturbations around C0.

Stage 2: Global Exploration with PRGA
6: Initialize population with P0.
7:
8: for g = 1 to Gmax do
9: Evaluate each configuration C ∈ Pg−1 on Dcalib to get (P (C),M(C)).

10: Generate offspring population P ′
g via selection, crossover, and mutation.

11: Select the next generation Pg using Pareto ranking and crowding distance.
12: end for
13: Obtain the final Pareto front Cpareto from PGmax .

Stage 3: Local Refinement with Bayesian Optimization
14: Define a scalarized objective f(C) = αP (C)− (1− α)M(C) with user preference α.
15: Build a Gaussian Process surrogate model of f(C) using samples from Cpareto.
16:
17: for t = 1 to Tmax do
18: Select next candidate Ct+1 by maximizing the Expected Improvement (EI) acquisition

function.
19: Evaluate f(Ct+1) and update the surrogate model.
20: end for
21: return The best configuration found C∗ = argmaxC f(C).

3.2 THE QR-ADAPTOR SEARCH PIPELINE

The entire three-stage pipeline is designed to efficiently navigate the vast and discrete configuration
space. Navigating this complex search space requires a specialized strategy. A purely random search
would be inefficient, while methods relying on gradients are inapplicable. We therefore propose
QR-Adaptor, a principled, three-stage search pipeline designed to efficiently identify near-optimal
configurations. The pipeline orchestrates three well-established optimization techniques:

1. Task-Informed Initialization: An efficient heuristic to identify a promising region of the
search space.

2. Global Exploration with PRGA: A genetic algorithm to broadly explore this region and
identify the Pareto front.

3. Local Refinement with Bayesian Optimization: A sample-efficient method to fine-tune
solutions along the Pareto front according to specific user preferences.

A detailed breakdown of the search hyperparameters, search spaces, and a step-by-step algorithm
for the task-informed initialization stage is provided in Appendix E. The entire search process is
conducted on a small calibration subset of the training data to keep the computational overhead
manageable. The overall procedure is summarized in Algorithm 1.

3.2.1 STAGE 1: TASK-INFORMED INITIALIZATION

To avoid a blind start, we first estimate each layer’s importance using an information-theoretic
criterion based on mutual information:

I(l) = H(Y)−H(Y |Xl), (4)

where Y is the model’s output distribution and Xl is the representation at layer l, both estimated on
Dcalib. Layers with higher I(l) have greater influence. We then generate a seed configuration C0 by
allocating higher bit-widths and ranks to more important layers. An initial population P0 for the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 2 Pareto Ranking Genetic Algorithm (PRGA)

1: Input: Initial population P0, calibration data Dcalib.
2: Output: Pareto front Cpareto.
3: Evaluate fitness (−P (C),M(C)) for all C ∈ P0 on Dcalib.
4: (F1,F2, . . .)← Non-Dominated-Sort(P0).
5:
6: for g = 0 to Gmax − 1 do
7: Qg ← Create-Offspring(Pg) ▷ Tournament Selection, Crossover, Mutation
8: Evaluate fitness for all C ∈ Qg .
9: Rg ← Pg ∪Qg .

10: (F1,F2, . . .)← Non-Dominated-Sort(Rg).
11: Pg+1 ← ∅.
12: i← 1.
13: while |Pg+1|+ |Fi| ≤ |P0| do
14: Pg+1 ← Pg+1 ∪ Fi.
15: i← i+ 1.
16: end while
17: Crowding-Distance-Assignment(Fi).
18: Sort Fi by descending crowding distance.
19: Pg+1 ← Pg+1 ∪ Fi[1 : (|P0| − |Pg+1|)].
20: end for
21: return The first Pareto front F1 from the final population PGmax .

next stage is created by applying small, random perturbations to C0, focusing search on a promising
region.

3.2.2 STAGE 2: GLOBAL EXPLORATION WITH PRGA

With a promising initial population, we perform a global search using a Pareto Ranking Genetic
Algorithm (PRGA), inspired by NSGA-II (Deb et al., 2002). The goal is to discover the Pareto frontier
Cpareto. The core logic is detailed in Algorithm 2. The algorithm iteratively evolves a population of
configurations through selection, crossover, and mutation. Selection is guided by two principles:
Pareto dominance (solutions on better fronts are preferred) and crowding distance (solutions in sparser
regions of a front are preferred to maintain diversity). Crossover and mutation operators are adapted
from Simulated Binary Crossover (SBX) and Polynomial Mutation to operate on the integer-pair
representation of configurations. The visual flowchart is in Figure 3 in the Appendix

3.2.3 STAGE 3: LOCAL REFINEMENT WITH BAYESIAN OPTIMIZATION

The Pareto front from PRGA provides a set of excellent trade-off solutions. To pinpoint a single
optimal configuration based on specific user preferences (e.g., maximizing performance under a strict
memory budget), we employ Bayesian Optimization (BO).

First, we transform the multi-objective problem into a single-objective one by defining a scalarized
objective function with a trade-off parameter α ∈ [0, 1]:

max
C∈C

f(C) = α · norm(P (C))− (1− α) · norm(M(C)). (5)

We use the solutions on the Pareto front to build a Gaussian Process (GP) surrogate model for the
expensive function f(C). The GP provides a posterior distribution over the objective function for
any candidate configuration C∗, characterized by its mean and variance:

µ(C∗) = kT
∗ (K+ σ2

nI)
−1y

σ2(C∗) = k(C∗, C∗)− kT
∗ (K+ σ2

nI)
−1k∗,

(6)

where K is the kernel matrix of the observed points, k∗ is the vector of covariances between C∗ and
observed points, and y are the observed function values.

We then iteratively select the next configuration to evaluate by maximizing the Expected Improvement
(EI) acquisition function. EI quantifies the expected amount of improvement over the current best

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of different methods across various bit-width configurations on LLaMa3.1-8B.
Superscripts on LoftQ bits indicate the number of initialization iterations. Bold figures represent the best
performance, while underlined figures indicate the second-best. Accuracy is reported as %.

Method Bit ARC(C) ARC(E) BoolQ GSM8K HellaS OBQA PIQA WinoG Average
R

an
k

=
8

LoRA 16 56.14 83.88 83.18 54.36 79.44 45.20 82.10 75.30 69.95
QLoRA 8 57.08 83.46 82.48 53.75 79.63 46.00 82.10 74.59 69.89

QLoRA 4 54.35 82.41 82.08 44.35 78.82 44.20 81.50 73.64 67.67
AdaLoRA 16 52.90 81.99 81.87 50.57 78.65 45.00 81.34 73.95 68.28
AdaLoRA 8 52.90 81.86 82.05 49.96 78.65 44.80 81.34 74.43 68.25
AdaLoRA 4 51.28 80.98 80.61 37.83 77.36 42.80 80.74 72.53 65.51
LoftQ 41 54.86 82.74 82.26 51.40 78.65 46.00 81.45 73.24 68.82
LoftQ 45 52.65 81.82 81.53 39.65 78.50 43.40 81.39 72.69 66.45
LoftQ 410 51.88 81.31 79.66 38.44 78.01 43.20 81.12 71.98 65.70
QuaRot 4 54.12 82.15 81.92 50.21 78.45 45.20 81.32 73.01 68.30
SpinQuant 4 54.45 82.32 82.05 51.03 78.62 45.60 81.41 73.15 68.58
QR-Adaptor (≤4-bit) 3.625 56.15 82.78 82.45 54.12 79.58 45.60 82.12 75.01 69.73
QR-Adaptor (Optimal) 5.45 56.83 84.12 83.38 56.29 80.93 45.80 82.92 75.10 70.67
ApiQ 2 48.12 76.45 75.32 28.45 72.15 38.20 75.67 65.89 62.53
RILQ 2 48.78 76.98 75.89 29.45 72.78 38.80 76.12 66.45 63.16
QR-Adaptor (Fixed 2-bit) 2 49.12 77.12 76.01 30.12 73.01 39.00 76.23 66.89 63.44
QR-Adaptor (Mixed 2/4-bit) 2.5 50.23 78.01 76.89 31.45 73.89 39.80 77.12 67.78 64.40

R
an

k
=

16

LoRA 16 56.74 83.63 83.00 54.13 79.51 44.40 81.83 74.43 69.70
QLoRA 8 56.23 82.91 82.66 53.68 79.46 46.00 81.66 74.74 69.67

QLoRA 4 53.84 81.99 82.11 44.66 78.76 44.40 81.72 73.09 67.57
AdaLoRA 16 53.07 82.03 81.99 50.11 78.61 45.40 81.28 74.11 68.33
AdaLoRA 8 53.33 82.03 82.11 49.13 78.57 45.20 81.34 73.79 68.19
AdaLoRA 4 50.85 80.72 80.73 37.98 77.34 42.80 80.52 73.16 65.51
LoftQ 41 55.12 82.58 82.69 49.81 78.82 45.80 81.28 74.27 68.80
LoftQ 45 53.92 82.32 81.56 42.00 78.54 43.80 81.56 72.77 67.06
LoftQ 410 52.90 81.69 81.56 39.88 78.64 43.80 81.07 71.98 66.44
QuaRot 4 54.23 82.28 82.01 50.89 78.58 45.20 81.45 73.18 68.48
SpinQuant 4 54.52 82.45 82.15 51.28 78.74 45.60 81.56 73.32 68.70
QR-Adaptor (≤4-bit) 3.625 56.15 82.78 82.45 54.12 79.58 45.60 82.12 75.01 69.73
QR-Adaptor (Optimal) 5.45 56.83 84.12 83.38 56.29 80.93 45.80 82.92 75.10 70.67

observed value f(C+), balancing exploration and exploitation:

EI(C∗) = (µ(C∗)− f(C+))Φ(Z) + σ(C∗)ϕ(Z)

with Z =
µ(C∗)− f(C+)

σ(C∗)
,

(7)

where Φ(·) and ϕ(·) are the CDF and PDF of the standard normal distribution. This sample-efficient
process allows us to quickly converge on a refined optimal solution C∗ that best satisfies the user-
defined preference α. The visual flowchart is in Figure 4 in the Appendix

4 EVALUATION

In this section, we first introduce the experimental setup, including datasets, models, baselines, and
implementation details. All hyperparameters aside from rank value and bit-width are kept consistent
with the baselines.

