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Abstract
While multimodal contrastive learning methods
(e.g., CLIP) can achieve impressive zero-shot clas-
sification performance, recent research has re-
vealed that these methods are vulnerable to back-
door attacks. To defend against backdoor attacks
on CLIP, existing defense methods focus on ei-
ther the pre-training stage or the fine-tuning stage,
which would unfortunately cause high computa-
tional costs due to numerous parameter updates
and are not applicable in black-box settings. In
this paper, we provide the first attempt at a compu-
tationally efficient backdoor detection method to
defend against backdoored CLIP in the inference
stage. We empirically find that the visual repre-
sentations of backdoored images are insensitive to
benign and malignant changes in class description
texts. Motivated by this observation, we propose
BDetCLIP, a novel test-time backdoor detection
method based on contrastive prompting. Specif-
ically, we first prompt a language model (e.g.,
GPT-4) to produce class-related description texts
(benign) and class-perturbed random texts (ma-
lignant) by specially designed instructions. Then,
the distribution difference in cosine similarity be-
tween images and the two types of class descrip-
tion texts can be used as the criterion to detect
backdoor samples. Extensive experiments vali-
date that our proposed BDetCLIP is superior to
state-of-the-art backdoor detection methods, in
terms of both effectiveness and efficiency.

1. Introduction
Multimodal contrastive learning methods (e.g., CLIP (Rad-
ford et al., 2021)) have shown impressive zero-shot clas-
sification performance in various downstream tasks and
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served as foundation models in various vision-language
fields due to their strong ability to effectively align represen-
tations from different modalities, such as open-vocabulary
object detection (Wu et al., 2023), text-to-image genera-
tion (Ramesh et al., 2022), and video understanding (Xu
et al., 2021). However, recent research has revealed that
a small proportion of backdoor samples poisoned into the
pre-training data can cause a backdoored CLIP after the mul-
timodal contrastive pre-training procedure (Carlini & Terzis,
2021; Carlini et al., 2023; Bansal et al., 2023). In the in-
ference stage, a backdoored CLIP would produce tampered
image representations for images with a trigger, close to
the text representation of the target attack class in zero-shot
classification. This exposes a serious threat when deploying
CLIP in real-world applications.

To overcome this issue, effective defense methods have been
proposed recently, which can be divided into three kinds
of defense paradigms, as shown in Figure 1: including (a)
robust anti-backdoor contrastive learning in the pre-training
stage (Yang et al., 2023b), (b) counteracting the backdoor
in a pre-trained CLIP in the fine-tuning stage (Bansal et al.,
2023), (c) leveraging trigger inversion techniques to decide
if a pre-trained CLIP is backdoored (Sur et al., 2023; Feng
et al., 2023a). Overall, these defense methods have a high
computational cost due to the need for additional learning or
optimization procedures. In contrast, we advocate test-time
backdoor sample detection (Figure 1(d)), which is a more
computationally efficient defense against backdoored CLIP,
as there are no parameter updates in the inference stage.
Intuitively, it could be feasible to directly adapt existing uni-
modal test-time detection methods (Gao et al., 2019; Guo
et al., 2023; Liu et al., 2023) to detect backdoored images in
CLIP, since they can differentiate backdoored and clean im-
ages generally based on the output consistency in the visual
representation space by employing specific image modifi-
cations, e.g, corrupting (Liu et al., 2023), amplifying (Guo
et al., 2023), and blending (Gao et al., 2019). However, the
performance of these unimodal detection methods is subop-
timal, because of lacking the utilization of the text modality
in CLIP to assist backdoor sample detection. Hence we can
expect that better performance could be further achieved if
we leverage both image and text modalities simultaneously.

In this paper, we provide the first attempt at a computation-
ally efficient backdoor detection method to defend against

1



Test-Time Multimodal Backdoor Detection by Contrastive Prompting

backdoored CLIP in the inference stage. We empirically
find that the visual representations of backdoored images are
insensitive to both benign and malignant changes of class
description texts. Motivated by this observation, we propose
BDetCLIP, a novel test-time multimodal backdoor detection
method based on contrastive prompting. Specifically, we
first prompt the GPT-4 (Achiam et al., 2023) to generate
class-related (or class-perturbed random) description texts
by specially designed instructions and take them as benign
(malignant) class prompts. Then, we calculate the distribu-
tion difference in cosine similarity between images and the
two types of class prompts, which can be used as a good
criterion to detect backdoor samples. We can see that the
distribution difference of backdoored images between the
benign and malignant changes of class prompts is smaller
than that of clean images. The potential reason for the
insensibility of backdoored images is that their visual repre-
sentations have less semantic information aligned with class
description texts. In this way, we can detect backdoored
images in the inference stage of CLIP effectively and effi-
ciently. Extensive experiments validate that our proposed
BDetCLIP is superior to state-of-the-art backdoor detection
methods, in terms of both effectiveness and efficiency.

Our main contributions can be summarized as follows:

• A new backdoor detection paradigm for CLIP. We pioneer
test-time backdoor detection for CLIP, which is more
resource-efficient than existing defense paradigms.

• A novel backdoor detection method. We propose a
novel test-time backdoor detection method by contrastive
prompting, which detects backdoor samples based on
the distribution difference between images regarding the
benign and malignant changes of class prompts.

• Strong experimental results. Our proposed method
achieves superior experimental results on various types
of backdoored CLIP compared with state-of-the-art de-
tection methods.

2. Background & Preliminaries
2.1. Multimodal Contrastive Learning

Multimodal contrastive learning (Radford et al., 2021; Jia
et al., 2021) has emerged as a powerful approach for learn-
ing shared representations from multiple modalities of
data such as text and images. Specifically, we focus on
Contrastive Language Image Pretraining (CLIP) (Radford
et al., 2021) in this paper. Concretely, CLIP consists of
a visual encoder denoted by V(·) (e.g., ResNet (He et al.,
2016) and ViT (Dosovitskiy et al., 2020)) and a textual en-
coder denoted by T (·) (e.g., Transformer (Vaswani et al.,
2017)). The training examples used in CLIP are mas-
sive image-text pairs collected on the Internet denoted by

DTrain = {(xi, ti)}Ni=1 where ti is the caption of the image
xi and N ≃ 400M . During the training stage, given a batch
of Nb image-text pairs (xi, ti) ⊂ DTrain, the cosine similar-
ity for matched (unmatched) pairs is denoted by ϕ(xi, ti) =
cos(V(xi), T (ti)) (ϕ(xi, tj) = cos(V(xi), T (tj))). It is
noteworthy that the image and text embeddings are normal-
ized using the ℓ2 norm to have a unit norm. Based on these
notations, the CLIP loss can be formalized by the following:

LCLIP = − 1

2Nb

(
Nb∑
i=1

log

[
exp(ϕ(xi, ti)/τ)∑Nb

j=1 exp(ϕ(xi, tj)/τ)

]

+

Nb∑
j=1

log

[
exp(ϕ(xj , tj)/τ)∑Nb

i=1 exp(ϕ(xi, tj)/τ)

])
,

where τ is a trainable temperature parameter.

Zero-shot classification in CLIP. To leverage CLIP on
the downstream classification task where the input image
x ∈ DTest and class name yi ∈ {1, 2, · · · , c}, a simple
yet effective way is using a class template function T (j)
which generates a class-specific text such as "a photo
of [CLS]" where [CLS] can be replaced by the j-th
class name on the dataset. In the inference stage, one can
directly calculate the posterior probability of the image x
for the i-th class as the following:

p(y = i|x) = exp(ϕ(x, T (i))/τ)∑c
j=1 exp(ϕ(x, T (j))/τ)

. (1)

In addition, recent research (Yang et al., 2023c; Pratt et al.,
2023; Maniparambil et al., 2023; Yu et al., 2023; Zhang
et al., 2024; Saha et al., 2024; Feng et al., 2023b; Liu et al.,
2024) delves into engineering fine-grained class-specific
attributes or prompting large language models (e.g., GPT-4
(Achiam et al., 2023)) to generate attribute-related texts.

