
Get a Grip: Multi-Finger Grasp Evaluation at Scale
Enables Robust Sim-to-Real Transfer

Tyler Ga Wei Lum∗,†, Albert H. Li∗,‡, Preston Culbertson‡, Krishnan Srinivasan†,
Aaron D. Ames‡, Mac Schwager†, Jeannette Bohg†
∗ Equal Contribution, † Stanford University, ‡ Caltech

{tylerlum, krshna, schwager, bohg}@stanford.edu
{alberthli, pculbert, ames}@caltech.edu

Abstract: This work explores conditions under which multi-finger grasping al-
gorithms can attain robust sim-to-real transfer. While numerous large datasets
facilitate learning generative models for multi-finger grasping at scale, reliable
real-world dexterous grasping remains challenging, with most methods degrading
when deployed on hardware. An alternate strategy is to use discriminative grasp
evaluation models for grasp selection and refinement, conditioned on real-world
sensor measurements. This paradigm has produced state-of-the-art results for
vision-based parallel-jaw grasping, but remains underutilized in the multi-finger
setting. In this work, we contend that existing datasets and methods have been in-
sufficient for training performant discriminative models for multi-finger grasping.
To train grasp evaluators at scale, datasets must provide on the order of millions
of grasps, including both positive and negative examples, with corresponding per-
ceptual data resembling measurements at inference time. To that end, we release
a new, open-source dataset of 3.5M grasps on 4.3K objects annotated with RGB
images, point clouds, and trained NeRFs. Leveraging this dataset, we train mul-
tiple vision-based grasp evaluators that outperform both analytic and generative
modeling-based baselines without evaluators on extensive simulated and real-world
trials across a diverse range of objects. We show via numerous ablations that the key
factor for performance is indeed the evaluators, and that their quality degrades as
the dataset shrinks, demonstrating the importance of our new dataset. Project web-
site at: https://sites.google.com/view/get-a-grip-dataset.

Keywords: Multi-Fingered Grasping, Large-Scale Grasp Dataset, Sim-to-Real

1 Introduction

Dexterous, multi-finger grasping is a longstanding challenge in robotics, with applications in tool
use, human-robot collaboration, and robot surgery [1, 2, 3]. A common approach for grasp synthesis
samples grasp candidates from a generative sampler and refines them with a discriminative evaluator
using some grasp metric. Table 1 summarizes prior works employing this “coarse-to-fine” approach.

In terms of grasp evaluation, classical methods [4, 5, 6] use analytic metrics [7] to optimize grasps
based on grasp mechanics, which require ground-truth object geometry and are sensitive to sen-
sor noise [8, 9]. In contrast, data-driven grasp evaluators [10, 11, 12] estimate grasp quality by
conditioning on realistic perceptual data, thus better predicting empirical robustness. While this dis-
criminative approach to grasp synthesis has proven effective for parallel-jaw grasping [13, 14, 15, 16],
its application to the multi-finger setting has seen considerably less success. Consequently, many
works study an alternate generative approach of learning and sampling from a distribution over
high-quality grasps using large-scale multi-finger grasp datasets [17, 18, 19, 20, 21]. However, the
real-world uncertainties in modeling and perception introduce a significant sim-to-real gap that com-
plicates reliable grasp generation on hardware. Therefore, this work’s main goal is the synthesis of

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://sites.google.com/view/get-a-grip-dataset

Table 1: Comparison of dexterous grasp synthesis methods. SDF = Signed Distance Field, BPS
= Basis Point Set, CVAE = Conditional Variational Autoencoder, EBM = Energy-Based Model.

Method Sampler Evaluator Obj. Data
GraspIt! [4] Heuristic Analytic (Ferrari-Canny) Shape primitives
FRoGGeR [22] Heuristic Analytic (Min-weight) Mesh, SDF
Wu et al. [23] Learned (CVAE) Analytic (Force closure) Point cloud
DexGraspNet [17] Heuristic Analytic (Force closure proxy) Mesh
Lu et al. [10] Heuristic Learned (CNN) RGB-D
FFHNet [24] Learned (CVAE) Learned (Classifier) BPS
DexDiffuser [25] Learned (Diffusion) Learned (Classifier) BPS
UniDexGrasp [18] Learned (EBM) Learned (RL) Point cloud
Ours - Learned (Success prob.) BPS, NeRF

robust, real-world dexterous grasps on novel objects, a challenge that has persisted despite numerous
previous efforts.

Upon re-examining the success of discriminative evaluator-based approaches for parallel-jaw grasp
synthesis, we observed 3 key criteria in the associated training data: (i) positive and negative grasp
examples with high-quality labels, (ii) corresponding perceptual data (e.g., point clouds) used to
train measurement-conditioned models, and (iii) a large enough scale to allow generalization in the
real world. For example, the evaluator in the seminal work DexNet 2.0 [14] was trained on over
6.7M triples of simulated parallel-jaw grasps, top-down images of the workspace, and expected grasp
quality labels (aggregated over several perturbations of each grasp).

In comparison, for multi-finger grasping, no dataset satisfies all three criteria. Almost all recent large
datasets only satisfy criteria (i) or (ii), and never simultaneously, because they were designed with
generative models in mind (Table 2). Conversely, prior works on evaluator-based methods typically
only employ (closed-source) datasets with tens of thousands of grasps, failing to satisfy criterion
(iii). We show the historical trend of evaluator dataset sizes in Fig. 18 of Appendix E.1.

In light of this, we hypothesize that like in parallel-jaw grasping, a grasp evaluator trained on a
large-scale dataset satisfying the above criteria would enable robust, real-world, multi-finger grasp
synthesis. We test this in a controlled setting where we first train various grasp evaluators on a large
dataset of purely simulated grasps and perceptual data, then deploy them zero-shot in the real world
on a robotic manipulator over a diverse set of objects. Our many experiments and ablations show
that evaluators improve performance (compared to purely generative methods [18, 24, 25, 23]), the
resulting performance boosts are uniquely attributable to the evaluators, and dataset size is indeed
crucial for performance. In summary, our contributions are as follows.

An open-source, large-scale dataset. Our dataset consists of 3.5M grasps (for each of the Allegro
and LEAP [26] hands) on 4.3K unique objects at multiple scales, which is larger (per-hand) than
all existing multi-finger grasp datasets [17, 20, 27]. We release synthetic images of these objects
from multiple views, corresponding point clouds, and NeRFs trained over these images. We include
over 250 successful and failed grasps for each object and soft labels indicating quantities such as the
probability of grasp success (PGS).

Comprehensive simulated and real-world evaluations. We test our evaluators trained on our
dataset on thousands of simulated and hundreds of real-world grasps on the Allegro hand, demon-
strating state-of-the-art performance. We show that grasp evaluators provide a clear, uniquely
attributable performance improvement over evaluator-free methods. Further, our work is the first to
quantify the positive effect that dataset scale has on grasp success rates in the real world.

2 Related Work

Traditional approaches to (precision) dexterous grasp synthesis optimize analytic metrics for grasp
quality. These methods focus on contacts between robot hand and object, typically optimizing for
robustness to external disturbances. For a review of this large body of work, we refer to [28, 29]. In

2

Table 2: Dexterous Grasp Dataset Comparison. PGS = probability of grasp success.
(*) denotes total number of grasps divided by number of hands in the dataset.

Dataset Grasps Labels Objects Code + Data Observations Has Table
MultiDex [27] ∼87k∗ +ve only 58 Yes - Possible
Grasp’D-1M [45] ∼333k∗ +ve only 2.3k No Visual Yes
DexGraspNet [17] 1.32M +ve only 5.3k Yes - No
MultiGripperGrasp [46] ∼2.8M∗ Ranked 345 Yes - No
Get a Grip (Ours) 3.5M PGS 4.3k Yes Visual Yes

general, these approaches [6, 4, 5] are initialized using a heuristic sampler and use sampling-based
optimization to optimize an analytic grasp metric. More recent approaches [23, 22, 30] leverage
bilevel optimization to generate provably force closure grasps. These approaches suffer when accurate
models of object geometry are unavailable, which must either be recorded with specialized scanning
rigs [31, 32] or reconstructed from visual information into low-quality meshes [30].

When generating grasps in the real world, grasp planners must use real-world object representations
like RGB images, depth images, or point clouds. A more recent promising representation is the basis
point set (BPS) [33], a fixed-length feature vector containing the minimal distances to a fixed set
of basis points. Neural Radiance Fields (NeRFs) [34] are another representation used for model
view synthesis that has proven useful for grasp generation, representing affordances, and semantic
grasping [35, 36, 37, 38, 39, 40, 41]. Importantly, all of these works study only parallel-jaw grippers,
which have limited use for complex manipulation tasks. One reason for this emphasis is that they can
be parameterized with a single element of SE(3), and it is clear that the relevant NeRF features lie
between the jaws. In contrast, the parameterization of multi-finger grasps is not as straightforward;
we address this challenge below.

Data-driven grasp synthesis methods, as extensively reviewed in [42, 8], leverage grasp datasets
to train grasp planners that take real-world perceptual information as input. Many works have used
simulation to generate large parallel-jaw grasping datasets [43, 14], which have shown to be highly
effective [44, 14]. However, generating large-scale datasets for multi-fingered hands is much more
complex due to the high number of degrees of freedom and ambiguities in grasp parameterization.
Despite this, recent works have released large-scale dexterous grasping datasets, as shown in Table 2,
such as MultiDex [27], DexGraspNet [17], and Grasp’D-1M [45]. One key limitation of these datasets
is that they only contain positive examples, so they cannot be used to train evaluator models that can
distinguish between successful and unsuccessful grasps. One counterexample is MultiGripperGrasp
[46], which uses GraspIt! [4] to generate grasps that are then evaluated in parallel simulation and
provides a ranking of grasp goodness. However, it is currently limited to a small set of 345 objects,
does not contain visual observations, and does not account for table collisions, which are important
for most grasping applications. Many methods use a combination of sampling and evaluator models,
such as Mayer et al. [24], Weng et al. [25], who propose learning both to sample and evaluate multi-
fingered grasps using basis point sets as input. However, they needed to generate their own dataset
of 180K grasps to train these models. Another line of works focuses on learning differentiable grasp
evaluators that can optimize grasps through backpropagation [47, 48, 49, 50]. These works also
created their own small datasets on the order of 10k grasps across about 100 objects. Our work seeks
to aid in future investigations of evaluator-based grasping by supplying a large-scale dataset which
mitigates the substantial effort required to generate a new one.

