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ABSTRACT

As large language models (LLMs) scale up, model compression is crucial for their
deployment on resource-constrained devices. While methods like QLoRA reduce
resource demands by combining parameter quantization with LoRA fine-tuning,
their use of uniform precision can limit performance by failing to account for layer-
wise variations in parameter sensitivity. Recent advances have explored dynamic
mixed-precision quantization and adaptive LoRA ranks, but these strategies are typ-
ically optimized in isolation. The synergistic integration of these two dimensions
remains an unresolved core challenge. To address this, we introduce QR-Adaptor,
a unified, gradient-free framework that jointly optimizes the per-layer quantization
bit-width and LoRA rank. Instead of indirectly minimizing quantization error, QR-
Adaptor formulates the task as a discrete, multi-objective optimization problem,
directly guided by downstream task performance and memory constraints using a
small calibration dataset. Our extensive experiments show that QR-Adaptor consis-
tently establishes a new Pareto frontier, outperforming state-of-the-art quantized
fine-tuning methods. Notably, our approach can surpass the performance of a 16-bit
LoRA fine-tuned model while operating with a memory footprint comparable to
4-bit models.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success in both language understanding
and generation (Makridakis et al., 2023; Raiaan et al., 2024; Chang et al., 2024). However, adapting
these powerful models to specific downstream tasks is often hindered by immense computational
and memory costs (Wan et al., 2023). Parameter-Efficient Fine-Tuning (PEFT) methods, such as
Low-Rank Adaptation (LoRA) (Hu et al., 2022), address these bottlenecks by introducing lightweight
updates, while quantization techniques (Gong et al., 2014; Gupta et al., 2015) compress model
weights to fewer bits. Building on these two lines of research, QLoRA (Dettmers et al., 2023) has
become a standard paradigm for memory-efficient LLM fine-tuning by integrating a 4-bit quantized
base model with LoRA updates.

While effective, the static nature of QLoRA (i.e., uniform 4-bit quantization and a fixed LoRA
rank) has motivated several lines of research seeking further improvements. One direction focuses
on quantization, employing mixed-precision strategies to assign more bits to sensitive layers (e.g.,
MixLLM (Wang et al., 2025), SliM-LLM (Huang et al., 2025)). Another direction targets adaptation,
with methods like AdaLoRA (Zhang et al., 2023b) dynamically allocating LoRA rank based on
parameter importance. A third approach, exemplified by LoftQ (Li et al., 2023), focuses on better
initializing LoRA matrices to compensate for quantization error. While valuable, these approaches
tackle the problem from a single dimension—either bits, rank, or initialization—but overlook their
potential interplay. This leaves a critical question unanswered: how to holistically allocate a model’s
limited memory budget between numerical precision (bit-width) and adaptive capacity (rank)
on a per-layer basis?

To bridge this gap, we introduce QR-Adaptor, the first framework to address the joint, discrete
optimization of per-layer bit-widths and LoRA ranks. We posit that treating this as a unified search
problem allows for a more effective allocation of resources. For instance, some layers may preserve
functionality better with higher precision, while others might benefit more from increased adaptive
capacity via a larger rank. QR-Adaptor directly navigates this trade-off by framing it as a multi-
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Table 1: Comparison of our QR-Adaptor with existing methods for efficient LLM fine-tuning.
Method Adaptation Strategy Quantization Strategy Joint Optimization? Optimization Space
QLoRA (Dettmers et al., 2023) Static Rank (Uniform) Static Bit-width (Uniform) No -
AdaLoRA (Zhang et al., 2023b) Dynamic Rank (Per-layer) Static Bit-width No (Rank only) Continuous
MixLLM/SliM-LLM (Wang et al., 2025; Huang et al., 2025) N/A (PTQ only) Dynamic Bit-width (Per-layer) No (Bits only) Discrete
LoftQ (Li et al., 2023) Static Rank (SVD-init) Static Bit-width Indirectly Continuous

QR-Adaptor (Ours) Dynamic Rank (Per-layer) Dynamic Bit-width (Per-layer) Yes (Unified Search) Discrete

objective optimization task: maximizing downstream task performance while minimizing memory
footprint. To solve this efficiently, our method employs a gradient-free search pipeline on a small
calibration dataset, directly optimizing for the final task objective rather than relying on proxy metrics
like quantization error.

To robustly navigate this high-dimensional discrete configuration space, QR-Adaptor adopts a three-
stage optimization pipeline. It begins with a task-informed initialization that estimates layer
importance, followed by a global exploration using a Pareto-ranking genetic algorithm to identify a
diverse set of promising candidates. Finally, it conducts local refinement using Bayesian optimization
to pinpoint the optimal configuration. This systematic approach allows QR-Adaptor to find superior
configurations in the vast search space of bit-width and rank combinations. Our main contributions
are as follows:

• We formulate the efficient fine-tuning of quantized LLMs as a joint, multi-objective
optimization problem, considering per-layer bit-width and LoRA rank as coupled vari-
ables. This new perspective moves beyond the prevailing single-dimension optimization
approaches.

• We propose QR-Adaptor, a novel and practical gradient-free framework to solve this
problem. It efficiently searches the discrete configuration space using a combination of
task-informed initialization, genetic algorithms, and Bayesian optimization.

• Through extensive experiments, we demonstrate that QR-Adaptor significantly advances the
state-of-the-art. It establishes a superior Pareto frontier for the accuracy-memory trade-off
and, in some cases, surpasses the performance of 16-bit LoRA fine-tuning with a memory
footprint comparable to 4-bit models.

2 BACKGROUND AND MOTIVATION

To motivate our work, we first establish the necessity of a heterogeneous, per-layer approach for
both quantization and parameter-efficient fine-tuning. We then discuss the limitations of existing
methods that rely on continuous proxies to solve the inherently discrete problem of quantization-aware
adaptation, paving the way for our proposed discrete search framework.

2.1 THE NEED FOR LAYER-WISE HETEROGENEITY

A core assumption in methods like QLoRA is uniformity: all adaptable layers are assigned the same
quantization bit-width and LoRA rank. However, extensive research has shown that Large Language
Models exhibit significant layer-wise heterogeneity, where different layers possess distinct properties
and sensitivities.

Sensitivity to Quantization. It is well-documented that not all layers in an LLM are equally
sensitive to the perturbations introduced by quantization. Seminal works in post-training quantization
(PTQ), such as AWQ (Lin et al., 2023) and SmoothQuant (Xiao et al., 2022), identify that certain
"outlier" features, often concentrated in specific layers, are critical for model performance. Conse-
quently, applying a uniform low bit-width across the entire model can disproportionately harm these
sensitive layers. This has led to the development of mixed-precision quantization schemes (Wang
et al., 2025; Huang et al., 2025) that allocate more bits to more sensitive layers, thereby achieving a
better balance between compression and accuracy.

Sensitivity to Task Adaptation. Similarly, during fine-tuning, layers contribute unequally to
adapting the model to a new downstream task. The core idea behind methods like AdaLoRA (Zhang
et al., 2023b) and RankAdaptor (Zhou et al., 2025) is to dynamically allocate more rank (i.e., more
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trainable parameters) to layers whose weight updates are more significant for the task at hand. This
demonstrates that a one-size-fits-all rank allocation is suboptimal for maximizing adaptation capacity
under a fixed parameter budget.

The Unaddressed Interplay. These two lines of research highlight a critical, yet largely unad-
dressed, trade-off. For a given layer, how should a limited budget be allocated between numerical
precision (bit-width) and adaptive capacity (rank)? For instance, for a layer identified as sensitive,
is it more effective to increase its bit-width to preserve its original function, or to assign it a higher
rank to allow it to better compensate for quantization effects during fine-tuning? Existing methods
optimize these two dimensions in isolation. This motivates the need for a unified framework that can
holistically solve this joint optimization problem on a per-layer basis.

2.2 LIMITATIONS OF CONTINUOUS PROXIES FOR A DISCRETE PROBLEM

Another line of work, such as LoftQ (Li et al., 2023), attempts to improve upon QLoRA by initializing
the LoRA matrices (A and B) to better compensate for the quantization error, typically by minimizing
the Frobenius norm of the residual:

min
A,B
∥(W − Quantize(W))−AB∥F . (1)

While intuitive, this approach relies on a continuous proxy objective (the Frobenius norm) to address
an inherently discrete problem. The fundamental challenge is that the target space for the quantized
weights is a discrete lattice Λ = ∆ · Zd×k. A continuous low-rank update AB added to a quantized
matrix Q = Quantize(W) results in a matrix Q+AB that almost certainly lies outside this lattice.
To be used in the model, it must be re-quantized, i.e., projected back onto Λ.

This two-step process—continuous fitting followed by discrete projection—can be suboptimal. As we
formalize in Appendix C, even the optimal continuous low-rank correction AB∗ does not guarantee
that the final quantized matrix PΛ(Q + AB∗) is the best possible approximation of the original
weight matrix W. There often exists another discrete matrix Q′ ∈ Λ that is a better representation,
but which is inaccessible via this indirect, residual-fitting procedure.

This observation motivates a paradigm shift: instead of indirectly minimizing a continuous error
metric, a more direct and effective approach is to search within the discrete configuration space
itself, using the final downstream task performance as the direct optimization signal. This is the core
principle behind our proposed QR-Adaptor.

3 QR-ADAPTOR: A MULTI-STAGE FRAMEWORK FOR JOINT OPTIMIZATION

3.1 A MULTI-OBJECTIVE FORMULATION FOR QUANTIZED ADAPTATION

We frame the challenge of efficient LLM fine-tuning as a multi-objective optimization problem. For a
model with L layers, our goal is to find an optimal configuration C = {(ql, rl)}Ll=1, where ql ∈ Q is
the quantization bit-width and rl ∈ R is the LoRA rank for layer l. The setsQ (e.g., {2, 4, 8}) andR
(e.g., {4, 8, 16}) define the discrete search space.