2.2. Backdoor Attacks and Defenses

The backdoor attack is a serious security threat to machine
learning systems (Li et al., 2022; Carlini & Terzis, 2021;
Xu et al., 2022; Chen et al., 2021). The whole process of a
backdoor attack can be expounded as follows. In the data
collection stage of a machine learning system, a malicious
adversary could manufacture a part of backdoor samples
with the imperceptible trigger poisoned into the training
dataset. After the model training stage, the hidden trigger
could be implanted into the victim model without much
impact on the performance of the victim model. During the
inference stage, the adversary could manipulate the victim
model to produce a specific output by adding the trigger to
the clean input. Early research on backdoor attacks focuses
on designing a variety of triggers that satisfy the practical
scenarios mainly on image and text classification tasks in-
cluding invisible stealthy triggers (Chen et al., 2017; Turner
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Figure 1. Current backdoor defense paradigms in CLIP. (a) Robust anti-backdoor contrastive learning (Yang et al., 2023b); (b) Fine-tuning
a backdoored CLIP (Bansal et al., 2023); (c) Detecting a CLIP if backdoored (Sur et al., 2023; Feng et al., 2023a); (d) Our test-time
backdoor sample detection. Our multimodal detection method is more effective and efficient than existing unimodal detection methods.

et al., 2019; Li et al., 2021a; Doan et al., 2021; Nguyen &
Tran, 2021; Gao et al., 2023; Souri et al., 2022) and physical
triggers (Chen et al., 2017; Wenger et al., 2021). To defend
against these attacks, many backdoor defense methods are
proposed which can be divided into four categories, mainly
including data cleaning in the pre-processing stage (Tran
et al., 2018), robust anti-backdoor training (Chen et al.,
2022; Zhang et al., 2022), mitigation, detection, and in-
version in the post-training stage (Min et al., 2023), and
test-time detection in the inference stage (Shi et al., 2023).

Backdoor attacks for CLIP. This paper especially fo-
cuses on investigating backdoor security in multimodal
contrastive learning. Recent research (Carlini & Terzis,
2021; Carlini et al., 2023; Bansal et al., 2023; Jia et al.,
2022; Bai et al., 2023; Liang et al., 2023) has revealed
the serious backdoor vulnerability of CLIP. Specifically,
a malicious adversary can manufacture a proportion of
backdoor image-text pairs DBD = {(x∗

i , T (yt)}
NBD
i=1 where

x∗
i = (1−M)⊙xi+M⊙∆ is a backdoor image with the

trigger pattern ∆ (Gu et al., 2017; Chen et al., 2017) and the
maskM, and T (yt) is the caption of the target attack class
yt. Then, the original pre-training dataset DTrain could be
poisoned as DPoison = {DBD ∪ DClean}. The backdoor
attack for CLIP can be formalized by:

{θV∗ , θT ∗} = argmin
{θV ,θT }

LCLIP(DClean) + LCLIP(DBD),

where θV∗ is the parameter of the infected visual encoder
V∗(·) and θT ∗ is the parameter of the infected textual en-
coder T ∗(·). It is noteworthy that the zero-shot performance
of the backdoored CLIP is expected to be unaffected in Eq.
(1), while for the image x∗

i with a trigger, the posterior prob-
ability of the image for the yt-th target class could be large
with high probability:

p(yi = yt|x∗
i ) =

exp(ϕ(x∗
i , T (yt))/τ)∑c

j=1 exp(ϕ(x
∗
i , T (j))/τ)

. (2)

Defenses for the backdoored CLIP. Effective defense
methods have been proposed recently, which can be di-
vided into three kinds of defense paradigms including anti-
backdoor learning (Yang et al., 2023b) in the pre-training
stage, fine-tuning the backdoored CLIP (Bansal et al., 2023;
Kuang et al., 2024; Xun et al., 2024), and using trigger
inversion techniques (Sur et al., 2023; Feng et al., 2023a)
to detect the visual encoder of CLIP if is infected. How-
ever, due to the need for additional learning or optimization
processes, these defense methods are computationally ex-
pensive. Furthermore, in many real-world scenarios, we
only have access to third-party models or APIs, making it
impossible to apply existing backdoor defense methods for
pre-training and fine-tuning.

3. The Proposed Approach
In this section, we provide the first attempt at test-time
backdoor detection for CLIP and propose BDetCLIP that
effectively detects test-time backdoored images based on
the text modality.

3.1. A Defense Paradigm: Test-Time Backdoor Sample
Detection

Compared with existing defense methods used in the pre-
training or fine-tuning stage, detecting (and then refusing)
backdoor images in the inference stage directly is a more
lightweight and straightforward solution to defend back-
doored CLIP. To this end, one may directly adapt existing
unimodal detection methods (Gao et al., 2019; Zeng et al.,
2021; Udeshi et al., 2022; Guo et al., 2023; Liu et al., 2023;
Pal et al., 2024; Hou et al., 2024) solely based on the vi-
sual encoder (i.e., V∗(·)) of CLIP with proper modifications.
However, this strategy is suboptimal because of the lack of
the utilization of the textual encoder T ∗(·) in CLIP to assist
detection (as shown in Figure 2(a)). In contrast, we propose
to integrate the visual and textual encoders in CLIP for test-
time backdoor sample detection (TT-BSD). The objective
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Figure 2. (a) Illustration of unimodal backdoor detection that only focuses on the visual representation space; (b) Illustration of BDetCLIP
that leverages both image and text modalities in CLIP.

of TT-BSD for CLIP is to design a good detector Γ:

Γ = argmin
Γ

1

n

(∑
x∈DClean

I(Γ(x,V∗, T ∗) = 1)

+
∑

x∗∈DBD

I(Γ(x∗,V∗, T ∗) = 0)
)
, (3)

where I(·) is an indicator function, and Γ(x) returns 1 or 0
indicates the detector regards x as a backdoored or clean.

Defender’s goal. Defenders aim to design a good detector
Γ in terms of effectiveness and efficiency. Effectiveness
is directly related to the performance of Γ, which can be
evaluated by AUROC. Efficiency indicates the time used
for detection, which is expected to be short in real-world
applications.

Defender’s capability. In this paper, we consider the
black-box setting. Specifically, defenders can only access
the encoder interface of CLIP and obtain feature embed-
dings of images and texts, completely lacking any prior
information about the architecture of CLIP and backdoor at-
tacks. This is a realistic and challenging setting in TT-BSD
(Guo et al., 2023).

3.2. Our Proposed BDetCLIP

Motivation. It was shown that CLIP has achieved im-
pressive zero-shot classification performance by leveraging
visual description texts (Yang et al., 2023c; Pratt et al., 2023;
Maniparambil et al., 2023; Yu et al., 2023; Saha et al., 2024;
Feng et al., 2023b; Liu et al., 2024) generated by large lan-
guage models. For backdoored CLIP (i.e., CLIP corrupted
by backdoor attacks), recent research (Bansal et al., 2023)
has revealed that implanted visual triggers in CLIP can ex-
hibit a strong co-occurrence with the target class. However,
such visual triggers in CLIP are usually simple non-semantic
pixel patterns, which could not align well with abundant
textual concepts. Therefore, backdoored images with visual

triggers are unable to properly capture the semantic changes
of class description texts. This motivates us to consider
whether the alignment between the visual representations of
backdoored images and the class description texts would be
significantly changed when there exist significant changes in
the class description texts. Interestingly, we empirically find
that the alignment of backdoor samples would not be signif-
icantly changed even given significant changes in the text
description texts. This observation can help us distinguish
backdoor samples from clean samples because the align-
ment of clean samples would be significantly influenced by
the changes in the text description texts.