3 Get a Grip: Dataset Construction and Grasp Synthesis

3.1 Dataset Generation

Our dataset contains objects with associated grasps, RGB images, point clouds, NeRFs, and labels
(illustrated in Figure 1). Let 𝑛 𝑗 and 𝑛 𝑓 denote the number of hand joints and fingers. We parameterize
precision grasps as G = (T𝑂𝐻 , 𝜃, d1, . . . , d𝑛 𝑓

), where T𝑂𝐻 ∈ 𝑆𝐸 (3) is the hand pose relative to

3

D
a
ta

se
t

NeRFs GraspsPoint CloudsRGB Images Compute Smooth Labels

Simulate 5x

Figure 1: Data and label generation. Our dataset supplies the components for robust sim-to-real
transfer. For each object in the dataset, we provide RGB images of it from several random views,
a full point cloud, and trained NeRF weights, which allows our data to be compatible with most
vision-based methods. We also supply hundreds of grasps per object, each of which is simulated in
Isaac Gym multiple times with slight wrist pose perturbations. Averaging, this yields three smooth
regression targets indicating the probability of (1) unwanted collisions, (2) simulated pick success,
and (3) grasp success, the logical conjunction of (2) and (3).

the object, 𝜃 ∈ R𝑛 𝑗 is the pre-grasp joint configuration, and d𝑖 ∈ 𝑆2 is the direction in which the 𝑖th

fingertip moves during the grasp. The grasp data are stored as tuples
{(
G𝑘 , 𝑦𝑘coll, 𝑦

𝑘
pick, 𝑦

𝑘
PGS

)}
, where

each 𝑦𝑘∗ ∈ [0, 1] is a distinct smooth label for grasp G𝑘 generated in simulation: 𝑦coll denotes a grasp
with unwanted collisions, 𝑦pick that the simulated pick was successful, and 𝑦PGS the probability of
grasp success, defined as the conjunction of the two.

Our grasp generation pipeline is heavily motivated by Wang et al. [17], but requires key modifications,
including (1) placing objects on a table with consistent gravity (instead of floating with different
gravity directions) to better match the real world, (2) switching from a binary success label to a
continuous success probability label evaluated over multiple trials, (3) modifying evaluation and
simulation procedures to improve sim-to-real transfer, and (4) restricting contact points to fingertips.

To procure this dataset, we first generate hundreds of grasps on each object from a diverse object set
given by DexGraspNet [17], yielding an initial dataset of about 2M unlabeled grasps. Second, these
grasps are simulated in Isaac Gym [51] to compute the associated grasp labels that denote probability
of grasp success. Finally, for each of the grasps that are more likely to pass than fail, the dataset
is augmented by perturbing each of these grasps several times and re-evaluating them. Because the
initial dataset of grasps has many more failed grasps than successful ones, this augmentation gives a
new set of grasps with more balanced labels, which, when combined with the initial dataset, yields
the final dataset of over 3.5M examples.

Step 1: Grasp Generation. We follow the sampling strategy from Wang et al. [17] by defining an
energy function 𝐸 (G) that is the sum of various penalty terms on a grasp and sampling low-energy
grasps from the distribution 𝑝(G) ∝ exp(−𝐸 (G)) using Langevin sampling. For details, see [17].

The samples are initialized by spawning the hand on some inflated level set of the object mesh such
that the palm faces the object with a canonical open-hand joint configuration and then perturbing the
configuration with noise. Our weighted energy function (dependence on G omitted) is

𝐸 = 𝐸fc + 𝑤dis𝐸dis + 𝑤joints𝐸joints + 𝑤pen𝐸pen + 𝑤spen𝐸spen + 𝑤tpen𝐸tpen,

where 𝐸fc is the differentiable force closure estimator introduced in [17] that encourages force closure
grasps; 𝐸dis encourages hand-to-object proximity; 𝐸joints penalizes joint violations; 𝐸pen and 𝐸spen
penalize hand-object and self penetration respectively; 𝐸tpen is a new energy term that penalizes
hand-table penetration that was added to keep the grasps above the table. Without this term, many
optimized grasps would converge to grasps that fully cage the object from above and below in a way
that would not be possible in the real world due to table collisions.

4

Compared to the energy function in DexGraspNet [17], we only specify desired contacts on the
fingertips to sample precision grasps, we recover pre-grasp poses with fingertips 1.5cm off the
surface instead of on the surface (more clearance aids collision-free motion planning), and we
penalize hand-table collisions for kinematic feasibility. Let ptable (·) return the closest point on the
table. Then, the table-penetration energy term is given by

𝐸tpen =
∑︁

p∈𝑃 (H)
max

(
(p − ptable (p)) · ĝ, 0

)
,

where 𝑃(H) is a set of predefined points on the hand H and ĝ is the gravity vector. Lastly, for
each grasp, the directions {d𝑖} are the directions of the fingertips to the closest points on the mesh.
Specifying these directions eliminates ambiguity in grasp execution, aiding reproducibility.

Step 2: Grasp Evaluation. We simulate grasps for the above samples in Isaac Gym. The object is
first spawned and allowed to settle, and then the hand is spawned at the pre-grasp pose relative to the
object. We assume fingertip 𝑖 moves by 5cm along d𝑖 , and compute a corresponding closed-hand
configuration 𝜃close using inverse kinematics. We then use PD control to drive 𝜃 → 𝜃close, executing
the grasp. Lastly, the object is lifted above the table by 20cm.

For each grasp, we check whether (1) the pre-grasp had no collisions, and (2) it was successfully picked
while the hand-object pose did not significantly deviate, yielding labels 𝑦coll and 𝑦pick. We need both,
as Isaac Gym’s physics may exploit nonphysical hand-object penetration to achieve a pick, which
we forbid. We then construct the label 𝑦PGS = 𝑦coll ∧ 𝑦pick to indicate the grasp is a true, physically-
achievable success. Further, we simulate each grasp 5 times with additional small perturbations,
averaging the results to recover non-binary labels in [0, 1] for regression. This smoothing process
has been found to help learn robust grasps [52, 53]; in particular, 𝑦PGS is supervised to match an
empirical success probability, rather than being a measure of classifier confidence. We emphasize
that 𝑦coll, 𝑦pick, and 𝑦PGS are smooth labels, which are computed by averaging over all perturbations.

In contrast with [17], we check for feasibility in a tabletop setting rather than spawning the scene in a
floating environment. We found this assisted sim-to-real transfer by accounting for table penetrations.
Moreover, spawning the hand in a pre-grasp (rather than in-contact) position helped eliminate non-
physical contact modeling behavior in Isaac Gym that led to instabilities in the simulation labels.

Step 3: Grasp Augmentation. For each object, 2-20% of sampled grasps were successes. Small
amounts of noise are added to these grasps and fingertip directions 5 times and re-evaluated in Isaac
Gym, which yields smoothed, balanced labels after averaging the results. These perturbations are
larger than those from Step 2 to promote data diversity. See Appendix B.2 for details.

Object NeRF Dataset. In total, we use 4.3K unique meshes, each of which are nominally centered
and randomly scaled such that its maximum extent is between 0.1 and 0.3m. To introduce more
scale diversity while retaining a dataset size under 2.5TB (see Appendix B.4), a subset of 1700 of
the objects are instead duplicated at three distinct scales with max extents drawn uniformly from the
distributions 𝑈small (0.05, 0.1), 𝑈med (0.1, 0.2), 𝑈large (0.2, 0.3). Lastly, we train NeRFs of various
quality by uniformly sampling 100 images over a spherical cap above the object with radius 0.45m
and a polar angle sampled from𝑈 (0, 𝜋

4) and training for 400 iterations with nerfstudio [54, 55].

3.2 Grasp Synthesis with Learned Evaluators

Let the choice of object representation, e.g., a point cloud, be denoted O. Then, the grasp evaluator
is parameterized as a neural network 𝑦̂pen, 𝑦̂pick, 𝑦̂PGS = 𝑓𝜑 (G,O) trained by minimizing an equally-
weighted L2 loss over all 3 labels. At inference time, grasp sampling proceeds in 3 steps: (1) a large
batch of candidate grasps T is drawn from a sampler, (2) an initial evaluation culls all but the top 𝐾
grasps by probability of grasp success 𝑦̂PGS into a smaller set S ⊆ T , and (3) we iteratively refine all
grasps in S and finally compute G∗ = arg maxG∈S 𝑦̂PGS (G) afterwards.

We use a simple sampling-based update where at iterate 𝑖, we draw some noisy perturbation ΔG (𝑖) ,
and let G (𝑖+1) = G (𝑖) +ΔG (𝑖) if 𝑦̂PGS (G (𝑖) +ΔG (𝑖)) > 𝑦̂PGS (G (𝑖)). Otherwise, we set G (𝑖+1) = G (𝑖) . At
inference time, we do not maximize 𝑦̂pen and 𝑦̂pick, which are only used to guide evaluator training.

5

Figure 2: Violin plots showing sim results over hundreds of unseen test objects. The short
lines mark the median and IQR. “Diffusion” vs. “Fixed” refers to sampling initial grasp G (0) from
a diffusion model or a fixed set of grasps. “NeRF” vs. “BPS” refers to whether the object O is
given by NeRF or basis point set features. (A) Independent of the choice of sampler or object
representation, evaluator refinement (right 4 columns) drastically improves planned grasp quality
compared to sampling without refinement (left 2 columns). (B) Ablations on dataset size used to
train the evaluator, which demonstrates a strong correlation between dataset size and grasp planner
performance. The percentages indicate the fraction of the dataset used to train the evaluator.

We choose to study representations O that can be computed with an eye-in-hand setup. We seek to
use the most favorable possible visual features to disentangle the effect of the evaluator and dataset
from low-quality measurements in the real world. We move the eye-in-hand camera along a spiral-
shaped trajectory that gives it diverse views of the object from many angles, yielding high-quality
object reconstructions (see the right side of Fig. 10 for visualization).

Two representations compatible with the eye-in-hand are basis point sets (BPSs) [33] and NeRFs
[34]. BPSs are fixed sets of points in R3 labeled with the closest distance to an object mesh or point
cloud, essentially acting as fixed-length discretized distance fields for objects, allowing them to be
inputs to networks like MLPs. NeRFs are rendering-based models that take in a set of images and
their poses, producing a volumetric density field that allows novel-view synthesis. Since parallel-
jaw grasping works have shown they are a promising representation, we decide to also study them
for multi-finger grasping. This gives us two distinct evaluators to compare below. We sample a
point cloud from the NeRF and clean it for usage in training, simulation evaluation, and hardware
evaluation (see Appendix D for details on network architecture and this pre-processing).