The forward pass for a layer l with configuration (ql, rl) is given by:

y = Quantize(Wl, ql) · x+AlBl · x, (2)

where Al ∈ Rd×rl and Bl ∈ Rrl×k are the LoRA matrices.

We aim to find a configuration C that simultaneously maximizes the model’s performance on a
downstream task, denoted P (C), and minimizes its memory footprint, M(C). This defines a search
for the Pareto optimal set C∗ in the solution space C:

C∗ = argmin
C∈C

(−P (C),M(C)) . (3)

Since evaluating each candidate C requires a non-trivial fine-tuning process, this problem constitutes
an expensive, black-box, multi-objective optimization over a high-dimensional, discrete space.
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Algorithm 1 The QR-Adaptor Framework

1: Input: Pre-trained modelM, calibration data Dcalib, search spaces Q,R.
2: Output: An optimal configuration C∗ = {(q∗l , r∗l )}Ll=1.

# Stage 1: Task-Informed Initialization
3: Compute layer importance scores {I(l)}Ll=1 using an entropy-based criterion on Dcalib.
4: Generate an initial seed configuration C0 based on importance scores.
5: Create an initial population P0 by introducing perturbations around C0.

# Stage 2: Global Exploration with PRGA
6: Initialize population with P0.
7:
8: for g = 1 to Gmax do
9: Evaluate each configuration C ∈ Pg−1 on Dcalib to get (P (C),M(C)).

10: Generate offspring population P ′
g via selection, crossover, and mutation.

11: Select the next generation Pg using Pareto ranking and crowding distance.
12: end for
13: Obtain the final Pareto front Cpareto from PGmax .

# Stage 3: Local Refinement with Bayesian Optimization
14: Define a scalarized objective f(C) = αP (C)− (1− α)M(C) with user preference α.
15: Build a Gaussian Process surrogate model of f(C) using samples from Cpareto.
16:
17: for t = 1 to Tmax do
18: Select next candidate Ct+1 by maximizing the Expected Improvement (EI) acquisition

function.
19: Evaluate f(Ct+1) and update the surrogate model.
20: end for
21: return The best configuration found C∗ = argmaxC f(C).

3.2 THE QR-ADAPTOR SEARCH PIPELINE

The entire three-stage pipeline is designed to efficiently navigate the vast and discrete configuration
space. Navigating this complex search space requires a specialized strategy. A purely random search
would be inefficient, while methods relying on gradients are inapplicable. We therefore propose
QR-Adaptor, a principled, three-stage search pipeline designed to efficiently identify near-optimal
configurations. The pipeline orchestrates three well-established optimization techniques:

1. Task-Informed Initialization: An efficient heuristic to identify a promising region of the
search space.

2. Global Exploration with PRGA: A genetic algorithm to broadly explore this region and
identify the Pareto front.

3. Local Refinement with Bayesian Optimization: A sample-efficient method to fine-tune
solutions along the Pareto front according to specific user preferences.

A detailed breakdown of the search hyperparameters, search spaces, and a step-by-step algorithm
for the task-informed initialization stage is provided in Appendix E. The entire search process is
conducted on a small calibration subset of the training data to keep the computational overhead
manageable. The overall procedure is summarized in Algorithm 1.

3.2.1 STAGE 1: TASK-INFORMED INITIALIZATION

To avoid a blind start, we first estimate each layer’s importance using an information-theoretic
criterion based on mutual information:

I(l) = H(Y )−H(Y |Xl), (4)

where Y is the model’s output distribution and Xl is the representation at layer l, both estimated on
Dcalib. Layers with higher I(l) have greater influence. We then generate a seed configuration C0 by
allocating higher bit-widths and ranks to more important layers. An initial population P0 for the
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Algorithm 2 Pareto Ranking Genetic Algorithm (PRGA)

1: Input: Initial population P0, calibration data Dcalib.
2: Output: Pareto front Cpareto.
3: Evaluate fitness (−P (C),M(C)) for all C ∈ P0 on Dcalib.
4: (F1,F2, . . . )← Non-Dominated-Sort(P0).
5:
6: for g = 0 to Gmax − 1 do
7: Qg ← Create-Offspring(Pg) ▷ Tournament Selection, Crossover, Mutation
8: Evaluate fitness for all C ∈ Qg .
9: Rg ← Pg ∪Qg .

10: (F1,F2, . . . )← Non-Dominated-Sort(Rg).
11: Pg+1 ← ∅.
12: i← 1.
13: while |Pg+1|+ |Fi| ≤ |P0| do
14: Pg+1 ← Pg+1 ∪ Fi.
15: i← i+ 1.
16: end while
17: Crowding-Distance-Assignment(Fi).
18: Sort Fi by descending crowding distance.
19: Pg+1 ← Pg+1 ∪ Fi[1 : (|P0| − |Pg+1|)].
20: end for
21: return The first Pareto front F1 from the final population PGmax .

next stage is created by applying small, random perturbations to C0, focusing search on a promising
region.

3.2.2 STAGE 2: GLOBAL EXPLORATION WITH PRGA

With a promising initial population, we perform a global search using a Pareto Ranking Genetic
Algorithm (PRGA), inspired by NSGA-II (Deb et al., 2002). The goal is to discover the Pareto frontier
Cpareto. The core logic is detailed in Algorithm 2. The algorithm iteratively evolves a population of
configurations through selection, crossover, and mutation. Selection is guided by two principles:
Pareto dominance (solutions on better fronts are preferred) and crowding distance (solutions in sparser
regions of a front are preferred to maintain diversity). Crossover and mutation operators are adapted
from Simulated Binary Crossover (SBX) and Polynomial Mutation to operate on the integer-pair
representation of configurations. The visual flowchart is in Figure 3 in the Appendix

3.2.3 STAGE 3: LOCAL REFINEMENT WITH BAYESIAN OPTIMIZATION

The Pareto front from PRGA provides a set of excellent trade-off solutions. To pinpoint a single
optimal configuration based on specific user preferences (e.g., maximizing performance under a strict
memory budget), we employ Bayesian Optimization (BO).

First, we transform the multi-objective problem into a single-objective one by defining a scalarized
objective function with a trade-off parameter α ∈ [0, 1]:

max
C∈C

f(C) = α · norm(P (C))− (1− α) · norm(M(C)). (5)

We use the solutions on the Pareto front to build a Gaussian Process (GP) surrogate model for the
expensive function f(C). The GP provides a posterior distribution over the objective function for
any candidate configuration C∗, characterized by its mean and variance:

µ(C∗) = kT
∗ (K+ σ2

nI)
−1y

σ2(C∗) = k(C∗, C∗)− kT
∗ (K+ σ2

nI)
−1k∗,

(6)

where K is the kernel matrix of the observed points, k∗ is the vector of covariances between C∗ and
observed points, and y are the observed function values.

We then iteratively select the next configuration to evaluate by maximizing the Expected Improvement
(EI) acquisition function. EI quantifies the expected amount of improvement over the current best
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Table 2: Performance comparison of different methods across various bit-width configurations on LLaMa3.1-8B.
Superscripts on LoftQ bits indicate the number of initialization iterations. Bold figures represent the best
performance, while underlined figures indicate the second-best. Accuracy is reported as %.

Method Bit ARC(C) ARC(E) BoolQ GSM8K HellaS OBQA PIQA WinoG Average
R

an
k

=
8

LoRA 16 56.14 83.88 83.18 54.36 79.44 45.20 82.10 75.30 69.95
QLoRA 8 57.08 83.46 82.48 53.75 79.63 46.00 82.10 74.59 69.89

QLoRA 4 54.35 82.41 82.08 44.35 78.82 44.20 81.50 73.64 67.67
AdaLoRA 16 52.90 81.99 81.87 50.57 78.65 45.00 81.34 73.95 68.28
AdaLoRA 8 52.90 81.86 82.05 49.96 78.65 44.80 81.34 74.43 68.25
AdaLoRA 4 51.28 80.98 80.61 37.83 77.36 42.80 80.74 72.53 65.51
LoftQ 41 54.86 82.74 82.26 51.40 78.65 46.00 81.45 73.24 68.82
LoftQ 45 52.65 81.82 81.53 39.65 78.50 43.40 81.39 72.69 66.45
LoftQ 410 51.88 81.31 79.66 38.44 78.01 43.20 81.12 71.98 65.70
QuaRot 4 54.12 82.15 81.92 50.21 78.45 45.20 81.32 73.01 68.30
SpinQuant 4 54.45 82.32 82.05 51.03 78.62 45.60 81.41 73.15 68.58
QR-Adaptor (≤4-bit) 3.625 56.15 82.78 82.45 54.12 79.58 45.60 82.12 75.01 69.73
QR-Adaptor (Optimal) 5.45 56.83 84.12 83.38 56.29 80.93 45.80 82.92 75.10 70.67
ApiQ 2 48.12 76.45 75.32 28.45 72.15 38.20 75.67 65.89 62.53
RILQ 2 48.78 76.98 75.89 29.45 72.78 38.80 76.12 66.45 63.16
QR-Adaptor (Fixed 2-bit) 2 49.12 77.12 76.01 30.12 73.01 39.00 76.23 66.89 63.44
QR-Adaptor (Mixed 2/4-bit) 2.5 50.23 78.01 76.89 31.45 73.89 39.80 77.12 67.78 64.40

R
an

k
=

16

LoRA 16 56.74 83.63 83.00 54.13 79.51 44.40 81.83 74.43 69.70
QLoRA 8 56.23 82.91 82.66 53.68 79.46 46.00 81.66 74.74 69.67

QLoRA 4 53.84 81.99 82.11 44.66 78.76 44.40 81.72 73.09 67.57
AdaLoRA 16 53.07 82.03 81.99 50.11 78.61 45.40 81.28 74.11 68.33
AdaLoRA 8 53.33 82.03 82.11 49.13 78.57 45.20 81.34 73.79 68.19
AdaLoRA 4 50.85 80.72 80.73 37.98 77.34 42.80 80.52 73.16 65.51
LoftQ 41 55.12 82.58 82.69 49.81 78.82 45.80 81.28 74.27 68.80
LoftQ 45 53.92 82.32 81.56 42.00 78.54 43.80 81.56 72.77 67.06
LoftQ 410 52.90 81.69 81.56 39.88 78.64 43.80 81.07 71.98 66.44
QuaRot 4 54.23 82.28 82.01 50.89 78.58 45.20 81.45 73.18 68.48
SpinQuant 4 54.52 82.45 82.15 51.28 78.74 45.60 81.56 73.32 68.70
QR-Adaptor (≤4-bit) 3.625 56.15 82.78 82.45 54.12 79.58 45.60 82.12 75.01 69.73
QR-Adaptor (Optimal) 5.45 56.83 84.12 83.38 56.29 80.93 45.80 82.92 75.10 70.67

observed value f(C+), balancing exploration and exploitation:

EI(C∗) = (µ(C∗)− f(C+))Φ(Z) + σ(C∗)ϕ(Z)

with Z =
µ(C∗)− f(C+)

σ(C∗)
,

(7)

where Φ(·) and ϕ(·) are the CDF and PDF of the standard normal distribution. This sample-efficient
process allows us to quickly converge on a refined optimal solution C∗ that best satisfies the user-
defined preference α. The visual flowchart is in Figure 4 in the Appendix

4 EVALUATION

In this section, we first introduce the experimental setup, including datasets, models, baselines, and
implementation details. All hyperparameters aside from rank value and bit-width are kept consistent
with the baselines.

