EFFICIENT FINE-TUNING OF QUANTIZED MODELS VIA ADAPTIVE RANK AND BITWIDTH

Anonymous authors
Paper under double-blind review

000

001

002003004

010 011

012

013

014

016

018

019

021

024

025

026027028

029

031

033

034

037

038

040

041

042

043

044

046

047

048

051

052

ABSTRACT

As large language models (LLMs) scale up, model compression is crucial for their deployment on resource-constrained devices. While methods like QLoRA reduce resource demands by combining parameter quantization with LoRA fine-tuning, their use of uniform precision can limit performance by failing to account for layerwise variations in parameter sensitivity. Recent advances have explored dynamic mixed-precision quantization and adaptive LoRA ranks, but these strategies are typically optimized in isolation. The synergistic integration of these two dimensions remains an unresolved core challenge. To address this, we introduce **QR-Adaptor**, a unified, gradient-free framework that jointly optimizes the per-layer quantization bit-width and LoRA rank. Instead of indirectly minimizing quantization error, OR-Adaptor formulates the task as a discrete, multi-objective optimization problem, directly guided by downstream task performance and memory constraints using a small calibration dataset. Our extensive experiments show that QR-Adaptor consistently establishes a new Pareto frontier, outperforming state-of-the-art quantized fine-tuning methods. Notably, our approach can surpass the performance of a 16-bit LoRA fine-tuned model while operating with a memory footprint comparable to 4-bit models.

1 Introduction

Large Language Models (LLMs) have achieved remarkable success in both language understanding and generation (Makridakis et al., 2023; Raiaan et al., 2024; Chang et al., 2024). However, adapting these powerful models to specific downstream tasks is often hindered by immense computational and memory costs (Wan et al., 2023). Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA) (Hu et al., 2022), address these bottlenecks by introducing lightweight updates, while quantization techniques (Gong et al., 2014; Gupta et al., 2015) compress model weights to fewer bits. Building on these two lines of research, QLoRA (Dettmers et al., 2023) has become a standard paradigm for memory-efficient LLM fine-tuning by integrating a 4-bit quantized base model with LoRA updates.

While effective, the static nature of QLoRA (i.e., uniform 4-bit quantization and a fixed LoRA rank) has motivated several lines of research seeking further improvements. One direction focuses on quantization, employing mixed-precision strategies to assign more bits to sensitive layers (e.g., MixLLM (Wang et al., 2025), SliM-LLM (Huang et al., 2025)). Another direction targets adaptation, with methods like AdaLoRA (Zhang et al., 2023b) dynamically allocating LoRA rank based on parameter importance. A third approach, exemplified by LoftQ (Li et al., 2023), focuses on better initializing LoRA matrices to compensate for quantization error. While valuable, these approaches tackle the problem from a single dimension—either bits, rank, or initialization—but overlook their potential interplay. This leaves a critical question unanswered: how to holistically allocate a model's limited memory budget between numerical precision (bit-width) and adaptive capacity (rank) on a per-layer basis?

To bridge this gap, we introduce **QR-Adaptor**, the first framework to address the joint, discrete optimization of per-layer bit-widths and LoRA ranks. We posit that treating this as a unified search problem allows for a more effective allocation of resources. For instance, some layers may preserve functionality better with higher precision, while others might benefit more from increased adaptive capacity via a larger rank. QR-Adaptor directly navigates this trade-off by framing it as a multi-

Table 1: Comparison of our QR-Adaptor with existing methods for efficient LLM fine-tuning.

Method	Adaptation Strategy	Quantization Strategy	Joint Optimization?	Optimization Space
QLoRA (Dettmers et al., 2023)	Static Rank (Uniform)	Static Bit-width (Uniform)	No	-
AdaLoRA (Zhang et al., 2023b)	Dynamic Rank (Per-layer)	Static Bit-width	No (Rank only)	Continuous
MixLLM/SliM-LLM (Wang et al., 2025; Huang et al., 2025)	N/A (PTQ only)	Dynamic Bit-width (Per-layer)	No (Bits only)	Discrete
LoftQ (Li et al., 2023)	Static Rank (SVD-init)	Static Bit-width	Indirectly	Continuous
QR-Adaptor (Ours)	Dynamic Rank (Per-layer)	Dynamic Bit-width (Per-layer)	Yes (Unified Search)	Discrete

objective optimization task: maximizing downstream task performance while minimizing memory footprint. To solve this efficiently, our method employs a gradient-free search pipeline on a small calibration dataset, directly optimizing for the final task objective rather than relying on proxy metrics like quantization error.

To robustly navigate this high-dimensional discrete configuration space, QR-Adaptor adopts a three-stage optimization pipeline. It begins with a **task-informed initialization** that estimates layer importance, followed by a **global exploration** using a Pareto-ranking genetic algorithm to identify a diverse set of promising candidates. Finally, it conducts **local refinement** using Bayesian optimization to pinpoint the optimal configuration. This systematic approach allows QR-Adaptor to find superior configurations in the vast search space of bit-width and rank combinations. Our main contributions are as follows:

- We formulate the efficient fine-tuning of quantized LLMs as a **joint, multi-objective optimization problem**, considering per-layer bit-width and LoRA rank as coupled variables. This new perspective moves beyond the prevailing single-dimension optimization approaches.
- We propose QR-Adaptor, a novel and practical gradient-free framework to solve this
 problem. It efficiently searches the discrete configuration space using a combination of
 task-informed initialization, genetic algorithms, and Bayesian optimization.
- Through extensive experiments, we demonstrate that QR-Adaptor significantly advances the state-of-the-art. It establishes a superior **Pareto frontier** for the accuracy-memory trade-off and, in some cases, surpasses the performance of 16-bit LoRA fine-tuning with a memory footprint comparable to 4-bit models.

2 BACKGROUND AND MOTIVATION

To motivate our work, we first establish the necessity of a heterogeneous, per-layer approach for both quantization and parameter-efficient fine-tuning. We then discuss the limitations of existing methods that rely on continuous proxies to solve the inherently discrete problem of quantization-aware adaptation, paving the way for our proposed discrete search framework.

2.1 THE NEED FOR LAYER-WISE HETEROGENEITY

A core assumption in methods like QLoRA is uniformity: all adaptable layers are assigned the same quantization bit-width and LoRA rank. However, extensive research has shown that Large Language Models exhibit significant **layer-wise heterogeneity**, where different layers possess distinct properties and sensitivities.

Sensitivity to Quantization. It is well-documented that not all layers in an LLM are equally sensitive to the perturbations introduced by quantization. Seminal works in post-training quantization (PTQ), such as AWQ (Lin et al., 2023) and SmoothQuant (Xiao et al., 2022), identify that certain "outlier" features, often concentrated in specific layers, are critical for model performance. Consequently, applying a uniform low bit-width across the entire model can disproportionately harm these sensitive layers. This has led to the development of mixed-precision quantization schemes (Wang et al., 2025; Huang et al., 2025) that allocate more bits to more sensitive layers, thereby achieving a better balance between compression and accuracy.

Sensitivity to Task Adaptation. Similarly, during fine-tuning, layers contribute unequally to adapting the model to a new downstream task. The core idea behind methods like AdaLoRA (Zhang et al., 2023b) and RankAdaptor (Zhou et al., 2025) is to dynamically allocate more rank (i.e., more

trainable parameters) to layers whose weight updates are more significant for the task at hand. This demonstrates that a one-size-fits-all rank allocation is suboptimal for maximizing adaptation capacity under a fixed parameter budget.

The Unaddressed Interplay. These two lines of research highlight a critical, yet largely unaddressed, trade-off. For a given layer, how should a limited budget be allocated between **numerical precision** (**bit-width**) and **adaptive capacity** (**rank**)? For instance, for a layer identified as sensitive, is it more effective to increase its bit-width to preserve its original function, or to assign it a higher rank to allow it to better compensate for quantization effects during fine-tuning? Existing methods optimize these two dimensions in isolation. This motivates the need for a unified framework that can holistically solve this joint optimization problem on a per-layer basis.

2.2 Limitations of Continuous Proxies for a Discrete Problem

Another line of work, such as LoftQ (Li et al., 2023), attempts to improve upon QLoRA by initializing the LoRA matrices ($\bf A$ and $\bf B$) to better compensate for the quantization error, typically by minimizing the Frobenius norm of the residual:

$$\min_{\mathbf{A}, \mathbf{B}} \| (\mathbf{W} - \mathsf{Quantize}(\mathbf{W})) - \mathbf{A} \mathbf{B} \|_{F}. \tag{1}$$

While intuitive, this approach relies on a continuous proxy objective (the Frobenius norm) to address an inherently discrete problem. The fundamental challenge is that the target space for the quantized weights is a discrete lattice $\Lambda = \Delta \cdot \mathbb{Z}^{d \times k}$. A continuous low-rank update \mathbf{AB} added to a quantized matrix $\mathbf{Q} = \text{Quantize}(\mathbf{W})$ results in a matrix $\mathbf{Q} + \mathbf{AB}$ that almost certainly lies outside this lattice. To be used in the model, it must be re-quantized, i.e., projected back onto Λ .

This two-step process—continuous fitting followed by discrete projection—can be suboptimal. As we formalize in Appendix C, even the optimal continuous low-rank correction \mathbf{AB}^* does not guarantee that the final quantized matrix $\mathcal{P}_{\Lambda}(\mathbf{Q}+\mathbf{AB}^*)$ is the best possible approximation of the original weight matrix \mathbf{W} . There often exists another discrete matrix $\mathbf{Q}' \in \Lambda$ that is a better representation, but which is inaccessible via this indirect, residual-fitting procedure.

This observation motivates a paradigm shift: instead of indirectly minimizing a continuous error metric, a more direct and effective approach is to **search within the discrete configuration space itself**, using the final downstream task performance as the direct optimization signal. This is the core principle behind our proposed QR-Adaptor.

3 QR-Adaptor: A Multi-Stage Framework for Joint Optimization

3.1 A MULTI-OBJECTIVE FORMULATION FOR QUANTIZED ADAPTATION

We frame the challenge of efficient LLM fine-tuning as a multi-objective optimization problem. For a model with L layers, our goal is to find an optimal configuration $C = \{(q_l, r_l)\}_{l=1}^L$, where $q_l \in \mathcal{Q}$ is the quantization bit-width and $r_l \in \mathcal{R}$ is the LoRA rank for layer l. The sets \mathcal{Q} (e.g., $\{2,4,8\}$) and \mathcal{R} (e.g., $\{4,8,16\}$) define the discrete search space.

The forward pass for a layer l with configuration (q_l, r_l) is given by:

$$\mathbf{y} = \text{Quantize}(\mathbf{W}_l, q_l) \cdot \mathbf{x} + \mathbf{A}_l \mathbf{B}_l \cdot \mathbf{x}, \tag{2}$$

where $\mathbf{A}_l \in \mathbb{R}^{d \times r_l}$ and $\mathbf{B}_l \in \mathbb{R}^{r_l \times k}$ are the LoRA matrices.

We aim to find a configuration C that simultaneously maximizes the model's performance on a downstream task, denoted P(C), and minimizes its memory footprint, M(C). This defines a search for the Pareto optimal set \mathcal{C}^* in the solution space \mathcal{C} :

$$C^* = \arg\min_{C \in \mathcal{C}} \left(-P(C), M(C) \right). \tag{3}$$

Since evaluating each candidate C requires a non-trivial fine-tuning process, this problem constitutes an expensive, black-box, multi-objective optimization over a high-dimensional, discrete space.

