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Abstract
Efficient machine translation models are com-001
mercially important as they can increase infer-002
ence speeds, and reduce costs and carbon emis-003
sions. Recently, there has been much interest004
in non-autoregressive (NAR) models, which005
promise faster translation. In parallel to the006
research on NAR models, there have been suc-007
cessful attempts to create optimized autoregres-008
sive models as part of the WMT shared task on009
efficient translation. In this paper, we point out010
flaws in the evaluation methodology present in011
the literature on NAR models and we provide012
fair comparison between a state-of-the-art NAR013
model and the autoregressive submissions to014
the shared task. We make the case for con-015
sistent evaluation of NAR models, and also for016
the importance of comparing NAR models with017
other widely used efficiency approaches. We018
run experiments with a connectionist-temporal-019
classification-based (CTC) NAR model imple-020
mented in C++ and compare it with AR models021
using wall clock times. Our results show that,022
although NAR models are faster on GPUs, with023
small batch sizes, they are nearly always slower024
under more realistic usage conditions. We call025
for more realistic and extensive evaluation of026
NAR models in future work.027

1 Introduction028

Non-autoregressive neural machine translation029

(NAR NMT, or NAT; Gu et al., 2018; Lee et al.,030

2018) is an emerging subfield of NMT which fo-031

cuses on lowering the decoding time complexity032

by changing the model architecture.033

The defining feature of non-autoregressive mod-034

els is the conditional independence assumption on035

the output probability distributions; this is in con-036

trast to autoregressive models, where the output037

distributions are conditioned on the previous out-038

puts. This conditional independence allows one039

to decode the target tokens in parallel. This can040

substantially reduce the decoding time, especially041

for longer target sentences.042

The speed of the decoding is assessed by trans- 043

lating a test set and measuring the overall time the 044

process takes. This may sound simple, but there 045

are various aspects to be considered that can af- 046

fect decoding speed, such as batching, number of 047

hypotheses in beam search or hardware used (i.e., 048

using CPU or GPU). Decoding speed evaluation 049

is a challenging task, especially when it comes 050

to comparability across different approaches. Un- 051

like the translation quality, decoding speed can be 052

measured exactly. However, also unlike the trans- 053

lation quality, different results are obtained under 054

different evaluation environments. The WMT Ef- 055

ficient Translation Shared Task aims to evaluate 056

efficiency research and encourages the reporting 057

of a range of speed and translation quality values 058

to better understand the trade-off across different 059

model configurations (Heafield et al., 2021). In this 060

paper, we follow the emerging best practices de- 061

veloped in the Efficiency Shared Task and directly 062

compare with the submitted systems. 063

Over the course of research on NAR models, 064

modeling error and its subsequent negative effect 065

on translation quality remains the biggest issue. 066

Therefore, the goal of contemporary research is to 067

close the performance gap between the AR mod- 068

els and their NAR counterparts, while maintaining 069

high decoding speed. Considering these stated re- 070

search goals, the evaluation should comprise of 071

assessing translation quality as well as decoding 072

speed. 073

Translation quality is usually evaluated by scor- 074

ing translations of an unseen test set either using 075

automatic metrics, such as BLEU (Papineni et al., 076

2002), ChrF (Popović, 2015) or COMET (Rei et al., 077

2020), or using human evaluation. To prevent the 078

methods from eventually overfitting a single test set, 079

new test sets are published each year as part of the 080

WMT News Translation Shared Task. In contrast, 081

translation quality evaluation in NAR research is of- 082

ten measured using BLEU scores only, measured al- 083
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most exclusively on the WMT 14 English-German084