4 Experiments

We hypothesize that learned grasp evaluators could help achieve robust sim-to-real transfer for
multi-finger grasp planners, but only if the associated data are large-scale and account for perceptual
data modalities that can be measured in the real world. We now test this hypothesis on the dataset
introduced above. We also ablate other modeling choices like object representation or sampler choice
to measure the performance increase uniquely attributable to the evaluator. Lastly, we measure the
effect of dataset scale on evaluator performance (see Appendix A for additional analysis).

4.1 Simulation Results

Though our goal is robust grasping on hardware, evaluation in simulation is useful since we can test
grasps on a larger set of objects. Further, we can execute multiple perturbed grasps to test grasp
robustness on the identical object pose and perceptual inputs.

First, we study the importance of learned grasp evaluators by comparing with methods that do not
use them. We perform an ablation study in which we vary the sampling strategy and the evaluation
method. For sampling, we either use a diffusion model-based sampler (motivated by Weng et al.
[25]) or a simple baseline in which we store a fixed set of ∼4000 grasps from the training set (details
in Appendix D.2). For evaluator refinement, we either use a BPS evaluator, a NeRF evaluator, or
no evaluator, which randomly chooses grasps (can be viewed as an untrained evaluator). Figure 2A
shows that all methods that use learned grasp evaluators outperform the methods that do not by a

6

Robot Easy Medium Hard

Successes Failures

Figure 3: Hardware setup. Our robot consists of an Allegro hand and ZED 2i camera mounted
onto a Franka Research 3. We select 20 objects categorized as easy, medium, or hard based on the
complexity of their geometry, the presence of “distractor” geometry, and/or resemblance to objects
in the training dataset (see App. E.2 for details). We selected these objects to maximize size/shape
diversity while providing a clear upper bound on expected performance via the hard objects. The
bottom row shows representative successes and failures for the “Fixed/BPS” configuration.

Figure 4: Average grasping success rates on hardware across object difficulties. We find that the
methods that leverage evaluators (hatched) outperform both analytic and generative-modeling-only
baselines. Detailed per-object success rates are shown in Appendix E.3.

large margin, independent of the choice of sampler or object representation. The methods that use
the fixed set of grasps perform similarly with the methods that use the diffusion sampler when used
with a learned evaluator, but unsurprisingly, the method that uses the fixed set of grasps performs
significantly worse than the diffusion sampler.

Next, we evaluate the effect of training dataset size on evaluator performance. We perform an ablation
study in which we train 4 BPS evaluator models with identical architectures and training parameters
on different fractional sizes of the training dataset (1%, 5%, 25%, 50%, 100%), all of which were
trained to convergence (see Fig. 19 in Appendix E). After training, we compare the performance of
these models in the same simulation setup with the same fixed diffusion sampler model. Figure 2B
shows that there is a strong correlation between the dataset size and grasp planner performance. It is
plausible that this trend will continue with increasing dataset size, but we leave this for future work.

We evaluate all methods on a held-out set of 212 objects. We first use each method to generate 5
grasps per object. To evaluate the robustness of these grasps, we simulate each of these grasps 5
times in simulation, each perturbed with small wrist translation and rotation noise, resulting in 25
grasps per object, which is used to compute a per-object success rate.

4.2 Hardware Results

In this section, we evaluate whether grasp evaluators trained on our dataset improve grasping
performance in the real world. We compare samplers with/without the evaluator, with/without a

7

diffusion-based sampler inspired by Weng et al. [25], and also vary the object representation in order
to identify the factors driving performance. We also compare to FRoGGeR [22], a fast analytic
method that reports strong real-world results [30] as an additional gauge for performance.

For each method, we execute 5 grasps on each of the 20 objects of varying geometry and appearance
for a total of 100 grasps per method. Our dataset includes simple objects (like boxes), and adversarial
ones (like reflective ski goggles), which we organize into easy, medium, and hard categories as shown
in Figure 3. We remark that the baselines’ reported hardware results were largely limited to convex
or nearly-convex objects at low quantity [30, 25]. For a more challenging evaluation, we included
more objects with non-trivial visual or geometric properties.

Our hardware setup consists of an Allegro hand mounted onto a Franka Research 3 arm with an
eye-in-hand ZED 2i camera. We only use monocular RGB because the objects are too close to the
camera for reliable depth readings. For repeatability, we choose a canonical pose for each object that
we use for all trials. The arm follows a fixed trajectory to collect 100 NeRF training images for every
grasp. For each method, we request 40 grasps from the planner (∼GPU memory upper bound), then
execute the highest-ranking one according to the method’s metric (Diffusion No Evaluator has no
metric, so the first grasp is selected). Because FroGGeR generates grasps serially, we request only
10 grasps or as many as it can generate in 20 seconds. A grasp is considered a failure if the planner
fails to return any grasps or if it does not pick the object up 20cm without dropping it. If feasible
grasps are generated but the motion generation fails either during planning or execution (i.e., before
the grasp), we discard the trial as the failure is not due to the grasp planner itself.

Figure 4 shows the hardware results. We find that all evaluator methods outperform the baselines by a
considerable margin independent of the sampler or object representation, with the worst model in each
category achieving 93%, 83%, and 55% success rates respectively. We also observe that all evaluator-
based methods perform similarly, which suggests the model performance is not sensitive to the object
representation. This may help disentangle representations useful for different downstream tasks from
potential negative effects on grasping performance present in other learning-based methods. We
discuss qualitative analysis in the Appendices A and E.3. Table 4 also shows that independent of
object difficulty categorization, evaluators clearly improve performance.

5 Limitations

Limitations of our work are as follows. First, our hardware experiments required a time-consuming
data collection trajectory and NeRF training to create good quality object models. Future work could
explore training models on lower-fidelity object representations from our dataset (e.g., point cloud
from 1 depth camera). Second, our methods achieve low success rates on challenging objects such
as the mallet and the strainer. The performance of these models is limited by the diversity of their
training data, which could be improved by training on a larger set of unique objects, including non-
rigid or articulated structures. Third, our grasp generation methods are designed for tabletop settings
without clutter or occluding obstacles. Future work could follow the approach used by Sundermeyer
et al. [44] for parallel-jaw grasping, which trains a clutter-aware model using a no-clutter dataset.

6 Conclusion

We introduce a new dataset of 3.5M grasps on 4.3K unique object with RGB images, point clouds,
and NeRFs integrated into our dataset, which addresses key challenges for achieving robust sim-to-
real transfer of multi-finger grasping. Using this dataset, we perform comprehensive ablation studies
that highlight the crucial role of learned grasp evaluators, which significantly outperform existing
analytic and generative modeling-based baselines in both simulation and the real world. Our work
underscores the critical importance of large-scale grasping datasets and the scale of data for required
to train robust multi-finger grasp evaluators. Our contributions represent a significant step forward
in the development of reliable and generalizable grasping algorithms, demonstrating the potential
for large-scale data and learned evaluators to drive progress in real-world robotic manipulation.

8

Acknowledgments

We thank the reviewers for their helpful suggestions and feedback. This work is supported by
the National Science Foundation under Grant Number 2342246 and by the Natural Sciences and
Engineering Research Council of Canada (NSERC) under Award Number 526541680.

References
[1] M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics and stable

modes for tool-use and manipulation planning. In Robotics: Science and Systems, 2018.

[2] X. Shu, F. Ni, X. Fan, S. Yang, C. Liu, B. Tu, Y. Liu, and H. Liu. A versatile hu-
manoid robot platform for dexterous manipulation and human–robot collaboration. CAAI
Transactions on Intelligence Technology, 9(2):526–540, 2024. doi:https://doi.org/10.1049/
cit2.12214. URLhttps://ietresearch.onlinelibrary.wiley.com/doi/abs/
10.1049/cit2.12214.

[3] F. Khadivar, V. Mendez, C. Correia, I. Batzianoulis, A. Billard, and S. Micera. Emg-driven shared
human-robot compliant control for in-hand object manipulation in hand prostheses. Journal of
Neural Engineering, 19, 11 2022. doi:10.1088/1741-2552/aca35f.

[4] A. Miller and P. Allen. GraspIt! IEEE Robotics & Automation Magazine, 11(4):110–122, Dec.
2004. ISSN 1070-9932. doi:10.1109/MRA.2004.1371616. URL http://ieeexplore.
ieee.org/document/1371616/.

[5] M. Ciocarlie, C. Goldfeder, and P. Allen. Dexterous grasping via eigengrasps: A low-dimensional
approach to a high-complexity problem. In Robotics: Science and systems manipulation
workshop-sensing and adapting to the real world, 2007.

[6] C. Borst, M. Fischer, and G. Hirzinger. Grasping the dice by dicing the grasp. In Proceedings
2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003) (cat.
No.03CH37453), volume 4, pages 3692–3697 vol.3, 2003. doi:10.1109/IROS.2003.1249729.

[7] C. Ferrari and J. F. Canny. Planning optimal grasps. In ICRA, volume 3, page 6, 1992. Number:
4.

[8] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp Synthesis—A survey. IEEE
Transactions on Robotics, 30(2):289–309, 2014. doi:10.1109/TRO.2013.2289018.

[9] C. Rubert, D. Kappler, J. Bohg, and A. Morales. Predicting grasp success in the real world - a
study of quality metrics and human assessment. Robotics and Autonomous Systems, 121:103274,
2019. ISSN 0921-8890. doi:https://doi.org/10.1016/j.robot.2019.103274. URL https://
www.sciencedirect.com/science/article/pii/S0921889019300247.

[10] Q. Lu, K. Chenna, B. Sundaralingam, and T. Hermans. Planning Multi-Fingered Grasps as
Probabilistic Inference in a Learned Deep Network. In International Symposium of Robotics
Research, 2018.

[11] Q. Lu, M. Van der Merwe, B. Sundaralingam, and T. Hermans. Multifingered Grasp Planning
via Inference in Deep Neural Networks: Outperforming Sampling by Learning Differentiable
Models. IEEE Robotics and Automation Magazine, 27(2):55–65, 2020. doi:10.1109/MRA.
2020.2976322.

[12] L. Shao, F. Ferreira, M. Jorda, V. Nambiar, J. Luo, E. Solowjow, J. A. Ojea, O. Khatib,
and J. Bohg. Unigrasp: Learning a unified model to grasp with multifingered robotic hands.
IEEE Robotics and Automation Letters, 5(2):2286–2293, April 2020. ISSN 2377-3774. doi:
10.1109/LRA.2020.2969946.