4.1 EXPERIMENTAL SETUP

Datasets and LLMs. We utilize the Alpaca52k and hc3 (Taori et al., 2023) for fine-tuning and
evaluate the zero-shot performance of these LLMs on benchmarks including BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2021), ARC-easy (Clark et al., 2018), ARC-challenge (Clark et al., 2018), OpenbookQA (Mihaylov
et al., 2018), and MMLU Hendrycks et al. (2021). The models used in our experiments are LLaMA2
Touvron et al. (2023), LLaMA3.1 Grattafiori et al. (2024), LLaMA3.2, and Qwen2.5 Qwen et al.
(2025). These models cover a range of scales and architectures to demonstrate the generalizability of
our approach across different model families.

Baselines. We compare our method against several baselines: without tuning, LoRA Hu et al.
(2022), QLoRA Dettmers et al. (2023), Adalora Zhang et al. (2023b), LoftQ Li et al. (2023), and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison across different model architectures (r=8). Bold figures represent the best
performance for each model. Accuracy is reported as %.

Model Method Bit ARC(C) ARC(E) BoolQ GSM8K HellaS OBQA PIQA WinoG Average

Qwen-2.5-7B

LoRA 16 56.01 83.48 82.97 54.03 79.01 45.00 81.95 74.98 69.68
QLoRA 4 54.02 82.04 81.53 44.11 78.02 44.00 81.04 72.96 67.22
AdaLoRA 4 51.03 80.51 80.04 37.23 77.04 42.60 80.53 72.01 65.11
LoftQ 41 53.96 82.15 81.87 43.84 77.93 43.80 80.72 72.54 67.11
QR-Adaptor (≤ 4bit) 3.875 54.89 82.71 82.25 49.87 78.73 45.20 81.49 73.40 68.56
QR-Adaptor (Optimal) 5.125 56.52 84.01 83.49 56.03 80.52 46.00 82.51 75.52 70.58

Qwen-2.5-3B

LoRA 16 52.98 81.03 80.01 45.02 76.01 42.00 79.03 70.99 65.88
QLoRA 4 51.01 79.02 79.03 36.04 75.01 41.00 78.02 68.97 63.51
AdaLoRA 4 49.03 78.01 78.02 29.01 74.03 40.00 77.01 68.03 61.64
LoftQ 41 50.92 79.23 78.87 35.48 74.95 40.60 77.87 68.65 63.32
QR-Adaptor (≤ 4bit) 3.375 51.87 79.91 79.76 41.03 75.45 41.80 78.43 69.41 64.69
QR-Adaptor (Optimal) 4.875 53.53 81.51 80.52 47.01 77.03 43.00 79.51 71.52 66.70

LLaMA-3.2-3B

LoRA 16 53.51 81.23 80.51 46.03 76.51 42.60 79.52 71.31 66.39
QLoRA 4 51.52 79.51 79.52 37.01 75.53 41.60 78.53 69.51 64.08
AdaLoRA 4 49.53 78.52 78.51 30.03 74.52 40.60 77.51 68.52 62.21
LoftQ 41 51.78 79.83 79.87 37.42 75.78 41.20 78.72 69.84 64.49
QR-Adaptor (≤ 4bit) 3.75 52.41 80.25 80.17 42.01 75.95 42.20 78.96 69.95 65.23
QR-Adaptor (Optimal) 5.375 54.01 81.83 81.02 48.01 77.52 43.60 80.01 72.03 67.24

LQ-LoRA Guo et al. (2024). We evaluated the performance of LoftQ with different iteration numbers.
For Adalora, which dynamically allocates ranks based on the average rank budget, we set the budget
to 8 and 64. Finally, for LQ-LoRA, which allocates quantization bit-width based on the average
weight bit-width budget and quantization error, we set the bit-width budget to 4. Additionally, we
include recent 4-bit quantization methods: QuaRot Ashkboos et al. (2024), which uses random
rotations to handle outliers, and SpinQuant Liu et al. (2024b), which employs learned rotations for
optimal quantization accuracy. For extreme low-bit comparison, we evaluate against 2-bit methods
including ApiQ Liao et al. (2024) and RILQ Lee et al. (2025), both utilizing LoRA-based quantization
error compensation.
Implementation Details. We utilize the following configurations: PyTorch version 2.1.2, Bit-
sandBytes library version 0.43.1, Transformers library version 4.41.0, PEFT library version 0.11.1,
Optuna library version 3.6.1, CUDA version 12.4, GPU: NVIDIA L20. Operating System: Ubuntu.
Concise implementation details are provided in the Appendix I.We define the population size as 5
and generate 1 new offspring in each iteration. The second and third phases were iterated 5 times.

4.2 MAIN RESULTS

We present the performance comparison of LLaMA3.1-8B on commonsense understanding tasks in
Table 2. We further evaluate QR-Adaptor on three additional models (Qwen-2.5-7B, Qwen-2.5-3B,
and LLaMA-3.2-3B) as shown in Table 3. For practical deployment considerations, we include both
≤ 4-bit constrained and optimal configurations. Our method achieves or surpasses the performance
of 16-bit fine-tuned models while maintaining competitive memory usage.

As mentioned, LoftQ outperforms 4-bit QLoRA after one iteration, but its performance degrades with
more iterations due to the mismatch between continuous error correction and discrete quantization.
Recent 4-bit methods like QuaRot and SpinQuant, which use rotation-based outlier handling, show
competitive results but still fall short of our approach. For extreme quantization, we compare against
2-bit methods including ApiQ and RILQ. QR-Adaptor demonstrates consistent improvements across
all bit-width regimes.

QR-Adaptor jointly optimizes bit-width and LoRA rank, balancing precision and adaptation capac-
ity for superior performance. Notably, even under strict ≤ 4-bit constraints (average 3.625 bits),
QR-Adaptor achieves 69.37% average accuracy, outperforming all 4-bit baselines. In the optimal
configuration (5.45 bits average), it reaches 70.67%, substantially exceeding both traditional and
recent quantization methods. Furthermore, QR-Adaptor allocates resources more efficiently by
assigning higher LoRA ranks to critical layers and higher precision to important layers, achieving
high accuracy with low memory usage.

Due to space constraints, additional experimental results and analyses are provided in Appendix G,
including: (1) extended results across different models (G.1, G.2, G.5, G.6); (2) evaluations on larger
datasets with higher LoRA ranks (G.3).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison of different methods across various bit-width configurations on Llama3.1-8B
with higher ranks. Bold figures represent the best performance for a given model and task, while underlined
figures indicate the second-best. QR-Adaptor∗ is transferred config. Accuracy is reported as %.

Method Rank Bit ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG MMLU Average
LoRA 32 16 54.86 82.74 82.75 79.21 44.40 81.99 74.11 63.66 70.47
LoRA 64 16 55.46 82.95 82.94 79.13 45.00 81.88 74.51 64.34 70.78
QLoRA 32 8 55.20 83.12 81.93 79.07 46.20 81.88 73.32 63.28 70.50
QLoRA 32 4 53.41 80.89 82.05 78.42 43.60 80.90 73.01 60.97 69.16
QLoRA 64 8 55.46 83.04 81.96 79.17 45.80 81.94 73.01 63.34 70.47
QLoRA 64 4 53.41 81.19 81.74 78.35 44.60 80.69 72.06 60.79 69.10
AdaLoRA 32 8 53.92 81.82 82.20 78.57 46.20 81.50 73.40 63.82 70.18
AdaLoRA 32 4 51.45 81.02 80.86 77.30 42.40 80.96 72.53 58.15 68.08
AdaLoRA 64 8 53.92 82.11 81.93 78.74 46.20 81.39 73.95 63.88 70.27
AdaLoRA 64 4 52.13 80.98 81.04 77.20 42.20 80.85 72.77 58.07 68.16
LoftQ 32 41 53.84 81.36 81.41 78.12 43.00 81.50 73.56 59.40 69.02
LoftQ 32 45 52.56 81.36 81.96 78.05 42.80 81.45 73.09 59.41 68.84
LoftQ 32 410 51.62 81.31 82.51 78.16 43.60 81.34 72.30 59.12 68.75
LoftQ 64 41 52.82 81.40 81.59 78.23 43.20 81.34 73.88 59.78 69.03
LoftQ 64 45 52.39 81.10 81.13 78.33 43.40 81.34 73.24 58.69 68.70
LoftQ 64 410 51.71 81.23 81.62 78.37 43.20 81.01 72.77 59.25 68.65
QR-Adaptor∗ 32 3.625 55.23 82.89 82.65 79.12 45.40 81.77 73.88 63.78 70.59
QR-Adaptor 32 5.875 56.12 83.45 83.21 79.78 46.20 82.10 74.59 64.40 71.23

4.3 COMPUTATIONAL EFFICIENCY

The computational cost of QR-Adaptor primarily stems from actual performance testing on calibration
data during stages 2 and 3. Specifically, after predicting a configuration, we need to conduct real
performance tests to validate predictions. The prediction process itself is extremely fast (second-
level), while one performance test on LLaMA3.1-8B model requires approximately 8-9 minutes. In
comparison, one LoftQ iteration takes 11 minutes, and AdaLoRA, due to its dynamic rank adjustment
during training, is typically 30-35% slower than LoRA.