188 189

190 191

192

193

194

196

197

200

201

202

203

204

205

206

207 208

209 210

211

212

213

214

215

```
Algorithm 1 The QR-Adaptor Framework
163
           1: Input: Pre-trained model \mathcal{M}, calibration data \mathcal{D}_{calib}, search spaces \mathcal{Q}, \mathcal{R}.
164
           2: Output: An optimal configuration C^* = \{(q_l^*, r_l^*)\}_{l=1}^L.
165
               # Stage 1: Task-Informed Initialization
166
           3: Compute layer importance scores \{I(l)\}_{l=1}^L using an entropy-based criterion on \mathcal{D}_{\text{calib}}.
167
           4: Generate an initial seed configuration C_0 based on importance scores.
168
           5: Create an initial population \mathcal{P}_0 by introducing perturbations around C_0.
               # Stage 2: Global Exploration with PRGA
170
           6: Initialize population with \mathcal{P}_0.
171
172
           8: for g = 1 to G_{\text{max}} do
173
           9:
                   Evaluate each configuration C \in \mathcal{P}_{g-1} on \mathcal{D}_{\text{calib}} to get (P(C), M(C)).
174
                   Generate offspring population \mathcal{P}'_q via selection, crossover, and mutation.
          10:
175
                   Select the next generation \mathcal{P}_q using Pareto ranking and crowding distance.
176
          12: end for
177
          13: Obtain the final Pareto front C_{\text{pareto}} from P_{G_{\text{max}}}.
178
               # Stage 3: Local Refinement with Bayesian Optimization
179
          14: Define a scalarized objective f(C) = \alpha P(C) - (1 - \alpha) M(C) with user preference \alpha.
          15: Build a Gaussian Process surrogate model of f(C) using samples from \mathcal{C}_{\text{pareto}}.
181
          17: for t = 1 to T_{\text{max}} do
183
                   Select next candidate C_{t+1} by maximizing the Expected Improvement (EI) acquisition
          18:
               function.
185
          19:
                   Evaluate f(C_{t+1}) and update the surrogate model.
          20: end for
186
          21: return The best configuration found C^* = \arg \max_C f(C).
187
```

3.2 THE QR-ADAPTOR SEARCH PIPELINE

The entire three-stage pipeline is designed to efficiently navigate the vast and discrete configuration space. Navigating this complex search space requires a specialized strategy. A purely random search would be inefficient, while methods relying on gradients are inapplicable. We therefore propose **QR-Adaptor**, a principled, three-stage search pipeline designed to efficiently identify near-optimal configurations. The pipeline orchestrates three well-established optimization techniques:

- 1. **Task-Informed Initialization:** An efficient heuristic to identify a promising region of the search space.
- 2. Global Exploration with PRGA: A genetic algorithm to broadly explore this region and identify the Pareto front.
- 3. Local Refinement with Bayesian Optimization: A sample-efficient method to fine-tune solutions along the Pareto front according to specific user preferences.

A detailed breakdown of the search hyperparameters, search spaces, and a step-by-step algorithm for the task-informed initialization stage is provided in Appendix E. The entire search process is conducted on a small calibration subset of the training data to keep the computational overhead manageable. The overall procedure is summarized in Algorithm 1.

STAGE 1: TASK-INFORMED INITIALIZATION

To avoid a blind start, we first estimate each layer's importance using an information-theoretic criterion based on mutual information:

$$I(l) = H(Y) - H(Y|X_l), \tag{4}$$

where Y is the model's output distribution and X_l is the representation at layer l, both estimated on $\mathcal{D}_{\text{calib}}$. Layers with higher I(l) have greater influence. We then generate a seed configuration C_0 by allocating higher bit-widths and ranks to more important layers. An initial population \mathcal{P}_0 for the

237238

239240241

242243

244

245

246

247

248

249

250 251

252 253

254

255

256

257

258

259260

261

262

263

264

265 266

267

268

269

Algorithm 2 Pareto Ranking Genetic Algorithm (PRGA)

```
217
                  1: Input: Initial population \mathcal{P}_0, calibration data \mathcal{D}_{\text{calib}}.
218
                  2: Output: Pareto front C_{pareto}.
219
                  3: Evaluate fitness (-P(\dot{C}), M(C)) for all C \in \mathcal{P}_0 on \mathcal{D}_{\text{calib}}.
220
                  4: (\mathcal{F}_1, \mathcal{F}_2, \dots) \leftarrow \text{Non-Dominated-Sort}(\mathcal{P}_0).
221
222
                  6: for g = 0 to G_{\text{max}} - 1 do
223
                               Q_q \leftarrow \text{Create-Offspring}(\mathcal{P}_q)
                                                                                                                     ▶ Tournament Selection, Crossover, Mutation
                  7:
224
                               Evaluate fitness for all C \in \mathcal{Q}_q.
                  8:
                                \begin{array}{l} \mathcal{R}_g \leftarrow \mathcal{P}_g \cup \mathcal{Q}_g. \\ (\mathcal{F}_1, \mathcal{F}_2, \dots) \leftarrow \text{Non-Dominated-Sort}(\mathcal{R}_g). \end{array} 
                  9:
225
                 10:
226
                11:
                               \mathcal{P}_{g+1} \leftarrow \emptyset.
227
                12:
228
                               \begin{aligned} & \textbf{while} \ |\mathcal{P}_{g+1}| + |\mathcal{F}_i| \leq |\mathcal{P}_0| \ \textbf{do} \\ & \mathcal{P}_{g+1} \leftarrow \mathcal{P}_{g+1} \cup \mathcal{F}_i. \\ & i \leftarrow i+1. \end{aligned} 
                13:
229
                14:
230
                15:
231
                16:
232
                17:
                               Crowding-Distance-Assignment(\mathcal{F}_i).
233
                 18:
                               Sort \mathcal{F}_i by descending crowding distance.
234
                19:
                               \mathcal{P}_{g+1} \leftarrow \mathcal{P}_{g+1} \cup \mathcal{F}_i[1:(|\mathcal{P}_0| - |\mathcal{P}_{g+1}|)].
235
                20: end for
                21: return The first Pareto front \mathcal{F}_1 from the final population \mathcal{P}_{G_{\max}}
236
```

next stage is created by applying small, random perturbations to C_0 , focusing search on a promising region.

3.2.2 STAGE 2: GLOBAL EXPLORATION WITH PRGA

With a promising initial population, we perform a global search using a Pareto Ranking Genetic Algorithm (PRGA), inspired by NSGA-II (Deb et al., 2002). The goal is to discover the Pareto frontier C_{pareto} . The core logic is detailed in Algorithm 2. The algorithm iteratively evolves a population of configurations through selection, crossover, and mutation. Selection is guided by two principles: Pareto dominance (solutions on better fronts are preferred) and crowding distance (solutions in sparser regions of a front are preferred to maintain diversity). Crossover and mutation operators are adapted from Simulated Binary Crossover (SBX) and Polynomial Mutation to operate on the integer-pair representation of configurations. The visual flowchart is in Figure 3 in the Appendix

3.2.3 STAGE 3: LOCAL REFINEMENT WITH BAYESIAN OPTIMIZATION

The Pareto front from PRGA provides a set of excellent trade-off solutions. To pinpoint a single optimal configuration based on specific user preferences (e.g., maximizing performance under a strict memory budget), we employ Bayesian Optimization (BO).

First, we transform the multi-objective problem into a single-objective one by defining a scalarized objective function with a trade-off parameter $\alpha \in [0, 1]$:

$$\max_{C \in \mathcal{C}} f(C) = \alpha \cdot \text{norm}(P(C)) - (1 - \alpha) \cdot \text{norm}(M(C)). \tag{5}$$

We use the solutions on the Pareto front to build a Gaussian Process (GP) surrogate model for the expensive function f(C). The GP provides a posterior distribution over the objective function for any candidate configuration C^* , characterized by its mean and variance:

$$\mu(C^*) = \mathbf{k}_*^T (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} \mathbf{y}$$

$$\sigma^2(C^*) = k(C^*, C^*) - \mathbf{k}_*^T (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} \mathbf{k}_*,$$
(6)

where K is the kernel matrix of the observed points, k_* is the vector of covariances between C^* and observed points, and y are the observed function values.

We then iteratively select the next configuration to evaluate by maximizing the Expected Improvement (EI) acquisition function. EI quantifies the expected amount of improvement over the current best

Table 2: Performance comparison of different methods across various bit-width configurations on LLaMa3.1-8B. Superscripts on LoftQ bits indicate the number of initialization iterations. Bold figures represent the best performance, while underlined figures indicate the second-best. Accuracy is reported as %.

	Method	Bit	ARC(C)	ARC(E)	BoolQ	GSM8K	HellaS	OBQA	PIQA	WinoG	Average
	LoRA	16	56.14	83.88	83.18	54.36	79.44	45.20	82.10	75.30	69.95
	QLoRA	8	57.08	83.46	82.48	53.75	<u>79.63</u>	46.00	82.10	74.59	69.89
	QLoRA	4	54.35	82.41	82.08	44.35	78.82	44.20	81.50	73.64	67.67
	AdaLoRA	16	52.90	81.99	81.87	50.57	78.65	45.00	81.34	73.95	68.28
	AdaLoRA	8	52.90	81.86	82.05	49.96	78.65	44.80	81.34	74.43	68.25
	AdaLoRA	4	51.28	80.98	80.61	37.83	77.36	42.80	80.74	72.53	65.51
∞	LoftQ	4^{1}	54.86	82.74	82.26	51.40	78.65	46.00	81.45	73.24	68.82
X 	LoftQ	4^{5}	52.65	81.82	81.53	39.65	78.50	43.40	81.39	72.69	66.45
Rank:	LoftQ	4^{10}	51.88	81.31	79.66	38.44	78.01	43.20	81.12	71.98	65.70
×	QuaRot	4	54.12	82.15	81.92	50.21	78.45	45.20	81.32	73.01	68.30
	SpinQuant	4	54.45	82.32	82.05	51.03	78.62	45.60	81.41	73.15	68.58
	QR-Adaptor (≤4-bit)	3.625	56.15	82.78	82.45	54.12	79.58	45.60	82.12	75.01	69.73
	QR-Adaptor (Optimal)	5.45	<u>56.83</u>	84.12	83.38	56.29	80.93	<u>45.80</u>	82.92	<u>75.10</u>	70.67
	ApiQ	2	48.12	76.45	75.32	28.45	72.15	38.20	75.67	65.89	62.53
	RILQ	2	48.78	76.98	75.89	29.45	72.78	38.80	76.12	66.45	63.16
	QR-Adaptor (Fixed 2-bit)	2	49.12	77.12	76.01	30.12	73.01	39.00	76.23	66.89	63.44
	QR-Adaptor (Mixed 2/4-bit)	2.5	50.23	78.01	76.89	31.45	73.89	39.80	77.12	67.78	64.40
	LoRA	16	56.74	83.63	83.00	54.13	79.51	44.40	81.83	74.43	69.70
	QLoRA	8	56.23	82.91	82.66	53.68	79.46	46.00	81.66	<u>74.74</u>	69.67
	QLoRA	4	53.84	81.99	82.11	44.66	78.76	44.40	81.72	73.09	67.57
	AdaLoRA	16	53.07	82.03	81.99	50.11	78.61	45.40	81.28	74.11	68.33
16	AdaLoRA	8	53.33	82.03	82.11	49.13	78.57	45.20	81.34	73.79	68.19
II.	AdaLoRA	4	50.85	80.72	80.73	37.98	77.34	42.80	80.52	73.16	65.51
Rank	LoftQ	4^1	55.12	82.58	82.69	49.81	78.82	45.80	81.28	74.27	68.80
23	LoftQ	4^{5}	53.92	82.32	81.56	42.00	78.54	43.80	81.56	72.77	67.06
	LoftQ	4^{10}	52.90	81.69	81.56	39.88	78.64	43.80	81.07	71.98	66.44
	QuaRot	4	54.23	82.28	82.01	50.89	78.58	45.20	81.45	73.18	68.48
	SpinQuant	4	54.52	82.45	82.15	51.28	78.74	45.60	81.56	73.32	68.70
	QR-Adaptor (≤4-bit)	3.625	56.15	82.78	82.45	54.12	79.58	45.60	82.12	75.01	69.73
	QR-Adaptor (Optimal)	5.45	56.83	84.12	83.38	56.29	80.93	<u>45.80</u>	82.92	75.10	70.67

observed value $f(C^+)$, balancing exploration and exploitation:

$$\begin{split} & \mathrm{EI}(C^*) = (\mu(C^*) - f(C^+))\Phi(Z) + \sigma(C^*)\phi(Z) \\ & \mathrm{with} \ Z = \frac{\mu(C^*) - f(C^+)}{\sigma(C^*)}, \end{split} \tag{7}$$

where $\Phi(\cdot)$ and $\phi(\cdot)$ are the CDF and PDF of the standard normal distribution. This sample-efficient process allows us to quickly converge on a refined optimal solution C^* that best satisfies the user-defined preference α . The visual flowchart is in Figure 4 in the Appendix

4 EVALUATION

In this section, we first introduce the experimental setup, including datasets, models, baselines, and implementation details. All hyperparameters aside from rank value and bit-width are kept consistent with the baselines.