9

http://dx.doi.org/https://doi.org/10.1049/cit2.12214
http://dx.doi.org/https://doi.org/10.1049/cit2.12214
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cit2.12214
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cit2.12214
http://dx.doi.org/10.1088/1741-2552/aca35f
http://dx.doi.org/10.1109/MRA.2004.1371616
http://ieeexplore.ieee.org/document/1371616/
http://ieeexplore.ieee.org/document/1371616/
http://dx.doi.org/10.1109/IROS.2003.1249729
http://dx.doi.org/10.1109/TRO.2013.2289018
http://dx.doi.org/https://doi.org/10.1016/j.robot.2019.103274
https://www.sciencedirect.com/science/article/pii/S0921889019300247
https://www.sciencedirect.com/science/article/pii/S0921889019300247
https://arxiv.org/abs/1804.03289
https://arxiv.org/abs/1804.03289
https://arxiv.org/abs/2001.09242
https://arxiv.org/abs/2001.09242
https://arxiv.org/abs/2001.09242
http://dx.doi.org/10.1109/MRA.2020.2976322
http://dx.doi.org/10.1109/MRA.2020.2976322
http://dx.doi.org/10.1109/LRA.2020.2969946
http://dx.doi.org/10.1109/LRA.2020.2969946

[13] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordi-
nation for robotic grasping with deep learning and large-scale data collection. The Interna-
tional Journal of Robotics Research, 37(4-5):421–436, Apr. 2018. ISSN 0278-3649, 1741-
3176. doi:10.1177/0278364917710318. URL http://journals.sagepub.com/doi/
10.1177/0278364917710318. publisher: SAGE Publications Sage UK: London, England
tex.ids= levine2018a, levineLearningHandeyeCoordination2018.

[14] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg.
Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic
grasp metrics. arXiv preprint arXiv:1703.09312, 2017. tex.ids= mahler2017b, mahler2017dex,
mahler2017dexneta, mahlerDexnetDeepLearning2017 arXiv: 1703.09312 publicationTitle:
Robotics: Science and systems (RSS).

[15] C. Wu, J. Chen, Q. Cao, J. Zhang, Y. Tai, L. Sun, and K. Jia. Grasp proposal networks: An
end-to-end solution for visual learning of robotic grasps, 2020. URL https://arxiv.org/
abs/2009.12606.

[16] S. Wang, Z. Zhangli, and Z. Kan. When transformer meets robotic grasping: Exploits context
for efficient grasp detection. IEEE Robotics and Automation Letters, 7:1–8, 07 2022. doi:
10.1109/LRA.2022.3187261.

[17] R. Wang, J. Zhang, J. Chen, Y. Xu, P. Li, T. Liu, and H. Wang. DexGraspNet: A large-
scale robotic dexterous grasp dataset for general objects based on simulation. arXiv preprint
arXiv:2210.02697, 2022.

[18] Y. Xu, W. Wan, J. Zhang, H. Liu, Z. Shan, H. Shen, R. Wang, H. Geng, Y. Weng, J. Chen,
T. Liu, L. Yi, and H. Wang. Unidexgrasp: Universal robotic dexterous grasping via learning
diverse proposal generation and goal-conditioned policy, 2023.

[19] D. Turpin, L. Wang, E. Heiden, Y.-C. Chen, M. Macklin, S. Tsogkas, S. Dickinson, and A. Garg.
Grasp’d: Differentiable contact-rich grasp synthesis for multi-fingered hands, 2022.

[20] D. Turpin, T. Zhong, S. Zhang, G. Zhu, J. Liu, R. Singh, E. Heiden, M. Macklin, S. Tsogkas,
S. Dickinson, and A. Garg. Fast-grasp’d: Dexterous multi-finger grasp generation through
differentiable simulation, 2023.

[21] M. Attarian, M. A. Asif, J. Liu, R. Hari, A. Garg, I. Gilitschenski, and J. Tompson. Geometry
matching for multi-embodiment grasping, 2023. URL https://arxiv.org/abs/2312.
03864.

[22] A. H. Li, P. Culbertson, J. W. Burdick, and A. D. Ames. Frogger: Fast robust grasp generation
via the min-weight metric. arxiv:2302.13687, February 2023.

[23] A. Wu, M. Guo, and K. Liu. Learning diverse and physically feasible dexterous grasps with
generative model and bilevel optimization. In 6th annual conference on robot learning, 2022.
URL https://openreview.net/forum?id=A12nd105kFr.

[24] V. Mayer, Q. Feng, J. Deng, Y. Shi, Z. Chen, and A. Knoll. Ffhnet: Generating multi-fingered
robotic grasps for unknown objects in real-time. In 2022 International Conference on Robotics
and Automation (ICRA), pages 762–769, 2022. doi:10.1109/ICRA46639.2022.9811666.

[25] Z. Weng, H. Lu, D. Kragic, and J. Lundell. Dexdiffuser: Generating dexterous grasps with
diffusion models, 2024.

[26] K. Shaw, A. Agarwal, and D. Pathak. Leap hand: Low-cost, efficient, and anthropomorphic
hand for robot learning, 2023. URL https://arxiv.org/abs/2309.06440.

[27] P. Li, T. Liu, Y. Li, Y. Zhu, Y. Yang, and S. Huang. Gendexgrasp: Generalizable dexterous
grasping. arXiv preprint arXiv:2210.00722, 2022.

10

http://dx.doi.org/10.1177/0278364917710318
http://journals.sagepub.com/doi/10.1177/0278364917710318
http://journals.sagepub.com/doi/10.1177/0278364917710318
https://arxiv.org/abs/2009.12606
https://arxiv.org/abs/2009.12606
http://dx.doi.org/10.1109/LRA.2022.3187261
http://dx.doi.org/10.1109/LRA.2022.3187261
https://arxiv.org/abs/2312.03864
https://arxiv.org/abs/2312.03864
https://openreview.net/forum?id=A12nd105kFr
http://dx.doi.org/10.1109/ICRA46639.2022.9811666
https://arxiv.org/abs/2309.06440

[28] S. El-Khoury and A. Sahbani. Handling objects by their handles. In IROS-2008 workshop on
grasp and task learning by imitation, 2008.

[29] R. N. Murray, Z. Li, and S. Sastry. A mathematical introduction to robotics manipulation. CRC
Press, 1994.

[30] A. H. Li, P. Culbertson, and A. D. Ames. Toward an analytic theory of intrinsic robustness for
dexterous grasping, 2024.

[31] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel. BigBIRD: A large-scale 3D database
of object instances. In 2014 IEEE international conference on robotics and automation (ICRA),
pages 509–516, 2014. doi:10.1109/ICRA.2014.6906903.

[32] L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Reymann, T. B. McHugh, and
V. Vanhoucke. Google scanned objects: A high-quality dataset of 3D scanned household items.
In 2022 international conference on robotics and automation (ICRA), pages 2553–2560, 2022.
doi:10.1109/ICRA46639.2022.9811809.

[33] S. Prokudin, C. Lassner, and J. Romero. Efficient learning on point clouds with basis point
sets, 2019.

[34] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. NeRF:
Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[35] J. Ichnowski*, Y. Avigal*, J. Kerr, and K. Goldberg. Dex-NeRF: Using a neural radiance field
to grasp transparent objects. In Conference on robot learning (CoRL), 2020.

[36] J. Kerr, L. Fu, H. Huang, Y. Avigal, M. Tancik, J. Ichnowski, A. Kanazawa, and K. Gold-
berg. Evo-NeRF: Evolving NeRF for sequential robot grasping of transparent objects. In 6th
annual conference on robot learning, 2022. URL https://openreview.net/forum?
id=Bxr45keYrf.

[37] Q. Dai, Y. Zhu, Y. Geng, C. Ruan, J. Zhang, and H. Wang. GraspNeRF: Multiview-based
6-DoF grasp detection for transparent and specular objects using generalizable NeRF. 2023.
Publication Title: IEEE international conference on robotics and automation (ICRA).

[38] S. Jauhri, I. Lunawat, and G. Chalvatzaki. Learning any-view 6dof robotic grasping in cluttered
scenes via neural surface rendering, 2024.

[39] A. Rashid, S. Sharma, C. M. Kim, J. Kerr, L. Y. Chen, A. Kanazawa, and K. Goldberg. Language
embedded radiance fields for zero-shot task-oriented grasping. In 7th Annual Conference on
Robot Learning, 2023. URL https://openreview.net/forum?id=k-Fg8JDQmc.

[40] L. Yen-Chen, P. Florence, A. Zeng, J. T. Barron, Y. Du, W.-C. Ma, A. Simeonov, A. R. Garcia,
and P. Isola. MIRA: Mental imagery for robotic affordances. In Conference on Robot Learning
(CoRL), 2022.

[41] W. Shen, G. Yang, A. Yu, J. Wong, L. P. Kaelbling, and P. Isola. Distilled feature fields enable
few-shot language-guided manipulation. In 7th Annual Conference on Robot Learning, 2023.

[42] R. Newbury, M. Gu, L. Chumbley, A. Mousavian, C. Eppner, J. Leitner, J. Bohg, A. Morales,
T. Asfour, D. Kragic, D. Fox, and A. Cosgun. Deep learning approaches to grasp synthesis: A
review, 2022. arXiv: 2207.02556 [cs.RO].

[43] C. Eppner, A. Mousavian, and D. Fox. ACRONYM: A large-scale grasp dataset based on
simulation. In 2021 IEEE Int. Conf. on Robotics and Automation, ICRA, 2020.

[44] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof
grasp generation in cluttered scenes. 2021.

11

http://dx.doi.org/10.1109/ICRA.2014.6906903
http://dx.doi.org/10.1109/ICRA46639.2022.9811809
https://openreview.net/forum?id=Bxr45keYrf
https://openreview.net/forum?id=Bxr45keYrf
https://openreview.net/forum?id=k-Fg8JDQmc

[45] D. Turpin, T. Zhong, S. Zhang, G. Zhu, E. Heiden, M. Macklin, S. Tsogkas, S. Dickinson,
and A. Garg. Fast-grasp’d: Dexterous multi-finger grasp generation through differentiable
simulation. In ICRA, 2023.

[46] L. F. C. Murrilo, N. Khargonkar, B. Prabhakaran, and Y. Xiang. Multigrippergrasp: A dataset
for robotic grasping from parallel jaw grippers to dexterous hands, 2024.