test set, which is highly problematic. Automatic085

evaluation of translation quality however remains086

an open research problem (Mathur et al., 2020;087

Kocmi et al., 2021). In our experiments, we follow088

the recent best practices by using multiple metrics089

and recent test sets.090

In this paper, we examine the evaluation method-091

ology generally accepted in literature on NAR092

methods, and we identify a number of flaws. First,093

the results are reported on different hardware ar-094

chitectures, which makes them incomparable, even095

when comparing only relative speedups. Second,096

most of the methods only report latency (decoding097

with a single sentence per batch) using a GPU; we098

show that this is the only setup favors NAR models.099

Third, the reported baseline performance is usually100

questionable, both in terms of speed and transla-101

tion quality. Finally, despite the fact that the main102

motivation for using NAR models is the lower time103

complexity, the findings of the efficiency task are104

ignored in most of the NAR papers.105

We try to connect the separate worlds of NAR106

and efficient translation research. We train non-107

autoregressive models based on connectionist tem-108

poral classification (CTC), an approach previously109

shown to be effective (Libovický and Helcl, 2018;110

Gu and Kong, 2021; Ghazvininejad et al., 2020).111

We employ a number of techniques for improving112

the translation quality, including data cleaning and113

sequence-level knowledge distillation (Kim and114

Rush, 2016). We evaluate our models following a115

unified evaluation methodology: In order to com-116

pare the translation quality with the rest of the NAR117

literature, we report BLEU scores measured on the118

WMT 14 test set, on which we achieve state-of-119

the-art performance among (both single-step and120

iterative) NAR methods; we evaluate the transla-121

tion quality and decoding speed of our models in122

the same conditions as the efficiency task.123

We find that despite achieving very good results124

among the NAT models on the WMT 14 test set,125

our models fall behind in translation quality when126

measured on the recent WMT 21 test set using127

three different automatic evaluation metrics. More-128

over, we show that GPU decoding latency is the129

only scenario in which non-autoregressive models130

outperform autoregressive models.131

This paper contributes to the research commu-132

nity in the following aspects: First, we point out133

to weaknesses in standard evaluation methodology134

of non-autoregressive models. Second, we link the 135

worlds of non-autoregressive translation and model 136

optimization to provide a better understanding of 137

the results achieved in the related work. 138

2 Non-Autoregressive NMT 139

The current state-of-the-art NMT models are au- 140

toregressive – the output distributions are condi- 141

tioned on the previously generated tokens (Bah- 142

danau et al., 2016; Vaswani et al., 2017). The de- 143

coding process is sequential in its nature, limiting 144

the opportunities for parallelization. 145

Non-autoregressive models use output distribu- 146

tions which are conditionally independent on each 147

other, which opens up the possibility of paralleliza- 148

tion. Formally, the probability of a sequence y 149

given the input x in a non-autoregressive model 150

with parameters θ is modeled as 151

pθ(y|x) =
∏
yi∈y

p(yi|x, θ). (1) 152

Unsurprisingly, the independence assumption in 153

NAR models has a negative impact on the trans- 154

lation quality. The culprit for this behavior is the 155

multimodality problem – the inability of the model 156

to differentiate between different modes of the joint 157

probability distribution over output sequences in- 158

side the distributions corresponding to individual 159

time steps. A classic example of this issue is the 160

sentence “Thank you” with its two equally proba- 161

ble German translations “Danke schön” and “Vie- 162

len Dank” (Gu et al., 2018). Because of the inde- 163

pendence assumption, a non-autoregressive model 164

cannot assign high probabilities to these two trans- 165

lations without also allowing for the incorrect sen- 166

tences “Vielen schön” and “Danke Dank”. 167

Knowledge distillation (Kim and Rush, 2016) 168

has been successfully employed to reduce the nega- 169

tive influence of the multimodality problem in NAR 170

models (Gu et al., 2018; Saharia et al., 2020). Syn- 171

thetic data tends to be less diverse than authentic 172

texts, therefore the number of equally likely trans- 173

lation candidates gets smaller (Zhou et al., 2020). 174

A number of techniques have been proposed for 175

training NAR models, including iterative methods 176

(Lee et al., 2018; Ghazvininejad et al., 2019), aux- 177

iliary training objectives (Wang et al., 2019; Qian 178

et al., 2021), or latent variables (Gu et al., 2018; 179

Lee et al., 2018; Kaiser et al., 2018). In some form, 180

all of the aforementioned approaches use explicit 181

target length estimation, and rely on one-to-one 182
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correspondence between the output distributions183