4.1 EXPERIMENTAL SETUP

Datasets and LLMs. We utilize the Alpaca52k and hc3 (Taori et al., 2023) for fine-tuning and evaluate the zero-shot performance of these LLMs on benchmarks including BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-easy (Clark et al., 2018), ARC-challenge (Clark et al., 2018), OpenbookQA (Mihaylov et al., 2018), and MMLU Hendrycks et al. (2021). The models used in our experiments are LLaMA2 Touvron et al. (2023), LLaMA3.1 Grattafiori et al. (2024), LLaMA3.2, and Qwen2.5 Qwen et al. (2025). These models cover a range of scales and architectures to demonstrate the generalizability of our approach across different model families.

Baselines. We compare our method against several baselines: without tuning, LoRA Hu et al. (2022), QLoRA Dettmers et al. (2023), Adalora Zhang et al. (2023b), LoftQ Li et al. (2023), and

Table 3: Performance comparison across different model architectures (r=8). Bold figures represent the best performance for each model. Accuracy is reported as %.

Model	Method	Bit	ARC(C)	ARC(E)	BoolQ	GSM8K	HellaS	OBQA	PIQA	WinoG	Average
	LoRA	16	56.01	83.48	82.97	54.03	79.01	45.00	81.95	74.98	69.68
	QLoRA	4	54.02	82.04	81.53	44.11	78.02	44.00	81.04	72.96	67.22
Qwen-2.5-7B	AdaLoRA	4	51.03	80.51	80.04	37.23	77.04	42.60	80.53	72.01	65.11
Qweii-2.5-7B	LoftQ	4^1	53.96	82.15	81.87	43.84	77.93	43.80	80.72	72.54	67.11
	QR-Adaptor ($\leq 4bit$)	3.875	54.89	82.71	82.25	49.87	78.73	45.20	81.49	73.40	68.56
	QR-Adaptor (Optimal)	5.125	56.52	84.01	83.49	56.03	80.52	46.00	82.51	75.52	70.58
Owen-2.5-3B	LoRA	16	52.98	81.03	80.01	45.02	76.01	42.00	79.03	70.99	65.88
	QLoRA	4	51.01	79.02	79.03	36.04	75.01	41.00	78.02	68.97	63.51
	AdaLoRA	4	49.03	78.01	78.02	29.01	74.03	40.00	77.01	68.03	61.64
Qweii-2.3-3B	LoftQ	4^1	50.92	79.23	78.87	35.48	74.95	40.60	77.87	68.65	63.32
	QR-Adaptor ($\leq 4bit$)	3.375	51.87	79.91	79.76	41.03	75.45	41.80	78.43	69.41	64.69
	QR-Adaptor (Optimal)	4.875	53.53	81.51	80.52	47.01	77.03	43.00	79.51	71.52	66.70
	LoRA	16	53.51	81.23	80.51	46.03	76.51	42.60	79.52	71.31	66.39
	QLoRA	4	51.52	79.51	79.52	37.01	75.53	41.60	78.53	69.51	64.08
II aMA 2 2 2D	AdaLoRA	4	49.53	78.52	78.51	30.03	74.52	40.60	77.51	68.52	62.21
LLaMA-3.2-3B	LoftQ	4^{1}	51.78	79.83	79.87	37.42	75.78	41.20	78.72	69.84	64.49
	QR-Adaptor ($\leq 4bit$)	3.75	52.41	80.25	80.17	42.01	75.95	42.20	78.96	69.95	65.23
	QR-Adaptor (Optimal)	5.375	54.01	81.83	81.02	48.01	77.52	43.60	80.01	72.03	67.24

LQ-LoRA Guo et al. (2024). We evaluated the performance of LoftQ with different iteration numbers. For Adalora, which dynamically allocates ranks based on the average rank budget, we set the budget to 8 and 64. Finally, for LQ-LoRA, which allocates quantization bit-width based on the average weight bit-width budget and quantization error, we set the bit-width budget to 4. Additionally, we include recent 4-bit quantization methods: QuaRot Ashkboos et al. (2024), which uses random rotations to handle outliers, and SpinQuant Liu et al. (2024b), which employs learned rotations for optimal quantization accuracy. For extreme low-bit comparison, we evaluate against 2-bit methods including ApiQ Liao et al. (2024) and RILQ Lee et al. (2025), both utilizing LoRA-based quantization error compensation.

Implementation Details. We utilize the following configurations: *PyTorch* version 2.1.2, *Bit-sandBytes* library version 0.43.1, *Transformers* library version 4.41.0, *PEFT* library version 0.11.1, *Optuna* library version 3.6.1, *CUDA* version 12.4, *GPU*: NVIDIA L20. *Operating System:* Ubuntu. Concise implementation details are provided in the Appendix I.We define the population size as 5 and generate 1 new offspring in each iteration. The second and third phases were iterated 5 times.

4.2 MAIN RESULTS

We present the performance comparison of LLaMA3.1-8B on commonsense understanding tasks in Table 2. We further evaluate QR-Adaptor on three additional models (Qwen-2.5-7B, Qwen-2.5-3B, and LLaMA-3.2-3B) as shown in Table 3. For practical deployment considerations, we include both \leq 4-bit constrained and optimal configurations. Our method achieves or surpasses the performance of 16-bit fine-tuned models while maintaining competitive memory usage.

As mentioned, LoftQ outperforms 4-bit QLoRA after one iteration, but its performance degrades with more iterations due to the mismatch between continuous error correction and discrete quantization. Recent 4-bit methods like QuaRot and SpinQuant, which use rotation-based outlier handling, show competitive results but still fall short of our approach. For extreme quantization, we compare against 2-bit methods including ApiQ and RILQ. QR-Adaptor demonstrates consistent improvements across all bit-width regimes.

QR-Adaptor jointly optimizes bit-width and LoRA rank, balancing precision and adaptation capacity for superior performance. Notably, even under strict \leq 4-bit constraints (average 3.625 bits), QR-Adaptor achieves 69.37% average accuracy, outperforming all 4-bit baselines. In the optimal configuration (5.45 bits average), it reaches 70.67%, substantially exceeding both traditional and recent quantization methods. Furthermore, QR-Adaptor allocates resources more efficiently by assigning higher LoRA ranks to critical layers and higher precision to important layers, achieving high accuracy with low memory usage.

Due to space constraints, additional experimental results and analyses are provided in Appendix G, including: (1) extended results across different models (G.1, G.2, G.5, G.6); (2) evaluations on larger datasets with higher LoRA ranks (G.3).

Table 5: Performance comparison of different methods across various bit-width configurations on Llama3.1-8B with higher ranks. Bold figures represent the best performance for a given model and task, while underlined figures indicate the second-best. QR-Adaptor* is transferred config. Accuracy is reported as %.

Method	Rank	Bit	ARC(C)	ARC(E)	BoolQ	HellaS	OBQA	PIQA	WinoG	MMLU	Average
LoRA	32	16	54.86	82.74	82.75	79.21	44.40	81.99	74.11	63.66	70.47
LoRA	64	16	55.46	82.95	82.94	79.13	45.00	81.88	74.51	64.34	70.78
QLoRA	32	8	55.20	83.12	81.93	79.07	46.20	81.88	73.32	63.28	70.50
QLoRA	32	4	53.41	80.89	82.05	78.42	43.60	80.90	73.01	60.97	69.16
QLoRA	64	8	<u>55.46</u>	83.04	81.96	79.17	45.80	81.94	73.01	63.34	70.47
QLoRA	64	4	53.41	81.19	81.74	78.35	44.60	80.69	72.06	60.79	69.10
AdaLoRA	32	8	53.92	81.82	82.20	78.57	46.20	81.50	73.40	63.82	70.18
AdaLoRA	32	4	51.45	81.02	80.86	77.30	42.40	80.96	72.53	58.15	68.08
AdaLoRA	64	8	53.92	82.11	81.93	78.74	46.20	81.39	73.95	63.88	70.27
AdaLoRA	64	4	52.13	80.98	81.04	77.20	42.20	80.85	72.77	58.07	68.16
LoftQ	32	4^1	53.84	81.36	81.41	78.12	43.00	81.50	73.56	59.40	69.02
LoftQ	32	4^{5}	52.56	81.36	81.96	78.05	42.80	81.45	73.09	59.41	68.84
LoftQ	32	4^{10}	51.62	81.31	82.51	78.16	43.60	81.34	72.30	59.12	68.75
LoftQ	64	4^{1}	52.82	81.40	81.59	78.23	43.20	81.34	73.88	59.78	69.03
LoftQ	64	4^{5}	52.39	81.10	81.13	78.33	43.40	81.34	73.24	58.69	68.70
LoftQ	64	4^{10}	51.71	81.23	81.62	78.37	43.20	81.01	72.77	59.25	68.65
QR-Adaptor*	32	3.625	55.23	82.89	82.65	79.12	45.40	81.77	73.88	63.78	70.59
QR-Adaptor	32	5.875	56.12	83.45	83.21	79.78	46.20	82.10	74.59	64.40	71.23

4.3 COMPUTATIONAL EFFICIENCY

The computational cost of QR-Adaptor primarily stems from actual performance testing on calibration data during stages 2 and 3. Specifically, after predicting a configuration, we need to conduct real performance tests to validate predictions. The prediction process itself is extremely fast (second-level), while one performance test on LLaMA3.1-8B model requires approximately 8-9 minutes. In comparison, one LoftQ iteration takes 11 minutes, and AdaLoRA, due to its dynamic rank adjustment during training, is typically 30-35% slower than LoRA.

QR-Adaptor's advantage becomes evident in resource-constrained scenarios where performance optimization is critical. While the initial search requires multiple performance evaluations, the method can continuously improve model performance through iterative optimization. Moreover, the three-stage design ensures efficient exploration of the configuration space, requiring fewer total evaluations compared to exhaustive search approaches.

To provide a comprehensive time comparison, we conducted experiments fine-tuning LLaMA3.1-8B on Alpaca52k dataset for 2 epochs across different methods. The results are summarized in Table 4.

To address potential concerns about computational overhead, we investigated the transferability of optimized configurations across datasets. We found that configurations optimized on one dataset exhibit significant transferability when applied to fine-tuning on different datasets. Specifically, when directly using a configuration optimized on dataset A for fine-tuning on dataset B, we still achieve notable performance improvements compared to baseline methods, albeit not as substantial as performing optimization specifically for dataset B.

As shown in Table 9, the "QR-Adaptor (Transferred Config)" row demonstrates the performance when directly applying a configuration

Table 4: Training time comparison of different methods on LLaMA3.1-8B with Alpaca52k dataset (2 epochs). All experiments were conducted on L20 GPU.

Method	Total Time (minutes)
LoRA	300
QLoRA	360-405
AdaLoRA	390-405
LoftQ (1 iteration)	370-416
LoftQ (5 iterations)	415-460
LoftQ (10 iterations)	470-515
QR-Adaptor	445-495

optimized on a 52k dataset to the larger 177k dataset. This demonstrates that the same model's optimized configurations possess transferability, enabling direct use in fine-tuning on different datasets while still achieving significant performance improvements.

4.4 ABLATION STUDY

We use the WinoGrande benchmark to conduct an ablation study assessing the contribution of each stage in QR-Adaptor. As shown in Figure 1, removing either PRGA or Bayesian optimization leads to unbalanced search behavior—PRGA alone explores too broadly, while Bayesian optimization alone is overly narrow—reflecting their extrapolation and interpolation roles, respectively. Omitting stage 1 causes PRGA to initiate from random configurations, resulting in scattered search patterns. Nonetheless, it still reaches the upper-left optimal region, highlighting the strength of PRGA and Bayesian optimization. In contrast, the full three-stage pipeline first explores broadly around a guided initialization, then refines near promising areas, yielding the best configurations.