Contrastive prompting. Based on the above motivation,
we propose BDetCLIP, a novel test-time backdoor detec-
tion method based on contrastive prompting. Specifically,
we prompt GPT-4 (Achiam et al., 2023) to generate two
types of contrastive class description texts. Firstly, based
on the powerful in-context learning capabilities of GPT-4,
we use specially designed instructions with a demonstration
as shown in Appendix A. In particular, the demonstration
for the class “goldfish” is associated with various attributes
of objects, e.g., shape, color, structure, and behavior. In
this way, GPT-4 is expected to output multiple fine-grained
attribute-based sentences for the assigned j-th class, denoted
by ST k

j (k ∈ [m]) where m is the number of sentences. On
the other hand, we also prompt GPT-4 by the instruction
“Please randomly generate a sentence of no more than 10
words unrelated to {Class Name}”, to generate one ran-
dom sentence unrelated to the assigned j-th class. We con-
catenated the class template prompt with the obtained ran-
dom sentences to generate the final class-specific malignant
prompt, denoted by RTj , such as “A photo of a goldfish. The
sun cast shadows on the bustling city street.”. In Appendix
D, We also recorded the money and time costs associated
with the prompts generated by GPT-4, and demonstrated the
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Figure 3. Empirical density distributions of benign and malignant similarities for 1,000 classes on ImageNet-1K. The larger the overlap
proportion in the figure, the smaller the difference in contrastive distributions. We have omitted coordinate axes for a better view.

feasibility of using open-source models (e.g., LLaMA3-8B
(Dubey et al., 2024) and Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023)) as alternatives.

Contrastive distribution difference. Based on the gen-
erated two types of texts by GPT-4, we can calculate the
benign (malignant) similarity between test images and be-
nign (malignant) class-specific prompts. In particular, we
consider this calculation towards all classes in the label
space, since we have no prior information about the la-
bel of each test image. In this way, we can obtain the
whole distribution difference for all classes by accumu-
lating the contrastive difference between the per-class be-
nign and malignant similarity. Formally, for each class
y ∈ Y, the benign and malignant similarity for each test
image xt is denoted by ϕ(V∗(xt), 1

m

∑m
k=1 T ∗(ST k

y )) and
ϕ(V∗(xt), T ∗(RTy)) respectively. It is worth noting that
we consider the average textual embeddings of all m class-
related description texts. Unless stated otherwise, the default
value of parameter m in our experiments is 7. Then, the
contrastive distribution difference of a test image x can be

formalized by:

Ω(x) =
∑

j∈Y

(
ϕ
(
V∗(x),

1

m

∑m

k=1
T ∗(ST k

y )
)

− ϕ
(
V∗(x), T ∗(RTy)

))
. (4)

This statistic reveals the sensitivity of each test image to-
wards the benign and malignant changes of class-specific
prompts. We show the empirical density distributions of be-
nign and malignant similarities on ImageNet-1K in Figure 3.
In our consideration, a test-time backdoored image x∗ is in-
sensitive to this semantic changes of class-specific prompts,
thereby leading to a relatively small value of Ω(x∗). There-
fore, we propose the following detector of TT-BSD:

Γ(x,V∗, T ∗) =

{
1, if Ω(x) < ϵ,

0, otherwise,
(5)

where ϵ is a threshold (see Section 4.3 about how to empir-
iclly determine the value of ϵ). The pseudo-code of BDet-
CLIP is shown in Appendix A.
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4. Experiments
4.1. Experimental setup

Datasets. In the experiment, we evaluate BDetCLIP
on various downstream classification datasets includ-
ing ImageNet-1K (Russakovsky et al., 2015), Food-101
(Bossard et al., 2014) and Caltech-101 (Fei-Fei et al., 2004).
In particular, we pioneer backdoor attacks and defenses for
CLIP on fine-grained image classification datasets Food-101
and Caltech-101, which are more challenging tasks. Besides,
we select target backdoored samples from CC3M (Sharma
et al., 2018) which is a popular multimodal pre-training
dataset. During the inference stage, we set the proportion of
backdoored samples in the test data to 0.3. We also provide
results under different backdoor ratios (i.e., 0.3, 0.5, and
0.7) in Appendix D.8.

Attacking CLIP. For backdoor attacks on CLIP, we ex-
plore two approaches: pre-training CLIP from scratch on
the poisoned CC3M dataset or fine-tuning a pre-trained
clean CLIP using a subset of poisoned pairs. Unless oth-
erwise specified, the models we utilize are CLIP trained
on 400M samples with ResNet-50 (He et al., 2016) as the
visual encoder. In terms of attack methods, our approach
encompasses both traditional backdoor attack methods and
advanced multimodal attack methods. On the traditional
front, we utilize BadNet (Gu et al., 2017), Blended (Chen
et al., 2017), LabelConsistent (Turner et al., 2019), ISSBA
(Li et al., 2021b), and WaNet (Nguyen & Tran, 2021). No-
tably, we adapt the triggers from BadNet and Blended to
execute label-consistent attacks, referred to as BadNet-LC
and Blended-LC. On the multimodal attack methods, we
implement BadCLIP-1 (Liang et al., 2023), BadCLIP-2 (Bai
et al., 2023), TrojVQA (Walmer et al., 2022), and BadEn-
coder (Jia et al., 2022). Comprehensive details on the imple-
mentation of these methods are provided in Appendix B. For
the target attack class, we mainly selected “banana” from
ImageNet1k, “baklava” from Food-101, “dalmatian” from
Caltech-101. In Appendix D.1, we provide experiments on
more target attack classes. Furthermore, we explore seman-
tic backdoor triggers and multi-target backdoor attacks in
Appendix D.3 and D.4 respectively.

Compared methods. We cannot make a fair and direct
comparison with other CLIP backdoor defense methods
because our paper is the first work on backdoor detection
during the inference phase for CLIP. Our method is fun-
damentally different from the defense methods during the
fine-tuning or pre-training phases, which are designed to
protect models from backdoor attacks and correct models
that have been compromised by such attacks, respectively.
Different from them, backdoor detection in the inference
phase serves as a firewall to filter out malicious samples
when we are unable to protect or correct the model. Due to
the different purposes of these methods mentioned above,

their evaluation metric (i.e., ASR) is completely distinct
from our evaluation metric (i.e., AUROC), making a di-
rect comparison between our method and those methods
impossible. This can be easily verified by examining the
experimental settings in many recent papers focused on
(unimodal) backdoor sample detection (Guo et al., 2023;
Liu et al., 2023). We would like to emphasize that our
BDetCLIP is applicable in the black-box setting (the de-
fender only needs to access the output of the victim model
instead of controlling the overall model), while other meth-
ods (Bansal et al., 2023; Yang et al., 2023b;a; Liang et al.,
2024) have to control the whole training procedure which
is infeasible in many real-world applications where only
third-party models and APIs are accessible. Moreover, our
defense method is much more computationally efficient, as
it does not need to modify any model parameters, while
previous defense methods involve the update of numerous
model parameters. Given these distinctions, a direct com-
parison with other backdoor defense methods is not feasible.
Therefore, to provide a baseline evaluation, we compare our
proposed method with three widely-used unimodal test-time
backdoor detection methods in conventional classification
models: STRIP (Gao et al., 2019), SCALE-UP (Guo et al.,
2023), and TeCo (Liu et al., 2023). Further implementation
details can be found in Appendix B. In addition, in order to
further prove the effectiveness of our method, we provide
a scenario for performance comparison with other defense
methods in Appendix C.