[47] M. Liu, Z. Pan, K. Xu, K. Ganguly, and D. Manocha. Deep differentiable grasp planner for
high-dof grippers, 2020.

[48] M. V. der Merwe, Q. Lu, B. Sundaralingam, M. Matak, and T. Hermans. Learning continuous
3d reconstructions for geometrically aware grasping, 2020.

[49] Q. Lu, K. Chenna, B. Sundaralingam, and T. Hermans. Planning multi-fingered grasps as
probabilistic inference in a learned deep network, 2018.

[50] Q. Lu, M. Van der Merwe, B. Sundaralingam, and T. Hermans. Multifingered grasp
planning via inference in deep neural networks: Outperforming sampling by learning dif-
ferentiable models. IEEE Robotics and Automation Magazine, 27(2):55–65, 2020. doi:
10.1109/MRA.2020.2976322.

[51] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance GPU-Based physics simula-
tion for robot learning, 2021.

[52] J. Weisz and P. K. Allen. Pose error robust grasping from contact wrench space metrics.
In 2012 IEEE International Conference on Robotics and Automation, pages 557–562, 2012.
doi:10.1109/ICRA.2012.6224697.

[53] D. Kappler, J. Bohg, and S. Schaal. Leveraging big data for grasp planning. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 4304–4311, 2015. doi:
10.1109/ICRA.2015.7139793.

[54] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics, 41(4):1–15, July 2022. ISSN 1557-
7368. doi:10.1145/3528223.3530127. URL http://dx.doi.org/10.1145/3528223.
3530127.

[55] M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, T. Wang, A. Kristoffersen, J. Austin, K. Salahi,
A. Ahuja, D. Mcallister, J. Kerr, and A. Kanazawa. Nerfstudio: A modular framework for neural
radiance field development. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Conference Proceedings, SIGGRAPH ’23. ACM, July 2023. doi:10.
1145/3588432.3591516. URL http://dx.doi.org/10.1145/3588432.3591516.

12

http://dx.doi.org/10.1109/MRA.2020.2976322
http://dx.doi.org/10.1109/MRA.2020.2976322
http://dx.doi.org/10.1109/ICRA.2012.6224697
http://dx.doi.org/10.1109/ICRA.2015.7139793
http://dx.doi.org/10.1109/ICRA.2015.7139793
http://dx.doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3588432.3591516
http://dx.doi.org/10.1145/3588432.3591516
http://dx.doi.org/10.1145/3588432.3591516

Appendix

A Additional Insights and Discussion of Results

In this section, we provide further discussion that may aid the interpretation of our results.

How “fair” is the diffusion sampler? To ensure reasonable performance, we train our generative
model exclusively on high-quality grasps with a probability of grasp success 𝑦PGS = 1.0. This is
approximately 300K grasps (8.45% of the training data), roughly 10 times the amount used to train
existing models [1, 2]. Figure 21 shows real-world grasps generated by the diffusion sampler, and
shows that many failed grasps are reasonably “close” to a successful grasp.

In general, grasp evaluators have superior data efficiency in the sense that they can train on “bad”
grasps (in our case, there are ∼3M) which are byproducts of generating “good” ones. We stress
that we do not claim that grasp evaluation is superior to grasp generation as a paradigm - only that
evaluators can achieve robust sim-to-real transfer by leveraging a large volume of negative examples.

We emphasize that there are no suitable datasets for dexterous grasping larger than ours on which we
can train our diffusion sampler. To our knowledge, the only large dataset with visual observations
is closed-source [3]. Further, no existing datasets parameterize the grasp execution motion, few
consider a tabletop setting, and many of their grasps intersect with objects in a non-physical way.

Are the simulation results “reasonable”? Our simulation success rates at first appear much lower
than our hardware success rates and simulation results of similar studies [1, 2]. This discrepancy
arises from subtleties in labeling. In the real world, we only consider collision-free grasps, and
thus report the empirically estimated conditional probability 𝑝(success | no collisions). However,
in simulation we evaluate all planned grasps, including those in collision (which count as failures),
and instead report 𝑝(success). In other words, the real-world experiments answer the question “how
many collision-free generated grasps succeed?”, while the simulations answer the question “how
many generated grasps (collision-free or otherwise) succeed?”

Figure 5 shows histograms for all simulated evaluator-based methods, which compares unconditional
success rates and those conditioned on 𝑦coll ≥ 0.8. The median success rates are 37% and 80%
respectively. Note the similarity between this 80% mark and our evaluator-based hardware results,
which achieve 76-81% across all objects (see Table 4). Lastly, other works differ from ours in three
major ways: they often do not consider tabletop settings (allowing non-physical fully-caging grasps),
they have less object diversity, and they plan power grasps while we plan precision grasps. These
factors make our learning problem more challenging than those in other studies.

Figure 5: Success rates for all simulated evaluator-based methods. When only considering grasps
with 𝑦coll ≥ 0.8, the median success rate increases from 37% to 80%. 2100/4240 grasps satisfied
𝑦coll ≥ 0.8. On the right, the unconditioned distribution is plotted with dashed lines for comparison.

1

Interpreting the Fixed vs. Diffusion Sampler Performance. There are a few unintuitive results
regarding the fixed vs. diffusion samplers in both simulation and hardware. First, the Fixed+Evaluator
methods seem to outperform the Diffusion+Evaluator methods in simulation, but they perform nearly
identically in hardware. We believe that since the train and test objects in simulation are sampled
from the same distribution, some test objects will resemble training objects, so some grasps from the
fixed dataset may have high quality due to slight overfitting. Since there are no real-world objects in
the training set, this effect disappears on hardware.

Second, it is interesting that the diffusion sampler alone far outperforms the fixed sampler, but they
perform nearly identically after evaluator refinement. We believe that this is because the best samples
from the fixed and diffusion samplers have similar quality, but the average diffusion-sampled grasp
is far better than the average fixed grasp. Because only the best sampled grasps are further refined,
and only the best of the refined grasps is executed on hardware, if the fixed sampling distribution is a
reasonable prior for a good grasp, then it is likely that at least one candidate would be a good initial
guess for refinement.

B Grasp Dataset

B.1 Grasp Generation

Parameter Value
n_c_per_finger 5
w_fc 0.5
w_dis 500
w_pen 300.0
w_spen 100.0
w_joints 1.0
w_ff 3.0
w_fp 0.0
w_tpen 100.0

Parameter Value
switch_prob 0.5
mu 0.98
step_size 0.005
stepsize_period 50
starting_temp 18
annealing_period 30
tempdecay 0.95

Parameter Value
jitter 0.1
dist_lower 0.2
dist_upper 0.3
theta_lower -𝜋 / 6
theta_upper 𝜋 / 6

Table 3: Grasp generation parameters. Variables names taken from DexGraspNet [4]. Left:
Energy function parameters. Middle: Optimization parameters. Right: Initialization parameters.

Our grasp generation pipeline is inspired by Wang et al. [4], but required key modifications. Further
details about these modifications not discussed in the main text are described here.

• As mentioned, our data generation pipeline yields pre-grasp poses with the fingertips 1.5cm
off of the surface of the object, while DexGraspNet places the fingers on or very near the
surface. Due to this, when planning a grasp trajectory, we compute a new configuration
corresponding to fingertip locations 3.5cm below the object surface, which we call the
post-grasp pose.

• We choose to generate precision grasps rather than power grasps, since this synergizes with
the grasp motion parameterization described in the main text. To implement this, we only
specify contact candidates on the fingertip of the hand, which function as attractors to the
object surface during grasp generation. However, the surface points used to penalize hand-
object or hand-table collision still cover the whole hand. See Figure 6 for a visualization.

• We sample 500 surface points uniformly from the mesh of each link’s collision geometry,
distributed proportionally based on mesh surface area. 128 contact candidates are densely
sampled over the “front” of each Allegro fingertip, which is parameterized by a spherical
section centered on the (spherical) fingertip center. This spherical section has a radius of
1.2cm, a polar angular sweep of ±54◦, and an azimuthal angular sweep of 54◦ to 126◦. The
local fingertip coordinate frame has the +𝑥 axis pointing in the “palm out” direction and the
+𝑧 axis aligned with the fingers.

2

Contact Candidates

Surface Points

Figure 6: Visualization of the Allegro hand contact candidates and 500 surface points. Contact
candidates are used to compute 𝐸dis, encouraging hand-object proximity. Surface points are used to
compute 𝐸tpen, which penalizes hand-table penetration to keep the grasps above the table.

We now describe the dataset augmentation procedure in detail. Recall that first, a large set of
nominal grasps are generated using the modified DexGraspNet pipeline. In this step, the fingertip
grasp directions d𝑖 are generated by computing the direction of each fingertip to the closest point on
the mesh. Because there are a large proportion of failures after this step, we augment the dataset
with more positive examples by taking all nominal grasps satisfying 𝑦PGS ≥ 0.9, perturbing them
slightly, re-evaluating them, and adding them to the dataset.

These perturbations are sampled using Halton sequence sampling [5], which generates quasi-random,
low-discrepancy sequences that sample more uniformly across the input space compared to standard
random sampling and reducing clustering. We sample perturbations from the following ranges:

• wrist translation: each spatial coordinate draws a perturbation from [-5mm, 5mm];

• wrist orientation: each of roll, pitch, and yaw draw a perturbation from [-2.5◦, 2.5◦];

• finger joints: each angle draws a perturbation from [-0.05rad, 0.05rad];

• fingertip grasp directions: each of two axes orthogonal to the nominal direction draw
perturbations from [-10◦, 10◦].

Each high-success grasp is perturbed five times and re-evaluated on the same object. Additionally,
these grasps are perturbed two more times and evaluated on different, randomly sampled objects from
the dataset. These additional perturbations typically yield unsuccessful grasps, but we believe this
protects the model from overfitting and provides useful training signal regarding object geometry.
Table 3 summarizes all parameters used for grasp generation.

B.2 Grasp Label Generation in Simulation

To generate the labels for the grasps in the dataset as well as corresponding rendered visual data,
we use Isaac Gym [6]. Our simulated evaluation proceeds as follows. We spawn the hand in the
pre-grasp pose, execute the grasp motion parameterized by fingertip directions, then lift the object
20cm off of the table (with gravity enabled).