Further ablation studies assess the impact of each stage by removing them individually and analyzing the resulting performance. We also perform sensitivity analysis on PRGA hyperparameters, with details provided in Appendix J.

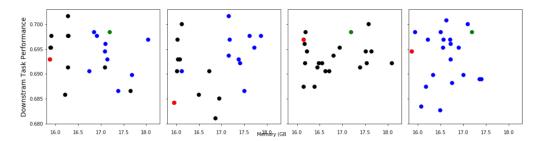


Figure 1: From left to right, the actual measured performance and memory usage of the configurations generated by QR-Adaptor, QR-Adaptor without stage1, QR-Adaptor without stage2, and QR-Adaptor without stage3 are shown. Different colors represent the configurations generated at different stages.

5 RELATED WORK

LLM Quantization. LLM quantization enables efficient deployment by reducing precision. Notable methods include GPTQ Frantar et al. (2023), AWQ Lin et al. (2023), SmoothQuant Xiao et al. (2023), ZeroQuant Yao et al. (2022), and LLM.int8() Dettmers et al. (2022). Mixed-precision approaches such as APTQ Guan et al. (2024), MixLLM Wang et al. (2025), and SliM-LLM Huang et al. highlight the importance of per-layer precision allocation, though they focus solely on quantization.

Parameter Efficient Fine-Tuning. PEFT methods enhance LLMs without heavy inference costs. QLoRA Dettmers et al. (2023) and LoftQ Li et al. (2023) combine quantization with low-rank adapters. Variants such as AdaLoRA Zhang et al. (2023a), LQ-LoRA Guo et al. (2023), RankAdaptor Zhou et al. (2024), and DoRA Liu et al. (2024a) emphasize adaptive allocation across layers, but remain independent of quantization.

Joint Quantization and Low-Rank Adaptation. LoftQ Li et al. (2023) alternates between quantization and low-rank approximation, while LQ-LoRA Guo et al. (2023) combines the two under memory constraints. However, existing approaches typically optimize quantization and adaptation separately, leaving joint allocation of precision and rank underexplored. More related work is in the Appendix A.

6 CONCLUSION

In this work, we propose QR-Adaptor, a unified, gradient-free method that uses partial calibration data to simultaneously optimize the precision and LoRA rank of each model layer. By focusing on the discrete nature of quantization and low-rank spaces and optimizing them within a task-driven framework, QR-Adaptor overcomes the limitations of iterative error-fitting techniques and rank-adaptive methods unsuitable for quantization. Our extensive experiments demonstrate that QR-Adaptor consistently outperforms existing baselines, achieving better performance than 16-bit fine-tuned models while maintaining a 4-bit memory footprint. These results highlight the importance of integrating quantization and low-rank matrices into a single, cohesive optimization process, driven by actual performance and memory efficiency.

ETHICS STATEMENT

This work builds upon pre-trained large language models Llama2 and utilizes publicly available datasets for instruction fine-tuning Alpaca-clean. We do not introduce any new datasets or data collection processes, and therefore do not involve human annotation in this research. Additionally, our study focuses on improving model efficiency through pruning and quantization techniques, without engaging with sensitive content or user-specific data. As such, this paper does not present any ethical concerns beyond those already associated with the broader body of research on large language models and their datasets. All datasets and models used comply with their respective licenses and terms of

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide comprehensive documentation on the steps required to replicate our experiments. Our code is available in scripts such as optuna_main-v3.py, post_training_mixed_quant.py, and run_optuna.py, which handle hyperparameter optimization, mixed-precision quantization, and evaluation. For data preparation, we utilize the Alpaca Cleaned Dataset from yahma/alpaca-cleaned, which is automatically downloaded and processed using the datasets library. Our environment setup requires an NVIDIA GPU with CUDA support, preferably with at least 20 GB of memory for the Llama2 model, as well as Python 3.8+ and dependencies like PyTorch, Transformers, Optuna, BitsAndBytes, PEFT, and other libraries, which can be installed via the requirements.txt file. The model we fine-tune is the Llama2 architecture (NousResearch/Llama-2-7b-hf), using a mixed-precision quantization approach via bitsandbytes and Low-Rank Adaptation (LoRA) with the peft library. The training is conducted using a mixed-precision setup where the model's dtype is set to torch. bfloat16 to optimize memory usage and computation efficiency. Our hyperparameter optimization framework leverages Optuna to maximize model accuracy while minimizing memory usage, tuning parameters like quantization bits (4 or 8 bits) and LoRA ranks (2 to 16). To replicate our training process, researchers can execute the provided scripts using the specified command-line arguments, which configure the model, output directories, number of trials, and evaluation tasks. Model checkpoints and Optuna results are saved at regular intervals. The training is conducted using the Hugging Face Trainer, configured with parameters including a batch size of 4, gradient accumulation steps of 16, warmup steps of 100, and a learning rate of 1e-4, with evaluation and model saving steps set to every 200 steps. Evaluation is conducted using the lm_eval library, where metrics such as accuracy are recorded and saved in JSON format. All hyperparameter settings and model configurations are logged in the output directory, along with training progress and memory usage. Random seeds are set to ensure deterministic behavior. By following these steps, including hardware and software specifications, and running the scripts with the provided configurations, researchers can reproduce our experiments and validate the findings related to mixed-precision quantization and parameter-efficient fine-tuning.

REFERENCES

- Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. *Advances in Neural Information Processing Systems*, 37:100213–100240, 2024.
- Jules Berman and Benjamin Peherstorfer. Colora: Continuous low-rank adaptation for reduced implicit neural modeling of parameterized partial differential equations, 2024. URL https://arxiv.org/abs/2402.14646.
- Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 7432–7439, 2020.
- Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. *ACM Transactions on Intelligent Systems and Technology*, 15(3):1–45, 2024.

541

542

543

544

546

547

548 549

550

551 552

553

554

556

559

560

561

562

563 564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

588

592

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In *Proceedings* of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv preprint arXiv:1803.05457*, 2018.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiobjective genetic algorithm: Nsga-ii. *IEEE transactions on evolutionary computation*, 6(2):182–197, 2002.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication for transformers at scale. *CoRR*, abs/2208.07339, 2022. URL http://arxiv.org/abs/2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized llms. *arXiv preprint arXiv:2305.14314*, 2023.

Elias Frantar, Sahar Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization for generative pre-trained transformers. In *The Eleventh International Conference on Learning Representations (ICLR)*, 2023.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional networks using vector quantization. *arXiv preprint arXiv:1412.6115*, 2014.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas

595

596

597

598

600

601

602

603

604

605

606

607

608

610

611

612

613

614

615

616

617

618

619

620

621

622

623

625

626

627

629

630

631

632

633

634

635

636

637

638

639

640

641

642

644

645

646

647

Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

- Zhaoyi Guan, Hongyi Huang, Yihan Su, Haoxiang Huang, Ngai Wong, and Huazhong Yu. Aptq: Attention-aware post-training mixed-precision quantization for large language models. *arXiv* preprint arXiv:2402.14866, 2024.
 - Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix decomposition for efficient language model finetuning. *ICLR* 2024, 2023.
 - Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. LQ-loRA: Low-rank plus quantized matrix decomposition for efficient language model finetuning. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=xw29VvOMmU.
- Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with limited numerical precision. In *International conference on machine learning*, pp. 1737–1746. PMLR, 2015.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.
- Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *Proceedings of ICLR*, 2022.
- Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Qinshuo Liu, Xianglong Liu, Luca Benini, Michele Magno, Shiming Zhang, and XIAOJUAN QI. Slim-llm: Salience-driven mixed-precision quantization for large language models. In *Forty-second International Conference on Machine Learning*.
- Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Qinshuo Liu, Xianglong Liu, Luca Benini, Michele Magno, Shiming Zhang, and Xiaojuan Qi. Slim-llm: Salience-driven mixed-precision quantization for large language models, 2025. URL https://arxiv.org/abs/2405.14917.
- Sehoon Kim, Connor R. C. Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. In *Proceedings of the Forty-first International Conference on Machine Learning (ICML)*, 2023.
- Geonho Lee, Janghwan Lee, Sukjin Hong, Minsoo Kim, Euijai Ahn, Du-Seong Chang, and Jungwook Choi. Rilq: Rank-insensitive lora-based quantization error compensation for boosting 2-bit large language model accuracy. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 18091–18100, 2025.
- Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models, 2023. URL https://arxiv.org/abs/2310.08659.
- Baohao Liao, Christian Herold, Shahram Khadivi, and Christof Monz. Apiq: Finetuning of 2-bit quantized large language model. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 20996–21020, 2024.
- Ji Lin, Jie Tang, Haotao Tang, Shuxin Yang, Xiaoxia Dang, and Song Han. Awq: Activation-aware weight quantization for llm compression and acceleration. *arXiv preprint arXiv:2306.00978*, 2023.
- Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In *International Conference on Learning Representations*.
- Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first International Conference on Machine Learning*, 2024a.
- Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization with learned rotations. In *The Thirteenth International Conference on Learning Representations*, 2024b.

- Spyros Makridakis, Fotios Petropoulos, and Yanfei Kang. Large language models: Their success and impact. *Forecasting*, 5(3):536–549, 2023.
 - Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a new dataset for open book question answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2381–2391, 2018.
 - Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.
 - Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema, Nur Mohammad Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ahmad, Mohammed Eunus Ali, and Sami Azam. A review on large language models: Architectures, applications, taxonomies, open issues and challenges. *IEEE Access*, 2024.
 - Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.
 - Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. *Stanford CRFM*, 2023. URL https://github.com/tatsu-lab/stanford_alpaca.
 - Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, and et al. Bhosale, Shruti. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
 - Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan, Yi Zhu, Quanlu Zhang, et al. Efficient large language models: A survey. *Transactions on Machine Learning Research*, 2023.
 - Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. Hat: Hardware-aware transformers for efficient natural language processing. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 7675–7688, 2020.
 - Xinyuan Wang, Yanchi Liu, Wei Cheng, Xujiang Zhao, Zhengzhang Chen, Wenchao Yu, Yanjie Fu, and Haifeng Chen. Mixllm: Dynamic routing in mixed large language models, 2025. URL https://arxiv.org/abs/2502.18482.
 - Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate and efficient post-training quantization for large language models. *arXiv:2211.10438*, 2022.
 - Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate and efficient post-training quantization for large language models. In *International conference on machine learning*, pp. 38087–38099. PMLR, 2023.
 - Zhewei Yao, Reza Yazdani Aminabadi, Ming Zhang, Xiang Wu, Cong Li, and Yuxiong He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. In *Advances in Neural Information Processing Systems*, volume 35, pp. 27168–27183, 2022.
 - Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 4791–4800, 2019.
 - Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *International Conference on Learning Representations*. Openreview, 2023a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient finetuning. *arXiv preprint arXiv:2303.10512*, 2023b.

Changhai Zhou, Shijie Han, Shiyang Zhang, Shichao Weng, Zekai Liu, and Cheng Jin. Rankadaptor: Hierarchical dynamic low-rank adaptation for structural pruned llms. *arXiv preprint arXiv:2406.15734*, 2024.

Changhai Zhou, Shijie Han, Lining Yang, Yuhua Zhou, Xu Cheng, Yibin Wang, and Hongguang Li. RankAdaptor: Hierarchical rank allocation for efficient fine-tuning pruned LLMs via performance model. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics:* NAACL 2025, pp. 5781–5795, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025. findings-naacl.321. URL https://aclanthology.org/2025.findings-naacl.321/.