and the reference sentence.184

A group of methods that relax the requirement of185

the strict one-to-one alignment between the model186

outputs and the ground-truth target sequence in-187

clude aligned cross-entropy (Ghazvininejad et al.,188

2020) and connectionist temporal classification (Li-189

bovický and Helcl, 2018).190

The schema CTC-based model, as proposed by191

Libovický and Helcl (2018), is shown in Figure 1.192

The model extends the Transformer architecture193

(Vaswani et al., 2017). It consists of an encoder, a194

state-splitting layer, and a non-autoregressive de-195

coder. The encoder has the same architecture as in196

the Transformer model. The state-splitting layer,197

applied on the encoder output, linearly projects198

and splits each state into k states with the same199

dimension. The decoder consists of a stack of200

Transformer layers. Unlike the Transformer model,201

the self-attention in the non-autoregressive decoder202

does not use the causal mask, so the model is not203

prevented from attending to future states. Since204

the output length is fixed to k-times the length of205

the source sentence, the model is permitted to out-206

put blank tokens. Different positions of the blank207

tokens in the output sequence represent different208

alignments between the outputs and the ground-209

truth sequence. Connectionist temporal classifica-210

tion (Graves et al., 2006) is a dynamic algorithm211

that efficiently computes the standard cross-entropy212

loss summed over all possible alignments.213

We choose the CTC-based architecture for our214

models because it has been previously shown to215

be effective for NAR NMT (Gu and Kong, 2021;216

Saharia et al., 2020) and performs well in the con-217

text of the non-autoregressive research. It is also218

one of the fastest NAR architectures since it is not219

iterative.220

3 Evaluation Methodology221

The research goal of the non-autoregressive meth-222

ods is to improve the translation quality while main-223

taining the speedup brought by the conditional in-224

dependence assumption. This means that careful225

thought should be given to both quantifying the226

speed gains and the translation quality evaluation.227

The speed-vs-quality trade-off can be characterized228

by the Pareto frontier. In this section we discuss229

the evaluation from both perspectives.230

Translation Quality. In the world of non-231

autoregressive NMT, the experimental settings232

Input token embeddings

Encoder

h

Wsplh

s

Decoder

Connectionist Temporal Classification

w1w2w3 ∅ w4 ∅ w5w6 ∅ ∅ ∅ w7w8 ∅ w9 ∅
Output tokens / null symbols

Figure 1: The schema of the CTC-based non-
autoregressive architecture. We show the original image
from Libovický and Helcl (2018).

are not very diverse. The primary language pair 233

for translation experiments is English-German, 234

sometimes accompanied by English-Romanian to 235

simulate the low-resource scenario. These lan- 236

guage pairs, along with the widely used test sets 237

– WMT 14 (Bojar et al., 2014) for En-De and 238

WMT 16 (Bojar et al., 2016) for En-Ro – became 239

the de facto standard benchmark for NAR model 240

evaluation. 241

A common weakness seen in the literature is the 242

use of weak baseline models. The base variant of 243

the Transformer model is used almost exclusively 244

(Gu et al., 2018; Gu and Kong, 2021; Lee et al., 245

2018; Ghazvininejad et al., 2020; Qian et al., 2021). 246

We argue that using weaker baselines might lead to 247

overrating the positive effects brought by proposed 248

improvements. Since the baseline autoregressive 249

models are used to generate the synthetic parallel 250

data for knowledge distillation, the weakness is 251

potentially further amplified in this step. 252

Evaluation is normally with automatic metrics 253

only, and often only BLEU is reported. In light of 254

recent research casting further doubt on the relia- 255

bility of BLEU as a measure of translation quality 256

(Kocmi et al., 2021), we argue that this is insuffi- 257

cient. 258

Decoding Speed. The current standard in eval- 259

uation of NAR models is to measure translation 260

latency using a GPU, i.e., the average time to trans- 261

3



Data Raw size Cleaned size

Parallel – clean 3.9 3.1
Parallel – noisy 92.0 84.6

Monolingual – En 93.1 91.0
Monolingual – De 149.9 146.2

Table 1: The sizes of the parallel and monolingual train-
ing datasets (in millions of examples).