Evaluation metrics. Following conventional studies on
backdoor sample detection, we assess defense effectiveness
by using the area under the receiver operating curve (AU-
ROC) (Fawcett, 2006). Besides, we adopt the inference
time as a metric to evaluate the efficiency of the detection
method. Generally, a higher value of AUROC indicates
that the detection method is more effective and a shorter
inference time indicates that the detection method is more
efficient. We also report additional metrics such as Accuracy,
Recall, and F1 in Section 4.3 to comprehensively evaluate
the effectiveness of BDetCLIP.

4.2. Experimental results

Overall comparison. As shown in Table 1 and Table 2,
BDetCLIP consistently outperformed the comparison meth-
ods in almost all attack settings and datasets. Specifically,
BDetCLIP achieved an impressive average AUROC, exceed-
ing 0.938 in multimodal attack scenarios and 0.972 in tradi-
tional attack scenarios, firmly establishing its superior effec-
tiveness. In contrast, the unimodal detection methods gen-
erally exhibited significantly lower performance. Although
TeCo occasionally approached BDetCLIP’s performance, it
demonstrated inconsistencies and performed worse overall.
This highlights the ineffectiveness of unimodal methods
for robust test-time backdoor detection, contrasting sharply
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Table 1. AUROC comparison on different attacks. The best result is highlighted in bold.
Attack→

Detection↓
Multimodal Attack AverageBadCLIP-1 BadCLIP-2 TrojVQA BadEncoder

STRIP 0.794 0.987 0.255 0.341 0.594
SCALE-UP 0.669 0.976 0.744 0.694 0.771

TeCo 0.443 0.428 0.438 0.567 0.469
BDetCLIP (Ours) 0.900 0.977 0.978 0.898 0.938

Attack→
Detection↓

Traditional Attack AverageBadNet Blended BadNet-LC Blended-LC ISSBA WaNet

STRIP 0.772 0.111 0.803 0.150 0.351 0.243 0.405
SCALE-UP 0.737 0.692 0.690 0.853 0.515 0.920 0.735

TeCo 0.827 0.954 0.799 0.979 0.496 0.946 0.934
BDetCLIP (Ours) 0.972 0.983 0.964 0.997 0.927 0.989 0.972

Table 2. AUROC comparison on Food101 (Bossard et al., 2014) and Caltech101 (Fei-Fei et al., 2004) datasets. The best result is
highlighted in bold.

Target class Method BadNet Blended Average

Food101 (Baklava)

STRIP 0.893 0.244 0.569
SCALE-UP 0.768 0.671 0.720

TeCo 0.834 0.949 0.892
BDetCLIP (Ours) 0.941 0.977 0.959

Caltech101 (Dalmatian)

STRIP 0.868 0.672 0.770
SCALE-UP 0.632 0.585 0.609

TeCo 0.637 0.913 0.775
BDetCLIP (Ours) 0.977 0.989 0.983

Table 3. Inference time on ImageNet-1K (Russakovsky et al., 2015). Totally 50000 test samples.

Method STRIP SCALE-UP TeCo BDetCLIP (Ours)

Inference time 253m 42.863s 9m 7.066s 637m 34.350s 3m 8.436s

with the clear effectiveness advantages offered by BDetCLIP.
As for efficiency, BDetCLIP also achieved the best perfor-
mance for the inference time. As shown in Table 3, TeCo
is the slowest detection method, even more than 160 times
slower than BDetCLIP. This is because TeCo uses many
time-consuming corruption operators on images which is
too heavy in CLIP. This operation is also used in unimodal
methods STRIP and SCALE-UP. In contrast, BDetCLIP
only leverages the semantic changes in the text modality
twice for backdoor detection, i.e., benign and malignant
class-specific prompts. Therefore, BDetCLIP can achieve
fast test-time backdoor detection in practical applications. In
conclusion, BDetCLIP exhibits superior performance with
respect to both effectiveness and efficiency when compared
to the existing unimodal methods.

Backdoor detection for CLIP using ViT-B/32. We also
evaluated the case where ViT-B/32 (Dosovitskiy et al., 2020)
served as the visual encoder of backdoored CLIP. As shown
in Table 4, our proposed BDetCLIP also achieved superior
performance across all types of backdoor attacks. Con-

cretely, other methods have a significant drop in perfor-
mance compared with the results in Table 1, while BDet-
CLIP also maintains a high level of AUROC (e.g., the av-
erage AUROC is 0.950). This observation validates the
versatility of BDetCLIP in different vision model architec-
tures of CLIP.

Backdoor detection for backdoored CLIP pre-trained
on CC3M. Following CleanCLIP (Bansal et al., 2023),
we also considered pre-training CLIP from scratch on the
poisoned CC3M dataset. As shown in Table 5, compared
with the results in Table 1, STRIP failed to achieve detection
in almost all cases, SCALE-UP and TeCo became worse,
while BDetCLIP also achieved superior performance across
all attack settings, which definitely validates the versatility
of BDetCLIP in different model capabilities of CLIP.

The impact of the number of class-specific benign
prompts. As shown in Table 6, we find that increas-
ing the number of class-specific benign prompts strengthens
detection against various backdoor attacks. For example,
when using 1 benign prompt, the average AUROC is 0.952,

7



Test-Time Multimodal Backdoor Detection by Contrastive Prompting

Table 4. Comparison of AUROC on ImageNet-1K (Russakovsky et al., 2015), the visual encoder of CLIP is ViT-B/32 (Dosovitskiy et al.,
2020). The target label of the backdoor attack is “Banana”.

Attack→
Detection↓ BadNet Blended BadNet-LC Blended-LC Average

STRIP 0.527 0.025 0.606 0.020 0.295
SCALE-UP 0.652 0.875 0.649 0.867 0.761

TeCo 0.714 0.969 0.727 0.969 0.845
BDetCLIP (Ours) 0.930 0.980 0.903 0.985 0.950

Table 5. Comparison of AUROC on ImageNet-1K (Russakovsky et al., 2015) dataset, the CLIP is pre-trained with CC3M (Sharma et al.,
2018). The target label of the backdoor attack is “Banana”.

Attack→
Detection↓ BadNet Blended Label-Consistent Average

STRIP 0.061 0.005 0.420 0.162
SCALE-UP 0.651 0.627 0.612 0.630

TeCo 0.779 0.782 0.765 0.775
BDetCLIP (Ours) 0.986 0.982 0.908 0.959

Table 6. Comparison of AUROC using different numbers of class-specific benign prompts on ImageNet-1K (Russakovsky et al., 2015).
The target label of the backdoor attack is “Banana”.

Attack→
The number of class-specific benign prompts↓ BadNet Blended BadNet-LC Blended-LC Average

using 1 class-specific benign prompt 0.927 0.984 0.901 0.995 0.952
using 3 class-specific benign prompts 0.960 0.984 0.948 0.996 0.972
using 5 class-specific benign prompts 0.969 0.984 0.959 0.996 0.977
using 7 class-specific benign prompts 0.972 0.985 0.964 0.997 0.980

Table 7. Comparison of AUROC using different word counts in the class-perturbed random text on ImageNet-1K (Russakovsky et al.,
2015). The target label of the backdoor attack is “Banana”.