A pick is considered a simulation success (𝑦pick = 1) only if the following conditions are met: (1)
the hand contacts the object on at least 3 links; (2) the palm and proximal links of the hand do
not touch the object; (3) the change in the object’s position relative to the hand does not exceed
10cm throughout the lift; (4) the change in the object’s orientation relative to the hand does not
exceed 45 degrees about each Euler angle throughout the lift. A pick is considered collision-free
(𝑦coll = 1) only if the hand does not contact the table or object during the pre-grasp pose. Recall that
𝑦PGS = 𝑦pick ∧ 𝑦coll.

3

time

S
n
o
w

m
a
n

Simulated Grasp Evaluation

Fi
g
u
ri

n
e

Figure 7: Visualization of grasp evaluation in simulation on a snowman object (top) and a
figurine object (bottom). After the object settles on the table (𝑡settle), the Allegro hand is moved to
the pre-grasp position (𝑡pregrasp), executes the grasp (𝑡grasp), and lifts the object (𝑡lift). At 𝑡pregrasp, we
compute 𝑦coll by checking for hand collisions with the object and table. At 𝑡lift, we compute 𝑦pick by
checking if the object pose relative to the hand significantly changed from 𝑡pregrasp.

To generate non-binary labels, each grasp is corrupted with small noise and re-simulated 5 times.
Note that this is a different perturbation than the one used for dataset augmention described in
Appendix B.1. Only the wrist pose is perturbed. The wrist translations are corrupted with uniform
noise drawn from [-5mm, 5mm] along each axis, and the wrist orientation is corrupted about the
roll, pitch, and yaw axes with uniform noise drawn from [-2.5◦, 2.5◦].

The simulation timestep is set to 1/60 seconds, but the integrator solves at a rate of 1/120 seconds for
numerical stability using the Truncated Gauss-Seidel (TGS) solver. The TGS solver runs 8 position
and 8 velocity iterations per simulation timestep. “Force at a distance” (i.e., the contact offset
parameter) is applied starting from 1mm of separation between collision geometries, substantially
lower than the 1cm distance used by [4] in DexGraspNet. This helps reduce unwanted non-physical
collisions. Geometries are processed by a convex decomposition using the default settings in Isaac
Gym. Each object is spawned 2cm above the table and dropped. The simulation starts when the
object settles. The simulation pipeline is visualized in Figure 7.

B.3 Simulated Label Distribution

Figure 8 shows the distribution of grasp labels across the dataset of 3.5M grasps. The median and
IQR of each label is as follows:

• 𝑦PGS: 0.0 (0.0, 0.48)
• 𝑦pick: 0.2 (0.0, 0.8)
• 𝑦coll: 0.08 (0.6, 1.0)

B.4 Object Dataset and Generation

The objects considered in this work are a strict subset of those in DexGraspNet [4]. DexGraspNet
contains 5.3K unique objects, while we only consider 4.3K of them. The main reason for this is

4

0.0 0.2 0.4 0.6 0.8 1.0
yPGS

0

1

2

Gr

as
ps

×106 Distribution of yPGS Labels

0.0 0.2 0.4 0.6 0.8 1.0
ypick

0

1

2

Gr

as
ps

×106 Distribution of ypick Labels

0.0 0.2 0.4 0.6 0.8 1.0
ycoll

0

1

2

Gr

as
ps

×106 Distribution of ycoll Labels

Figure 8: Dataset label distribution across 3.5M grasps.

that we assume a tabletop setting while DexGraspNet does not, which necessitates a canonical “up”
direction. Thus, many objects were manually processed to be oriented in a reasonable manner.
We only use an object if after this reorientation, the object successfully settles when dropped from
a height of 2cm. If the object tips over or does not settle after 200 timesteps in the Isaac Gym
simulation, then it is excluded. We consider an object to have remained upright if the real part of
its relative quaternion remains greater than 0.95 throughout the simulation. We consider it to have
settled if the translational components stay within 1mm along each axis and roll, pitch, and yaw stay
with 1e-2 radians for 15 consecutive timesteps. For all objects, we used a uniform friction coefficient
of 0.9 and a constant object density of 500 kg/m3 (as in [4]). Thus, object masses were determined
entirely by volume, as in other works [7, 4, 8].

Figure 9 visualizes a subset of our object dataset. To introduce more scale diversity while retaining
a dataset size under 2.5TB, a subset of approximately 1.7K of the objects is duplicated at three
distinct scales, while the remaining objects are used at one scale each, resulting in approximately
7.7K objects. The large dataset storage requirement comes from the storage of multiple 3D NeRF
density grids used to represent each grasp for the NeRF evaluator (more details about the NeRF
density grid representation in Appendix D.3.2).

B.5 Train, Validation, and Test Split

We create our train, validation, and test splits of the datasets very carefully. We make sure that each
unique object mesh only exists in one of these three sets.

We split the 4305 unique object meshes into 3981 (92.5%) train objects, 216 (5%) validation objects,
and 108 (2.5%) test objects. Each object may appear at more than one scale, so this results in
7695 different objects after all scaling operations, split into 7108 (92.5%) train objects, 375 (5%)
validation objects, and 212 (2.5%) test objects. This results in a total of 3,531,098 grasps, with
3,261,228 (92.5%) for training, 170,128 (5%) for validation, and 99,742 (2.5%) for testing.

B.6 Compute and Timing

We used 4 Nvidia A100 GPUs to generate our dataset. It took ∼4 days to generate the full dataset:
∼1 day for grasp generation, ∼1 day for grasp label generation, and ∼2 days for image generation,
NeRF training, and point cloud generation.

5

Figure 9: Visualization of a random subset of 100 objects out of the 212 test objects. The Allegro
hand is shown at the bottom for scale. The object dataset is a subset of the DexGraspNet dataset’s
meshes [4]. See their work for more details.

C Object Representations

C.1 Neural Radiance Fields

We train NeRFs using both simulated data and real-world data and compare them here.

For NeRFs trained on simulated data, the object is first spawned and allowed to settle on the table.
Then, we uniformly sample 100 images over a spherical cap above the object with a radius of 0.45m
and a polar angle sampled from𝑈 (0, 𝜋

4), and then train for 400 iterations with nerfstudio [9, 10].

For NeRFs trained on real-world data, we first collect 100 images while moving the wrist-mounted
camera along a hard-coded trajectory encircling the object and then train for 400 iterations with
nerfstudio [9, 10]. This trajectory consists of 3 spirals around the object, with the object placed
roughly in the center of the spirals.

Figure 10 shows a qualitative comparison between the RGB images and NeRFs trained on simulated
data versus real-world data. Both types of NeRFs exhibit floater artifacts [11], which must either be
processed away or ignored by downstream models.

We train without scene contraction, auto-scaling poses, centering method, or orientation method,
and use a scale factor of 1.0, which ensures that the coordinate space in the NeRF is not modified
from the given data. The remainder of the parameters follow the default nerfacto settings in
nerfstudio.

C.2 Basis Point Sets

Methods that represent the object as basis point sets (BPSs) use the following procedure.

1. Train a NeRF following the procedure described in Appendix C.1.
2. Sample a point cloud with 5000 points using nerfstudio [10] by rendering out depth

images with opacity exceeding 0.5 in the axis-aligned bounding box parameterized by
the lower and upper bounds [−0.2𝑚,−0.2𝑚, 0.0𝑚] × [0.2𝑚, 0.2𝑚, 0.3𝑚] using a z-up
convention.

3. Preprocess the point cloud to remove most outliers and floaters. First, we use open3d [12]
to remove statistical outliers (nb_neighbors=20, std_ratio=2.0) and radius out-
liers (nb_points=16, radius=0.05). Next, we construct an undirected graph of the

6

Simulated Snowman Real-World Dragon

Figure 10: Comparison between NeRFs trained on simulated snowman data and real-world
dragon data. This demonstrates the qualitative similarity between the two NeRFs. First row: two of
the RGB images used for NeRF training. Second row: Camera poses used for NeRF training. Third
row: NeRF-rendered RGB image and accumulation image.

remaining points, where points are nodes and an edge exists between two nodes if the points
are within 1mm. Floaters are removed by keeping the largest connected component.

4. Generate a random set of 4096 basis points within a sphere of radius 0.3m, centered 0.15m
above the table. This set of basis points remains fixed for all experiments. We utilize
bps [13] for basis point set operations.

5. Compute basis point set values by calculating the distance from each basis point to its
closest point in the point cloud.

Figure 11 shows an example of a point cloud and BPS for both a simulated and real-world object.

C.3 Meshes

We use triangle meshes for two purposes: the analytic grasp planning method (FRoGGeR) that we
use as a baseline and collision-free motion planning from the start pose to the pre-grasp pose (all
methods).

For both applications, the mesh is generated by the following procedure.

1. Training a NeRF following the procedure described in Appendix C.1.

2. Using scikit-image [14] to perform marching cubes, which extracts a 2D surface
mesh from a 3D volume with a NeRF density level set of 15 within a bounding box of
[−0.2𝑚,−0.2𝑚, 0.0𝑚] × [0.2𝑚, 0.2𝑚, 0.3𝑚] (with z being the up-direction).

7

Basis Point
Distances

Simulated Snowman Real-World Dragon

Figure 11: Visualization of a point cloud (5000 black points) and a basis point set (4096 points
colored by distance to the point cloud). These are generated by a NeRF for both a simulated
snowman object (left) and a real-world dragon object (right).

Simulated Snowman

NeRF-Generated Mesh NeRF-Generated Mesh

Real-World Dragon

Ground-Truth Mesh RGB Image

Figure 12: We use NeRFs to generate meshes for two purposes: analytic grasp planning
methods (FRoGGeR) and collision-free motion planning from the start pose to the pre-grasp
pose (all methods). Left: Comparison between the ground-truth mesh and NeRF-generated mesh
of a simulated snowman object, where the extra vertices at the bottom are due to artifacts from
shadows/lighting effects. Right: Comparison between an RGB image and the NeRF-generated mesh
of a real-world dragon object. We do not have a ground-truth mesh for the real-world dragon object.

3. Using trimesh [15] to remove floaters. This is done by only keeping connected compo-
nents with at least 31 edges.

Figure 12 shows examples of NeRF-generated meshes. We found the parameters above to be
reasonable for all test objects.

D Grasp Planning

As explained in the main text, during grasp planning, a batch of candidate grasps is sampled, and
only the top 𝐾 of these are retained for the refinement phase. In our simulation experiments, we
let 𝐾 = 5, which are all refined and executed in simulation. In our real-world experiments, we let
𝐾 = 40, which are all refined and the best is executed on hardware. See Figure 13 for a schematic of
the sample/refine process.