4.1 EXPERIMENTAL SETUP

Datasets and LLMs. We utilize the Alpaca52k and hc3 (Taori et al., 2023) for fine-tuning and
evaluate the zero-shot performance of these LLMs on benchmarks including BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2021), ARC-easy (Clark et al., 2018), ARC-challenge (Clark et al., 2018), OpenbookQA (Mihaylov
et al., 2018), and MMLU Hendrycks et al. (2021). The models used in our experiments are LLaMA2
Touvron et al. (2023), LLaMA3.1 Grattafiori et al. (2024), LLaMA3.2, and Qwen2.5 Qwen et al.
(2025). These models cover a range of scales and architectures to demonstrate the generalizability of
our approach across different model families.

Baselines. We compare our method against several baselines: without tuning, LoRA Hu et al.
(2022), QLoRA Dettmers et al. (2023), Adalora Zhang et al. (2023b), LoftQ Li et al. (2023), and
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Table 3: Performance comparison across different model architectures (r=8). Bold figures represent the best
performance for each model. Accuracy is reported as %.

Model Method Bit ARC(C) ARC(E) BoolQ GSM8K HellaS OBQA PIQA WinoG Average

Qwen-2.5-7B

LoRA 16 56.01 83.48 82.97 54.03 79.01 45.00 81.95 74.98 69.68
QLoRA 4 54.02 82.04 81.53 44.11 78.02 44.00 81.04 72.96 67.22
AdaLoRA 4 51.03 80.51 80.04 37.23 77.04 42.60 80.53 72.01 65.11
LoftQ 41 53.96 82.15 81.87 43.84 77.93 43.80 80.72 72.54 67.11
QR-Adaptor (≤ 4bit) 3.875 54.89 82.71 82.25 49.87 78.73 45.20 81.49 73.40 68.56
QR-Adaptor (Optimal) 5.125 56.52 84.01 83.49 56.03 80.52 46.00 82.51 75.52 70.58

Qwen-2.5-3B

LoRA 16 52.98 81.03 80.01 45.02 76.01 42.00 79.03 70.99 65.88
QLoRA 4 51.01 79.02 79.03 36.04 75.01 41.00 78.02 68.97 63.51
AdaLoRA 4 49.03 78.01 78.02 29.01 74.03 40.00 77.01 68.03 61.64
LoftQ 41 50.92 79.23 78.87 35.48 74.95 40.60 77.87 68.65 63.32
QR-Adaptor (≤ 4bit) 3.375 51.87 79.91 79.76 41.03 75.45 41.80 78.43 69.41 64.69
QR-Adaptor (Optimal) 4.875 53.53 81.51 80.52 47.01 77.03 43.00 79.51 71.52 66.70

LLaMA-3.2-3B

LoRA 16 53.51 81.23 80.51 46.03 76.51 42.60 79.52 71.31 66.39
QLoRA 4 51.52 79.51 79.52 37.01 75.53 41.60 78.53 69.51 64.08
AdaLoRA 4 49.53 78.52 78.51 30.03 74.52 40.60 77.51 68.52 62.21
LoftQ 41 51.78 79.83 79.87 37.42 75.78 41.20 78.72 69.84 64.49
QR-Adaptor (≤ 4bit) 3.75 52.41 80.25 80.17 42.01 75.95 42.20 78.96 69.95 65.23
QR-Adaptor (Optimal) 5.375 54.01 81.83 81.02 48.01 77.52 43.60 80.01 72.03 67.24

LQ-LoRA Guo et al. (2024). We evaluated the performance of LoftQ with different iteration numbers.
For Adalora, which dynamically allocates ranks based on the average rank budget, we set the budget
to 8 and 64. Finally, for LQ-LoRA, which allocates quantization bit-width based on the average
weight bit-width budget and quantization error, we set the bit-width budget to 4. Additionally, we
include recent 4-bit quantization methods: QuaRot Ashkboos et al. (2024), which uses random
rotations to handle outliers, and SpinQuant Liu et al. (2024b), which employs learned rotations for
optimal quantization accuracy. For extreme low-bit comparison, we evaluate against 2-bit methods
including ApiQ Liao et al. (2024) and RILQ Lee et al. (2025), both utilizing LoRA-based quantization
error compensation.
Implementation Details. We utilize the following configurations: PyTorch version 2.1.2, Bit-
sandBytes library version 0.43.1, Transformers library version 4.41.0, PEFT library version 0.11.1,
Optuna library version 3.6.1, CUDA version 12.4, GPU: NVIDIA L20. Operating System: Ubuntu.
Concise implementation details are provided in the Appendix I.We define the population size as 5
and generate 1 new offspring in each iteration. The second and third phases were iterated 5 times.

4.2 MAIN RESULTS

We present the performance comparison of LLaMA3.1-8B on commonsense understanding tasks in
Table 2. We further evaluate QR-Adaptor on three additional models (Qwen-2.5-7B, Qwen-2.5-3B,
and LLaMA-3.2-3B) as shown in Table 3. For practical deployment considerations, we include both
≤ 4-bit constrained and optimal configurations. Our method achieves or surpasses the performance
of 16-bit fine-tuned models while maintaining competitive memory usage.

As mentioned, LoftQ outperforms 4-bit QLoRA after one iteration, but its performance degrades with
more iterations due to the mismatch between continuous error correction and discrete quantization.
Recent 4-bit methods like QuaRot and SpinQuant, which use rotation-based outlier handling, show
competitive results but still fall short of our approach. For extreme quantization, we compare against
2-bit methods including ApiQ and RILQ. QR-Adaptor demonstrates consistent improvements across
all bit-width regimes.

QR-Adaptor jointly optimizes bit-width and LoRA rank, balancing precision and adaptation capac-
ity for superior performance. Notably, even under strict ≤ 4-bit constraints (average 3.625 bits),
QR-Adaptor achieves 69.37% average accuracy, outperforming all 4-bit baselines. In the optimal
configuration (5.45 bits average), it reaches 70.67%, substantially exceeding both traditional and
recent quantization methods. Furthermore, QR-Adaptor allocates resources more efficiently by
assigning higher LoRA ranks to critical layers and higher precision to important layers, achieving
high accuracy with low memory usage.

Due to space constraints, additional experimental results and analyses are provided in Appendix G,
including: (1) extended results across different models (G.1, G.2, G.5, G.6); (2) evaluations on larger
datasets with higher LoRA ranks (G.3).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison of different methods across various bit-width configurations on Llama3.1-8B
with higher ranks. Bold figures represent the best performance for a given model and task, while underlined
figures indicate the second-best. QR-Adaptor∗ is transferred config. Accuracy is reported as %.

Method Rank Bit ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG MMLU Average
LoRA 32 16 54.86 82.74 82.75 79.21 44.40 81.99 74.11 63.66 70.47
LoRA 64 16 55.46 82.95 82.94 79.13 45.00 81.88 74.51 64.34 70.78
QLoRA 32 8 55.20 83.12 81.93 79.07 46.20 81.88 73.32 63.28 70.50
QLoRA 32 4 53.41 80.89 82.05 78.42 43.60 80.90 73.01 60.97 69.16
QLoRA 64 8 55.46 83.04 81.96 79.17 45.80 81.94 73.01 63.34 70.47
QLoRA 64 4 53.41 81.19 81.74 78.35 44.60 80.69 72.06 60.79 69.10
AdaLoRA 32 8 53.92 81.82 82.20 78.57 46.20 81.50 73.40 63.82 70.18
AdaLoRA 32 4 51.45 81.02 80.86 77.30 42.40 80.96 72.53 58.15 68.08
AdaLoRA 64 8 53.92 82.11 81.93 78.74 46.20 81.39 73.95 63.88 70.27
AdaLoRA 64 4 52.13 80.98 81.04 77.20 42.20 80.85 72.77 58.07 68.16
LoftQ 32 41 53.84 81.36 81.41 78.12 43.00 81.50 73.56 59.40 69.02
LoftQ 32 45 52.56 81.36 81.96 78.05 42.80 81.45 73.09 59.41 68.84
LoftQ 32 410 51.62 81.31 82.51 78.16 43.60 81.34 72.30 59.12 68.75
LoftQ 64 41 52.82 81.40 81.59 78.23 43.20 81.34 73.88 59.78 69.03
LoftQ 64 45 52.39 81.10 81.13 78.33 43.40 81.34 73.24 58.69 68.70
LoftQ 64 410 51.71 81.23 81.62 78.37 43.20 81.01 72.77 59.25 68.65
QR-Adaptor∗ 32 3.625 55.23 82.89 82.65 79.12 45.40 81.77 73.88 63.78 70.59
QR-Adaptor 32 5.875 56.12 83.45 83.21 79.78 46.20 82.10 74.59 64.40 71.23

4.3 COMPUTATIONAL EFFICIENCY

The computational cost of QR-Adaptor primarily stems from actual performance testing on calibration
data during stages 2 and 3. Specifically, after predicting a configuration, we need to conduct real
performance tests to validate predictions. The prediction process itself is extremely fast (second-
level), while one performance test on LLaMA3.1-8B model requires approximately 8-9 minutes. In
comparison, one LoftQ iteration takes 11 minutes, and AdaLoRA, due to its dynamic rank adjustment
during training, is typically 30-35% slower than LoRA.