Attack→
random sentence in class-specific malignant prompt ↓ BadNet Blended BadNet-LC Blended-LC Average

no more than 10 words 0.972 0.983 0.964 0.997 0.979
no more than 20 words 0.963 0.968 0.954 0.993 0.970
no more than 30 words 0.950 0.941 0.957 0.992 0.960

which increases to 0.980 when using 7 benign prompts. This
is because more diverse fine-grained description texts ex-
pand the difference of contrastive distributions, which is
more beneficial for BDetCLIP to distinguish backdoored
and clean images. Therefore, it is of vital importance to
leverage more diverse description texts in BDetCLIP.

The impact of the text length of class-specific malignant
prompts. As shown in Table 7, the performance has a
bit of a drop as the number of words in class-specific malig-
nant prompts increases. This is because more random texts
generated in class-specific malignant prompts would greatly
destroy the semantics of class-specific malignant prompts,
thereby increasing the contrastive distribution difference of
backdoored images (close to that of clean images). This
would degrade the performance of detection. Besides, the
performance on BadNet and Blended attacks exhibit a rel-
atively high sensitivity to the text length of class-specific
malignant prompts.

4.3. Threshold Selection

Our proposed BDetCLIP can efficiently and effectively map
input images to a linearly separable space. The defender
needs to set a threshold ϵ to distinguish between clean im-
ages and backdoor images. In determining this threshold, we
follow a widely used protocol in previous studies (Guo et al.,
2023),(Liu et al., 2023): the defender can set a proper thresh-
old based on a small set of clean validation data. Specifically,
we first sampled clean samples at the designated sampling
rates. Then, using formulation 4, we computed the con-
trastive distribution difference for all samples, ranked them
from largest to smallest, and selected the 85th percentile
as the threshold (notably, the specific threshold percentile
can be adjusted based on real-world defense requirements).
To assess the sensitivity of our approach, we chose three
sampling ratios: 1%, 0.5%, and 0.1%. As shown in Table
8, 9 and 10, even when a very small sampling ratio is used,
despite the increased standard deviation in the threshold, our
method achieves exceptional performance across all metrics,
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Table 8. The backdoor target label is ant. We use a backdoor ratio of 0.3 and a sampling rate of 1%.

Backdoor Accuracy Recall F1 AUROC Threshold

Badnet 0.8941 ± 0.0107 0.9902 ± 0.0013 0.8488 ± 0.0127 0.9906 ± 0.0003 11.7225 ± 1.2723
Blended 0.8772 ± 0.0061 0.9279 ± 0.0142 0.8193 ± 0.0151 0.9425 ± 0.0003 12.0281 ± 1.2399

Badnet-LC 0.8938 ± 0.0074 0.9842 ± 0.0016 0.8476 ± 0.0088 0.9796 ± 0.0004 16.7526 ± 0.8944
Blended-LC 0.8837 ± 0.0068 0.9396 ± 0.0102 0.8290 ± 0.0067 0.9420 ± 0.0005 15.9315 ± 1.2748

Table 9. The backdoor target label is ant. We use a backdoor ratio of 0.3 and a sampling rate of 0.5%.

Attack Accuracy Recall F1 AUROC Threshold

Badnet 0.8950 ± 0.0160 0.9903 ± 0.0013 0.8502 ± 0.0189 0.9908 ± 0.0003 11.6161 ± 1.8596
Blended 0.8772 ± 0.0109 0.9224 ± 0.0211 0.8186 ± 0.0096 0.9416 ± 0.0003 11.7094 ± 1.9545

Badnet-LC 0.8958 ± 0.0128 0.9835 ± 0.0029 0.8501 ± 0.0151 0.9797 ± 0.0004 16.4568 ± 1.5488
Blended-LC 0.8865 ± 0.0070 0.9347 ± 0.0106 0.8317 ± 0.0070 0.9422 ± 0.0005 15.3494 ± 1.3340

Table 10. The backdoor target label is ant. We use a backdoor ratio of 0.3 and a sampling rate of 0.1%.

Attack Accuracy Recall F1 AUROC Threshold

Badnet 0.8775 ± 0.0107 0.9904 ± 0.0040 0.8312 ± 0.0418 0.9905 ± 0.0004 13.0927 ± 4.3069
Blended 0.8564 ± 0.0315 0.9391 ± 0.0430 0.7987 ± 0.0279 0.9424 ± 0.0003 14.2042 ± 4.4056

Badnet-LC 0.8799 ± 0.0453 0.9831 ± 0.0082 0.8341 ± 0.0488 0.9795 ± 0.0005 17.6179 ± 4.8725
Blended-LC 0.8722 ± 0.0269 0.9404 ± 0.0363 0.8167 ± 0.0524 0.9422 ± 0.0004 16.9313 ± 4.2465

particularly in terms of recall, due to its high AUROC value,
which demonstrates its strong discriminative capability.

4.4. Additional experiments

In Appendix D.1, we present detection results for more
backdoor target categories on ImageNet, along with results
under different backdoor ratios (i.e., 0.3, 0.5, and 0.7) in
Appendix D.8, both demonstrating the stability and effec-
tiveness of our method. In Appendix D.2, D.3, and D.4,
we present results for open-set detection, semantic trigger,
and multi-target attack, all confirming our method’s state-
of-the-art performance. Appendix D.5 provides the time
and money cost of GPT-4 prompt generation, highlighting
the efficiency and cost-effectiveness of our method. We
also test eight open-source LLMs for prompt generation in
Appendix D.6, which demonstrates that open-source mod-
els can serve as stable prompt generators, replacing GPT-4
in generating both benign and malicious prompts. Further
more, we investigate the relationship between thresholds
and the number of benign prompts m in Appendix D.7.

5. Conclusion
In this paper, we provided the first attempt at a computation-
ally efficient backdoor detection method to defend against
backdoored CLIP in the inference stage. We empirically ob-
served that the visual representations of backdoored images
are insensitive to significant changes in class description
texts. Motivated by this observation, we proposed a novel
test-time backdoor detection method based on contrastive

prompting, which is called BDetCLIP. For our proposed
BDetCLIP, we first prompted the language model (e.g., GPT-
4) to produce class-related description texts (benign) and
class-perturbed random texts (malignant) by specially de-
signed instructions. Then, we calculated the distribution
difference in cosine similarity between images and the two
types of class description texts, and utilized this distribu-
tion difference as the criterion to detect backdoor samples.
Comprehensive experimental results validated that our pro-
posed BDetCLIP is more effective and more efficient than
state-of-the-art backdoor detection methods.

6. Limitations
The main limitation of this work lies in that only the CLIP
model is considered because existing backdoor research on
multimodal contrastive learning commonly considers CLIP
as a representative victim model due to its reproducibility. In
addition, our employed strategy to determine the threshold
ϵ is relatively simple. More effective strategies could be
further proposed to obtain a more suitable threshold.

7. Future work
We aim to discuss future work from both offensive and
defensive perspectives. For more sophisticated backdoor
attacks, we propose designing triggers that can naturally
adapt to changes in prompt semantics, thereby creating more
covert backdoor attacks. For enhanced backdoor defense,
we suggest developing a framework for evaluating prompt
quality to further improve the quality of prompts.
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 Prompt used to generate class-related description texts:

I am creating class attributes for a zero-shot image recognition algorithm to classify 
 different images. The attributes are part of the fine-grained information about the classesThis 
 information must be deeply related to the category, and cannot be some low-quality information, 
 such as goldfish are living things, goldfish have life, and so on.