Table of Contents

A	Extended Related Work	17
В	Use of LLMs	17
C	On the Suboptimality of Continuous Proxies for Discrete Quantization	17
	C.1 Problem Formulation: Quantization as Projection	18
	C.2 Analysis of Iterative Low-Rank Refinement	18
	C.3 Formal Argument for Suboptimality	18
	C.4 The Discontinuous Optimization Landscape	19
D	Quantization	19
E	QR-Adaptor Search Process Details	20
	E.1 Search Hyperparameters and Configuration	20
	E.2 Task-Informed Initialization Algorithm	20
F	Pseudo code of the specific algorithm in the QR-Adaptor framework	21
G	More Results	21
	G.1 Experiment Scope Expansion: Llama 2 Series	21
	G.2 Visualization Results for the MMLU Task	22
	G.3 Effectiveness on Larger Datasets with Higher Ranks	23
	G.4 Fairer Comparison: Matching Bit-width Configurations	24
	G.5 Impact of Longer Fine-tuning Epochs on Unfixed Parameters	25
	G.6 Impact of 2-Bit Quantization and LoftQ Iterations	26
Н	Version of LLMs	27
I	More Implementation Details	27
J	More Ablation	27
	J.1 Gradient Norms vs. Relative Entropy	27
	J.2 Sensitivity to Iteration Counts and Population Size	28
K	Visualization of Optimization Stages	28
L	Limitation	29

A EXTENDED RELATED WORK

LLM Quantization. The field of LLM quantization has witnessed substantial progress, driven by the need for efficient model deployment. Recent research has introduced several innovative approaches. Frantar et al. (2023) developed GPTQ, achieving 4-bit precision with layer-wise quantization. Lin et al. (2023) proposed AWQ, improving accuracy for heavily quantized models. Xiao et al. (2023) introduced SmoothQuant, addressing quantization of both weights and activations. Yao et al. (2022) introduced ZeroQuant, preserving zero-shot capabilities at low bit widths. Dettmers et al. (2022) presented LLM.int8(), enabling 8-bit quantization on consumer hardware. Kim et al. (2023) combined quantization with pruning and knowledge distillation in SqueezeLLM. Mixed-precision quantization has further advanced the field: APTQ Guan et al. (2024) balances compression and performance, MixLLM Wang et al. (2025) employs dynamic strategies, and SliM-LLM Huang et al. provides another mixed-precision solution. These works highlight the importance of per-layer allocation but focus exclusively on quantization.

Parameter Efficient Fine-Tuning. PEFT techniques enhance LLMs without raising inference costs. QLoRA Dettmers et al. (2023) combines 4-bit quantization with low-rank adapters, while LoftQ Li et al. (2023) alternates between quantization and low-rank steps. CoLoRA Berman & Peherstorfer (2024) accelerates predictions under new parameters. AdaLoRA Zhang et al. (2023a) adaptively allocates update budgets; LQ-LoRA Guo et al. (2023) merges decomposition and quantization; RankAdaptor Zhou et al. (2024) enables hierarchical dynamic adaptation; DoRA Liu et al. (2024a) decomposes weights into magnitude and direction. While these approaches account for heterogeneous adaptation needs, they largely remain orthogonal to quantization.

Joint Quantization and Low-Rank Adaptation. Some works integrate quantization and adaptation. LoftQ Li et al. (2023) alternates quantization with low-rank approximation using SVD initialization, but iterative error fitting may degrade performance. LQ-LoRA Guo et al. (2023) combines low-rank decomposition with quantization, allocating bit-widths based on error budgets, though rank is treated separately. These methods are important steps but optimize quantization and adaptation independently or via proxy metrics, leaving open the challenge of jointly allocating memory between precision and rank per layer.

Neural Architecture Search and Optimization. Joint optimization of quantization and adaptation parameters connects to neural architecture search. DARTS Liu et al. introduced differentiable architecture search, and HAT Wang et al. (2020) proposed hardware-aware transformers. However, they primarily explore architecture design, not the discrete per-layer precision—rank allocation problem. Our discrete optimization requires specialized search strategies; genetic algorithms and Bayesian optimization offer promising directions, motivating our three-stage approach combining task-informed initialization, global exploration, and local refinement.

B USE OF LLMS

In preparing this paper, LLMs were employed solely for language refinement purposes, such as improving grammar, clarity, and style of expression. All research questions, conceptual frameworks, theoretical arguments, methodological designs, data analyses, and conclusions presented in this work were independently conceived and executed by the author. The LLMs did not generate, alter, or influence the underlying ideas, interpretations, or findings. Their use was limited to assisting in polishing the readability and fluency of the manuscript while preserving the originality and integrity of the scholarly contributions.

C ON THE SUBOPTIMALITY OF CONTINUOUS PROXIES FOR DISCRETE QUANTIZATION

This appendix provides a formal analysis of why iterative fine-tuning methods that rely on continuous, low-rank updates to correct quantization error can be suboptimal. These methods, such as LoftQ, operate by minimizing a continuous objective (e.g., Frobenius norm) but ultimately must project the result back into a discrete space for inference. We demonstrate that this two-stage process does not

guarantee finding the optimal discrete representation, thereby motivating our gradient-free, direct search approach in the discrete configuration space.

C.1 PROBLEM FORMULATION: QUANTIZATION AS PROJECTION

We begin by defining the quantization process as a projection onto a discrete lattice.

Definition C.1 (Quantization Lattice and Operator). For a given bit-width, the set of representable scalar values forms a uniform grid with step size Δ . For a weight matrix $\mathbf{W} \in \mathbb{R}^{d \times k}$, the corresponding quantization lattice Λ is the set of all matrices whose elements belong to this grid:

$$\Lambda = \{ \mathbf{M} \in \mathbb{R}^{d \times k} \mid M_{ij} = n_{ij} \Delta \text{ for some } n_{ij} \in \mathbb{Z} \}.$$
 (8)

The standard quantization operator, Quantize(·), performs an element-wise rounding operation that maps a continuous matrix to the nearest point in the lattice Λ . This operator is equivalent to a projection onto Λ :

$$\mathbf{W}_{q} = \operatorname{Quantize}(\mathbf{W}) = \mathcal{P}_{\Lambda}(\mathbf{W}) = \underset{\mathbf{M} \in \Lambda}{\operatorname{arg \, min}} \|\mathbf{W} - \mathbf{M}\|_{F}. \tag{9}$$

The core objective of quantization-aware fine-tuning is to find a matrix $\mathbf{W}_q' \in \Lambda$ that not only minimizes the memory footprint but also maximizes downstream task performance. Ideally, this \mathbf{W}_q' should be a good approximation of the optimal full-precision weights \mathbf{W}^* for a given task. For simplicity in this analysis, we consider the goal to be finding the closest lattice point to a target full-precision matrix \mathbf{W} , i.e., finding $\mathcal{P}_{\Lambda}(\mathbf{W})$.

C.2 Analysis of Iterative Low-Rank Refinement

Methods like LoftQ attempt to improve upon the initial quantization $\mathbf{W}_q = \mathcal{P}_{\Lambda}(\mathbf{W})$ by adding a continuous low-rank correction. The process can be described as follows:

- 1. **Initial Quantization:** Start with the baseline quantized matrix $\mathbf{W}_q = \mathcal{P}_{\Lambda}(\mathbf{W})$.
- 2. Continuous Error Correction: Define the quantization error as $\mathbf{E} = \mathbf{W} \mathbf{W}_q$. Find a low-rank approximation \mathbf{AB}^* to this error by minimizing a continuous objective:

$$\mathbf{A}\mathbf{B}^* = \underset{\text{rank}(\mathbf{A}\mathbf{B}) \le r}{\min} \|\mathbf{E} - \mathbf{A}\mathbf{B}\|_F = \underset{\text{rank}(\mathbf{A}\mathbf{B}) \le r}{\arg\min} \|\mathbf{W} - (\mathbf{W}_q + \mathbf{A}\mathbf{B})\|_F.$$
 (10)

The solution is typically found via Singular Value Decomposition (SVD) of the error matrix **E**.

3. **Final Discretization:** The resulting matrix, $\mathbf{W}_{\text{updated}} = \mathbf{W}_q + \mathbf{A}\mathbf{B}^*$, is continuous and not in Λ . For inference, it must be re-quantized:

$$\mathbf{W}_{q}' = \mathcal{P}_{\Lambda}(\mathbf{W}_{\text{updated}}) = \mathcal{P}_{\Lambda}(\mathbf{W}_{q} + \mathbf{A}\mathbf{B}^{*}). \tag{11}$$

The critical question is whether this process reliably yields the best possible discrete approximation. That is, does \mathbf{W}'_q equal the true optimal solution, $\mathcal{P}_{\Lambda}(\mathbf{W})$?

C.3 FORMAL ARGUMENT FOR SUBOPTIMALITY

The procedure described above is suboptimal because the continuous optimization in Step 2 is disconnected from the final discrete projection in Step 3.

Proposition C.2. Let $\mathbf{W}_{opt} = \mathcal{P}_{\Lambda}(\mathbf{W})$ be the optimal discrete approximation of \mathbf{W} . Let $\mathbf{W}_{q}' = \mathcal{P}_{\Lambda}(\mathbf{W}_{q} + \mathbf{A}\mathbf{B}^{*})$ be the matrix obtained from the iterative refinement process. It is not guaranteed that $\mathbf{W}_{q}' = \mathbf{W}_{opt}$. In high-dimensional spaces, they are often different.

Justification. The projection operator \mathcal{P}_{Λ} partitions the continuous space $\mathbb{R}^{d \times k}$ into a set of disjoint Voronoi cells, one for each lattice point $\mathbf{M} \in \Lambda$. A point \mathbf{Y} is projected to \mathbf{M} if and only if it lies within the Voronoi cell of \mathbf{M} , denoted $V(\mathbf{M})$.

984

991

992

1002

1010

1015

1016

1017

1018

1023 1024

1025

- 1. By definition, the optimal discrete solution is $\mathbf{W}_{opt} = \mathcal{P}_{\Lambda}(\mathbf{W})$, which means the original matrix W lies inside the Voronoi cell $V(\mathbf{W}_{opt})$. In our simplified case where \mathbf{W}_q is the initial rounding, $\mathbf{W}_{\text{opt}} = \mathbf{W}_q$, so $\mathbf{W} \in V(\mathbf{W}_q)$.
- 2. The iterative method computes an updated continuous matrix $\mathbf{W}_{\text{updated}} = \mathbf{W}_q + \mathbf{A}\mathbf{B}^*$. Substituting the definitions, we have:

$$\mathbf{W}_{\text{updated}} = \mathbf{W} - \mathbf{E} + \mathbf{A}\mathbf{B}^* = \mathbf{W} - (\mathbf{E} - \mathbf{A}\mathbf{B}^*). \tag{12}$$

Here, $\mathbf{E} - \mathbf{A}\mathbf{B}^*$ is the residual error from the low-rank approximation of the quantization error E.

- 3. The final quantized matrix is $\mathbf{W}'_q = \mathcal{P}_{\Lambda}(\mathbf{W}_{\text{updated}})$. This means $\mathbf{W}_{\text{updated}}$ must lie in the Voronoi cell $V(\mathbf{W}'_a)$.
- 4. For the method to be optimal (i.e., $\mathbf{W}_q' = \mathbf{W}_{\text{opt}}$), the updated point $\mathbf{W}_{\text{updated}}$ must lie in the same Voronoi cell as the original point \mathbf{W} . However, the term $\delta = \mathbf{E} \mathbf{A}\mathbf{B}^*$ acts as a perturbation on W. The quantization error E is typically a dense, noisy, high-rank matrix. Its low-rank approximation error δ is therefore also a high-rank matrix.

Adding this high-rank perturbation δ to W can easily push the vector across a Voronoi boundary into an adjacent cell. When $\mathbf{W} - \delta$ falls into a different cell $V(\mathbf{M})$ where $\mathbf{M} \neq \mathbf{W}_{opt}$, the final projection becomes suboptimal: $\mathcal{P}_{\Lambda}(\mathbf{W}_{updated}) = \mathbf{M} \neq \mathbf{W}_{opt}$. This occurs generically in high dimensions, as even a small perturbation has many dimensions in which it can push the vector across a boundary. The assumption that minimizing the continuous error $\|\mathbf{W} - \mathbf{W}_{\text{updated}}\|_F$ will keep $\mathbf{W}_{\text{updated}}$ in the correct Voronoi cell is unfounded.