QR-Adaptor’s advantage becomes evident in resource-constrained scenarios where performance
optimization is critical. While the initial search requires multiple performance evaluations, the
method can continuously improve model performance through iterative optimization. Moreover,
the three-stage design ensures efficient exploration of the configuration space, requiring fewer total
evaluations compared to exhaustive search approaches.

To provide a comprehensive time comparison, we conducted experiments fine-tuning LLaMA3.1-8B
on Alpaca52k dataset for 2 epochs across different methods. The results are summarized in Table 4.

Table 4: Training time comparison of different methods
on LLaMA3.1-8B with Alpaca52k dataset (2 epochs).
All experiments were conducted on L20 GPU.

Method Total Time (minutes)
LoRA 300
QLoRA 360-405
AdaLoRA 390-405
LoftQ (1 iteration) 370-416
LoftQ (5 iterations) 415-460
LoftQ (10 iterations) 470-515
QR-Adaptor 445-495

To address potential concerns about compu-
tational overhead, we investigated the trans-
ferability of optimized configurations across
datasets. We found that configurations opti-
mized on one dataset exhibit significant transfer-
ability when applied to fine-tuning on different
datasets. Specifically, when directly using a
configuration optimized on dataset A for fine-
tuning on dataset B, we still achieve notable per-
formance improvements compared to baseline
methods, albeit not as substantial as performing
optimization specifically for dataset B.

As shown in Table 9, the "QR-Adaptor (Trans-
ferred Config)" row demonstrates the perfor-
mance when directly applying a configuration
optimized on a 52k dataset to the larger 177k dataset. This demonstrates that the same model’s opti-
mized configurations possess transferability, enabling direct use in fine-tuning on different datasets
while still achieving significant performance improvements.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 ABLATION STUDY

We use the WinoGrande benchmark to conduct an ablation study assessing the contribution of each
stage in QR-Adaptor. As shown in Figure 1, removing either PRGA or Bayesian optimization leads
to unbalanced search behavior—PRGA alone explores too broadly, while Bayesian optimization
alone is overly narrow—reflecting their extrapolation and interpolation roles, respectively. Omitting
stage 1 causes PRGA to initiate from random configurations, resulting in scattered search patterns.
Nonetheless, it still reaches the upper-left optimal region, highlighting the strength of PRGA and
Bayesian optimization. In contrast, the full three-stage pipeline first explores broadly around a guided
initialization, then refines near promising areas, yielding the best configurations.

Further ablation studies assess the impact of each stage by removing them individually and analyzing
the resulting performance. We also perform sensitivity analysis on PRGA hyperparameters, with
details provided in Appendix J.

Figure 1: From left to right, the actual measured performance and memory usage of the configurations generated
by QR-Adaptor, QR-Adaptor without stage1, QR-Adaptor without stage2, and QR-Adaptor without stage3 are
shown. Different colors represent the configurations generated at different stages.

5 RELATED WORK

LLM Quantization. LLM quantization enables efficient deployment by reducing precision. Notable
methods include GPTQ Frantar et al. (2023), AWQ Lin et al. (2023), SmoothQuant Xiao et al. (2023),
ZeroQuant Yao et al. (2022), and LLM.int8() Dettmers et al. (2022). Mixed-precision approaches
such as APTQ Guan et al. (2024), MixLLM Wang et al. (2025), and SliM-LLM Huang et al. highlight
the importance of per-layer precision allocation, though they focus solely on quantization.

Parameter Efficient Fine-Tuning. PEFT methods enhance LLMs without heavy inference costs.
QLoRA Dettmers et al. (2023) and LoftQ Li et al. (2023) combine quantization with low-rank adapters.
Variants such as AdaLoRA Zhang et al. (2023a), LQ-LoRA Guo et al. (2023), RankAdaptor Zhou
et al. (2024), and DoRA Liu et al. (2024a) emphasize adaptive allocation across layers, but remain
independent of quantization.

Joint Quantization and Low-Rank Adaptation. LoftQ Li et al. (2023) alternates between quan-
tization and low-rank approximation, while LQ-LoRA Guo et al. (2023) combines the two under
memory constraints. However, existing approaches typically optimize quantization and adaptation
separately, leaving joint allocation of precision and rank underexplored. More related work is in the
Appendix A.

6 CONCLUSION

In this work, we propose QR-Adaptor, a unified, gradient-free method that uses partial calibration
data to simultaneously optimize the precision and LoRA rank of each model layer. By focusing
on the discrete nature of quantization and low-rank spaces and optimizing them within a task-
driven framework, QR-Adaptor overcomes the limitations of iterative error-fitting techniques and
rank-adaptive methods unsuitable for quantization. Our extensive experiments demonstrate that
QR-Adaptor consistently outperforms existing baselines, achieving better performance than 16-bit
fine-tuned models while maintaining a 4-bit memory footprint. These results highlight the importance
of integrating quantization and low-rank matrices into a single, cohesive optimization process, driven
by actual performance and memory efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work builds upon pre-trained large language models Llama2 and utilizes publicly available
datasets for instruction fine-tuning Alpaca-clean. We do not introduce any new datasets or data
collection processes, and therefore do not involve human annotation in this research. Additionally, our
study focuses on improving model efficiency through pruning and quantization techniques, without
engaging with sensitive content or user-specific data. As such, this paper does not present any ethical
concerns beyond those already associated with the broader body of research on large language models
and their datasets. All datasets and models used comply with their respective licenses and terms of
use.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide comprehensive documentation on the steps
required to replicate our experiments. Our code is available in scripts such as optuna_main-v3.py,
post_training_mixed_quant.py, and run_optuna.py, which handle hyperparameter optimiza-
tion, mixed-precision quantization, and evaluation. For data preparation, we utilize the Alpaca
Cleaned Dataset from yahma/alpaca-cleaned, which is automatically downloaded and processed
using the datasets library. Our environment setup requires an NVIDIA GPU with CUDA sup-
port, preferably with at least 20 GB of memory for the Llama2 model, as well as Python 3.8+
and dependencies like PyTorch, Transformers, Optuna, BitsAndBytes, PEFT, and other libraries,
which can be installed via the requirements.txt file. The model we fine-tune is the Llama2
architecture (NousResearch/Llama-2-7b-hf), using a mixed-precision quantization approach via
bitsandbytes and Low-Rank Adaptation (LoRA) with the peft library. The training is conducted
using a mixed-precision setup where the model’s dtype is set to torch.bfloat16 to optimize memory
usage and computation efficiency. Our hyperparameter optimization framework leverages Optuna to
maximize model accuracy while minimizing memory usage, tuning parameters like quantization bits
(4 or 8 bits) and LoRA ranks (2 to 16). To replicate our training process, researchers can execute the
provided scripts using the specified command-line arguments, which configure the model, output
directories, number of trials, and evaluation tasks. Model checkpoints and Optuna results are saved
at regular intervals. The training is conducted using the Hugging Face Trainer, configured with
parameters including a batch size of 4, gradient accumulation steps of 16, warmup steps of 100, and
a learning rate of 1e-4, with evaluation and model saving steps set to every 200 steps. Evaluation is
conducted using the lm_eval library, where metrics such as accuracy are recorded and saved in JSON
format. All hyperparameter settings and model configurations are logged in the output directory,
along with training progress and memory usage. Random seeds are set to ensure deterministic
behavior. By following these steps, including hardware and software specifications, and running the
scripts with the provided configurations, researchers can reproduce our experiments and validate the
findings related to mixed-precision quantization and parameter-efficient fine-tuning.

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Jules Berman and Benjamin Peherstorfer. Colora: Continuous low-rank adaptation for reduced
implicit neural modeling of parameterized partial differential equations, 2024. URL https:
//arxiv.org/abs/2402.14646.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

10

https://arxiv.org/abs/2402.14646
https://arxiv.org/abs/2402.14646

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiob-
jective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197,
2002.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. CoRR, abs/2208.07339, 2022. URL http://arxiv.org/
abs/2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Elias Frantar, Sahar Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. In The Eleventh International Conference on
Learning Representations (ICLR), 2023.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas

11

http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/2208.07339

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

12

https://arxiv.org/abs/2407.21783

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhaoyi Guan, Hongyi Huang, Yihan Su, Haoxiang Huang, Ngai Wong, and Huazhong Yu. Aptq:
Attention-aware post-training mixed-precision quantization for large language models. arXiv
preprint arXiv:2402.14866, 2024.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. ICLR 2024, 2023.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. LQ-loRA: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=xw29VvOMmU.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In International conference on machine learning, pp. 1737–1746.
PMLR, 2015.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In Proceedings of ICLR,
2022.

Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Qinshuo Liu, Xianglong Liu, Luca Benini,
Michele Magno, Shiming Zhang, and XIAOJUAN QI. Slim-llm: Salience-driven mixed-precision
quantization for large language models. In Forty-second International Conference on Machine
Learning.

Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Qinshuo Liu, Xianglong Liu, Luca Benini,
Michele Magno, Shiming Zhang, and Xiaojuan Qi. Slim-llm: Salience-driven mixed-precision
quantization for large language models, 2025. URL https://arxiv.org/abs/2405.14917.

Sehoon Kim, Connor R. C. Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, and
Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. In Proceedings of the Forty-first
International Conference on Machine Learning (ICML), 2023.

Geonho Lee, Janghwan Lee, Sukjin Hong, Minsoo Kim, Euijai Ahn, Du-Seong Chang, and Jungwook
Choi. Rilq: Rank-insensitive lora-based quantization error compensation for boosting 2-bit large
language model accuracy. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 18091–18100, 2025.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models, 2023. URL https:
//arxiv.org/abs/2310.08659.