For example, if I say what attributes help us identify goldfish? You should respond:
"goldfish":[

"Goldfish are known for their bright orange or gold color but they can also come in 
 other colors like white, black, red, and yellow.",

"Goldfish have a variety of body shapes, ranging from the common slim-bodied 
 type  to more rounded or egg-shaped varieties.",

"Goldfish typically have a single dorsal fin, paired pectoral and pelvic fins, and a 
 forked caudal (tail) fin. Some varieties, like the fancy goldfish, may have long, flowing fins."

"Most goldfish have shiny, metallic scales, but some varieties, like the pearl scale 
 goldfish, have uniquely textured scales."

"Goldfish are known for their active swimming behavior and are often seen 
 exploring their environment."]

 Now I want to ask you: What attributes help us identify {Class Name}?

 Prompt used to generate class-perturbed random texts:

 Please randomly generate a sentence of no more than 10 words unrelated to {Class Name}

 GPT-4 OUTPUT Example (Class Name: goldfish):

 The bright sun cast shadows on the bustling city street.

Figure 4. Prompts for generating class-related description texts and class-perturbed random texts.

A. Prompt Design
Generative Pretrained Large Language Models, such as GPT-4, have been demonstrated (Yang et al., 2023c; Pratt et al.,
2023; Maniparambil et al., 2023; Yu et al., 2023; Saha et al., 2024; Feng et al., 2023b; Liu et al., 2024) to be effective in
generating visual descriptions to assist CLIP in classification tasks for the following reasons: (1) These models are trained
on web-scale text data, encompassing a vast amount of human knowledge, thereby obviating the need for domain-specific
annotations. (2) They can easily be manipulated to produce information in any form or structure, making them relatively
simple to integrate with CLIP prompts.

In our study, we harnessed the in-context learning capabilities of GPT-4 to generate two types of text—related description
text and class-perturbed description text. The prompts used for generating the text are illustrated in Figure 4.

B. More Details about the Experimental Setup
Details of traditional attack. Following the attack setting in CleanCLIP (Bansal et al., 2023), we consider two types
of attack means for CLIP, including fine-tuning pre-trained clean CLIP 1 on the part of backdoored image-text pairs from
CC3M and pre-training backdoored CLIP by the poisoned CC3M dataset. In the first case, we randomly select 500,000
image-text pairs from CC3M as the fine-tuning dataset among which we also randomly select 1,500 of these pairs as target
backdoor samples and apply the trigger to them while simultaneously replacing their corresponding captions with the class
template for the target class. Then, we can fine-tune CLIP with the backdoored dataset. We finetune the pretrained model for
5 epochs with an initial learning rate of 1e-6 with cosine scheduling and 50 warmup steps and use AdamW as the optimizer.
In the second case, following the attack setting in CleanCLIP (Bansal et al., 2023), we randomly select 1,500 image-text
pairs from CC3M as target backdoor samples. Then, we pre-train CLIP from scratch on the backdoored CC3M dataset. We

1https://github.com/openai/CLIP
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Algorithm 1 BDetCLIP
Require: CLIP’s infected visual encoder V∗(·) and infected text encoder T ∗(·), threshold τ , Test set Xtest; class-specific

benign prompts ST k
j ,class-specific malignant prompts RTj , cosine similarity ϕ().

1: for xi in Xtest do
2: Compute benign similarity

ϕ(V∗(xi), 1
m

∑m
k=1 T ∗(ST k

j ))

3: Compute malignant similarity ϕ(V∗(xi), T ∗(RTj))

4:

Ω(xi)←
C∑

j=1

(
ϕ
(
V∗(xi),

1

m

m∑
k=1

T ∗(ST k
j )
)

− ϕ
(
V∗(xi), T ∗(RTj)

))
5: if Ω(xi) < ϵ then
6: Mark xi as backdoored
7: else
8: Mark xi as clean
9: end if

10: end for
11: Output the detection results

trained for 64 epochs with a batch size of 128, an initial learning rate of 0.0005 for cosine scheduling, and 10000 warm-up
steps for the AdamW optimizer. For the BadNet, Blended, BadNet-LC, and Blended-LC attacks, the architecture used is
ResNet-50, with the target attack class being "Banana". For the WaNet attack, the architecture is ResNet-50, and the target
attack class is "Goldfish". For the ISSBA attack, the architecture is ViT-B/32, and the target attack class is "Banana". All
experiments are conducted on 8 NVIDIA 3090 GPUs.

Details of multimodal attack.

• For BadCLIP-1 (Liang et al., 2023), we used the officially provided weight files for detection. The attack target was
"Banana," and the model architecture used was ResNet-50. The evaluation was conducted on ImageNet1K.

• For BadCLIP-2 (Bai et al., 2023), we followed the official setup for reproduction. BadCLIP-2 is a backdoor attack
against prompt learning scenarios, which uses a learnable continuous prompt as a trigger. Although our approach is
designed for CLIP that uses discrete prompts for classification tasks, we can make simple modifications to detect it.
Specifically, we keep the benign prompt unchanged and modify the malignant prompt to a combination of learnable
context and random text. In the experimental setup, we chose ViT-B/16 as the encoder attacked "Face," and detected it
on Caltech101 using reversed contrast distribution difference.

• For BadEncoder, we adopted the officially provided weights. It is important to note that BadEncoder is not a backdoor
attack targeting multimodal contrastive learning but rather a backdoor attack targeting self-supervised learning encoders.
We followed the settings in the official paper, with the target attack class being "truck," and detected it on STL-10
(Coates et al., 2011) using reversed contrast distribution difference.

• TrojVQA is a dual-key backdoor attack targeting multimodal visual question-answering models. We used "SUDO"
as the text trigger and a 16×16 patch as the visual trigger, with the target class being "banana." The detection was
performed on ImageNet1K.

Details of comparing methods.

• STRIP (Gao et al., 2019) is the first black-box TTSD method that overlays various image patterns and observes the
randomness of the predicted classes of the perturbed input to identify poisoned samples. The official open-sourced codes
for STRIP (Gao et al., 2019) can be found at: https://github.com/garrisongys/STRIP. In our experiments,
for each input image, we use 64 clean images from the test data for superimposition.

• SCALE-UP (Guo et al., 2023) is also a method for black-box input-level backdoor detection that assesses the mali-
ciousness of inputs by measuring the scaled prediction consistency (SPC) of labels under amplified conditions, offering
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effective defense in scenarios with limited data or no prior information about the attack. The official open-sourced codes
for SCALE-UP (Guo et al., 2023) can be found at: https://github.com/JunfengGo/SCALE-UP.

• TeCo (Liu et al., 2023) modifies input images with common corruptions and assesses their robustness through hard-label
outputs, ultimately determining the presence of backdoor triggers based on a deviation measurement of the results. The of-
ficial open-sourced codes for TeCo (Liu et al., 2023) can be found at: https://github.com/CGCL-codes/TeCo.
In our experiments, considering concerns about runtime, we selected "elastic_transform", "gaussian_noise", "shot_noise",
"impulse_noise", "motion_blur", "snow", "frost", "fog", "brightness", "contrast", "pixelate", and "jpeg_compression" as
methods for corrupting images. The maximum corruption severity was set to 6.