THE DISCONTINUOUS OPTIMIZATION LANDSCAPE

The suboptimality issue is further compounded by the nature of the true underlying objective function. If we consider the downstream loss \mathcal{L} , the function we implicitly want to optimize with respect to A and B is:

$$f(\mathbf{A}, \mathbf{B}) = \mathcal{L} \left(\mathcal{P}_{\Lambda} (\mathbf{W}_{q} + \mathbf{A} \mathbf{B}) \right). \tag{13}$$

Due to the discrete nature of the projection \mathcal{P}_{Λ} , this function is piecewise constant. Small, continuous changes to **A** and **B** will not change the output of $\mathcal{P}_{\Lambda}(\mathbf{W}_q + \mathbf{AB})$ as long as the matrix remains within its current Voronoi cell. The function value only changes when $W_q + AB$ crosses a boundary into a new cell.

This has a critical implication for optimization:

- Vanishing Gradients: The gradient $\nabla_{A,B} f(A,B)$ is zero almost everywhere (within the interior of each Voronoi cell).
- Optimization Stagnation: Gradient-based methods are ineffective in such a landscape. They receive no signal to guide the updates of A and B and will stagnate unless an update is large enough to jump to a new discrete state.

Conclusion. The analysis reveals two fundamental flaws in using continuous proxies for discrete optimization. First, minimizing a continuous error metric does not guarantee finding the optimal discrete solution after re-quantization. Second, the true objective landscape is piecewise constant, rendering standard gradient-based optimization ineffective. These limitations strongly motivate a shift away from continuous proxies and towards methods that directly search the discrete space of configurations. Our QR-Adaptor framework, which uses a gradient-free, multi-objective search to evaluate discrete (bit-width, rank) configurations based on their actual downstream performance, is a principled response to these challenges.

QUANTIZATION

We first apply NF-quantization with bit size b_0 and bucket size B_0 to obtain the quantized matrix $\widehat{A_i}$ and the absmax values for each block $s = [s_1, \dots, s_{\frac{\text{sizeof}(A_i)}{B_0}}]$. These absmax values are further

quantized to b_1 bits via uniform integer quantization with bucket size B_1 to obtain the quantized vector \widehat{s} , along with the absmax values for s, i.e., $v = [v_1, \dots v_{\frac{\operatorname{sizeof}(A_i)}{B_0 B_1}}]$. Finally, we cast v to b_2 bits to obtain \widehat{v} .

This quantization scheme requires storing $\widehat{A_i}$, \widehat{s} , \widehat{v} to represent A_i . We can thus quantify the memory cost (number of bits) for storing A_i given a configuration $c_i = (b_0, b_1, b_2, B_0, B_1)$ as:

$$memory_cost(A_i, c_i) = sizeof(A_i) \cdot \left(b_0 + \frac{b_1}{B_0} + \frac{b_2}{B_0 \cdot B_1}\right)$$
(14)

The original NF-4 double quantization is a special case with $q_{\rm NF4}=(4,8,{\rm fp32},64,256)$ and memory_cost $(A_i,q_{\rm NF4})=4.127\cdot{\rm sizeof}(A_i)$, i.e., NF-4 requires on average 4.127 bits per parameter.

E QR-ADAPTOR SEARCH PROCESS DETAILS

This appendix provides supplementary details regarding the QR-Adaptor search methodology and its associated computational costs, addressing reproducibility and practical implementation concerns.

E.1 SEARCH HYPERPARAMETERS AND CONFIGURATION

To ensure the reproducibility of our results, we list the specific hyperparameters and configurations used for the QR-Adaptor search process in Table 6. These settings were kept consistent across all main experiments unless otherwise noted.

Table 6: Hyperparameters for the QR-Adaptor search process.

Parameter	Stage	Value / Description
General Search Configuration		
Bit-width Search Space (Q)	All	{2,4,8}
LoRA Rank Search Space (R)	All	$\{0, 2, 4, 6, 8, \dots, 64\}$
Calibration Dataset	All	A random subset of 1024 samples from the C4 dataset.
Fine-tuning Epochs (per evaluation)	All	1 epoch on the calibration dataset.
Stage 1: Task-Informed Initialization	on	
Importance Score Metric $(I(l))$	Initialization	Gradient-based saliency score (magnitude of Fisher Information).
Initial Population Size (N_{pop})	Initialization	1
Stage 2: Global Exploration (PRG	A)	
Algorithm	PRGA	NSGA-II (Non-dominated Sorting Genetic Algorithm II)
Number of Generations	PRGA	5
Population Size	PRGA	20
Selection Mechanism	PRGA	Tournament selection based on non-dominated rank and crowding distance.
Crossover Operator	PRGA	Uniform Crossover with a probability of 0.9.
Mutation Operator	PRGA	Per-layer random mutation: for each layer, with probability 0.1,
		re-sample its bit-width and rank from Q and R .
Stage 3: Local Refinement (Bayesia	n Optimization	n)
Surrogate Model	ВО	Gaussian Process (GP)
GP Kernel	BO	Matérn 5/2 kernel with Automatic Relevance Determination (ARD).
Acquisition Function	BO	Expected Improvement (EI).
Number of Iterations	BO	5 iterations per configuration refined from the Pareto front.

E.2 TASK-INFORMED INITIALIZATION ALGORITHM

As mentioned in Section 3.2.1, the initialization process uses layer importance scores to generate a high-quality initial configuration. Algorithm 3 provides a concrete step-by-step description of this procedure. The core idea is to map higher importance scores to a higher probability of allocating more resources (i.e., higher bit-widths and ranks). This single seed configuration C_0 is evaluated by fine-tuning for one epoch on the calibration dataset to measure its initial performance, forming the starting point for the global search. The subsequent PRGA stage will generate a full population of size 20 through mutations and crossover operations based on this seed.

Algorithm 3 Task-Informed Initialization Process

1080

1098

1099

1100 1101

110211031104

1105

1106

1107

1108

1109

1110

1111

1113

1114

1115

1116

1117

1118

1119

1120112111221123

11241125

1126 1127

1128 1129

1130

1131

1132

1133

```
1081
           1: Input: Layer importance scores \{I(l)\}_{l=1}^{L}, Bit-width space \mathcal{Q}, Rank space \mathcal{R}.
1082
           2: Output: Seed configuration C_0.
                                            ⊳ Step 1: Normalize importance scores to create a sampling distribution
1084
           4: Normalize scores: p_l \leftarrow I(l) / \sum_{j=1}^{L} I(j) for l = 1, \dots, L.
                                                  \triangleright Step 2: Generate the seed configuration C_0 based on importance
1086
           6: Initialize C_0 = [(bit_1, rank_1), \dots, (bit_L, rank_L)].
1087
           7: for l = 1 to L do
1088
           8:
                    // Map normalized importance p_l to the search spaces.
1089
           9:
                    // The higher the importance, the higher the index in the sorted space.
1090
          10:
                    Sort Q and R in ascending order.
                    Bit index idx_b \leftarrow |p_l \cdot (|Q| - 1)|. Clamp to [0, |Q| - 1].
          11:
                    Rank index idx_r \leftarrow \lfloor p_l \cdot (|\mathcal{R}| - 1) \rfloor. Clamp to [0, |\mathcal{R}| - 1].
          12:
1093
          13:
                    \text{bit}_l \leftarrow \mathcal{Q}[idx_b]; \text{rank}_l \leftarrow \mathcal{R}[idx_r].
          14: end for
1094
          15:
                                     > Step 3: (Optional) Apply budget constraints if a target budget is predefined
1095
          16: return C_0.
```

F PSEUDO CODE OF THE SPECIFIC ALGORITHM IN THE QR-ADAPTOR FRAMEWORK

Due to page limitations, we present the pseudocode of the algorithm.

Algorithm 4 Pareto Rank Calculation

```
1: Input: Population P with n individuals
 2: Calculate the number of dominated individ-
    uals n_p and the set of solutions dominated
    S_p for each individual p
 3: Place individuals with n_p=0 into set {\cal F}_1
 4: for each individual i in F_1 do
 5:
        for each individual j \in S_i do
 6:
            n_j \leftarrow n_j - 1
            if n_i = 0 then
 7:
                Add individual j to set F_2
 8:
 9:
            end if
10:
        end for
11: end for
12: Repeat for F_2, F_3, \ldots, until all individuals
    are ranked
```

13: **Output:** Pareto-ranked individuals

Algorithm 5 Crowding Distance Calculation

```
1: Input: Ranked individuals F with N indi-
     viduals, M objectives
 2: for each individual n \in 1 \dots N do
           Initialize d_n \leftarrow 0
 4: end for
 5: for each objective function f_m do
 6:
           Sort individuals based on f_m
           f_m^{max}, f_m^{min} \leftarrow \max f_m, \min f_m
 7:
 8:
           d_1, d_N \leftarrow \infty
          \begin{array}{c} \textbf{for } n = 2 \text{ to } N - 1 \textbf{do} \\ d_n \leftarrow d_n + \frac{f_m(n+1) - f_m(n-1)}{f_m^{max} - f_m^{min}} \end{array}
 9:
10:
11.
           end for
12: end for
13: Output: Crowding distances d_n for each
```

individual n

G More Results

Due to page limitations, we present remaining results across various models here.

G.1 EXPERIMENT SCOPE EXPANSION: LLAMA 2 SERIES

In the original experiments, the focus was primarily on Llama3.1, considering that its updated architecture present new challenges for quantization. Compared to Llama2 series, Llama3.1 is significantly harder to quantize, especially under low-bit configurations, as they incorporate more sophisticated architectural features. Additionally, to comprehensively demonstrate the superiority of **QR-Adaptor**, we have also conducted extensive performance experiments on the Llama2 series models, with the results presented in Table 7 and Table 8.

```
1135
          Algorithm 6 Simulated Binary Crossover (SBX)
1136
           Require: Two parent individuals P_1 and P_2,
1137
                each with L real-valued genes
1138
            1: Initialize offspring O_1 and O_2 as empty
1139
            2: for l = 1 to L do
1140
            3:
                    Generate a random number u \in [0, 1]
1141
                    if u \leq 0.5 then
            4:
                         \beta \leftarrow (2u)^{1/(n+1)}
1142
            5:
1143
            6:
                        \beta \leftarrow \left(\frac{1}{2(1-u)}\right)^{1/(n+1)}
1144
            7:
1145
            8:
1146
            9:
                    y_{1l} \leftarrow 0.5 \cdot ((1+\beta) \cdot p_{1l} + (1-\beta) \cdot p_{2l})
1147
           10:
                    y_{2l} \leftarrow 0.5 \cdot ((1-\beta) \cdot p_{1l} + (1+\beta) \cdot p_{2l})
1148
           11:
                    Append y_{1l} to O_1 and y_{2l} to O_2
1149
           12: end for
1150
           13: Output: O_1 and O_2
1151
```

11521153

1154

1155

1156

1179

1180

1181

11821183

1184 1185

1186

1187

Algorithm 7 Polynomial Mutation

```
Require: Individual P with L real-valued
                                    genes, mutation probability p_m
         1: Initialize mutated individual P' as a copy of
                                    P
         2: for l = 1 to L do
         3:
                                                                     Generate a random number u \in [0, 1]
         4:
                                                                     if u < p_m then
         5:
                                                                                                        Generate a random number \delta \in
                                                                                                   x'_{l} \leftarrow x_{l} + (x_{max} - x_{min}) \cdot \delta \cdot (1 - x_{max} - x_{min
         6:
         7:
                                                                                                      Replace x_l with x'_l in P'
         8:
                                                                     end if
         9: end for
 10: Output: Mutated individual P'
```

Table 7: Performance comparison of different methods across various bit-width configurations on Llama2-7B. Superscripts on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for optimal bit number and rank value for each layer based on different tasks with its bit number averaged across tasks. Bold figures represent the best performance for a given model and task, while underlined figures indicate the second-best. Accuracy is reported as %.