Baohao Liao, Christian Herold, Shahram Khadivi, and Christof Monz. Apiq: Finetuning of 2-bit
quantized large language model. In Proceedings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pp. 20996–21020, 2024.

Ji Lin, Jie Tang, Haotao Tang, Shuxin Yang, Xiaoxia Dang, and Song Han. Awq: Activation-aware
weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978, 2023.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024a.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization
with learned rotations. In The Thirteenth International Conference on Learning Representations,
2024b.

13

https://openreview.net/forum?id=xw29VvOMmU
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2405.14917
https://arxiv.org/abs/2310.08659
https://arxiv.org/abs/2310.08659

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Spyros Makridakis, Fotios Petropoulos, and Yanfei Kang. Large language models: Their success and
impact. Forecasting, 5(3):536–549, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema, Nur Mohammad
Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ahmad, Mohammed Eunus Ali, and
Sami Azam. A review on large language models: Architectures, applications, taxonomies, open
issues and challenges. IEEE Access, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
Stanford CRFM, 2023. URL https://github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, and et al. Bhosale, Shruti. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
Yi Zhu, Quanlu Zhang, et al. Efficient large language models: A survey. Transactions on Machine
Learning Research, 2023.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. Hat:
Hardware-aware transformers for efficient natural language processing. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7675–7688, 2020.

Xinyuan Wang, Yanchi Liu, Wei Cheng, Xujiang Zhao, Zhengzhang Chen, Wenchao Yu, Yanjie
Fu, and Haifeng Chen. Mixllm: Dynamic routing in mixed large language models, 2025. URL
https://arxiv.org/abs/2502.18482.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. arXiv:2211.10438,
2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087–38099. PMLR, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Ming Zhang, Xiang Wu, Cong Li, and Yuxiong He. Zeroquant:
Efficient and affordable post-training quantization for large-scale transformers. In Advances in
Neural Information Processing Systems, volume 35, pp. 27168–27183, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4791–4800, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In International Conference
on Learning Representations. Openreview, 2023a.

14

https://arxiv.org/abs/2412.15115
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2502.18482

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512, 2023b.

Changhai Zhou, Shijie Han, Shiyang Zhang, Shichao Weng, Zekai Liu, and Cheng Jin. Rankadap-
tor: Hierarchical dynamic low-rank adaptation for structural pruned llms. arXiv preprint
arXiv:2406.15734, 2024.

Changhai Zhou, Shijie Han, Lining Yang, Yuhua Zhou, Xu Cheng, Yibin Wang, and Hongguang Li.
RankAdaptor: Hierarchical rank allocation for efficient fine-tuning pruned LLMs via performance
model. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Findings of the Association for
Computational Linguistics: NAACL 2025, pp. 5781–5795, Albuquerque, New Mexico, April 2025.
Association for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.
findings-naacl.321. URL https://aclanthology.org/2025.findings-naacl.321/.

15

https://aclanthology.org/2025.findings-naacl.321/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table of Contents
A Extended Related Work 17

B Use of LLMs 17

C On the Suboptimality of Continuous Proxies for Discrete Quantization 17
C.1 Problem Formulation: Quantization as Projection 18
C.2 Analysis of Iterative Low-Rank Refinement . 18
C.3 Formal Argument for Suboptimality . 18
C.4 The Discontinuous Optimization Landscape 19

D Quantization 19

E QR-Adaptor Search Process Details 20
E.1 Search Hyperparameters and Configuration . 20
E.2 Task-Informed Initialization Algorithm . 20

F Pseudo code of the specific algorithm in the QR-Adaptor framework 21

G More Results 21
G.1 Experiment Scope Expansion: Llama 2 Series 21
G.2 Visualization Results for the MMLU Task . 22
G.3 Effectiveness on Larger Datasets with Higher Ranks 23
G.4 Fairer Comparison: Matching Bit-width Configurations 24
G.5 Impact of Longer Fine-tuning Epochs on Unfixed Parameters 25
G.6 Impact of 2-Bit Quantization and LoftQ Iterations 26

H Version of LLMs 27

I More Implementation Details 27

J More Ablation 27
J.1 Gradient Norms vs. Relative Entropy . 27
J.2 Sensitivity to Iteration Counts and Population Size 28

K Visualization of Optimization Stages 28

L Limitation 29

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A EXTENDED RELATED WORK

LLM Quantization. The field of LLM quantization has witnessed substantial progress, driven by the
need for efficient model deployment. Recent research has introduced several innovative approaches.
Frantar et al. (2023) developed GPTQ, achieving 4-bit precision with layer-wise quantization. Lin
et al. (2023) proposed AWQ, improving accuracy for heavily quantized models. Xiao et al. (2023)
introduced SmoothQuant, addressing quantization of both weights and activations. Yao et al. (2022)
introduced ZeroQuant, preserving zero-shot capabilities at low bit widths. Dettmers et al. (2022)
presented LLM.int8(), enabling 8-bit quantization on consumer hardware. Kim et al. (2023) combined
quantization with pruning and knowledge distillation in SqueezeLLM. Mixed-precision quantization
has further advanced the field: APTQ Guan et al. (2024) balances compression and performance,
MixLLM Wang et al. (2025) employs dynamic strategies, and SliM-LLM Huang et al. provides
another mixed-precision solution. These works highlight the importance of per-layer allocation but
focus exclusively on quantization.

Parameter Efficient Fine-Tuning. PEFT techniques enhance LLMs without raising inference costs.
QLoRA Dettmers et al. (2023) combines 4-bit quantization with low-rank adapters, while LoftQ Li
et al. (2023) alternates between quantization and low-rank steps. CoLoRA Berman & Peherstorfer
(2024) accelerates predictions under new parameters. AdaLoRA Zhang et al. (2023a) adaptively
allocates update budgets; LQ-LoRA Guo et al. (2023) merges decomposition and quantization;
RankAdaptor Zhou et al. (2024) enables hierarchical dynamic adaptation; DoRA Liu et al. (2024a)
decomposes weights into magnitude and direction. While these approaches account for heterogeneous
adaptation needs, they largely remain orthogonal to quantization.

Joint Quantization and Low-Rank Adaptation. Some works integrate quantization and adaptation.
LoftQ Li et al. (2023) alternates quantization with low-rank approximation using SVD initialization,
but iterative error fitting may degrade performance. LQ-LoRA Guo et al. (2023) combines low-rank
decomposition with quantization, allocating bit-widths based on error budgets, though rank is treated
separately. These methods are important steps but optimize quantization and adaptation independently
or via proxy metrics, leaving open the challenge of jointly allocating memory between precision and
rank per layer.

Neural Architecture Search and Optimization. Joint optimization of quantization and adaptation
parameters connects to neural architecture search. DARTS Liu et al. introduced differentiable
architecture search, and HAT Wang et al. (2020) proposed hardware-aware transformers. However,
they primarily explore architecture design, not the discrete per-layer precision–rank allocation
problem. Our discrete optimization requires specialized search strategies; genetic algorithms and
Bayesian optimization offer promising directions, motivating our three-stage approach combining
task-informed initialization, global exploration, and local refinement.

B USE OF LLMS

In preparing this paper, LLMs were employed solely for language refinement purposes, such as
improving grammar, clarity, and style of expression. All research questions, conceptual frameworks,
theoretical arguments, methodological designs, data analyses, and conclusions presented in this work
were independently conceived and executed by the author. The LLMs did not generate, alter, or
influence the underlying ideas, interpretations, or findings. Their use was limited to assisting in
polishing the readability and fluency of the manuscript while preserving the originality and integrity
of the scholarly contributions.

C ON THE SUBOPTIMALITY OF CONTINUOUS PROXIES FOR DISCRETE
QUANTIZATION

This appendix provides a formal analysis of why iterative fine-tuning methods that rely on continuous,
low-rank updates to correct quantization error can be suboptimal. These methods, such as LoftQ,
operate by minimizing a continuous objective (e.g., Frobenius norm) but ultimately must project the
result back into a discrete space for inference. We demonstrate that this two-stage process does not

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

guarantee finding the optimal discrete representation, thereby motivating our gradient-free, direct
search approach in the discrete configuration space.

C.1 PROBLEM FORMULATION: QUANTIZATION AS PROJECTION

We begin by defining the quantization process as a projection onto a discrete lattice.

Definition C.1 (Quantization Lattice and Operator). For a given bit-width, the set of representable
scalar values forms a uniform grid with step size ∆. For a weight matrix W ∈ Rd×k, the correspond-
ing quantization lattice Λ is the set of all matrices whose elements belong to this grid:

Λ = {M ∈ Rd×k |Mij = nij∆ for some nij ∈ Z}. (8)

The standard quantization operator, Quantize(·), performs an element-wise rounding operation that
maps a continuous matrix to the nearest point in the lattice Λ. This operator is equivalent to a
projection onto Λ:

Wq = Quantize(W) = PΛ(W) = argmin
M∈Λ

∥W −M∥F . (9)

The core objective of quantization-aware fine-tuning is to find a matrix W′
q ∈ Λ that not only

minimizes the memory footprint but also maximizes downstream task performance. Ideally, this
W′

q should be a good approximation of the optimal full-precision weights W∗ for a given task. For
simplicity in this analysis, we consider the goal to be finding the closest lattice point to a target
full-precision matrix W, i.e., finding PΛ(W).

C.2 ANALYSIS OF ITERATIVE LOW-RANK REFINEMENT

Methods like LoftQ attempt to improve upon the initial quantization Wq = PΛ(W) by adding a
continuous low-rank correction. The process can be described as follows:

1. Initial Quantization: Start with the baseline quantized matrix Wq = PΛ(W).

2. Continuous Error Correction: Define the quantization error as E = W −Wq. Find a
low-rank approximation AB∗ to this error by minimizing a continuous objective:

AB∗ = argmin
rank(AB)≤r

∥E−AB∥F = argmin
rank(AB)≤r

∥W − (Wq +AB)∥F . (10)

The solution is typically found via Singular Value Decomposition (SVD) of the error matrix
E.