Recall that our refinement is sampling-based, where the previous iterate is perturbed by some number
of samples and the best one is chosen to be the next iterate. For all perturbations, we use zero-mean
Gaussian noise as follows.

• Wrist translation: standard deviation of 5mm per spatial coordinate.

8

S
a
m

p
le

r

E
v
a
lu

a
to

r
(R

a
n
k)

E
v
a
lu

a
to

r
(R

e
fi
n
e
)

Grasp
Candidates

Ranked
Grasps

Top K
Refined
Grasps

Figure 13: Our grasp planners consist of a sampler and an evaluator. First, the sampler generates
a batch of grasp candidates. The evaluator ranks them, and the top 𝐾 grasps are refined using
sampling-based optimization, where the objective is given by the evaluator.

• Wrist and grasp orientations: the noises are sampled using a standard deviation of 0.05m
from 𝔰𝔬(3), which are then converted to elements of 𝑆𝑂 (3) via the exponential map.

• Joint angles: standard deviation of 0.01 radians.

The refinement is run for 50 iterations. Other refinement strategies could work as well, such as
gradient-based methods or other sampling-based methods.

To allow grasp parameters to be represented as vector inputs or outputs, we parameterize them
as g = (x, r, 𝜃, d1, ..., d𝑛 𝑓

) ∈ R9+𝑛 𝑗+3𝑛 𝑓 , where x ∈ R3 is the wrist position, r ∈ R6 is the wrist
orientation represented by a continuous 6-D rotation vector [16], 𝜃 ∈ R𝑛 𝑗 is the pre-grasp joint
configuration, and d𝑖 ∈ R3 is the direction in which the 𝑖th fingertip moves during the grasp.

D.1 Diffusion Sampler

Figure 14 shows the diffusion sampler architecture inspired by Weng et al. [1]. As their implemen-
tation is not publicly available, we re-implemented their architecture to the best of our ability via
the textual description. We use an embedding dimension of 128 and a sequence length of 4 for all
attention modules. The sequence length is created by reshaping the outputs of the fully-connected
layers (to (4, 128)). We use Denoising Diffusion Implicit Models (DDIM) [17] with a linear sched-
uler on the noise variance 𝛽 that moves from 0.0001 to 0.02 over a total of 1000 diffusion timesteps.
Figure 15 shows the train and validation loss curves for this model.

Although the diffusion sampler is trained to only generate successful grasps, it can still produce
unsuccessful grasps as seen in previous works [1, 2]. While it could typically generate feasible-
looking grasps on a diverse range of objects, its most common failure modes were (1) generating
grasps that were “close” to successful but with fingers slightly too close or far to successfully execute,
and (2) generating a grasp that was substantially too far from the object.

D.2 Sampling from a Fixed Dataset

To disentangle the importance of the learned evaluator from the impact of the diffusion sampler, we
perform additional experiments in which we replace the diffusion sampler with a simple baseline
in which we store a fixed set of 4349 grasps from the training set. More specifically, this was

9

FC
 R

e
sB

lo
ck

C
ro

ss
 A

tt
e
n
ti

o
n

S
e
lf
 A

tt
e
n
ti

o
n

co
n
ca

t

BPS

Noised
Grasp

FC
FC

FC

Figure 14: Diffusion Sampler architecture. Our model takes in a basis point set, a noised grasp,
and a diffusion timestep. The noised grasp and the diffusion timestep are processed into a query using
a self-attention block. The basis point set is processed into a key-value pair. These are embedded
together using a cross-attention block and used to compute the predicted noise. This is a similar
architecture to the one used by Weng et al. [1].

0 2000 4000 6000
Epochs

0

2

4

6

8

10

Lo
ss

Train Loss

0 2000 4000 6000
Epochs

0

2

4

6

8

10 Validation Loss

Loss Curves: Diffusion Sampler

Figure 15: Train and validation loss curves for the diffusion sampler.

generated by storing one grasp per training set object that exhibited a high probability of success
(𝑦PGS ≥ 0.9). For objects that did not have any such grasps, we did not store any. We emphasize
that these grasps were from training set objects, so they were not designed for the unseen test objects
used for simulation evaluation or the real-world objects used for hardware evaluation.

D.3 Grasp Evaluators

Recall that the evaluators are trained by regressing on three distinct soft labels: 𝑦PGS, 𝑦coll, and 𝑦pick.
Although we only use the 𝑦̂PGS prediction at inference time, we choose to regress the other two labels
𝑦̂coll and 𝑦̂pick at train time, as we found that these labels provide an additional signal about why a
given grasp may be failing.

10

FC
 R

e
sB

lo
ck

concat

FC
 R

e
sB

lo
ck softmax

softmax

softmax

BPS

Grasp

FC
 R

e
sB

lo
ck

FC

Figure 16: BPS Evaluator architecture. Our model takes in a basis point set and a grasp, which
are concatenated together and then passed through three fully-connected resblocks and a final fully-
connected layer, which returns logits for 3 labels: whether (i) there are unwanted collisions in the
scene, (ii) the pick succeeded in the simulator, and (iii) both (i) and (ii) are true. See the official
implementation from Mayer et al. [2] [here]. This is the same architecture used by Weng et al. [1]
and our work.

D.3.1 BPS Evaluator Details

Figure 16 shows the architecture used for the BPS evaluator. We used the official implementation
from Mayer et al. [2] [here], which is the same architecture used by Weng et al. [1].

D.3.2 NeRF Evaluator Details

Figure 17 shows the architecture used for the NeRF evaluator. We use a novel grasp representation
that leverages NeRF features directly.

We will motivate this representation and then describe it in detail. A key factor for grasp success is
the surface geometry at the contact points. Modeling this from images is difficult, and few (if any)
fast, reliable surface reconstruction methods are adequate for grasp planning. Here, we use NeRF
features that we hypothesize capture accurate estimates of the object surface. Centered at finger 𝑖’s
position x𝑖 , a square of side length 0.06m is swept along d𝑖 by 0.08m to recover a rectangular prism
which is discretized into a 4D tensor N𝑖 ∈ R4×31×31×41, where the first channel dimension is the
NeRF density and the last 3 are spatial coordinates. These grid dimensions overapproximate both
the fingertip size and the grasp depth to ensure the geometric information captured is not too local.
Further, to capture the global object geometry, we generate a grid centered on the estimated object
centroid with side lengths 0.4m N𝑔 ∈ R4×41×41×41. The centroid is estimated by assuming uniform
mass density and integrating over spatial regions with NeRF density exceeding 15.0.

In summary, our architecture uses local NeRF densities and global NeRF densities as inputs. The
local NeRF densities are sampled grids approximating the fingertip swept volumes when moving
along the grasp directions. The global NeRF densities are a sampled grid of fixed size to capture the
object’s global geometric features.

D.4 FRoGGeR Details

For all experiments that use FRoGGeR [18, 19], we use the open-source implementation provided
at https://github.com/alberthli/frogger. The procedure for acquiring the meshes
used for planning is described in Appendix C.3.

Out of the 100 real-world pick attempts using FRoGGeR, there were a total of 49 failures. 16 failures
were caused by planned grasps that failed to lift the object, and 33 failures were caused by planning
issues in which no grasp could be found within the timeout period.

11

https://github.com/alberthli/frogger

Fingertip
CoordConv

Global
CoordConv

concat MLP

softmax

softmax

softmax

Figure 17: NeRF Evaluator architecture. Our model takes in local and global NeRF feature
grids, passing them through 3D CoordConv networks and an MLP, which returns logits for 3 labels:
whether (i) there are unwanted collisions in the scene, (ii) the pick succeeded in the simulator, and
(iii) both (i) and (ii) are true. The Fingertip CoordConv weights are shared for all fingertips.

A: Lu et al., 2018 Ours 100%

Ours 50%

Ours 25%

Ours 5%

Ours 1%

B: der Merwe et al., 2020

C: Lu et al., 2020

D: Zhao et al., 2020

E: Liu et al., 2020

F: Corsaro et al., 2021

G: Mayer et al., 2022

H: Weng et al., 2024

Figure 18: Comparison between learned grasp evaluator dataset sizes in prior works over time.
Our dataset and our ablations shown on the right in blue. The full training set contains 3.26M grasps.

FRoGGeR allows users to either plan with a floating hand or the full hand-arm system. We opt to
use the full hand-arm system so that the generated grasps account for kinematic reachability of grasp
poses when using a given arm, resulting in fewer downstream motion planning failures.

E Experiment Details

E.1 Simulation: Ablation Study on Dataset Size Details

We hypothesize that learned grasp evaluators could help achieve robust sim-to-real transfer for
multi-finger grasp planners, but only if the associated data are large-scale and account for realistic
perceptual inputs.

Looking at prior works, we see a clear trend toward larger multi-fingered grasp datasets used for
training grasp evaluators (see Figure 18). Recognizing this trend, our goal with this ablation is
to study how much the increased scale of our dataset (3.5M grasps across 4.3K objects) impacts
performance, which we measure by examining the improvement in the simulated probability of grasp
success gained by evaluator refinement.

Figure 19 shows the train and validation loss curves of each model trained on a different fraction of
the training dataset and validated on the same validation dataset. We see that all models are trained
to convergence and achieve similar train losses, but their corresponding validation losses show a
consistent correlation between dataset scale and validation performance.

E.2 Hardware: Object Selection

Figure 20 shows the real-world objects labeled with their corresponding names. Easy objects are
those that have high-quality grasps when approached from any or most directions. For example, tall,
cylindrical objects can be grasped overhead or from the side. Medium objects are those with more

12

0 200 400 600 800 1000
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Lo

ss
Train Loss

1%
5%
25%
50%
100%

0 200 400 600 800 1000
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30 Validation Loss
1%
5%
25%
50%
100%

Loss Curves: Ablation Study on Evaluator Training Set Size

Figure 19: Comparison of loss curves across each model trained on a different fraction of the
training dataset and validated on the same validation dataset. These show a clear correlation
between dataset scale and validation performance. The full training set contains 3.26M grasps.

Figure 20: Real-world objects labeled with their names corresponding to Table 4.

unusual geometry, including “distractors,” or objects which are harder to grasp when the hand is
arbitrarily oriented. For example, the mug has a handle and the lunchbox is more easily pinched in
the thin direction. Lastly, hard objects contain very unusual, non-convex geometry/visual features,
or are difficult to grasp without affordances. For example, the goggles are both reflective and
transparent, which poses a challenge for object reconstruction algorithms, and the bunny’s ears are a
large distractor for grasp planners. The bunny, squirrel, and dino were custom printed as hard
test objects. The strainer and mallet were chosen to be out-of-distribution objects, providing
a ceiling on the performance of our grasping algorithms. No method obtained any successful grasps
on the strainer.