Details of datasets. ImageNet-1K (Russakovsky et al., 2015) consists of 1,000 classes and over a million images, making
it a challenging dataset for large-scale image classification tasks. Food-101 (Bossard et al., 2014), which includes 101
classes of food dishes with 1,000 images per class, and Caltech101 (Fei-Fei et al., 2004), an image dataset containing 101
object categories and 1 background category with 40 to 800 images per category, are both commonly used for testing model
performance on fine-grained classification and image recognition tasks. In our experiment, we utilized the validation set of
ImageNet-1K (Russakovsky et al., 2015), along with the test sets of Food-101 (Bossard et al., 2014) and Caltech101 (Fei-Fei
et al., 2004). By using a fixed backdoor ratio (0.3) on different downstream datasets in the evaluation, there are 15,000 (out
of 50,000) backdoored images on ImageNet-1K, 7,575 (out of 25,250) backdoored images on Food-101, and 740 (out of
2,465) backdoored images on Caltech-101. Moreover, we also use larger backdoor ratios (0.5 and 0.7) on ImageNet-1K,
resulting in 25,000 and 35,000 backdoor samples respectively.

C. Defense results comparison with other defend methods
To facilitate a direct comparison of defense effectiveness, we made the necessary modifications. Specifically, during the
inference stage, we set the backdoor ratio to 1. In BDetCLIP, samples with distribution differences below the threshold
are directly discarded. The Attack Success Rate (ASR) is then calculated as the ratio of successfully attacked backdoor
samples to the total number of backdoor samples. We argue that this strategy is reasonable in practical scenarios. To
demonstrate the reliability and stability of our experimental results, we used the threshold selection method described
in Section 4.3, performed random sampling ten times, and calculated both the mean and the standard deviation. For our
detection experiments, we utilized the backdoored model provided by CleanCLIP (Bansal et al., 2023) as the victim model
and compared the defense performance with the results reported in CleanCLIP (Bansal et al., 2023). As shown in Table 11,
BDetCLIP can effectively decrease the ASR compared with the current fine-tuning defense method CleanCLIP (Bansal et al.,
2023), proving that our BDetCLIP could be used to defend against backdoor attacks effectively in practical applications. To
further validate the effectiveness of our method against state-of-the-art backdoor attacks targeting CLIP, we employed the
compromised model weights provided by BadCLIP (Liang et al., 2023) as our defense testing subject. BadCLIP (Liang
et al., 2023) represents the most advanced backdoor attack method specifically designed for CLIP. In our experiments, we
compared our approach with baseline methods including CleanCLIP (Bansal et al., 2023), CleanerCLIP (Xun et al., 2024),
and PAR (Singh et al., 2024). We also apply RoCLIP (Yang et al., 2023b) to the fine-tuning stage to defend against BadCLIP.
Specifically, we follow the official settings of RoCLIP, using BadCLIP polluted data as fine-tuning data, and fine-tuning
24 epochs. We also tried SAFECLIP (Yang et al., 2023a) and we found that it could not produce effective defenses, and
after the defense was made, the zero-shot classification capability of SAFECLIP was close to 0. As shown in Table 12,
the experimental results demonstrate that our method achieves superior defensive performance compared to all baseline
approaches.

Table 11. Comparison with the Defense Results of CleanCLIP. The metric is ASR.
Attack CleanCLIP BDetCLIP (ours)

Badnet 0.1046 0.0011 ± 0.0003
Blended 0.0980 0.0003 ± 0.0001

Label Consistent 0.1108 0.1085 ± 0.0156

D. More Experimental Results
D.1. Backdoor attack for more target classes

We conducted more BadNet attacks on the following classes from ImageNet: "Goldfish," "Lion," "Rooster," "Tench,"
"Basketball," and "Ant." The detection results are presented in 13, demonstrating that our method consistently achieved the

15

https://github.com/JunfengGo/SCALE-UP
https://github.com/CGCL-codes/TeCo


Test-Time Multimodal Backdoor Detection by Contrastive Prompting

Table 12. Comparison with the Defense Results on BadCLIP(Liang et al., 2023). The metric is ASR.
Method ASR

CleanCLIP 0.9196
CleanerCIP 0.2808

PAR 0.312
RoCLIP 0.1330

BDetCLIP (ours) 0.0444 ± 0.0110

best detection performance across all cases.

Table 13. Detection performance of different target classes

Category SCALE-UP BDetCLIP (ours)

Goldfish 0.781 0.977
Lion 0.806 0.992
Rooster 0.741 0.951
Tench 0.673 0.992
Basketball 0.750 0.984
Ant 0.690 0.990

D.2. Backdoor detection for open-set detection.

We have conducted additional experiments to validate the effectiveness of our proposed BDetCLIP for open-set classification
tasks. Specifically, we added a subset of Caltech-101 as the open set to ImageNet1K and set the backdoor ratio to 0.3. Table
14 shows that our proposed BDetCLIP can also achieve impressive performance on the open-set classification task, which
verifies the transferability of our proposed BDetCLIP to other tasks in VLMs.

Table 14. Detection performance on the open-set classification task.

Backdoor AUROC
BadNet 0.933
Blended 0.936

BadNet-LC 0.929
Blended-LC 0.991

D.3. Backdoor detection for semantically meaningful trigger.

We have considered the scenario where the backdoor trigger has semantic meaning. Specifically, we used the popular "Hello
Kitty" as a trigger and we also achieve good detection results in Table 15.

D.4. Backdoor detection for multi-targets attack.

We have conducted more experiments about using BDetCLIP to defend against multi-target attacks. Specifically, to achieve
the multi-target attack, we poisoned 1,000 (out of 500,000) samples for each target class (i.e., "goldfish", "basketball", and
"banana") respectively. We fine-tuned the CLIP based on the poisoned dataset (the backdoor ratio is 0.3.) following the
original experimental setting. Then, we used BDetCLIP to detect the backdoored CLIP. Table 16 shows that our BDetCLIP
can still achieve impressive detection performance against the multi-target attack.

D.5. Cost and Time Efficiency of Prompt Generation

We recorded the time and monetary costs associated with generating two types of prompts for each class in the Food-101
dataset using GPT-4 and GPT-4o. The results are summarized in Table 17. The results indicate that utilizing GPT-4
(or GPT-4o) for prompt generation is both efficient and cost-effective. Moreover, the prompt generation process can be
conducted offline (prior to test-time detection), allowing the generated prompts to be directly employed in BDetCLIP for
real-time detection tasks. Consequently, concerns regarding the runtime of the prompt generation step are minimal.

16



Test-Time Multimodal Backdoor Detection by Contrastive Prompting

Table 15. The detection performance of Backdoor Attacks with semantically meaningful triggers ("Hello Kitty").
SCALE-UP BDetCLIP (ours)

0.6111 0.8554

Table 16. The detection performance of Multi-target Attacks.
SCALE-UP BDetCLIP (ours)

0.5404 0.9858

Table 17. Run Time and Money Cost by using GPT-4 or GPT-4o.
GPT-4

Category Run Time Money Cost

Benign 15m19s 2.38 $
Malignant 2m5s 0.12 $

GPT-4o

Category Run Time Money Cost

Benign 5m33s 0.42 $
Malignant 1m24s 0.06 $

D.6. Using open-source models for prompts generation

We also explored the feasibility of replacing GPT-4 for prompt generation with open-source models. We utilized the
following models: Llama3-8B-Instruct (Dubey et al., 2024), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), Yi-1.5-9B-Chat
(Young et al., 2024), gemma-2-2b-it (Team et al., 2024), gemma-2-9b-it (Team et al., 2024), Phi-3.5-mini-instruct (Abdin
et al., 2024), Qwen2.5-7B-Instruct (Yang et al., 2024), and Qwen2.5-14B-Instruct (Yang et al., 2024). The experimental
results of using these varying open-source language models were recorded in Table 18. Additionally, we documented the
prompt generation times for Llama3-8B-Instruct (denoted as "L") and Mistral-7B-Instruct-v0.2 (denoted as "M") in Table
19.