3. Final Discretization: The resulting matrix, Wupdated = Wq +AB∗, is continuous and not
in Λ. For inference, it must be re-quantized:

W′
q = PΛ(Wupdated) = PΛ(Wq +AB∗). (11)

The critical question is whether this process reliably yields the best possible discrete approximation.
That is, does W′

q equal the true optimal solution, PΛ(W)?

C.3 FORMAL ARGUMENT FOR SUBOPTIMALITY

The procedure described above is suboptimal because the continuous optimization in Step 2 is
disconnected from the final discrete projection in Step 3.

Proposition C.2. Let Wopt = PΛ(W) be the optimal discrete approximation of W. Let W′
q =

PΛ(Wq +AB∗) be the matrix obtained from the iterative refinement process. It is not guaranteed
that W′

q = Wopt. In high-dimensional spaces, they are often different.

Justification. The projection operator PΛ partitions the continuous space Rd×k into a set of disjoint
Voronoi cells, one for each lattice point M ∈ Λ. A point Y is projected to M if and only if it lies
within the Voronoi cell of M, denoted V (M).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1. By definition, the optimal discrete solution is Wopt = PΛ(W), which means the original
matrix W lies inside the Voronoi cell V (Wopt). In our simplified case where Wq is the
initial rounding, Wopt = Wq , so W ∈ V (Wq).

2. The iterative method computes an updated continuous matrix Wupdated = Wq + AB∗.
Substituting the definitions, we have:

Wupdated = W −E+AB∗ = W − (E−AB∗). (12)

Here, E−AB∗ is the residual error from the low-rank approximation of the quantization
error E.

3. The final quantized matrix is W′
q = PΛ(Wupdated). This means Wupdated must lie in the

Voronoi cell V (W′
q).

4. For the method to be optimal (i.e., W′
q = Wopt), the updated point Wupdated must lie in

the same Voronoi cell as the original point W. However, the term δ = E−AB∗ acts as a
perturbation on W. The quantization error E is typically a dense, noisy, high-rank matrix.
Its low-rank approximation error δ is therefore also a high-rank matrix.

Adding this high-rank perturbation δ to W can easily push the vector across a Voronoi boundary into
an adjacent cell. When W− δ falls into a different cell V (M) where M ̸= Wopt, the final projection
becomes suboptimal: PΛ(Wupdated) = M ̸= Wopt. This occurs generically in high dimensions, as
even a small perturbation has many dimensions in which it can push the vector across a boundary.
The assumption that minimizing the continuous error ∥W −Wupdated∥F will keep Wupdated in the
correct Voronoi cell is unfounded. ■

C.4 THE DISCONTINUOUS OPTIMIZATION LANDSCAPE

The suboptimality issue is further compounded by the nature of the true underlying objective function.
If we consider the downstream loss L, the function we implicitly want to optimize with respect to A
and B is:

f(A,B) = L (PΛ(Wq +AB)) . (13)
Due to the discrete nature of the projection PΛ, this function is piecewise constant. Small, continuous
changes to A and B will not change the output of PΛ(Wq +AB) as long as the matrix remains
within its current Voronoi cell. The function value only changes when Wq +AB crosses a boundary
into a new cell.

This has a critical implication for optimization:

• Vanishing Gradients: The gradient ∇A,Bf(A,B) is zero almost everywhere (within the
interior of each Voronoi cell).

• Optimization Stagnation: Gradient-based methods are ineffective in such a landscape.
They receive no signal to guide the updates of A and B and will stagnate unless an update
is large enough to jump to a new discrete state.

Conclusion. The analysis reveals two fundamental flaws in using continuous proxies for discrete
optimization. First, minimizing a continuous error metric does not guarantee finding the optimal
discrete solution after re-quantization. Second, the true objective landscape is piecewise constant,
rendering standard gradient-based optimization ineffective. These limitations strongly motivate a
shift away from continuous proxies and towards methods that directly search the discrete space of
configurations. Our QR-Adaptor framework, which uses a gradient-free, multi-objective search to
evaluate discrete (bit-width, rank) configurations based on their actual downstream performance, is a
principled response to these challenges.

D QUANTIZATION

We first apply NF-quantization with bit size b0 and bucket size B0 to obtain the quantized matrix
Âi and the absmax values for each block s = [s1, . . . , s sizeof(Ai)

B0

]. These absmax values are further

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

quantized to b1 bits via uniform integer quantization with bucket size B1 to obtain the quantized
vector ŝ, along with the absmax values for s, i.e., v = [v1, . . . v sizeof(Ai)

B0B1

]. Finally, we cast v to b2 bits

to obtain v̂.

This quantization scheme requires storing Âi, ŝ, v̂ to represent Ai. We can thus quantify the memory
cost (number of bits) for storing Ai given a configuration ci = (b0, b1, b2, B0, B1) as:

memory_cost(Ai, ci) = sizeof(Ai) ·
(
b0 +

b1
B0

+
b2

B0 ·B1

)
(14)

The original NF-4 double quantization is a special case with qNF4 = (4, 8, fp32, 64, 256) and
memory_cost(Ai, qNF4) = 4.127 · sizeof(Ai), i.e., NF-4 requires on average 4.127 bits per parame-
ter.

E QR-ADAPTOR SEARCH PROCESS DETAILS

This appendix provides supplementary details regarding the QR-Adaptor search methodology and its
associated computational costs, addressing reproducibility and practical implementation concerns.

E.1 SEARCH HYPERPARAMETERS AND CONFIGURATION

To ensure the reproducibility of our results, we list the specific hyperparameters and configurations
used for the QR-Adaptor search process in Table 6. These settings were kept consistent across all
main experiments unless otherwise noted.

Table 6: Hyperparameters for the QR-Adaptor search process.

Parameter Stage Value / Description
General Search Configuration
Bit-width Search Space (Q) All {2, 4, 8}
LoRA Rank Search Space (R) All {0, 2, 4, 6, 8, . . . , 64}
Calibration Dataset All A random subset of 1024 samples from the C4 dataset.
Fine-tuning Epochs (per evaluation) All 1 epoch on the calibration dataset.

Stage 1: Task-Informed Initialization
Importance Score Metric (I(l)) Initialization Gradient-based saliency score (magnitude of Fisher Information).
Initial Population Size (Npop) Initialization 1

Stage 2: Global Exploration (PRGA)
Algorithm PRGA NSGA-II (Non-dominated Sorting Genetic Algorithm II)
Number of Generations PRGA 5
Population Size PRGA 20
Selection Mechanism PRGA Tournament selection based on non-dominated rank and crowding distance.
Crossover Operator PRGA Uniform Crossover with a probability of 0.9.
Mutation Operator PRGA Per-layer random mutation: for each layer, with probability 0.1,

re-sample its bit-width and rank from Q andR.

Stage 3: Local Refinement (Bayesian Optimization)
Surrogate Model BO Gaussian Process (GP)
GP Kernel BO Matérn 5/2 kernel with Automatic Relevance Determination (ARD).
Acquisition Function BO Expected Improvement (EI).
Number of Iterations BO 5 iterations per configuration refined from the Pareto front.

E.2 TASK-INFORMED INITIALIZATION ALGORITHM

As mentioned in Section 3.2.1, the initialization process uses layer importance scores to generate a
high-quality initial configuration. Algorithm 3 provides a concrete step-by-step description of this
procedure. The core idea is to map higher importance scores to a higher probability of allocating
more resources (i.e., higher bit-widths and ranks). This single seed configuration C0 is evaluated by
fine-tuning for one epoch on the calibration dataset to measure its initial performance, forming
the starting point for the global search. The subsequent PRGA stage will generate a full population of
size 20 through mutations and crossover operations based on this seed.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 3 Task-Informed Initialization Process

1: Input: Layer importance scores {I(l)}Ll=1, Bit-width space Q, Rank spaceR.
2: Output: Seed configuration C0.
3: ▷ Step 1: Normalize importance scores to create a sampling distribution
4: Normalize scores: pl ← I(l)/

∑L
j=1 I(j) for l = 1, . . . , L.

5: ▷ Step 2: Generate the seed configuration C0 based on importance
6: Initialize C0 = [(bit1, rank1), . . . , (bitL, rankL)].
7: for l = 1 to L do
8: // Map normalized importance pl to the search spaces.
9: // The higher the importance, the higher the index in the sorted space.

10: Sort Q andR in ascending order.
11: Bit index idxb ← ⌊pl · (|Q| − 1)⌋. Clamp to [0, |Q| − 1].
12: Rank index idxr ← ⌊pl · (|R| − 1)⌋. Clamp to [0, |R| − 1].
13: bitl ← Q[idxb]; rankl ← R[idxr].
14: end for
15: ▷ Step 3: (Optional) Apply budget constraints if a target budget is predefined
16: return C0.

F PSEUDO CODE OF THE SPECIFIC ALGORITHM IN THE QR-ADAPTOR
FRAMEWORK

Due to page limitations, we present the pseudocode of the algorithm.