	Method	Bit	ARC(C)	ARC(E)	BoolQ	HellaS	OBQA	PIQA	WinoG	Average
	LoRA	16	46.93	77.36	78.47	76.93	44.80	79.38	69.38	67.61
	QLoRA	8	48.21	77.36	77.92	76.88	44.80	79.82	68.75	67.70
	QLoRA	4	46.25	76.26	77.43	76.42	46.20	78.67	<u>69.85</u>	67.30
∞	AdaLoRA	16	46.08	76.77	77.46	75.89	44.20	79.16	69.22	66.97
 	AdaLoRA	8	46.08	76.73	77.49	75.93	44.20	79.00	69.06	66.93
Rank	AdaLoRA	4	46.33	75.25	76.39	75.45	44.40	77.91	69.14	66.41
\aleph	LoftQ	4^1	46.16	77.10	77.43	76.68	44.80	79.33	69.30	67.26
	LoftQ	4^{5}	47.35	76.64	76.33	76.36	45.60	79.05	69.06	67.20
	LQ-LoRA	4	47.18	76.60	76.54	76.24	45.00	78.84	68.90	67.04
	QR-Adaptor	5.45	<u>48.04</u>	77.44	78.96	76.84	<u>46.00</u>	79.86	69.97	68.15
	LoRA	16	46.93	77.57	78.41	76.81	45.00	79.38	69.06	67.59
	QLoRA	8	47.61	77.44	78.41	76.93	45.40	79.05	69.06	67.70
	QLoRA	4	46.67	76.35	77.25	76.40	45.00	78.84	70.01	67.22
16	AdaLoRA	16	46.16	76.68	77.58	75.92	44.20	79.11	69.38	67.00
Ш	AdaLoRA	8	46.16	76.68	77.40	75.91	44.40	79.11	69.06	66.96
Rank	AdaLoRA	4	46.33	75.29	76.45	75.44	44.20	77.91	69.46	66.47
\mathbb{R}_{3}	LoftQ	4^1	47.10	77.19	77.89	76.61	44.80	79.43	69.69	67.53
	LoftQ	4^{5}	47.95	76.47	76.79	76.25	45.60	$\overline{78.51}$	69.61	67.31
	LQ-LoRA	4	$\overline{47.10}$	76.39	77.22	76.33	46.40	78.78	70.09	67.47
	QR-Adaptor	5.45	48.04	<u>77.44</u>	78.96	<u>76.84</u>	<u>46.00</u>	79.86	69.97	68.15

Our results show that **QR-Adaptor** consistently demonstrates superior performance across all tasks and outperforms existing methods, such as AdaLoRA and LoftQ, on Llama 2 series. The robustness of **QR-Adaptor** is also evident, especially on tasks that typically cause performance degradation for other methods.

G.2 VISUALIZATION RESULTS FOR THE MMLU TASK

The results for the MMLU task in LLaMA2 are shown in Figure 2. **QR-Adaptor** demonstrates outstanding performance across various benchmarks. Due to the rank value selection ranging from 2 to 16, in some cases, **QR-Adaptor** consumes less memory than the fine-tuned 4-bit quantized models. Moreover, the low-precision models fine-tuned by **QR-Adaptor** outperform the fine-tuned 16-bit

Table 8: Performance comparison of different methods across various bit-width configurations on Llama2-13B. Superscripts on LoftQ bits indicate the number of initialization iterations. QR-Adaptor searches for optimal bit number and rank value for each layer based on different tasks with its bit number averaged across tasks. Bold figures represent the best performance for a given model and task, while underlined figures indicate the second-best. Accuracy is reported as %.

	Method	Bit	ARC(C)	ARC(E)	BoolQ	HellaS	OBQA	PIQA	WinoG	Average
	LoRA	16	52.56	80.18	81.44	79.98	46.40	81.12	71.98	70.52
	QLoRA	8	52.39	80.18	81.22	79.92	45.00	80.47	73.09	70.32
	QLoRA	4	51.54	78.91	81.41	79.46	45.40	80.30	71.82	69.83
∞	AdaLoRA	16	49.15	79.46	80.37	79.25	45.40	80.47	72.30	69.49
- <u>1</u>	AdaLoRA	8	49.32	79.34	80.43	79.29	45.60	80.47	72.22	69.52
Rank	AdaLoRA	4	48.29	77.78	80.40	78.12	44.20	80.14	71.74	68.67
\mathbf{x}	LoftQ	4^1	50.68	78.79	81.16	79.12	<u>45.80</u>	80.41	71.35	69.62
	LoftQ	4^{5}	50.34	78.87	80.24	78.81	45.20	80.25	70.80	69.22
	LQ-LoRA	4	50.60	78.79	80.67	78.91	45.00	80.14	71.11	69.32
	QR-Adaptor	6.125	52.82	80.64	81.84	80.08	<u>45.80</u>	81.45	<u>72.69</u>	70.76
	LoRA	16	52.13	79.84	81.50	80.07	46.20	81.23	71.98	70.42
	QLoRA	8	51.54	80.01	81.13	79.86	46.20	81.18	72.22	70.31
	QLoRA	4	51.45	79.04	81.04	79.48	45.60	80.47	71.82	69.84
16	AdaLoRA	16	49.40	79.34	80.46	79.28	45.40	80.47	72.30	69.52
II.	AdaLoRA	8	49.49	79.29	80.40	79.27	45.40	80.52	<u>72.38</u>	69.54
Rank	AdaLoRA	4	48.29	77.69	80.43	78.10	44.20	80.09	71.67	68.64
22	LoftQ	4^1	50.68	78.87	80.86	79.18	<u>45.80</u>	80.30	71.90	69.66
	LoftQ	4^{5}	50.60	78.96	80.92	79.15	45.40	80.41	71.59	69.58
	LQ-LoRA	4	50.09	78.79	80.43	79.06	45.40	80.14	71.67	69.37
	QR-Adaptor	6.125	52.82	80.64	81.84	80.08	<u>45.80</u>	81.45	72.69	70.76

models. Another advantage of the **QR-Adaptor** is that it can be implemented without any additional technical measures to optimize performance, apart from spending some time (about 15 minutes to get one data point). This simple but effective method is very useful in practical applications.

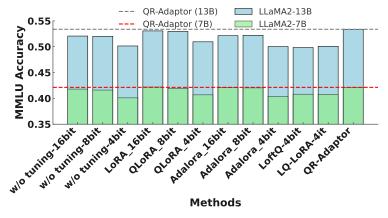


Figure 2: Performance comparison on MMLU benchmark. QR-Adaptor outperforms other methods.

G.3 EFFECTIVENESS ON LARGER DATASETS WITH HIGHER RANKS

To address the concern regarding the effectiveness of small LoRA ranks on larger datasets, we conducted additional experiments on the LLaMA3.1-8B model using a larger dataset consisting of 177k samples. We tested our method with higher LoRA ranks (32 and 64) to evaluate its performance in handling large-scale data.

Our results are summarized in Table 9. The table compares the performance of **QR-Adaptor** with other baseline methods, including LoRA, QLoRA, AdaLoRA, and LoftQ, across various tasks. The

Table 9: Performance comparison of different methods across various bit-width configurations on Llama3.1-8B with higher ranks. Bold figures represent the best performance for a given model and task, while underlined figures indicate the second-best. QR-Adaptor* is transferred config. Accuracy is reported as %.

Method	Rank	Bit	ARC(C)	ARC(E)	BoolQ	HellaS	OBQA	PIQA	WinoG	MMLU	Average
LoRA	32	16	54.86	82.74	82.75	79.21	44.40	81.99	74.11	63.66	70.47
LoRA	64	16	55.46	82.95	82.94	79.13	45.00	81.88	74.51	64.34	70.78
QLoRA	32	8	55.20	83.12	81.93	79.07	46.20	81.88	73.32	63.28	70.50
QLoRA	32	4	53.41	80.89	82.05	78.42	43.60	80.90	73.01	60.97	69.16
QLoRA	64	8	55.46	83.04	81.96	79.17	45.80	81.94	73.01	63.34	70.47
QLoRA	64	4	53.41	81.19	81.74	78.35	44.60	80.69	72.06	60.79	69.10
AdaLoRA	32	8	53.92	81.82	82.20	78.57	46.20	81.50	73.40	63.82	70.18
AdaLoRA	32	4	51.45	81.02	80.86	77.30	42.40	80.96	72.53	58.15	68.08
AdaLoRA	64	8	53.92	82.11	81.93	78.74	46.20	81.39	73.95	63.88	70.27
AdaLoRA	64	4	52.13	80.98	81.04	77.20	42.20	80.85	72.77	58.07	68.16
LoftQ	32	4^1	53.84	81.36	81.41	78.12	43.00	81.50	73.56	59.40	69.02
LoftQ	32	4^{5}	52.56	81.36	81.96	78.05	42.80	81.45	73.09	59.41	68.84
LoftQ	32	4^{10}	51.62	81.31	82.51	78.16	43.60	81.34	72.30	59.12	68.75
LoftQ	64	4^{1}	52.82	81.40	81.59	78.23	43.20	81.34	73.88	59.78	69.03
LoftQ	64	4^{5}	52.39	81.10	81.13	78.33	43.40	81.34	73.24	58.69	68.70
LoftQ	64	4^{10}	51.71	81.23	81.62	78.37	43.20	81.01	72.77	59.25	68.65
QR-Adaptor*	32	3.625	55.23	82.89	82.65	79.12	45.40	81.77	73.88	63.78	70.59
QR-Adaptor	32	5.875	56.12	83.45	83.21	79.78	46.20	82.10	74.59	64.40	71.23

performance metrics include accuracy scores on datasets such as ARC (Challenge), ARC (Easy), BoolQ, HellaSwag, OpenBookQA, PIQA, WinoGrande, and MMLU.

KEY OBSERVATIONS

- Effectiveness of LoRA Initialization: Despite using higher ranks (32 and 64) and larger datasets, methods like LoftQ and LQ-LoRA do not consistently outperform the standard QLoRA baseline or the quantized models without fine-tuning. Increasing iterations in LoftQ (from LoftQ-1 to LoftQ-10) to better fit quantization errors leads to performance degradation, especially on challenging tasks like MMLU and GSM8K. These results suggest that fitting quantization errors using LoRA initialization is not universally effective and may introduce noise that hinders model performance.
- Effectiveness on Larger Datasets: Our method, QR-Adaptor, consistently achieves superior performance across all tasks and outperforms other methods, confirming its robustness and scalability. The results validate that QR-Adaptor is effective even when small LoRA ranks might not suffice for larger datasets.
- Impact of Adaptive LoRA Rank Reduction: AdaLoRA exhibits performance drops, particularly with lower bit-widths and on more challenging tasks. This supports our observation that dynamically adjusting the rank during fine-tuning can lead to convergence issues in quantized models, which are less robust due to quantization errors.

These results reinforce our initial observations and highlight the limitations of methods that attempt to fit quantization errors through LoRA initialization. The inability of LoftQ and AdaLoRA to improve performance significantly, even with higher ranks and larger datasets, underscores the challenges associated with such approaches. In contrast, **QR-Adaptor**, guided by our proposed constraints, demonstrates consistent performance improvements.

G.4 FAIRER COMPARISON: MATCHING BIT-WIDTH CONFIGURATIONS

Another important consideration for a fair comparison of quantization methods is the bit-width configuration used. To ensure that prior methods are evaluated under the same conditions as QR-Adaptor, we have re-evaluated AdaLoRA and LoftQ using the same mixed-precision configurations that were optimized through QR-Adaptor's framework. The updated results for Llama 2-13B are shown in Table 10.

The results indicate that the initialization constraints applied by QR-Adaptor provide substantial improvements over the original configurations of AdaLoRA and LoftQ. Despite these improvements, QR-Adaptor still outperforms these methods in terms of overall task performance. The constraints,

Table 10: Performance comparison with fair bit-width configurations for Llama2-13B. Accuracy is reported as %

Method	BoolQ	PIQA	HellaS	WinoG	ARC(E)	ARC(C)	OBQA	Average
AdaLoRA	81.08	80.13	79.21	71.74	79.51	50.12	45.60	69.77
LoftQ	80.93	79.47	79.02	71.34	79.26	51.20	45.60	69.98
QR-Adaptor	81.84	81.45	80.08	72.69	80.64	52.82	45.80	70.76

specifically ensuring stable initialization and fixing trainable parameters, contribute significantly to the enhanced performance of QR-Adaptor.