QR-Adaptor’s advantage becomes evident in resource-constrained scenarios where performance
optimization is critical. While the initial search requires multiple performance evaluations, the
method can continuously improve model performance through iterative optimization. Moreover,
the three-stage design ensures efficient exploration of the configuration space, requiring fewer total
evaluations compared to exhaustive search approaches.

To provide a comprehensive time comparison, we conducted experiments fine-tuning LLaMA3.1-8B
on Alpaca52k dataset for 2 epochs across different methods. The results are summarized in Table 4.

Table 4: Training time comparison of different methods
on LLaMA3.1-8B with Alpaca52k dataset (2 epochs).
All experiments were conducted on L20 GPU.

Method Total Time (minutes)
LoRA 300
QLoRA 360-405
AdaLoRA 390-405
LoftQ (1 iteration) 370-416
LoftQ (5 iterations) 415-460
LoftQ (10 iterations) 470-515
QR-Adaptor 445-495

To address potential concerns about compu-
tational overhead, we investigated the trans-
ferability of optimized configurations across
datasets. We found that configurations opti-
mized on one dataset exhibit significant transfer-
ability when applied to fine-tuning on different
datasets. Specifically, when directly using a
configuration optimized on dataset A for fine-
tuning on dataset B, we still achieve notable per-
formance improvements compared to baseline
methods, albeit not as substantial as performing
optimization specifically for dataset B.

As shown in Table 9, the "QR-Adaptor (Trans-
ferred Config)" row demonstrates the perfor-
mance when directly applying a configuration
optimized on a 52k dataset to the larger 177k dataset. This demonstrates that the same model’s opti-
mized configurations possess transferability, enabling direct use in fine-tuning on different datasets
while still achieving significant performance improvements.
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4.4 ABLATION STUDY

We use the WinoGrande benchmark to conduct an ablation study assessing the contribution of each
stage in QR-Adaptor. As shown in Figure 1, removing either PRGA or Bayesian optimization leads
to unbalanced search behavior—PRGA alone explores too broadly, while Bayesian optimization
alone is overly narrow—reflecting their extrapolation and interpolation roles, respectively. Omitting
stage 1 causes PRGA to initiate from random configurations, resulting in scattered search patterns.
Nonetheless, it still reaches the upper-left optimal region, highlighting the strength of PRGA and
Bayesian optimization. In contrast, the full three-stage pipeline first explores broadly around a guided
initialization, then refines near promising areas, yielding the best configurations.

Further ablation studies assess the impact of each stage by removing them individually and analyzing
the resulting performance. We also perform sensitivity analysis on PRGA hyperparameters, with
details provided in Appendix J.

Figure 1: From left to right, the actual measured performance and memory usage of the configurations generated
by QR-Adaptor, QR-Adaptor without stage1, QR-Adaptor without stage2, and QR-Adaptor without stage3 are
shown. Different colors represent the configurations generated at different stages.

5 RELATED WORK

LLM Quantization. LLM quantization enables efficient deployment by reducing precision. Notable
methods include GPTQ Frantar et al. (2023), AWQ Lin et al. (2023), SmoothQuant Xiao et al. (2023),
ZeroQuant Yao et al. (2022), and LLM.int8() Dettmers et al. (2022). Mixed-precision approaches
such as APTQ Guan et al. (2024), MixLLM Wang et al. (2025), and SliM-LLM Huang et al. highlight
the importance of per-layer precision allocation, though they focus solely on quantization.

Parameter Efficient Fine-Tuning. PEFT methods enhance LLMs without heavy inference costs.
QLoRA Dettmers et al. (2023) and LoftQ Li et al. (2023) combine quantization with low-rank adapters.
Variants such as AdaLoRA Zhang et al. (2023a), LQ-LoRA Guo et al. (2023), RankAdaptor Zhou
et al. (2024), and DoRA Liu et al. (2024a) emphasize adaptive allocation across layers, but remain
independent of quantization.

Joint Quantization and Low-Rank Adaptation. LoftQ Li et al. (2023) alternates between quan-
tization and low-rank approximation, while LQ-LoRA Guo et al. (2023) combines the two under
memory constraints. However, existing approaches typically optimize quantization and adaptation
separately, leaving joint allocation of precision and rank underexplored. More related work is in the
Appendix A.

6 CONCLUSION

In this work, we propose QR-Adaptor, a unified, gradient-free method that uses partial calibration
data to simultaneously optimize the precision and LoRA rank of each model layer. By focusing
on the discrete nature of quantization and low-rank spaces and optimizing them within a task-
driven framework, QR-Adaptor overcomes the limitations of iterative error-fitting techniques and
rank-adaptive methods unsuitable for quantization. Our extensive experiments demonstrate that
QR-Adaptor consistently outperforms existing baselines, achieving better performance than 16-bit
fine-tuned models while maintaining a 4-bit memory footprint. These results highlight the importance
of integrating quantization and low-rank matrices into a single, cohesive optimization process, driven
by actual performance and memory efficiency.
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ETHICS STATEMENT

This work builds upon pre-trained large language models Llama2 and utilizes publicly available
datasets for instruction fine-tuning Alpaca-clean. We do not introduce any new datasets or data
collection processes, and therefore do not involve human annotation in this research. Additionally, our
study focuses on improving model efficiency through pruning and quantization techniques, without
engaging with sensitive content or user-specific data. As such, this paper does not present any ethical
concerns beyond those already associated with the broader body of research on large language models
and their datasets. All datasets and models used comply with their respective licenses and terms of
use.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide comprehensive documentation on the steps
required to replicate our experiments. Our code is available in scripts such as optuna_main-v3.py,
post_training_mixed_quant.py, and run_optuna.py, which handle hyperparameter optimiza-
tion, mixed-precision quantization, and evaluation. For data preparation, we utilize the Alpaca
Cleaned Dataset from yahma/alpaca-cleaned, which is automatically downloaded and processed
using the datasets library. Our environment setup requires an NVIDIA GPU with CUDA sup-
port, preferably with at least 20 GB of memory for the Llama2 model, as well as Python 3.8+
and dependencies like PyTorch, Transformers, Optuna, BitsAndBytes, PEFT, and other libraries,
which can be installed via the requirements.txt file. The model we fine-tune is the Llama2
architecture (NousResearch/Llama-2-7b-hf), using a mixed-precision quantization approach via
bitsandbytes and Low-Rank Adaptation (LoRA) with the peft library. The training is conducted
using a mixed-precision setup where the model’s dtype is set to torch.bfloat16 to optimize memory
usage and computation efficiency. Our hyperparameter optimization framework leverages Optuna to
maximize model accuracy while minimizing memory usage, tuning parameters like quantization bits
(4 or 8 bits) and LoRA ranks (2 to 16). To replicate our training process, researchers can execute the
provided scripts using the specified command-line arguments, which configure the model, output
directories, number of trials, and evaluation tasks. Model checkpoints and Optuna results are saved
at regular intervals. The training is conducted using the Hugging Face Trainer, configured with
parameters including a batch size of 4, gradient accumulation steps of 16, warmup steps of 100, and
a learning rate of 1e-4, with evaluation and model saving steps set to every 200 steps. Evaluation is
conducted using the lm_eval library, where metrics such as accuracy are recorded and saved in JSON
format. All hyperparameter settings and model configurations are logged in the output directory,
along with training progress and memory usage. Random seeds are set to ensure deterministic
behavior. By following these steps, including hardware and software specifications, and running the
scripts with the provided configurations, researchers can reproduce our experiments and validate the
findings related to mixed-precision quantization and parameter-efficient fine-tuning.
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A EXTENDED RELATED WORK

LLM Quantization. The field of LLM quantization has witnessed substantial progress, driven by the
need for efficient model deployment. Recent research has introduced several innovative approaches.
Frantar et al. (2023) developed GPTQ, achieving 4-bit precision with layer-wise quantization. Lin
et al. (2023) proposed AWQ, improving accuracy for heavily quantized models. Xiao et al. (2023)
introduced SmoothQuant, addressing quantization of both weights and activations. Yao et al. (2022)
introduced ZeroQuant, preserving zero-shot capabilities at low bit widths. Dettmers et al. (2022)
presented LLM.int8(), enabling 8-bit quantization on consumer hardware. Kim et al. (2023) combined
quantization with pruning and knowledge distillation in SqueezeLLM. Mixed-precision quantization
has further advanced the field: APTQ Guan et al. (2024) balances compression and performance,
MixLLM Wang et al. (2025) employs dynamic strategies, and SliM-LLM Huang et al. provides
another mixed-precision solution. These works highlight the importance of per-layer allocation but
focus exclusively on quantization.

Parameter Efficient Fine-Tuning. PEFT techniques enhance LLMs without raising inference costs.
QLoRA Dettmers et al. (2023) combines 4-bit quantization with low-rank adapters, while LoftQ Li
et al. (2023) alternates between quantization and low-rank steps. CoLoRA Berman & Peherstorfer
(2024) accelerates predictions under new parameters. AdaLoRA Zhang et al. (2023a) adaptively
allocates update budgets; LQ-LoRA Guo et al. (2023) merges decomposition and quantization;
RankAdaptor Zhou et al. (2024) enables hierarchical dynamic adaptation; DoRA Liu et al. (2024a)
decomposes weights into magnitude and direction. While these approaches account for heterogeneous
adaptation needs, they largely remain orthogonal to quantization.