Algorithm 4 Pareto Rank Calculation

1: Input: Population P with n individuals
2: Calculate the number of dominated individ-

uals np and the set of solutions dominated
Sp for each individual p

3: Place individuals with np = 0 into set F1

4: for each individual i in F1 do
5: for each individual j ∈ Si do
6: nj ← nj − 1
7: if nj = 0 then
8: Add individual j to set F2

9: end if
10: end for
11: end for
12: Repeat for F2, F3, . . ., until all individuals

are ranked
13: Output: Pareto-ranked individuals

Algorithm 5 Crowding Distance Calculation

1: Input: Ranked individuals F with N indi-
viduals, M objectives

2: for each individual n ∈ 1 . . . N do
3: Initialize dn ← 0
4: end for
5: for each objective function fm do
6: Sort individuals based on fm
7: fmax

m , fmin
m ← max fm,min fm

8: d1, dN ←∞
9: for n = 2 to N − 1 do

10: dn ← dn + fm(n+1)−fm(n−1)
fmax
m −fmin

m

11: end for
12: end for
13: Output: Crowding distances dn for each

individual n

G MORE RESULTS

Due to page limitations, we present remaining results across various models here.

G.1 EXPERIMENT SCOPE EXPANSION: LLAMA 2 SERIES

In the original experiments, the focus was primarily on Llama3.1, considering that its updated
architecture present new challenges for quantization. Compared to Llama2 series, Llama3.1 is
significantly harder to quantize, especially under low-bit configurations, as they incorporate more
sophisticated architectural features. Additionally, to comprehensively demonstrate the superiority
of QR-Adaptor, we have also conducted extensive performance experiments on the Llama2 series
models, with the results presented in Table 7 and Table 8.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 6 Simulated Binary Crossover (SBX)

Require: Two parent individuals P1 and P2,
each with L real-valued genes

1: Initialize offspring O1 and O2 as empty
2: for l = 1 to L do
3: Generate a random number u ∈ [0, 1]
4: if u ≤ 0.5 then
5: β ← (2u)1/(n+1)

6: else
7: β ←

(
1

2(1−u)

)1/(n+1)

8: end if
9: y1l ← 0.5 · ((1+β) · p1l+(1−β) · p2l)

10: y2l ← 0.5 · ((1−β) · p1l+(1+β) · p2l)
11: Append y1l to O1 and y2l to O2

12: end for
13: Output: O1 and O2

Algorithm 7 Polynomial Mutation

Require: Individual P with L real-valued
genes, mutation probability pm

1: Initialize mutated individual P ′ as a copy of
P

2: for l = 1 to L do
3: Generate a random number u ∈ [0, 1]
4: if u < pm then
5: Generate a random number δ ∈

[−1, 1]
6: x′

l ← xl + (xmax − xmin) · δ · (1−
|δ|)n−1

7: Replace xl with x′
l in P ′

8: end if
9: end for

10: Output: Mutated individual P ′

Table 7: Performance comparison of different methods across various bit-width configurations on Llama2-7B.
Superscripts on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for optimal
bit number and rank value for each layer based on different tasks with its bit number averaged across tasks.
Bold figures represent the best performance for a given model and task, while underlined figures indicate the
second-best. Accuracy is reported as %.

Method Bit ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG Average

R
an

k
=

8

LoRA 16 46.93 77.36 78.47 76.93 44.80 79.38 69.38 67.61
QLoRA 8 48.21 77.36 77.92 76.88 44.80 79.82 68.75 67.70
QLoRA 4 46.25 76.26 77.43 76.42 46.20 78.67 69.85 67.30
AdaLoRA 16 46.08 76.77 77.46 75.89 44.20 79.16 69.22 66.97
AdaLoRA 8 46.08 76.73 77.49 75.93 44.20 79.00 69.06 66.93
AdaLoRA 4 46.33 75.25 76.39 75.45 44.40 77.91 69.14 66.41
LoftQ 41 46.16 77.10 77.43 76.68 44.80 79.33 69.30 67.26
LoftQ 45 47.35 76.64 76.33 76.36 45.60 79.05 69.06 67.20
LQ-LoRA 4 47.18 76.60 76.54 76.24 45.00 78.84 68.90 67.04
QR-Adaptor 5.45 48.04 77.44 78.96 76.84 46.00 79.86 69.97 68.15

R
an

k
=

16

LoRA 16 46.93 77.57 78.41 76.81 45.00 79.38 69.06 67.59
QLoRA 8 47.61 77.44 78.41 76.93 45.40 79.05 69.06 67.70
QLoRA 4 46.67 76.35 77.25 76.40 45.00 78.84 70.01 67.22
AdaLoRA 16 46.16 76.68 77.58 75.92 44.20 79.11 69.38 67.00
AdaLoRA 8 46.16 76.68 77.40 75.91 44.40 79.11 69.06 66.96
AdaLoRA 4 46.33 75.29 76.45 75.44 44.20 77.91 69.46 66.47
LoftQ 41 47.10 77.19 77.89 76.61 44.80 79.43 69.69 67.53
LoftQ 45 47.95 76.47 76.79 76.25 45.60 78.51 69.61 67.31
LQ-LoRA 4 47.10 76.39 77.22 76.33 46.40 78.78 70.09 67.47
QR-Adaptor 5.45 48.04 77.44 78.96 76.84 46.00 79.86 69.97 68.15

Our results show that QR-Adaptor consistently demonstrates superior performance across all tasks
and outperforms existing methods, such as AdaLoRA and LoftQ, on Llama 2 series. The robustness
of QR-Adaptor is also evident, especially on tasks that typically cause performance degradation for
other methods.

G.2 VISUALIZATION RESULTS FOR THE MMLU TASK

The results for the MMLU task in LLaMA2 are shown in Figure 2. QR-Adaptor demonstrates
outstanding performance across various benchmarks. Due to the rank value selection ranging from 2
to 16, in some cases, QR-Adaptor consumes less memory than the fine-tuned 4-bit quantized models.
Moreover, the low-precision models fine-tuned by QR-Adaptor outperform the fine-tuned 16-bit

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: Performance comparison of different methods across various bit-width configurations on Llama2-13B.
Superscripts on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for optimal
bit number and rank value for each layer based on different tasks with its bit number averaged across tasks.
Bold figures represent the best performance for a given model and task, while underlined figures indicate the
second-best. Accuracy is reported as %.

Method Bit ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG Average

R
an

k
=

8

LoRA 16 52.56 80.18 81.44 79.98 46.40 81.12 71.98 70.52
QLoRA 8 52.39 80.18 81.22 79.92 45.00 80.47 73.09 70.32
QLoRA 4 51.54 78.91 81.41 79.46 45.40 80.30 71.82 69.83
AdaLoRA 16 49.15 79.46 80.37 79.25 45.40 80.47 72.30 69.49
AdaLoRA 8 49.32 79.34 80.43 79.29 45.60 80.47 72.22 69.52
AdaLoRA 4 48.29 77.78 80.40 78.12 44.20 80.14 71.74 68.67
LoftQ 41 50.68 78.79 81.16 79.12 45.80 80.41 71.35 69.62
LoftQ 45 50.34 78.87 80.24 78.81 45.20 80.25 70.80 69.22
LQ-LoRA 4 50.60 78.79 80.67 78.91 45.00 80.14 71.11 69.32
QR-Adaptor 6.125 52.82 80.64 81.84 80.08 45.80 81.45 72.69 70.76

R
an

k
=

16

LoRA 16 52.13 79.84 81.50 80.07 46.20 81.23 71.98 70.42
QLoRA 8 51.54 80.01 81.13 79.86 46.20 81.18 72.22 70.31
QLoRA 4 51.45 79.04 81.04 79.48 45.60 80.47 71.82 69.84
AdaLoRA 16 49.40 79.34 80.46 79.28 45.40 80.47 72.30 69.52
AdaLoRA 8 49.49 79.29 80.40 79.27 45.40 80.52 72.38 69.54
AdaLoRA 4 48.29 77.69 80.43 78.10 44.20 80.09 71.67 68.64
LoftQ 41 50.68 78.87 80.86 79.18 45.80 80.30 71.90 69.66
LoftQ 45 50.60 78.96 80.92 79.15 45.40 80.41 71.59 69.58
LQ-LoRA 4 50.09 78.79 80.43 79.06 45.40 80.14 71.67 69.37
QR-Adaptor 6.125 52.82 80.64 81.84 80.08 45.80 81.45 72.69 70.76

models. Another advantage of the QR-Adaptor is that it can be implemented without any additional
technical measures to optimize performance, apart from spending some time (about 15 minutes to get
one data point). This simple but effective method is very useful in practical applications.

w/o
tu

nin
g-

16
bit

w/o
tu

nin
g-

8b
it

w/o
tu

nin
g-

4b
it

Lo
RA_1

6b
it

QLo
RA_8

bit

QLo
RA_4

bit

Ada
lor

a_
16

bit

Ada
lor

a_
8b

it

Ada
lor

a_
4b

it

Lo
ftQ

-4b
it

LQ
-Lo

RA-4i
t

QR-A
da

pt
or

Methods

0.35

0.40

0.45

0.50

0.55

M
M

LU
 A

cc
ur

ac
y

QR-Adaptor (13B)
QR-Adaptor (7B)

LLaMA2-13B
LLaMA2-7B

Figure 2: Performance comparison on MMLU benchmark. QR-Adaptor outperforms other methods.

G.3 EFFECTIVENESS ON LARGER DATASETS WITH HIGHER RANKS

To address the concern regarding the effectiveness of small LoRA ranks on larger datasets, we
conducted additional experiments on the LLaMA3.1-8B model using a larger dataset consisting of
177k samples. We tested our method with higher LoRA ranks (32 and 64) to evaluate its performance
in handling large-scale data.

Our results are summarized in Table 9. The table compares the performance of QR-Adaptor with
other baseline methods, including LoRA, QLoRA, AdaLoRA, and LoftQ, across various tasks. The

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 9: Performance comparison of different methods across various bit-width configurations on Llama3.1-8B
with higher ranks. Bold figures represent the best performance for a given model and task, while underlined
figures indicate the second-best. QR-Adaptor∗ is transferred config. Accuracy is reported as %.