Although using open-source models for prompt generation may require more time (which minimally impacts detection
efficiency when performed offline), the detection performance remains comparable to that achieved with GPT-4. This
indicates that using open-source models is a promising alternative for prompt generation.

D.7. The relationship between the number of benign prompts and threshold.

We denote the number of class-specific benign prompts as m. We conducted tests with m = 6, 5, 4, 3, applying the
aforementioned threshold selection strategy detailed in Section 4.3. Random sampling was performed ten times for each
case. Subsequently, we calculated both the variance and the mean of the selected thresholds. The mean value was then
employed as the threshold for subsequent experiments. As shown in 21, We can see that the larger m is, the better the overall
effect will be, and the threshold will be correspondingly larger. This is intuitive: as m increases, the number of benign
prompts grows, providing more fine-grained information, which increases the semantic differences between benign prompts
and malicious prompts.

D.8. Varying ratios of test-time backdoor samples.

We conducted a comparative analysis between SCALE-UP and our method to explore the effects of variations in backdoor
proportions on our efficacy. Results can be found in Table 22, 23, and 24. The results indicate that under different proportions
of test-time backdoor samples, our method (BDetCLIP) consistently outperforms the baseline method SCALE-UP. Whether
at a backdoor sample ratio of 0.3, 0.5, or 0.7, BDetCLIP achieves higher AUROC scores across all target categories and
attack detection scenarios compared to SCALE-UP. This suggests that BDetCLIP exhibits higher robustness and accuracy in
detecting backdoor samples, thereby enhancing the reliability and security of multi-modal models against backdoor attacks.
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Table 18. Detection performance by using different models

Model BadNet Blended

GPT-4 0.972 0.983

Llama3-8B-Instruct 0.947 0.983
Mistral-7B-Instruct-v0.2 0.983 0.963
Yi-1.5-9B-Chat 0.977 0.960
gemma-2-2b-it 0.979 0.954
gemma-2-9b-it 0.970 0.948
Phi-3.5-mini-instruct 0.917 0.947
Qwen2.5-7B-Instruct 0.929 0.948
Qwen2.5-14B-Instruct 0.923 0.969

STRIP 0.893 0.244
SCALE-UP 0.768 0.671
TeCo 0.834 0.949

Table 19. Time spent on generating prompts

Model Benign Malignant

L 24m20s 4m6s
M 21m14s 4m16s

Table 21. Performance for Different Values of m.

m Threshold (mean) Accuracy Recall F1 AUROC

6 11.7199 0.8785 0.9238 0.8200 0.9417
5 5.2971 0.8640 0.8638 0.7919 0.9280
4 2.1915 0.8539 0.8335 0.7737 0.9200
3 -1.3766 0.8424 0.7986 0.7523 0.9099

D.9. Zero-shot performance and attack success rate (ASR) of using different prompts for the attacked models.

We also examined the zero-shot classification performance of CLIP subjected to a backdoor attack using our class-specific
benign prompt, class-specific malignant prompt, and the original class template prompt for benign images, as well as the
severity of its susceptibility to malicious images. Detailed results are presented in Table 25 and 26. The results show
that when using class template prompts, the model’s zero-shot performance is higher, but the attack success rate is also
the highest, indicating that while these prompts offer the best classification performance, they are the most susceptible to
triggering backdoor attacks. class-specific benign prompts exhibit some variability in reducing the attack success rate, with
slightly lower zero-shot performance. class-specific malignant prompts generally significantly reduce the attack success
rate, though their zero-shot performance is the lowest, indicating that these prompts have potential to reduce the attack
success rate but at the cost of some classification performance. Overall, the choice of prompts plays a significant role in
mitigating backdoor attacks, and further research in prompt engineering to enhance model robustness while maintaining
high performance is a promising direction.
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Table 22. AUROC comparison on ImageNet-1K (Russakovsky et al., 2015). The proportion of test-time backdoor samples is 0.3. The
best result is highlighted in bold.

Target class
Attack→

Detection↓
BadNet Blended BadNet-LC Blended-LC Average

Ant
SCALE-UP 0.740 0.670 0.715 0.737 0.716

BDetCLIP (Ours) 0.993 0.972 0.984 0.963 0.978

Banana
SCALE-UP 0.737 0.692 0.690 0.853 0.743

BDetCLIP (Ours) 0.972 0.983 0.964 0.997 0.979

Basketball
SCALE-UP 0.741 0.715 0.755 0.650 0.715

BDetCLIP (Ours) 0.991 0.972 0.994 0.995 0.988

Table 23. AUROC comparison on ImageNet-1K (Russakovsky et al., 2015). The proportion of test-time backdoor samples is 0.5. The
best result is highlighted in bold.

Target class
Attack→

Detection↓
BadNet Blended BadNet-LC Blended-LC Average

Ant
SCALE-UP 0.737 0.668 0.714 0.734 0.713

BDetCLIP (Ours) 0.993 0.972 0.984 0.963 0.978

Banana
SCALE-UP 0.738 0.693 0.688 0.854 0.743

BDetCLIP (Ours) 0.972 0.983 0.964 0.997 0.979

Basketball
SCALE-UP 0.740 0.714 0.755 0.650 0.715

BDetCLIP (Ours) 0.991 0.972 0.994 0.995 0.988

Table 24. AUROC comparison on ImageNet-1K (Russakovsky et al., 2015). The proportion of test-time backdoor samples is 0.7. The
best result is highlighted in bold.

Target class
Attack→

Detection↓
BadNet Blended BadNet-LC Blended-LC Average

Ant
SCALE-UP 0.738 0.670 0.711 0.735 0.714

BDetCLIP (Ours) 0.992 0.972 0.984 0.962 0.978

Banana
SCALE-UP 0.738 0.692 0.689 0.852 0.743

BDetCLIP (Ours) 0.971 0.984 0.964 0.997 0.979

Basketball
SCALE-UP 0.741 0.714 0.756 0.652 0.716

BDetCLIP (Ours) 0.991 0.972 0.994 0.995 0.988
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Table 25. Zero-shot performance of using different prompts for the attacked models.

Target class
Attack→
Prompts↓ BadNet Blended BadNet-LC Blended-LC

Ant
class template 0.539 0.540 0.539 0.537

class-specific benign prompt 0.483 0.475 0.478 0.472
class-specific malignant prompt 0.290 0.309 0.309 0.298

Banana
class template 0.539 0.537 0.541 0.538

class-specific benign prompt 0.481 0.477 0.478 0.475
class-specific malignant prompt 0.269 0.272 0.280 0.273

Basketball
class template 0.535 0.542 0.542 0.538

class-specific benign prompt 0.474 0.474 0.477 0.477
class-specific malignant prompt 0.285 0.278 0.288 0.298

Table 26. Attack success rate (ASR) of using different prompts for the attacked models.

Target class
Attack→
Prompts↓ BadNet Blended BadNet-LC Blended-LC

Ant
class template 0.983 0.993 0.971 0.994

class-specific benign prompt 0.821 0.885 0.752 0.905
class-specific malignant prompt 0.840 0.847 0.116 0.309

Banana
class template 0.985 0.998 0.974 0.994

class-specific benign prompt 0.021 0.932 0.004 0.862
class-specific malignant prompt 0.821 0.781 0.785 0.601

Basketball
class template 0.990 0.980 0.987 0.997

class-specific benign prompt 0.962 0.856 0.808 0.917
class-specific malignant prompt 0.716 0.689 0.806 0.948
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