E.3 Hardware: Detailed Results

Table 4 presents the detailed quantitative results of all grasp planning methods on various objects in
the real world.

Qualitatively, we observed that our evaluator-based methods very rarely exhibited edge-seeking
behavior, wherein the fingers are placed on corners or edges of objects, and has been noted as
a common failure mode by other works [18, 19]. We suspect this may be a result of our label
smoothing, though we do not rigorously test this. However, “distractor” geometries like the bunny
ears or spray nozzle frequently caused grasp planning failures, attracting the fingers towards them.
Methods like FRoGGeR rely on online mesh reconstruction, so objects like the goggles caused
issues due to transparency/reflectivity. Lastly, many of the diffusion sampler’s unrefined grasps
appeared “close” to success even when failing, which suggests that generative modeling may be a
viable strategy with more data. Some examples are shown in Figure 21.

13

Difficulty Objects
Methods

No Evaluator Evaluator
FRoGGeR Diffusion Diffusion Diffusion Fixed

No Evaluator BPS NeRF BPS

Easy

Apple 4/5 3/5 5/5 5/5 5/5
Cube 3/5 1/5 5/5 4/5 5/5

Yellowcup 5/5 4/5 5/5 5/5 5/5
Conditioner 4/5 5/5 5/5 4/5 5/5

Greentea 3/5 4/5 4/5 5/5 5/5
Purplecup 5/5 5/5 5/5 5/5 5/5
TOTAL 24/30 22/30 29/30 28/30 30/30

(80%) (73%) (97%) (93%) (100%)

Medium

Redmug 2/5 4/5 5/5 5/5 5/5
Goblet 5/5 3/5 5/5 5/5 5/5
Spray 4/5 0/5 2/5 4/5 3/5
Milk 1/5 5/5 5/5 5/5 5/5

Redbox 5/5 1/5 4/5 5/5 3/5
Lunchbox 2/5 0/5 5/5 2/5 4/5
TOTAL 19/30 13/30 26/30 26/30 25/30

(63%) (43%) (87%) (87%) (83%)

Hard

Dragon 0/5 0/5 2/5 2/5 4/5
Goggles 0/5 0/5 4/5 2/5 4/5
Minion 0/5 3/5 5/5 5/5 5/5
Strainer 0/5 0/5 0/5 0/5 0/5
Bunny 0/5 1/5 5/5 4/5 3/5

Squirrel 1/5 2/5 4/5 3/5 4/5
Dino 2/5 2/5 5/5 5/5 5/5

Mallet 5/5 0/5 1/5 1/5 0/5
TOTAL 8/40 8/40 26/40 22/40 25/40

(20%) (20%) (65%) (55%) (62%)

All TOTAL 51/100 43/100 81/100 76/100 80/100
(51%) (43%) (81%) (76%) (80%)

Table 4: Results of different grasp planning methods on various objects in the real world.
Images of these objects can be found in Figure 20.

Figure 21: Some examples of failed grasps generated by the diffusion sampler. Though they
failed, the grasps appear qualitatively reasonable.

E.4 Hardware: Motion Planning

To evaluate a given grasp in the real world, we need to use a motion planner to move the hand to
the corresponding pre-grasp pose. We use cuRobo [20], which performs parallelized collision-free
motion generation. In particular, we use cuRobo’s graph planner, which uses Probabilistic Road
Map (PRM) to find a collision-free path. Object collision avoidance requires an object mesh, which
is acquired through a process explained in Appendix C.3. We use a collision buffer of 1mm.

14

When executing a grasp on hardware, we decompose the motion into three stages: (1) start pose to
pre-grasp pose, (2) pre-grasp pose to grasp pose, (3) grasp pose to lift pose.

The first stage is the most challenging motion planning problem because the hand needs to find
a collision-free path to get very close to the object. To simplify this problem, we utilize inverse
kinematics to adjust the pre-grasp finger joints, moving them an additional 3cm backward along the
fingertip grasp directions.

In addition to ensuring kinematic feasibility, we also need to avoid damaging the cabling of the
wrist-mounted camera during grasp execution. To achieve this, we filter out grasp samples if either
(1) the normal direction of the palm is within 60 degrees from the upward direction of the world
frame or (2) the direction from the palm to the middle finger deviates by more than 60 degrees from
the forward direction of the world frame.

To account for these checks, we request 40 grasps from the grasp planner, which are then sorted by
the grasp planner’s metric. If no metric is available, such as in the case of a diffusion sampler without
an evaluator, the grasps remain unsorted. Next, we utilize cuRobo to solve all 40 motion planning
problems in parallel and then execute the first grasp for which a motion plan is successfully found.

15

References
[1] Z. Weng, H. Lu, D. Kragic, and J. Lundell. Dexdiffuser: Generating dexterous grasps with

diffusion models, 2024.

[2] V. Mayer, Q. Feng, J. Deng, Y. Shi, Z. Chen, and A. Knoll. Ffhnet: Generating multi-fingered
robotic grasps for unknown objects in real-time. In 2022 International Conference on Robotics
and Automation (ICRA), pages 762–769, 2022. doi:10.1109/ICRA46639.2022.9811666.

[3] D. Turpin, T. Zhong, S. Zhang, G. Zhu, J. Liu, R. Singh, E. Heiden, M. Macklin, S. Tsogkas,
S. Dickinson, and A. Garg. Fast-grasp’d: Dexterous multi-finger grasp generation through
differentiable simulation, 2023.

[4] R. Wang, J. Zhang, J. Chen, Y. Xu, P. Li, T. Liu, and H. Wang. DexGraspNet: A large-
scale robotic dexterous grasp dataset for general objects based on simulation. arXiv preprint
arXiv:2210.02697, 2022.

[5] J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-
dimensional integrals. Numerische Mathematik, 2(1):84–90, 1960. doi:10.1007/BF01386213.
URL https://doi.org/10.1007/BF01386213.

[6] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance GPU-Based physics
simulation for robot learning, 2021.

[7] C. Eppner, A. Mousavian, and D. Fox. ACRONYM: A Large-Scale Grasp Dataset Based on
Simulation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
6222–6227, 2021. doi:10.1109/ICRA48506.2021.9560844.

[8] P. Li, T. Liu, Y. Li, Y. Zhu, Y. Yang, and S. Huang. Gendexgrasp: Generalizable dexterous
grasping. arXiv preprint arXiv:2210.00722, 2022.

[9] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics, 41(4):1–15, July 2022. ISSN
1557-7368. doi:10.1145/3528223.3530127. URL http://dx.doi.org/10.1145/
3528223.3530127.

[10] M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, T. Wang, A. Kristoffersen, J. Austin, K. Salahi,
A. Ahuja, D. Mcallister, J. Kerr, and A. Kanazawa. Nerfstudio: A modular framework for neural
radiance field development. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Conference Proceedings, SIGGRAPH ’23. ACM, July 2023. doi:10.
1145/3588432.3591516. URL http://dx.doi.org/10.1145/3588432.3591516.

[11] F. Warburg*, E. Weber*, M. Tancik, A. Ho lyński, and A. Kanazawa. Nerfbusters: Removing
ghostly artifacts from casually captured nerfs. In International Conference on Computer Vision
(ICCV), 2023.

[12] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D data processing.
arXiv:1801.09847, 2018.

[13] S. Prokudin, C. Lassner, and J. Romero. Efficient learning on point clouds with basis point sets.
In Proceedings of the IEEE International Conference on Computer Vision, pages 4332–4341,
2019.

[14] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager,
E. Gouillart, T. Yu, and the scikit-image contributors. scikit-image: image processing in
Python. PeerJ, 2:e453, 6 2014. ISSN 2167-8359. doi:10.7717/peerj.453. URL https:
//doi.org/10.7717/peerj.453.

[15] Dawson-Haggerty et al. trimesh. URL https://trimesh.org/.

16

http://dx.doi.org/10.1109/ICRA46639.2022.9811666
http://dx.doi.org/10.1007/BF01386213
https://doi.org/10.1007/BF01386213
https://arxiv.org/abs/2011.09584
https://arxiv.org/abs/2011.09584
http://dx.doi.org/10.1109/ICRA48506.2021.9560844
http://dx.doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3588432.3591516
http://dx.doi.org/10.1145/3588432.3591516
http://dx.doi.org/10.1145/3588432.3591516
http://dx.doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://trimesh.org/

[16] Y. Zhou, C. Barnes, L. Jingwan, Y. Jimei, and L. Hao. On the continuity of rotation representa-
tions in neural networks. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[17] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv:2010.02502,
October 2020. URL https://arxiv.org/abs/2010.02502.

[18] A. H. Li, P. Culbertson, J. W. Burdick, and A. D. Ames. Frogger: Fast robust grasp generation
via the min-weight metric. arxiv:2302.13687, February 2023.

[19] A. H. Li, P. Culbertson, and A. D. Ames. Toward an analytic theory of intrinsic robustness for
dexterous grasping, 2024.

[20] B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. Van Wyk, V. Blukis, A. Millane,
H. Oleynikova, A. Handa, F. Ramos, N. Ratliff, and D. Fox. Curobo: Parallelized collision-free
robot motion generation. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 8112–8119, 2023. doi:10.1109/ICRA48891.2023.10160765.

17

https://arxiv.org/abs/2010.02502
http://dx.doi.org/10.1109/ICRA48891.2023.10160765

	Introduction
	Related Work
	Get a Grip: Dataset Construction and Grasp Synthesis
	Dataset Generation
	Grasp Synthesis with Learned Evaluators

	Experiments
	Simulation Results
	Hardware Results

	Limitations
	Conclusion
	Additional Insights and Discussion of Results
	Grasp Dataset
	Grasp Generation
	Grasp Label Generation in Simulation
	Simulated Label Distribution
	Object Dataset and Generation
	Train, Validation, and Test Split
	Compute and Timing

	Object Representations
	Neural Radiance Fields
	Basis Point Sets
	Meshes

	Grasp Planning
	Diffusion Sampler
	Sampling from a Fixed Dataset
	Grasp Evaluators
	BPS Evaluator Details
	NeRF Evaluator Details

	FRoGGeR Details

	Experiment Details
	Simulation: Ablation Study on Dataset Size Details
	Hardware: Object Selection
	Hardware: Detailed Results
	Hardware: Motion Planning