Method Rank Bit ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG MMLU Average
LoRA 32 16 54.86 82.74 82.75 79.21 44.40 81.99 74.11 63.66 70.47
LoRA 64 16 55.46 82.95 82.94 79.13 45.00 81.88 74.51 64.34 70.78
QLoRA 32 8 55.20 83.12 81.93 79.07 46.20 81.88 73.32 63.28 70.50
QLoRA 32 4 53.41 80.89 82.05 78.42 43.60 80.90 73.01 60.97 69.16
QLoRA 64 8 55.46 83.04 81.96 79.17 45.80 81.94 73.01 63.34 70.47
QLoRA 64 4 53.41 81.19 81.74 78.35 44.60 80.69 72.06 60.79 69.10
AdaLoRA 32 8 53.92 81.82 82.20 78.57 46.20 81.50 73.40 63.82 70.18
AdaLoRA 32 4 51.45 81.02 80.86 77.30 42.40 80.96 72.53 58.15 68.08
AdaLoRA 64 8 53.92 82.11 81.93 78.74 46.20 81.39 73.95 63.88 70.27
AdaLoRA 64 4 52.13 80.98 81.04 77.20 42.20 80.85 72.77 58.07 68.16
LoftQ 32 41 53.84 81.36 81.41 78.12 43.00 81.50 73.56 59.40 69.02
LoftQ 32 45 52.56 81.36 81.96 78.05 42.80 81.45 73.09 59.41 68.84
LoftQ 32 410 51.62 81.31 82.51 78.16 43.60 81.34 72.30 59.12 68.75
LoftQ 64 41 52.82 81.40 81.59 78.23 43.20 81.34 73.88 59.78 69.03
LoftQ 64 45 52.39 81.10 81.13 78.33 43.40 81.34 73.24 58.69 68.70
LoftQ 64 410 51.71 81.23 81.62 78.37 43.20 81.01 72.77 59.25 68.65
QR-Adaptor∗ 32 3.625 55.23 82.89 82.65 79.12 45.40 81.77 73.88 63.78 70.59
QR-Adaptor 32 5.875 56.12 83.45 83.21 79.78 46.20 82.10 74.59 64.40 71.23

performance metrics include accuracy scores on datasets such as ARC (Challenge), ARC (Easy),
BoolQ, HellaSwag, OpenBookQA, PIQA, WinoGrande, and MMLU.

KEY OBSERVATIONS

• Effectiveness of LoRA Initialization: Despite using higher ranks (32 and 64) and larger
datasets, methods like LoftQ and LQ-LoRA do not consistently outperform the standard
QLoRA baseline or the quantized models without fine-tuning. Increasing iterations in LoftQ
(from LoftQ-1 to LoftQ-10) to better fit quantization errors leads to performance degradation,
especially on challenging tasks like MMLU and GSM8K. These results suggest that fitting
quantization errors using LoRA initialization is not universally effective and may introduce
noise that hinders model performance.

• Effectiveness on Larger Datasets: Our method, QR-Adaptor, consistently achieves supe-
rior performance across all tasks and outperforms other methods, confirming its robustness
and scalability. The results validate that QR-Adaptor is effective even when small LoRA
ranks might not suffice for larger datasets.

• Impact of Adaptive LoRA Rank Reduction: AdaLoRA exhibits performance drops, par-
ticularly with lower bit-widths and on more challenging tasks. This supports our observation
that dynamically adjusting the rank during fine-tuning can lead to convergence issues in
quantized models, which are less robust due to quantization errors.

These results reinforce our initial observations and highlight the limitations of methods that attempt to
fit quantization errors through LoRA initialization. The inability of LoftQ and AdaLoRA to improve
performance significantly, even with higher ranks and larger datasets, underscores the challenges
associated with such approaches. In contrast, QR-Adaptor, guided by our proposed constraints,
demonstrates consistent performance improvements.

G.4 FAIRER COMPARISON: MATCHING BIT-WIDTH CONFIGURATIONS

Another important consideration for a fair comparison of quantization methods is the bit-width
configuration used. To ensure that prior methods are evaluated under the same conditions as QR-
Adaptor, we have re-evaluated AdaLoRA and LoftQ using the same mixed-precision configurations
that were optimized through QR-Adaptor’s framework. The updated results for Llama 2-13B are
shown in Table 10.

The results indicate that the initialization constraints applied by QR-Adaptor provide substantial
improvements over the original configurations of AdaLoRA and LoftQ. Despite these improvements,
QR-Adaptor still outperforms these methods in terms of overall task performance. The constraints,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: Performance comparison with fair bit-width configurations for Llama2-13B. Accuracy is reported as
%

Method BoolQ PIQA HellaS WinoG ARC(E) ARC(C) OBQA Average
AdaLoRA 81.08 80.13 79.21 71.74 79.51 50.12 45.60 69.77
LoftQ 80.93 79.47 79.02 71.34 79.26 51.20 45.60 69.98
QR-Adaptor 81.84 81.45 80.08 72.69 80.64 52.82 45.80 70.76

specifically ensuring stable initialization and fixing trainable parameters, contribute significantly to
the enhanced performance of QR-Adaptor.

G.5 IMPACT OF LONGER FINE-TUNING EPOCHS ON UNFIXED PARAMETERS

While increasing the fine-tuning epochs for AdaLoRA can lead to some performance improvements,
these gains are marginal and AdaLoRA still does not outperform other methods like LoRA, QLoRA,
or our proposed QR-Adaptor.

FINDINGS

• Marginal Improvement with Increased Epochs: Extending the training of AdaLoRA from
2 epochs to 5 epochs results in a slight performance increase. However, this improvement is
not substantial and comes at the cost of significantly longer training times.

• Need for Mixed-Precision with Adaptive Rank: The results suggest that adaptive rank
adjustment alone, as in AdaLoRA, may not be the most effective approach. The combination
of adaptive rank with mixed-precision quantization, as in QR-Adaptor, yields superior
performance.

SUPPORTING DATA

We provide an updated table below that includes an "Epochs" column, showing the results for LoRA,
QLoRA, AdaLoRA (at 2 and 5 epochs), and QR-Adaptor.

Table 11: Performance comparison of different methods with varying fine-tuning epochs on Llama3.1-8B.
Accuracy is reported as %

Method Rank Bit-width Epochs ARC (C) ARC (E) BoolQ GSM8K (S) GSM8K (F) HellaS OBQA PIQA WinoG
LoRA 8 16 2 56.14 83.88 83.18 54.36 54.28 79.44 45.20 82.10 75.30
QLoRA 8 8 2 57.08 83.46 82.48 53.75 53.90 79.63 46.00 82.10 74.59
QLoRA 8 4 2 54.35 82.41 82.08 44.35 44.50 78.82 44.20 81.50 73.64
AdaLoRA 8 16 2 52.90 81.99 81.87 50.57 50.57 78.65 45.00 81.34 73.95
AdaLoRA 8 16 5 53.50 82.25 82.05 51.00 50.90 78.75 45.20 81.40 74.10
AdaLoRA 8 8 2 52.90 81.86 82.05 49.96 49.96 78.65 44.80 81.34 74.43
AdaLoRA 8 8 5 53.10 82.00 82.10 50.20 50.10 78.70 45.20 81.38 74.50
AdaLoRA 8 4 2 51.28 80.98 80.61 37.83 38.36 77.36 42.80 80.74 72.53
AdaLoRA 8 4 5 51.50 81.10 80.75 38.00 38.50 77.40 43.20 80.78 72.60
QR-Adaptor 8 5.375 2 56.83 84.12 83.38 56.29 56.11 80.93 45.80 82.92 75.10

OBSERVATION

• AdaLoRA’s Performance with Increased Epochs: As observed, AdaLoRA shows only
slight performance improvements when training is extended from 2 to 5 epochs. Even with
the increase in epochs, AdaLoRA’s performance does not surpass that of LoRA, QLoRA, or
QR-Adaptor at 2 epochs.

• QR-Adaptor’s Consistency: QR-Adaptor consistently achieves superior performance
across all tasks, further validating the effectiveness of our method over other adaptive
rank-based approaches.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• 16-bit AdaLoRA Performance: Notably, AdaLoRA with 16-bit precision (not quantized)
still underperforms compared to LoRA and QLoRA, suggesting that the adaptive rank
mechanism alone is not enough, and the integration of mixed-precision quantization is
crucial.

G.6 IMPACT OF 2-BIT QUANTIZATION AND LOFTQ ITERATIONS

We have conducted additional experiments to explore the performance of LoftQ with 2-bit quantization
and its variations across different numbers of iterations.

In these experiments, we used the NF2 variant from LoftQ, based on QLoRA’s NF4, to implement
2-bit quantization, since QLoRA does not natively support this low-bit quantization (as stated in the
original paper and the GitHub repository). The 2-bit results in the LoftQ paper were also based on
this NF2 variant. We fine-tuned the models using a 52k dataset, with the rank for LoftQ set to 16. The
superscripts on LoftQ’s bit-width values represent the number of LoftQ iterations, with 0 iterations
considered approximately equivalent to QLoRA (since QLoRA does not provide a 2-bit quantization
type).

The results of our experiments are summarized in Table 12.