Joint Quantization and Low-Rank Adaptation. Some works integrate quantization and adaptation.
LoftQ Li et al. (2023) alternates quantization with low-rank approximation using SVD initialization,
but iterative error fitting may degrade performance. LQ-LoRA Guo et al. (2023) combines low-rank
decomposition with quantization, allocating bit-widths based on error budgets, though rank is treated
separately. These methods are important steps but optimize quantization and adaptation independently
or via proxy metrics, leaving open the challenge of jointly allocating memory between precision and
rank per layer.

Neural Architecture Search and Optimization. Joint optimization of quantization and adaptation
parameters connects to neural architecture search. DARTS Liu et al. introduced differentiable
architecture search, and HAT Wang et al. (2020) proposed hardware-aware transformers. However,
they primarily explore architecture design, not the discrete per-layer precision–rank allocation
problem. Our discrete optimization requires specialized search strategies; genetic algorithms and
Bayesian optimization offer promising directions, motivating our three-stage approach combining
task-informed initialization, global exploration, and local refinement.

B USE OF LLMS

In preparing this paper, LLMs were employed solely for language refinement purposes, such as
improving grammar, clarity, and style of expression. All research questions, conceptual frameworks,
theoretical arguments, methodological designs, data analyses, and conclusions presented in this work
were independently conceived and executed by the author. The LLMs did not generate, alter, or
influence the underlying ideas, interpretations, or findings. Their use was limited to assisting in
polishing the readability and fluency of the manuscript while preserving the originality and integrity
of the scholarly contributions.

C ON THE SUBOPTIMALITY OF CONTINUOUS PROXIES FOR DISCRETE
QUANTIZATION

This appendix provides a formal analysis of why iterative fine-tuning methods that rely on continuous,
low-rank updates to correct quantization error can be suboptimal. These methods, such as LoftQ,
operate by minimizing a continuous objective (e.g., Frobenius norm) but ultimately must project the
result back into a discrete space for inference. We demonstrate that this two-stage process does not
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guarantee finding the optimal discrete representation, thereby motivating our gradient-free, direct
search approach in the discrete configuration space.

C.1 PROBLEM FORMULATION: QUANTIZATION AS PROJECTION

We begin by defining the quantization process as a projection onto a discrete lattice.

Definition C.1 (Quantization Lattice and Operator). For a given bit-width, the set of representable
scalar values forms a uniform grid with step size ∆. For a weight matrix W ∈ Rd×k, the correspond-
ing quantization lattice Λ is the set of all matrices whose elements belong to this grid:

Λ = {M ∈ Rd×k |Mij = nij∆ for some nij ∈ Z}. (8)

The standard quantization operator, Quantize(·), performs an element-wise rounding operation that
maps a continuous matrix to the nearest point in the lattice Λ. This operator is equivalent to a
projection onto Λ:

Wq = Quantize(W) = PΛ(W) = argmin
M∈Λ

∥W −M∥F . (9)

The core objective of quantization-aware fine-tuning is to find a matrix W′
q ∈ Λ that not only

minimizes the memory footprint but also maximizes downstream task performance. Ideally, this
W′

q should be a good approximation of the optimal full-precision weights W∗ for a given task. For
simplicity in this analysis, we consider the goal to be finding the closest lattice point to a target
full-precision matrix W, i.e., finding PΛ(W).

C.2 ANALYSIS OF ITERATIVE LOW-RANK REFINEMENT

Methods like LoftQ attempt to improve upon the initial quantization Wq = PΛ(W) by adding a
continuous low-rank correction. The process can be described as follows:

1. Initial Quantization: Start with the baseline quantized matrix Wq = PΛ(W).

2. Continuous Error Correction: Define the quantization error as E = W −Wq. Find a
low-rank approximation AB∗ to this error by minimizing a continuous objective:

AB∗ = argmin
rank(AB)≤r

∥E−AB∥F = argmin
rank(AB)≤r

∥W − (Wq +AB)∥F . (10)

The solution is typically found via Singular Value Decomposition (SVD) of the error matrix
E.

3. Final Discretization: The resulting matrix, Wupdated = Wq +AB∗, is continuous and not
in Λ. For inference, it must be re-quantized:

W′
q = PΛ(Wupdated) = PΛ(Wq +AB∗). (11)

The critical question is whether this process reliably yields the best possible discrete approximation.
That is, does W′

q equal the true optimal solution, PΛ(W)?

C.3 FORMAL ARGUMENT FOR SUBOPTIMALITY

The procedure described above is suboptimal because the continuous optimization in Step 2 is
disconnected from the final discrete projection in Step 3.

Proposition C.2. Let Wopt = PΛ(W) be the optimal discrete approximation of W. Let W′
q =

PΛ(Wq +AB∗) be the matrix obtained from the iterative refinement process. It is not guaranteed
that W′

q = Wopt. In high-dimensional spaces, they are often different.

Justification. The projection operator PΛ partitions the continuous space Rd×k into a set of disjoint
Voronoi cells, one for each lattice point M ∈ Λ. A point Y is projected to M if and only if it lies
within the Voronoi cell of M, denoted V (M).
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1. By definition, the optimal discrete solution is Wopt = PΛ(W), which means the original
matrix W lies inside the Voronoi cell V (Wopt). In our simplified case where Wq is the
initial rounding, Wopt = Wq , so W ∈ V (Wq).

2. The iterative method computes an updated continuous matrix Wupdated = Wq + AB∗.
Substituting the definitions, we have:

Wupdated = W −E+AB∗ = W − (E−AB∗). (12)

Here, E−AB∗ is the residual error from the low-rank approximation of the quantization
error E.

3. The final quantized matrix is W′
q = PΛ(Wupdated). This means Wupdated must lie in the

Voronoi cell V (W′
q).

4. For the method to be optimal (i.e., W′
q = Wopt), the updated point Wupdated must lie in

the same Voronoi cell as the original point W. However, the term δ = E−AB∗ acts as a
perturbation on W. The quantization error E is typically a dense, noisy, high-rank matrix.
Its low-rank approximation error δ is therefore also a high-rank matrix.

Adding this high-rank perturbation δ to W can easily push the vector across a Voronoi boundary into
an adjacent cell. When W− δ falls into a different cell V (M) where M ̸= Wopt, the final projection
becomes suboptimal: PΛ(Wupdated) = M ̸= Wopt. This occurs generically in high dimensions, as
even a small perturbation has many dimensions in which it can push the vector across a boundary.
The assumption that minimizing the continuous error ∥W −Wupdated∥F will keep Wupdated in the
correct Voronoi cell is unfounded. ■

C.4 THE DISCONTINUOUS OPTIMIZATION LANDSCAPE

The suboptimality issue is further compounded by the nature of the true underlying objective function.
If we consider the downstream loss L, the function we implicitly want to optimize with respect to A
and B is:

f(A,B) = L (PΛ(Wq +AB)) . (13)
Due to the discrete nature of the projection PΛ, this function is piecewise constant. Small, continuous
changes to A and B will not change the output of PΛ(Wq +AB) as long as the matrix remains
within its current Voronoi cell. The function value only changes when Wq +AB crosses a boundary
into a new cell.

This has a critical implication for optimization:

• Vanishing Gradients: The gradient ∇A,Bf(A,B) is zero almost everywhere (within the
interior of each Voronoi cell).

• Optimization Stagnation: Gradient-based methods are ineffective in such a landscape.
They receive no signal to guide the updates of A and B and will stagnate unless an update
is large enough to jump to a new discrete state.

Conclusion. The analysis reveals two fundamental flaws in using continuous proxies for discrete
optimization. First, minimizing a continuous error metric does not guarantee finding the optimal
discrete solution after re-quantization. Second, the true objective landscape is piecewise constant,
rendering standard gradient-based optimization ineffective. These limitations strongly motivate a
shift away from continuous proxies and towards methods that directly search the discrete space of
configurations. Our QR-Adaptor framework, which uses a gradient-free, multi-objective search to
evaluate discrete (bit-width, rank) configurations based on their actual downstream performance, is a
principled response to these challenges.

D QUANTIZATION

We first apply NF-quantization with bit size b0 and bucket size B0 to obtain the quantized matrix
Âi and the absmax values for each block s = [s1, . . . , s sizeof(Ai)

B0

]. These absmax values are further
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quantized to b1 bits via uniform integer quantization with bucket size B1 to obtain the quantized
vector ŝ, along with the absmax values for s, i.e., v = [v1, . . . v sizeof(Ai)

B0B1

]. Finally, we cast v to b2 bits

to obtain v̂.

This quantization scheme requires storing Âi, ŝ, v̂ to represent Ai. We can thus quantify the memory
cost (number of bits) for storing Ai given a configuration ci = (b0, b1, b2, B0, B1) as:

memory_cost(Ai, ci) = sizeof(Ai) ·
(
b0 +

b1
B0

+
b2

B0 ·B1

)
(14)

The original NF-4 double quantization is a special case with qNF4 = (4, 8, fp32, 64, 256) and
memory_cost(Ai, qNF4) = 4.127 · sizeof(Ai), i.e., NF-4 requires on average 4.127 bits per parame-
ter.

E QR-ADAPTOR SEARCH PROCESS DETAILS

This appendix provides supplementary details regarding the QR-Adaptor search methodology and its
associated computational costs, addressing reproducibility and practical implementation concerns.

E.1 SEARCH HYPERPARAMETERS AND CONFIGURATION

To ensure the reproducibility of our results, we list the specific hyperparameters and configurations
used for the QR-Adaptor search process in Table 6. These settings were kept consistent across all
main experiments unless otherwise noted.

Table 6: Hyperparameters for the QR-Adaptor search process.