G.5 IMPACT OF LONGER FINE-TUNING EPOCHS ON UNFIXED PARAMETERS

While increasing the fine-tuning epochs for AdaLoRA can lead to some performance improvements, these gains are marginal and AdaLoRA still does not outperform other methods like LoRA, QLoRA, or our proposed QR-Adaptor.

FINDINGS

- Marginal Improvement with Increased Epochs: Extending the training of AdaLoRA from 2 epochs to 5 epochs results in a slight performance increase. However, this improvement is not substantial and comes at the cost of significantly longer training times.
- Need for Mixed-Precision with Adaptive Rank: The results suggest that adaptive rank adjustment alone, as in AdaLoRA, may not be the most effective approach. The combination of adaptive rank with mixed-precision quantization, as in QR-Adaptor, yields superior performance.

SUPPORTING DATA

We provide an updated table below that includes an "Epochs" column, showing the results for LoRA, QLoRA, AdaLoRA (at 2 and 5 epochs), and QR-Adaptor.

Table 11: Performance comparison of different methods with varying fine-tuning epochs on Llama3.1-8B. Accuracy is reported as %

Method	Rank	Bit-width	Epochs	ARC (C)	ARC (E)	BoolQ	GSM8K (S)	GSM8K (F)	HellaS	OBQA	PIQA	WinoG
LoRA	8	16	2	56.14	83.88	83.18	54.36	54.28	79.44	45.20	82.10	75.30
QLoRA	8	8	2	57.08	83.46	82.48	53.75	53.90	79.63	46.00	82.10	74.59
QLoRA	8	4	2	54.35	82.41	82.08	44.35	44.50	78.82	44.20	81.50	73.64
AdaLoRA	8	16	2	52.90	81.99	81.87	50.57	50.57	78.65	45.00	81.34	73.95
AdaLoRA	8	16	5	53.50	82.25	82.05	51.00	50.90	78.75	45.20	81.40	74.10
AdaLoRA	8	8	2	52.90	81.86	82.05	49.96	49.96	78.65	44.80	81.34	74.43
AdaLoRA	8	8	5	53.10	82.00	82.10	50.20	50.10	78.70	45.20	81.38	74.50
AdaLoRA	8	4	2	51.28	80.98	80.61	37.83	38.36	77.36	42.80	80.74	72.53
AdaLoRA	8	4	5	51.50	81.10	80.75	38.00	38.50	77.40	43.20	80.78	72.60
QR-Adaptor	8	5.375	2	56.83	84.12	83.38	56.29	56.11	80.93	45.80	82.92	75.10

OBSERVATION

slight performance improvements when training is extended from 2 to 5 epochs. Even with the increase in epochs, AdaLoRA's performance does not surpass that of LoRA, QLoRA, or QR-Adaptor at 2 epochs.

AdaLoRA's Performance with Increased Epochs: As observed, AdaLoRA shows only

 QR-Adaptor's Consistency: QR-Adaptor consistently achieves superior performance across all tasks, further validating the effectiveness of our method over other adaptive rank-based approaches.

• 16-bit AdaLoRA Performance: Notably, AdaLoRA with 16-bit precision (not quantized) still underperforms compared to LoRA and QLoRA, suggesting that the adaptive rank mechanism alone is not enough, and the integration of mixed-precision quantization is crucial.

G.6 IMPACT OF 2-BIT QUANTIZATION AND LOFTQ ITERATIONS

We have conducted additional experiments to explore the performance of LoftQ with 2-bit quantization and its variations across different numbers of iterations.

In these experiments, we used the NF2 variant from LoftQ, based on QLoRA's NF4, to implement 2-bit quantization, since QLoRA does not natively support this low-bit quantization (as stated in the original paper and the GitHub repository). The 2-bit results in the LoftQ paper were also based on this NF2 variant. We fine-tuned the models using a 52k dataset, with the rank for LoftQ set to 16. The superscripts on LoftQ's bit-width values represent the number of LoftQ iterations, with 0 iterations considered approximately equivalent to QLoRA (since QLoRA does not provide a 2-bit quantization type).

The results of our experiments are summarized in Table 12.

Table 12: Performance comparison for 2-bit quantization and LoftQ iterations on LLaMA3.1-8B with 52k fine-tuning dataset. Superscripts on LoftQ bits indicate the number of initialization iterations. Accuracy is reported as %

Method	Bit-width	MMLU	GSM8K	ARC(C)	ARC(E)	BoolQ	HellaS	OBQA	PIQA	WinoG
LoftQ	2^{0}	23.76	0.00	26.24	25.25	37.83	26.86	29.40	52.55	49.18
LoftQ	2^1	24.71	0.00	25.17	25.25	37.83	25.73	29.20	51.58	49.33
LoftQ	2^5	24.65	0.00	25.17	24.83	37.83	26.30	28.20	51.41	49.41
LoftQ	2^{10}	24.80	0.00	26.02	25.25	37.83	26.53	29.80	52.83	48.86
QR-Adaptor	3.625	62.58	0.53	55.93	82.43	82.13	79.23	45.60	81.83	74.79

KEY OBSERVATIONS

- MMLU Performance: For the MMLU dataset, which involves multiple-choice questions, models with 2-bit quantization perform at approximately 25% accuracy, which is close to random guessing. Thus, LoftQ's 2-bit quantization yields little practical improvement for MMLU on LLaMA3.1. This suggests that the performance of LoftQ with 2-bit quantization is not robust on complex tasks.
- **GSM8K Performance**: On the GSM8K dataset, LoftQ's 2-bit quantization fails to provide any meaningful performance, resulting in 0% accuracy. This highlights the challenges of quantizing LLaMA3.1 to such low precision, especially on complex question-answering tasks.
- Common Sense Reasoning Tasks: For simpler reasoning tasks like WinoGrande, the LoftQ 2-bit quantized models show some capacity to answer, but there is no significant difference across LoftQ's iterations, and the models still perform similarly to random guessing on most datasets.
- **QR-Adaptor Optimization**: For QR-Adaptor, we optimized based on theoretical memory savings from 4-bit quantization. Since 2-bit quantization does not reduce memory usage effectively, we used the theoretical savings in our optimization process. This optimization allowed QR-Adaptor to achieve better performance even when compared to LoftQ with 2-bit quantization.

CONCLUSION

From these results, we observe that LoftQ's 2-bit quantization shows poor performance across the board. Even with multiple iterations (up to 10), LoftQ struggles to achieve reasonable accuracy on tasks like MMLU and GSM8K. In contrast, QR-Adaptor, with its unified optimization of both rank and bit-width during fine-tuning, consistently outperforms LoftQ and other methods.

Notably, while LoftQ's 2-bit quantization performs poorly, QR-Adaptor manages to retain much better performance by leveraging the advantages of mixed-precision quantization, making it a more effective solution for LLaMA3.1. These findings suggest that for models requiring high precision, such as LLaMA3.1, extreme quantization to 2-bit precision may not be viable, and more moderate bit-widths, as used by QR-Adaptor, provide better results.

We hope these results contribute to the ongoing discussions in the community regarding effective quantization strategies and provide further insights into the practical use of quantized models.

H VERSION OF LLMS

We provide the Hugging Face link of LLMs used in the experiment: LLaMA2-7B: https://huggingface.co/NousResearch/Llama-2-7b-hf; LLaMA2-13B: https://huggingface.co/NousResearch/Llama-2-13b-hf; LLaMA3.1-8B: https://huggingface.co/meta-llama/Llama-3.1-8B.

I More Implementation Details

In optimizing the pruned Llama2-7B model, a carefully designed hyperparameter configuration has been implemented to strike a balance between model performance and computational efficiency. The model is fine-tuned using a learning rate of 3×10^{-4} , with a batch size of 128, divided into micro-batches of 4 to effectively manage memory limitations. Input sequences are capped at 256 tokens, and a dropout rate of 0.05 is applied to the LoRA layers, specifically targeting the query, key, value, and output projections, as well as the gate, down, and up projections. Layer-specific quantization is applied at both 4-bit and 8-bit levels, optimizing memory usage while maintaining computational accuracy. The training is performed using the paged AdamW optimizer with 32-bit precision, ensuring both stability and efficiency. These settings have been rigorously tested and refined through the Optuna framework to achieve an optimal balance between model performance and resource efficiency.

J MORE ABLATION

We conducted comprehensive ablation studies to evaluate the impact of initialization metrics and the sensitivity of the proposed Pareto Ranking Genetic Algorithm (PRGA) to key hyperparameters, including iteration counts and population size. These experiments aim to further substantiate the effectiveness of our proposed approach.

J.1 GRADIENT NORMS VS. RELATIVE ENTROPY

To assess the efficacy of initialization metrics, we compared the use of gradient norms and relative entropy in quantifying layer importance for fine-tuning quantized LLMs. The experimental results are summarized in Table 13.

Table 13: Comparison of gradient norms and relative entropy as initialization metrics on Llama2-13B. Bold values indicate the best performance for each task. Accuracy is reported as %

Initialization Metric	BoolQ	PIQA	HellaS	WinoG	ARC(E)	ARC(C)	OBQA	Average
Gradient Norms	80.79	80.13	79.16	71.69	78.72	50.97	45.40	69.51
Relative Entropy	81.08	80.83	79.80	71.98	79.13	51.65	45.60	70.07

Insights:

• Limitations of Gradient Norms: Gradient norms exhibit limited variability and are prone to biases induced by quantization, which undermines their reliability as an initialization metric for quantized models.

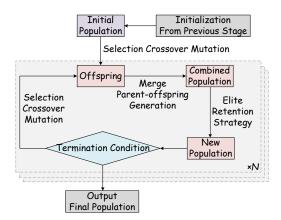


Figure 3: Detailed PRGA flow chart. The input is a set of solutions from the initialization, and the output is a set of Pareto front solutions containing multiple solutions.

Advantages of Relative Entropy: Relative entropy captures task-specific layer importance
more effectively, resulting in robust initialization and improved performance in downstream
optimization.

J.2 SENSITIVITY TO ITERATION COUNTS AND POPULATION SIZE

To analyze the sensitivity of PRGA to hyperparameters, we systematically varied the number of iterations and population sizes. Table 14 presents the results of these experiments.

Table 14: Sensitivity analysis of PRGA under different iteration counts and population sizes on Llama3.1-8B. Bold values indicate the best configuration.

Iterations	Population Size	Average Improvement (%)	Total Time (min)
5	3	+0.8	72
5	5	+1.2	90
10	5	+1.5	135
5	20	+1.6	225
10	20	+2.3	270

Insights:

- Trade-offs in Population Size: Smaller population sizes (e.g., 3) reduce computational cost but may fail to adequately explore the search space. Larger population sizes (e.g., 20) improve exploration and convergence but increase computational overhead.
- **Impact of Iteration Count**: Increasing the number of iterations improves optimization quality, as reflected in better Pareto fronts. However, the marginal benefits diminish beyond 10 iterations, indicating limited practical gains for further increases.
- **Balanced Configuration**: A population size of 5 and 5 iterations strikes a balance between performance improvement and computational efficiency. This configuration can be adjusted based on specific resource availability or performance requirements.

K VISUALIZATION OF OPTIMIZATION STAGES

Here we visualize Stage 2: Global Exploration with PRGA (in Figure 3) and Stage 3: Local Refinement with Bayesian Optimization (in Figure 4)

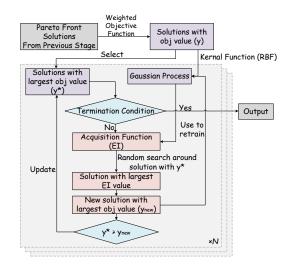


Figure 4: Detailed Bayesian optimization flow chart. Input is the Pareto front solution set from the global search, and output is a set of optimal solutions obtained according to the requirements.

L LIMITATION

Compared to previous methods, the only additional cost is time, which is mainly introduced by testing on the calibration dataset. Although the configurations optimized on different datasets have a certain degree of portability, this limitation is reduced to some extent. In addition, we are studying some approximate methods to speed up the process.