Table 12: Performance comparison for 2-bit quantization and LoftQ iterations on LLaMA3.1-8B with 52k
fine-tuning dataset. Superscripts on LoftQ bits indicate the number of initialization iterations. Accuracy is
reported as %

Method Bit-width MMLU GSM8K ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG

LoftQ 20 23.76 0.00 26.24 25.25 37.83 26.86 29.40 52.55 49.18
LoftQ 21 24.71 0.00 25.17 25.25 37.83 25.73 29.20 51.58 49.33
LoftQ 25 24.65 0.00 25.17 24.83 37.83 26.30 28.20 51.41 49.41
LoftQ 210 24.80 0.00 26.02 25.25 37.83 26.53 29.80 52.83 48.86
QR-Adaptor 3.625 62.58 0.53 55.93 82.43 82.13 79.23 45.60 81.83 74.79

KEY OBSERVATIONS

• MMLU Performance: For the MMLU dataset, which involves multiple-choice questions,
models with 2-bit quantization perform at approximately 25% accuracy, which is close to
random guessing. Thus, LoftQ’s 2-bit quantization yields little practical improvement for
MMLU on LLaMA3.1. This suggests that the performance of LoftQ with 2-bit quantization
is not robust on complex tasks.

• GSM8K Performance: On the GSM8K dataset, LoftQ’s 2-bit quantization fails to provide
any meaningful performance, resulting in 0% accuracy. This highlights the challenges of
quantizing LLaMA3.1 to such low precision, especially on complex question-answering
tasks.

• Common Sense Reasoning Tasks: For simpler reasoning tasks like WinoGrande, the LoftQ
2-bit quantized models show some capacity to answer, but there is no significant difference
across LoftQ’s iterations, and the models still perform similarly to random guessing on most
datasets.

• QR-Adaptor Optimization: For QR-Adaptor, we optimized based on theoretical memory
savings from 4-bit quantization. Since 2-bit quantization does not reduce memory usage
effectively, we used the theoretical savings in our optimization process. This optimization
allowed QR-Adaptor to achieve better performance even when compared to LoftQ with
2-bit quantization.

CONCLUSION

From these results, we observe that LoftQ’s 2-bit quantization shows poor performance across the
board. Even with multiple iterations (up to 10), LoftQ struggles to achieve reasonable accuracy on
tasks like MMLU and GSM8K. In contrast, QR-Adaptor, with its unified optimization of both rank
and bit-width during fine-tuning, consistently outperforms LoftQ and other methods.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Notably, while LoftQ’s 2-bit quantization performs poorly, QR-Adaptor manages to retain much
better performance by leveraging the advantages of mixed-precision quantization, making it a more
effective solution for LLaMA3.1. These findings suggest that for models requiring high precision,
such as LLaMA3.1, extreme quantization to 2-bit precision may not be viable, and more moderate
bit-widths, as used by QR-Adaptor, provide better results.

We hope these results contribute to the ongoing discussions in the community regarding effective
quantization strategies and provide further insights into the practical use of quantized models.

H VERSION OF LLMS

We provide the Hugging Face link of LLMs used in the experiment: LLaMA2-7B: https:
//huggingface.co/NousResearch/Llama-2-7b-hf; LLaMA2-13B: https://huggingface.
co/NousResearch/Llama-2-13b-hf; LLaMA3.1-8B: https://huggingface.co/meta-llama/
Llama-3.1-8B.

I MORE IMPLEMENTATION DETAILS

In optimizing the pruned Llama2-7B model, a carefully designed hyperparameter configuration has
been implemented to strike a balance between model performance and computational efficiency.
The model is fine-tuned using a learning rate of 3 × 10−4, with a batch size of 128, divided into
micro-batches of 4 to effectively manage memory limitations. Input sequences are capped at 256
tokens, and a dropout rate of 0.05 is applied to the LoRA layers, specifically targeting the query,
key, value, and output projections, as well as the gate, down, and up projections. Layer-specific
quantization is applied at both 4-bit and 8-bit levels, optimizing memory usage while maintaining
computational accuracy. The training is performed using the paged AdamW optimizer with 32-bit
precision, ensuring both stability and efficiency. These settings have been rigorously tested and
refined through the Optuna framework to achieve an optimal balance between model performance
and resource efficiency.

J MORE ABLATION

We conducted comprehensive ablation studies to evaluate the impact of initialization metrics and
the sensitivity of the proposed Pareto Ranking Genetic Algorithm (PRGA) to key hyperparameters,
including iteration counts and population size. These experiments aim to further substantiate the
effectiveness of our proposed approach.

J.1 GRADIENT NORMS VS. RELATIVE ENTROPY

To assess the efficacy of initialization metrics, we compared the use of gradient norms and relative
entropy in quantifying layer importance for fine-tuning quantized LLMs. The experimental results
are summarized in Table 13.

Table 13: Comparison of gradient norms and relative entropy as initialization metrics on Llama2-13B. Bold
values indicate the best performance for each task. Accuracy is reported as %

Initialization Metric BoolQ PIQA HellaS WinoG ARC(E) ARC(C) OBQA Average
Gradient Norms 80.79 80.13 79.16 71.69 78.72 50.97 45.40 69.51
Relative Entropy 81.08 80.83 79.80 71.98 79.13 51.65 45.60 70.07

Insights:

• Limitations of Gradient Norms: Gradient norms exhibit limited variability and are prone
to biases induced by quantization, which undermines their reliability as an initialization
metric for quantized models.

27

https://huggingface.co/NousResearch/Llama-2-7b-hf
https://huggingface.co/NousResearch/Llama-2-7b-hf
https://huggingface.co/NousResearch/Llama-2-13b-hf
https://huggingface.co/NousResearch/Llama-2-13b-hf
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Initialization
From Previous Stage

Initial
Population

Offspring
Combined
Population

New
Population

Output
Final Population

Selection
Crossover
Mutation

Merge
Parent-offspring

Generation
Elite

Retention
Strategy

Selection Crossover Mutation

Termination Condition

×N

Figure 3: Detailed PRGA flow chart. The input is a set of solutions from the initialization, and the output is a
set of Pareto front solutions containing multiple solutions.

• Advantages of Relative Entropy: Relative entropy captures task-specific layer importance
more effectively, resulting in robust initialization and improved performance in downstream
optimization.

J.2 SENSITIVITY TO ITERATION COUNTS AND POPULATION SIZE

To analyze the sensitivity of PRGA to hyperparameters, we systematically varied the number of
iterations and population sizes. Table 14 presents the results of these experiments.

Table 14: Sensitivity analysis of PRGA under different iteration counts and population sizes on Llama3.1-8B.
Bold values indicate the best configuration.

Iterations Population Size Average Improvement (%) Total Time (min)
5 3 +0.8 72
5 5 +1.2 90
10 5 +1.5 135
5 20 +1.6 225
10 20 +2.3 270

Insights:

• Trade-offs in Population Size: Smaller population sizes (e.g., 3) reduce computational
cost but may fail to adequately explore the search space. Larger population sizes (e.g., 20)
improve exploration and convergence but increase computational overhead.

• Impact of Iteration Count: Increasing the number of iterations improves optimization
quality, as reflected in better Pareto fronts. However, the marginal benefits diminish beyond
10 iterations, indicating limited practical gains for further increases.

• Balanced Configuration: A population size of 5 and 5 iterations strikes a balance between
performance improvement and computational efficiency. This configuration can be adjusted
based on specific resource availability or performance requirements.

K VISUALIZATION OF OPTIMIZATION STAGES

Here we visualize Stage 2: Global Exploration with PRGA (in Figure 3) and Stage 3: Local
Refinement with Bayesian Optimization (in Figure 4)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Pareto Front
Solutions

From Previous Stage

OutputTermination Condition

Solutions with
obj value (y)

Weighted
Objective
Function

Solutions with
largest obj value

(y*)

Gaussian Process

Acquisition Function
(EI)

Solution with largest
EI value

New solution with
largest obj value (ynew)

y* > ynew

Select Kernal Function (RBF)

Yes

No

Random search around
solution with y*Update

Use to
retrain

×N

Figure 4: Detailed Bayesian optimization flow chart. Input is the Pareto front solution set from the global search,
and output is a set of optimal solutions obtained according to the requirements.

L LIMITATION

Compared to previous methods, the only additional cost is time, which is mainly introduced by testing
on the calibration dataset. Although the configurations optimized on different datasets have a certain
degree of portability, this limitation is reduced to some extent. In addition, we are studying some
approximate methods to speed up the process.

29

	Introduction
	Background and Motivation
	The Need for Layer-wise Heterogeneity
	Limitations of Continuous Proxies for a Discrete Problem

	QR-Adaptor: A Multi-Stage Framework for Joint Optimization
	A Multi-Objective Formulation for Quantized Adaptation
	The QR-Adaptor Search Pipeline
	Stage 1: Task-Informed Initialization
	Stage 2: Global Exploration with PRGA
	Stage 3: Local Refinement with Bayesian Optimization

	Evaluation
	Experimental Setup
	Main Results
	Computational Efficiency
	Ablation Study

	Related Work
	Conclusion
	Appendix
	
	Extended Related Work
	Use of LLMs
	On the Suboptimality of Continuous Proxies for Discrete Quantization
	Problem Formulation: Quantization as Projection
	Analysis of Iterative Low-Rank Refinement
	Formal Argument for Suboptimality
	The Discontinuous Optimization Landscape

	Quantization
	QR-Adaptor Search Process Details
	Search Hyperparameters and Configuration
	Task-Informed Initialization Algorithm

	Pseudo code of the specific algorithm in the QR-Adaptor framework
	More Results
	Experiment Scope Expansion: Llama 2 Series
	Visualization Results for the MMLU Task
	Effectiveness on Larger Datasets with Higher Ranks
	Fairer Comparison: Matching Bit-width Configurations
	Impact of Longer Fine-tuning Epochs on Unfixed Parameters
	Impact of 2-Bit Quantization and LoftQ Iterations

	Version of LLMs
	More Implementation Details
	More Ablation
	Gradient Norms vs. Relative Entropy
	Sensitivity to Iteration Counts and Population Size

	Visualization of Optimization Stages
	Limitation