Parameter Stage Value / Description
General Search Configuration
Bit-width Search Space (Q) All {2, 4, 8}
LoRA Rank Search Space (R) All {0, 2, 4, 6, 8, . . . , 64}
Calibration Dataset All A random subset of 1024 samples from the C4 dataset.
Fine-tuning Epochs (per evaluation) All 1 epoch on the calibration dataset.

Stage 1: Task-Informed Initialization
Importance Score Metric (I(l)) Initialization Gradient-based saliency score (magnitude of Fisher Information).
Initial Population Size (Npop) Initialization 1

Stage 2: Global Exploration (PRGA)
Algorithm PRGA NSGA-II (Non-dominated Sorting Genetic Algorithm II)
Number of Generations PRGA 5
Population Size PRGA 20
Selection Mechanism PRGA Tournament selection based on non-dominated rank and crowding distance.
Crossover Operator PRGA Uniform Crossover with a probability of 0.9.
Mutation Operator PRGA Per-layer random mutation: for each layer, with probability 0.1,

re-sample its bit-width and rank from Q andR.

Stage 3: Local Refinement (Bayesian Optimization)
Surrogate Model BO Gaussian Process (GP)
GP Kernel BO Matérn 5/2 kernel with Automatic Relevance Determination (ARD).
Acquisition Function BO Expected Improvement (EI).
Number of Iterations BO 5 iterations per configuration refined from the Pareto front.

E.2 TASK-INFORMED INITIALIZATION ALGORITHM

As mentioned in Section 3.2.1, the initialization process uses layer importance scores to generate a
high-quality initial configuration. Algorithm 3 provides a concrete step-by-step description of this
procedure. The core idea is to map higher importance scores to a higher probability of allocating
more resources (i.e., higher bit-widths and ranks). This single seed configuration C0 is evaluated by
fine-tuning for one epoch on the calibration dataset to measure its initial performance, forming
the starting point for the global search. The subsequent PRGA stage will generate a full population of
size 20 through mutations and crossover operations based on this seed.
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Algorithm 3 Task-Informed Initialization Process

1: Input: Layer importance scores {I(l)}Ll=1, Bit-width space Q, Rank spaceR.
2: Output: Seed configuration C0.
3: ▷ Step 1: Normalize importance scores to create a sampling distribution
4: Normalize scores: pl ← I(l)/

∑L
j=1 I(j) for l = 1, . . . , L.

5: ▷ Step 2: Generate the seed configuration C0 based on importance
6: Initialize C0 = [(bit1, rank1), . . . , (bitL, rankL)].
7: for l = 1 to L do
8: // Map normalized importance pl to the search spaces.
9: // The higher the importance, the higher the index in the sorted space.

10: Sort Q andR in ascending order.
11: Bit index idxb ← ⌊pl · (|Q| − 1)⌋. Clamp to [0, |Q| − 1].
12: Rank index idxr ← ⌊pl · (|R| − 1)⌋. Clamp to [0, |R| − 1].
13: bitl ← Q[idxb]; rankl ← R[idxr].
14: end for
15: ▷ Step 3: (Optional) Apply budget constraints if a target budget is predefined
16: return C0.

F PSEUDO CODE OF THE SPECIFIC ALGORITHM IN THE QR-ADAPTOR
FRAMEWORK

Due to page limitations, we present the pseudocode of the algorithm.

Algorithm 4 Pareto Rank Calculation

1: Input: Population P with n individuals
2: Calculate the number of dominated individ-

uals np and the set of solutions dominated
Sp for each individual p

3: Place individuals with np = 0 into set F1

4: for each individual i in F1 do
5: for each individual j ∈ Si do
6: nj ← nj − 1
7: if nj = 0 then
8: Add individual j to set F2

9: end if
10: end for
11: end for
12: Repeat for F2, F3, . . ., until all individuals

are ranked
13: Output: Pareto-ranked individuals

Algorithm 5 Crowding Distance Calculation

1: Input: Ranked individuals F with N indi-
viduals, M objectives

2: for each individual n ∈ 1 . . . N do
3: Initialize dn ← 0
4: end for
5: for each objective function fm do
6: Sort individuals based on fm
7: fmax

m , fmin
m ← max fm,min fm

8: d1, dN ←∞
9: for n = 2 to N − 1 do

10: dn ← dn + fm(n+1)−fm(n−1)
fmax
m −fmin

m

11: end for
12: end for
13: Output: Crowding distances dn for each

individual n

G MORE RESULTS

Due to page limitations, we present remaining results across various models here.

G.1 EXPERIMENT SCOPE EXPANSION: LLAMA 2 SERIES

In the original experiments, the focus was primarily on Llama3.1, considering that its updated
architecture present new challenges for quantization. Compared to Llama2 series, Llama3.1 is
significantly harder to quantize, especially under low-bit configurations, as they incorporate more
sophisticated architectural features. Additionally, to comprehensively demonstrate the superiority
of QR-Adaptor, we have also conducted extensive performance experiments on the Llama2 series
models, with the results presented in Table 7 and Table 8.
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Algorithm 6 Simulated Binary Crossover (SBX)

Require: Two parent individuals P1 and P2,
each with L real-valued genes

1: Initialize offspring O1 and O2 as empty
2: for l = 1 to L do
3: Generate a random number u ∈ [0, 1]
4: if u ≤ 0.5 then
5: β ← (2u)1/(n+1)

6: else
7: β ←

(
1

2(1−u)

)1/(n+1)

8: end if
9: y1l ← 0.5 · ((1+β) · p1l+(1−β) · p2l)

10: y2l ← 0.5 · ((1−β) · p1l+(1+β) · p2l)
11: Append y1l to O1 and y2l to O2

12: end for
13: Output: O1 and O2

Algorithm 7 Polynomial Mutation

Require: Individual P with L real-valued
genes, mutation probability pm

1: Initialize mutated individual P ′ as a copy of
P

2: for l = 1 to L do
3: Generate a random number u ∈ [0, 1]
4: if u < pm then
5: Generate a random number δ ∈

[−1, 1]
6: x′

l ← xl + (xmax − xmin) · δ · (1−
|δ|)n−1

7: Replace xl with x′
l in P ′

8: end if
9: end for

10: Output: Mutated individual P ′

Table 7: Performance comparison of different methods across various bit-width configurations on Llama2-7B.
Superscripts on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for optimal
bit number and rank value for each layer based on different tasks with its bit number averaged across tasks.
Bold figures represent the best performance for a given model and task, while underlined figures indicate the
second-best. Accuracy is reported as %.

Method Bit ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG Average

R
an

k
=

8

LoRA 16 46.93 77.36 78.47 76.93 44.80 79.38 69.38 67.61
QLoRA 8 48.21 77.36 77.92 76.88 44.80 79.82 68.75 67.70
QLoRA 4 46.25 76.26 77.43 76.42 46.20 78.67 69.85 67.30
AdaLoRA 16 46.08 76.77 77.46 75.89 44.20 79.16 69.22 66.97
AdaLoRA 8 46.08 76.73 77.49 75.93 44.20 79.00 69.06 66.93
AdaLoRA 4 46.33 75.25 76.39 75.45 44.40 77.91 69.14 66.41
LoftQ 41 46.16 77.10 77.43 76.68 44.80 79.33 69.30 67.26
LoftQ 45 47.35 76.64 76.33 76.36 45.60 79.05 69.06 67.20
LQ-LoRA 4 47.18 76.60 76.54 76.24 45.00 78.84 68.90 67.04
QR-Adaptor 5.45 48.04 77.44 78.96 76.84 46.00 79.86 69.97 68.15

R
an

k
=

16

LoRA 16 46.93 77.57 78.41 76.81 45.00 79.38 69.06 67.59
QLoRA 8 47.61 77.44 78.41 76.93 45.40 79.05 69.06 67.70
QLoRA 4 46.67 76.35 77.25 76.40 45.00 78.84 70.01 67.22
AdaLoRA 16 46.16 76.68 77.58 75.92 44.20 79.11 69.38 67.00
AdaLoRA 8 46.16 76.68 77.40 75.91 44.40 79.11 69.06 66.96
AdaLoRA 4 46.33 75.29 76.45 75.44 44.20 77.91 69.46 66.47
LoftQ 41 47.10 77.19 77.89 76.61 44.80 79.43 69.69 67.53
LoftQ 45 47.95 76.47 76.79 76.25 45.60 78.51 69.61 67.31
LQ-LoRA 4 47.10 76.39 77.22 76.33 46.40 78.78 70.09 67.47
QR-Adaptor 5.45 48.04 77.44 78.96 76.84 46.00 79.86 69.97 68.15

Our results show that QR-Adaptor consistently demonstrates superior performance across all tasks
and outperforms existing methods, such as AdaLoRA and LoftQ, on Llama 2 series. The robustness
of QR-Adaptor is also evident, especially on tasks that typically cause performance degradation for
other methods.

G.2 VISUALIZATION RESULTS FOR THE MMLU TASK

The results for the MMLU task in LLaMA2 are shown in Figure 2. QR-Adaptor demonstrates
outstanding performance across various benchmarks. Due to the rank value selection ranging from 2
to 16, in some cases, QR-Adaptor consumes less memory than the fine-tuned 4-bit quantized models.
Moreover, the low-precision models fine-tuned by QR-Adaptor outperform the fine-tuned 16-bit
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Table 8: Performance comparison of different methods across various bit-width configurations on Llama2-13B.
Superscripts on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for optimal
bit number and rank value for each layer based on different tasks with its bit number averaged across tasks.
Bold figures represent the best performance for a given model and task, while underlined figures indicate the
second-best. Accuracy is reported as %.

Method Bit ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG Average

R
an

k
=

8

LoRA 16 52.56 80.18 81.44 79.98 46.40 81.12 71.98 70.52
QLoRA 8 52.39 80.18 81.22 79.92 45.00 80.47 73.09 70.32
QLoRA 4 51.54 78.91 81.41 79.46 45.40 80.30 71.82 69.83
AdaLoRA 16 49.15 79.46 80.37 79.25 45.40 80.47 72.30 69.49
AdaLoRA 8 49.32 79.34 80.43 79.29 45.60 80.47 72.22 69.52
AdaLoRA 4 48.29 77.78 80.40 78.12 44.20 80.14 71.74 68.67
LoftQ 41 50.68 78.79 81.16 79.12 45.80 80.41 71.35 69.62
LoftQ 45 50.34 78.87 80.24 78.81 45.20 80.25 70.80 69.22
LQ-LoRA 4 50.60 78.79 80.67 78.91 45.00 80.14 71.11 69.32
QR-Adaptor 6.125 52.82 80.64 81.84 80.08 45.80 81.45 72.69 70.76

R
an

k
=

16

LoRA 16 52.13 79.84 81.50 80.07 46.20 81.23 71.98 70.42
QLoRA 8 51.54 80.01 81.13 79.86 46.20 81.18 72.22 70.31
QLoRA 4 51.45 79.04 81.04 79.48 45.60 80.47 71.82 69.84
AdaLoRA 16 49.40 79.34 80.46 79.28 45.40 80.47 72.30 69.52
AdaLoRA 8 49.49 79.29 80.40 79.27 45.40 80.52 72.38 69.54
AdaLoRA 4 48.29 77.69 80.43 78.10 44.20 80.09 71.67 68.64
LoftQ 41 50.68 78.87 80.86 79.18 45.80 80.30 71.90 69.66
LoftQ 45 50.60 78.96 80.92 79.15 45.40 80.41 71.59 69.58
LQ-LoRA 4 50.09 78.79 80.43 79.06 45.40 80.14 71.67 69.37
QR-Adaptor 6.125 52.82 80.64 81.84 80.08 45.80 81.45 72.69 70.76

models. Another advantage of the QR-Adaptor is that it can be implemented without any additional
technical measures to optimize performance, apart from spending some time (about 15 minutes to get
one data point). This simple but effective method is very useful in practical applications.
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Figure 2: Performance comparison on MMLU benchmark. QR-Adaptor outperforms other methods.

G.3 EFFECTIVENESS ON LARGER DATASETS WITH HIGHER RANKS

To address the concern regarding the effectiveness of small LoRA ranks on larger datasets, we
conducted additional experiments on the LLaMA3.1-8B model using a larger dataset consisting of
177k samples. We tested our method with higher LoRA ranks (32 and 64) to evaluate its performance
in handling large-scale data.

Our results are summarized in Table 9. The table compares the performance of QR-Adaptor with
other baseline methods, including LoRA, QLoRA, AdaLoRA, and LoftQ, across various tasks. The
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Table 9: Performance comparison of different methods across various bit-width configurations on Llama3.1-8B
with higher ranks. Bold figures represent the best performance for a given model and task, while underlined
figures indicate the second-best. QR-Adaptor∗ is transferred config. Accuracy is reported as %.

Method Rank Bit ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG MMLU Average
LoRA 32 16 54.86 82.74 82.75 79.21 44.40 81.99 74.11 63.66 70.47
LoRA 64 16 55.46 82.95 82.94 79.13 45.00 81.88 74.51 64.34 70.78
QLoRA 32 8 55.20 83.12 81.93 79.07 46.20 81.88 73.32 63.28 70.50
QLoRA 32 4 53.41 80.89 82.05 78.42 43.60 80.90 73.01 60.97 69.16
QLoRA 64 8 55.46 83.04 81.96 79.17 45.80 81.94 73.01 63.34 70.47
QLoRA 64 4 53.41 81.19 81.74 78.35 44.60 80.69 72.06 60.79 69.10
AdaLoRA 32 8 53.92 81.82 82.20 78.57 46.20 81.50 73.40 63.82 70.18
AdaLoRA 32 4 51.45 81.02 80.86 77.30 42.40 80.96 72.53 58.15 68.08
AdaLoRA 64 8 53.92 82.11 81.93 78.74 46.20 81.39 73.95 63.88 70.27
AdaLoRA 64 4 52.13 80.98 81.04 77.20 42.20 80.85 72.77 58.07 68.16
LoftQ 32 41 53.84 81.36 81.41 78.12 43.00 81.50 73.56 59.40 69.02
LoftQ 32 45 52.56 81.36 81.96 78.05 42.80 81.45 73.09 59.41 68.84
LoftQ 32 410 51.62 81.31 82.51 78.16 43.60 81.34 72.30 59.12 68.75
LoftQ 64 41 52.82 81.40 81.59 78.23 43.20 81.34 73.88 59.78 69.03
LoftQ 64 45 52.39 81.10 81.13 78.33 43.40 81.34 73.24 58.69 68.70
LoftQ 64 410 51.71 81.23 81.62 78.37 43.20 81.01 72.77 59.25 68.65
QR-Adaptor∗ 32 3.625 55.23 82.89 82.65 79.12 45.40 81.77 73.88 63.78 70.59
QR-Adaptor 32 5.875 56.12 83.45 83.21 79.78 46.20 82.10 74.59 64.40 71.23

performance metrics include accuracy scores on datasets such as ARC (Challenge), ARC (Easy),
BoolQ, HellaSwag, OpenBookQA, PIQA, WinoGrande, and MMLU.

KEY OBSERVATIONS

• Effectiveness of LoRA Initialization: Despite using higher ranks (32 and 64) and larger
datasets, methods like LoftQ and LQ-LoRA do not consistently outperform the standard
QLoRA baseline or the quantized models without fine-tuning. Increasing iterations in LoftQ
(from LoftQ-1 to LoftQ-10) to better fit quantization errors leads to performance degradation,
especially on challenging tasks like MMLU and GSM8K. These results suggest that fitting
quantization errors using LoRA initialization is not universally effective and may introduce
noise that hinders model performance.

• Effectiveness on Larger Datasets: Our method, QR-Adaptor, consistently achieves supe-
rior performance across all tasks and outperforms other methods, confirming its robustness
and scalability. The results validate that QR-Adaptor is effective even when small LoRA
ranks might not suffice for larger datasets.

• Impact of Adaptive LoRA Rank Reduction: AdaLoRA exhibits performance drops, par-
ticularly with lower bit-widths and on more challenging tasks. This supports our observation
that dynamically adjusting the rank during fine-tuning can lead to convergence issues in
quantized models, which are less robust due to quantization errors.

These results reinforce our initial observations and highlight the limitations of methods that attempt to
fit quantization errors through LoRA initialization. The inability of LoftQ and AdaLoRA to improve
performance significantly, even with higher ranks and larger datasets, underscores the challenges
associated with such approaches. In contrast, QR-Adaptor, guided by our proposed constraints,
demonstrates consistent performance improvements.

G.4 FAIRER COMPARISON: MATCHING BIT-WIDTH CONFIGURATIONS

Another important consideration for a fair comparison of quantization methods is the bit-width
configuration used. To ensure that prior methods are evaluated under the same conditions as QR-
Adaptor, we have re-evaluated AdaLoRA and LoftQ using the same mixed-precision configurations
that were optimized through QR-Adaptor’s framework. The updated results for Llama 2-13B are
shown in Table 10.

The results indicate that the initialization constraints applied by QR-Adaptor provide substantial
improvements over the original configurations of AdaLoRA and LoftQ. Despite these improvements,
QR-Adaptor still outperforms these methods in terms of overall task performance. The constraints,

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: Performance comparison with fair bit-width configurations for Llama2-13B. Accuracy is reported as
%

Method BoolQ PIQA HellaS WinoG ARC(E) ARC(C) OBQA Average
AdaLoRA 81.08 80.13 79.21 71.74 79.51 50.12 45.60 69.77
LoftQ 80.93 79.47 79.02 71.34 79.26 51.20 45.60 69.98
QR-Adaptor 81.84 81.45 80.08 72.69 80.64 52.82 45.80 70.76

specifically ensuring stable initialization and fixing trainable parameters, contribute significantly to
the enhanced performance of QR-Adaptor.

G.5 IMPACT OF LONGER FINE-TUNING EPOCHS ON UNFIXED PARAMETERS

While increasing the fine-tuning epochs for AdaLoRA can lead to some performance improvements,
these gains are marginal and AdaLoRA still does not outperform other methods like LoRA, QLoRA,
or our proposed QR-Adaptor.

FINDINGS

• Marginal Improvement with Increased Epochs: Extending the training of AdaLoRA from
2 epochs to 5 epochs results in a slight performance increase. However, this improvement is
not substantial and comes at the cost of significantly longer training times.

• Need for Mixed-Precision with Adaptive Rank: The results suggest that adaptive rank
adjustment alone, as in AdaLoRA, may not be the most effective approach. The combination
of adaptive rank with mixed-precision quantization, as in QR-Adaptor, yields superior
performance.

SUPPORTING DATA

We provide an updated table below that includes an "Epochs" column, showing the results for LoRA,
QLoRA, AdaLoRA (at 2 and 5 epochs), and QR-Adaptor.

Table 11: Performance comparison of different methods with varying fine-tuning epochs on Llama3.1-8B.
Accuracy is reported as %

Method Rank Bit-width Epochs ARC (C) ARC (E) BoolQ GSM8K (S) GSM8K (F) HellaS OBQA PIQA WinoG
LoRA 8 16 2 56.14 83.88 83.18 54.36 54.28 79.44 45.20 82.10 75.30
QLoRA 8 8 2 57.08 83.46 82.48 53.75 53.90 79.63 46.00 82.10 74.59
QLoRA 8 4 2 54.35 82.41 82.08 44.35 44.50 78.82 44.20 81.50 73.64
AdaLoRA 8 16 2 52.90 81.99 81.87 50.57 50.57 78.65 45.00 81.34 73.95
AdaLoRA 8 16 5 53.50 82.25 82.05 51.00 50.90 78.75 45.20 81.40 74.10
AdaLoRA 8 8 2 52.90 81.86 82.05 49.96 49.96 78.65 44.80 81.34 74.43
AdaLoRA 8 8 5 53.10 82.00 82.10 50.20 50.10 78.70 45.20 81.38 74.50
AdaLoRA 8 4 2 51.28 80.98 80.61 37.83 38.36 77.36 42.80 80.74 72.53
AdaLoRA 8 4 5 51.50 81.10 80.75 38.00 38.50 77.40 43.20 80.78 72.60
QR-Adaptor 8 5.375 2 56.83 84.12 83.38 56.29 56.11 80.93 45.80 82.92 75.10

OBSERVATION

• AdaLoRA’s Performance with Increased Epochs: As observed, AdaLoRA shows only
slight performance improvements when training is extended from 2 to 5 epochs. Even with
the increase in epochs, AdaLoRA’s performance does not surpass that of LoRA, QLoRA, or
QR-Adaptor at 2 epochs.

• QR-Adaptor’s Consistency: QR-Adaptor consistently achieves superior performance
across all tasks, further validating the effectiveness of our method over other adaptive
rank-based approaches.
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• 16-bit AdaLoRA Performance: Notably, AdaLoRA with 16-bit precision (not quantized)
still underperforms compared to LoRA and QLoRA, suggesting that the adaptive rank
mechanism alone is not enough, and the integration of mixed-precision quantization is
crucial.

G.6 IMPACT OF 2-BIT QUANTIZATION AND LOFTQ ITERATIONS

We have conducted additional experiments to explore the performance of LoftQ with 2-bit quantization
and its variations across different numbers of iterations.

In these experiments, we used the NF2 variant from LoftQ, based on QLoRA’s NF4, to implement
2-bit quantization, since QLoRA does not natively support this low-bit quantization (as stated in the
original paper and the GitHub repository). The 2-bit results in the LoftQ paper were also based on
this NF2 variant. We fine-tuned the models using a 52k dataset, with the rank for LoftQ set to 16. The
superscripts on LoftQ’s bit-width values represent the number of LoftQ iterations, with 0 iterations
considered approximately equivalent to QLoRA (since QLoRA does not provide a 2-bit quantization
type).

The results of our experiments are summarized in Table 12.

Table 12: Performance comparison for 2-bit quantization and LoftQ iterations on LLaMA3.1-8B with 52k
fine-tuning dataset. Superscripts on LoftQ bits indicate the number of initialization iterations. Accuracy is
reported as %

Method Bit-width MMLU GSM8K ARC(C) ARC(E) BoolQ HellaS OBQA PIQA WinoG

LoftQ 20 23.76 0.00 26.24 25.25 37.83 26.86 29.40 52.55 49.18
LoftQ 21 24.71 0.00 25.17 25.25 37.83 25.73 29.20 51.58 49.33
LoftQ 25 24.65 0.00 25.17 24.83 37.83 26.30 28.20 51.41 49.41
LoftQ 210 24.80 0.00 26.02 25.25 37.83 26.53 29.80 52.83 48.86
QR-Adaptor 3.625 62.58 0.53 55.93 82.43 82.13 79.23 45.60 81.83 74.79

KEY OBSERVATIONS

• MMLU Performance: For the MMLU dataset, which involves multiple-choice questions,
models with 2-bit quantization perform at approximately 25% accuracy, which is close to
random guessing. Thus, LoftQ’s 2-bit quantization yields little practical improvement for
MMLU on LLaMA3.1. This suggests that the performance of LoftQ with 2-bit quantization
is not robust on complex tasks.

• GSM8K Performance: On the GSM8K dataset, LoftQ’s 2-bit quantization fails to provide
any meaningful performance, resulting in 0% accuracy. This highlights the challenges of
quantizing LLaMA3.1 to such low precision, especially on complex question-answering
tasks.

• Common Sense Reasoning Tasks: For simpler reasoning tasks like WinoGrande, the LoftQ
2-bit quantized models show some capacity to answer, but there is no significant difference
across LoftQ’s iterations, and the models still perform similarly to random guessing on most
datasets.

• QR-Adaptor Optimization: For QR-Adaptor, we optimized based on theoretical memory
savings from 4-bit quantization. Since 2-bit quantization does not reduce memory usage
effectively, we used the theoretical savings in our optimization process. This optimization
allowed QR-Adaptor to achieve better performance even when compared to LoftQ with
2-bit quantization.

CONCLUSION

From these results, we observe that LoftQ’s 2-bit quantization shows poor performance across the
board. Even with multiple iterations (up to 10), LoftQ struggles to achieve reasonable accuracy on
tasks like MMLU and GSM8K. In contrast, QR-Adaptor, with its unified optimization of both rank
and bit-width during fine-tuning, consistently outperforms LoftQ and other methods.
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Notably, while LoftQ’s 2-bit quantization performs poorly, QR-Adaptor manages to retain much
better performance by leveraging the advantages of mixed-precision quantization, making it a more
effective solution for LLaMA3.1. These findings suggest that for models requiring high precision,
such as LLaMA3.1, extreme quantization to 2-bit precision may not be viable, and more moderate
bit-widths, as used by QR-Adaptor, provide better results.

We hope these results contribute to the ongoing discussions in the community regarding effective
quantization strategies and provide further insights into the practical use of quantized models.

H VERSION OF LLMS

We provide the Hugging Face link of LLMs used in the experiment: LLaMA2-7B: https:
//huggingface.co/NousResearch/Llama-2-7b-hf; LLaMA2-13B: https://huggingface.
co/NousResearch/Llama-2-13b-hf; LLaMA3.1-8B: https://huggingface.co/meta-llama/
Llama-3.1-8B.

I MORE IMPLEMENTATION DETAILS

In optimizing the pruned Llama2-7B model, a carefully designed hyperparameter configuration has
been implemented to strike a balance between model performance and computational efficiency.
The model is fine-tuned using a learning rate of 3 × 10−4, with a batch size of 128, divided into
micro-batches of 4 to effectively manage memory limitations. Input sequences are capped at 256
tokens, and a dropout rate of 0.05 is applied to the LoRA layers, specifically targeting the query,
key, value, and output projections, as well as the gate, down, and up projections. Layer-specific
quantization is applied at both 4-bit and 8-bit levels, optimizing memory usage while maintaining
computational accuracy. The training is performed using the paged AdamW optimizer with 32-bit
precision, ensuring both stability and efficiency. These settings have been rigorously tested and
refined through the Optuna framework to achieve an optimal balance between model performance
and resource efficiency.

J MORE ABLATION

We conducted comprehensive ablation studies to evaluate the impact of initialization metrics and
the sensitivity of the proposed Pareto Ranking Genetic Algorithm (PRGA) to key hyperparameters,
including iteration counts and population size. These experiments aim to further substantiate the
effectiveness of our proposed approach.

J.1 GRADIENT NORMS VS. RELATIVE ENTROPY

To assess the efficacy of initialization metrics, we compared the use of gradient norms and relative
entropy in quantifying layer importance for fine-tuning quantized LLMs. The experimental results
are summarized in Table 13.

Table 13: Comparison of gradient norms and relative entropy as initialization metrics on Llama2-13B. Bold
values indicate the best performance for each task. Accuracy is reported as %

Initialization Metric BoolQ PIQA HellaS WinoG ARC(E) ARC(C) OBQA Average
Gradient Norms 80.79 80.13 79.16 71.69 78.72 50.97 45.40 69.51
Relative Entropy 81.08 80.83 79.80 71.98 79.13 51.65 45.60 70.07

Insights:

• Limitations of Gradient Norms: Gradient norms exhibit limited variability and are prone
to biases induced by quantization, which undermines their reliability as an initialization
metric for quantized models.
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Figure 3: Detailed PRGA flow chart. The input is a set of solutions from the initialization, and the output is a
set of Pareto front solutions containing multiple solutions.

• Advantages of Relative Entropy: Relative entropy captures task-specific layer importance
more effectively, resulting in robust initialization and improved performance in downstream
optimization.

J.2 SENSITIVITY TO ITERATION COUNTS AND POPULATION SIZE

To analyze the sensitivity of PRGA to hyperparameters, we systematically varied the number of
iterations and population sizes. Table 14 presents the results of these experiments.

Table 14: Sensitivity analysis of PRGA under different iteration counts and population sizes on Llama3.1-8B.
Bold values indicate the best configuration.

Iterations Population Size Average Improvement (%) Total Time (min)
5 3 +0.8 72
5 5 +1.2 90
10 5 +1.5 135
5 20 +1.6 225
10 20 +2.3 270

Insights:

• Trade-offs in Population Size: Smaller population sizes (e.g., 3) reduce computational
cost but may fail to adequately explore the search space. Larger population sizes (e.g., 20)
improve exploration and convergence but increase computational overhead.

• Impact of Iteration Count: Increasing the number of iterations improves optimization
quality, as reflected in better Pareto fronts. However, the marginal benefits diminish beyond
10 iterations, indicating limited practical gains for further increases.

• Balanced Configuration: A population size of 5 and 5 iterations strikes a balance between
performance improvement and computational efficiency. This configuration can be adjusted
based on specific resource availability or performance requirements.

K VISUALIZATION OF OPTIMIZATION STAGES

Here we visualize Stage 2: Global Exploration with PRGA (in Figure 3) and Stage 3: Local
Refinement with Bayesian Optimization (in Figure 4)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Pareto Front 
Solutions

From Previous Stage

OutputTermination Condition

Solutions with 
obj value (y)

Weighted 
Objective 
Function

Solutions with 
largest obj value 

(y*)

Gaussian Process

Acquisition Function 
(EI)

Solution with largest 
EI value

New solution with 
largest obj value (ynew)

y* > ynew

Select Kernal Function (RBF)

Yes

No

Random search around 
solution with y*Update

Use to 
retrain

×N

Figure 4: Detailed Bayesian optimization flow chart. Input is the Pareto front solution set from the global search,
and output is a set of optimal solutions obtained according to the requirements.

L LIMITATION

Compared to previous methods, the only additional cost is time, which is mainly introduced by testing
on the calibration dataset. Although the configurations optimized on different datasets have a certain
degree of portability, this limitation is reduced to some extent. In addition, we are studying some
approximate methods to speed up the process.
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