late a single sentence without batching. Since the262

time depends on the hardware, relative speedup is263

usually reported along with latency.264

This is a reasonable approach but we need to265

keep in mind the associated difficulties. First, the266

results achieved on different hardware architectures267

are not easily comparable even when considering268

the relative speedups. We also note that the relative269

speedup values should always be accompanied by270

the corresponding decoding times in absolute num-271

bers. Sometimes, this information is missing from272

the published results (Qian et al., 2021).273

We argue that measuring only GPU latency dis-274

regards other use-cases. In the WMT Efficiency275

Shared Task, the decoding speed is measured in276

five scenarios. The speed is reported using a GPU277

with and without batching, using all 36 CPU cores278

(also, with and without batching), and using a sin-279

gle CPU core without batching. In batched decod-280

ing, the shared task participants could choose the281

optimal batch size. Our results in Section 5 show282

that measuring latency is the only one that favors283

NAR models, and as the batch size increases, AR284

models quickly reach higher translation speeds.285

4 Experiments286

We experiment with non-autoregressive models for287

English-German translation. We used the data pro-288

vided by the WMT 21 News Translation Shared289

Task organizers (Akhbardeh et al., 2021).290

As our baseline model, we use the CTC-based291

NAR model as described by Libovický and Helcl292

(2018). We use stack of 6 encoder and 6 decoder293

layers, separated by the state splitting layer which294

extends the state sequence 3 times.295

We implement our models in the Marian toolkit296

(Junczys-Dowmunt et al., 2018). For the CTC loss297

computation, we use the warp-ctc library (Amodei298

et al., 2016).299

4.1 Teacher Models 300

For training our baseline autoregressive models, we 301

closely follow the approach of Chen et al. (2021). 302

The preparation of the baseline models consists of 303

three phases – data cleaning, backtranslation, and 304

the training of the final models. 305

We train the teacher models on cleaned parallel 306

corpora and backtranslated monolingual data. For 307

the parallel data, we used Europarl (Koehn, 2005), 308

the RAPID corpus (Rozis and Skadin, š, 2017), and 309

the News Commentary corpus from OPUS (Tiede- 310

mann, 2012). We consider these three parallel 311

dataset clean. We also use noisier parallel datasets, 312

namely Paracrawl (Bañón et al., 2020), Common 313

Crawl1, WikiMatrix (Schwenk et al., 2019), and 314

Wikititles2. For backtranslation, we used the mono- 315

lingual datasets from the News Crawl from the 316

years 2018-2020, in both English and German. 317

We clean the parallel corpus (i.e. both clean and 318

noisy portions) using rule-based cleaning3. Ad- 319

ditionally, we exclude sentence pairs with non- 320

latin characters. Additionally, we apply dual cross- 321

entropy filtering on the noisy part of the parallel 322

data (Junczys-Dowmunt, 2018). We train Trans- 323

former base models in both directions on the clean 324

portion of the parallel data. Then, we select 75% 325

of the best-scoring sentence pairs into the final par- 326

allel portion of the training dataset. 327

For backtranslation (Sennrich et al., 2016), we 328

train four Transformer big models on the cleaned 329

parallel data in both directions. We then use them 330

in an ensemble to create the synthetic source side 331

for the monolingual corpora. We add a special 332

symbol to the generated sentences to help the mod- 333

els differentiate between synthetic and authentic 334

source language data (Caswell et al., 2019). 335

We use hyperparameters of the Transformer big 336

model, i.e. model dimension 1,024, feed-forward 337

hidden dimension of 4,096, and 16 attention heads. 338

For training, we use the Adam optimizer (Kingma 339

and Ba, 2014) with β1, β2 and ϵ set to 0.9, 0.998 340

and 10-9 respectively. We used the inverted square- 341

root learning rate decay with 8,000 of linear warm- 342

up and initial learning rate of 10-4. 343

The teacher models follow the same hyperpa- 344

rameter settings as the models for backtranslation, 345

1https://commoncrawl.org/
2https://linguatools.org/tools/

corpora/wikipedia-parallel-titles-corpora/
3https://github.com/browsermt/

students/blob/master/train-student/
clean/clean-corpus.sh
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but are trained with the tagged backtranslations in-346

cluded in the data. As in the previous case, we train347

four teacher models with different random seeds348

for ensembling.349

Similar to creating the backtranslations, we use350

the four teacher models in an ensemble to create351

the knowledge-distilled data (Kim and Rush, 2016).352

We translate the source side of the parallel data, as353

well as the source-language monolingual data. We354

do not translate back-translated data. Thus, the355

source side data for the student models is authen-356

tic, and the target side is synthetic, created by the357

teacher models.358

4.2 Student Models359

We train five variants of the student models with dif-360

ferent hyperparameter settings. The “Large” model361

is our baseline model – the same number of layers362

as the teacher models, 6 in the encoder, followed by363

the state splitting layer, and another 6 layers in the364

decoder. The “Base” model has the same number365

of layers with reduced dimension of the embed-366

dings and the feed-forward Transformer sublayer,367

to match the Transformer base settings. We also368

try reducing the numbers of encoder and decoder369

layers. We shrink the base model to 3-3 (“Small”),370

2-2 (“Micro”), and 1-1 (“Tiny”) architectures.371

We run the training of each model for three372

weeks on four Nvidia Pascal P100 GPUs.373

5 Results374

In this section, we try and view the results of the375

NAR and efficiency research in a shared perspec-376

tive. We evaluate our models and present results377

in terms of translation quality and decoding speed.378

We compare the results to the related work on both379

non-autoregressive translation and model optimiza-380

tion.381

Translation Quality. The research on non-382

autoregressive models uses the BLEU score (Pap-383

ineni et al., 2002) measured on the WMT 14 test384

set (Bojar et al., 2014) as a standard benchmark for385

evaluating translation quality. We use Sacrebleu386

(Post, 2018) as the implementation of the BLEU387

score metric.4 Using a single test set for the whole388

volume of research on this topic may however pro-389

duce misleading results. To bring the evaluation390

4Signature: nrefs:3|bs:1000|seed:12345|
case:mixed|eff:no|tok:13a|smooth:exp|
version:2.0.0

En → De De → En

Saharia et al. (2020) 28.2 31.8
Gu and Kong (2021) 27.2 31.3
Qian et al. (2021) 26.6 31.0

Large 28.4 31.3
Base 23.7 30.3
Small 23.6 29.1
Micro 25.0 27.5
Tiny 20.3 21.7

Table 2: The BLEU scores of the NAR models on the
WMT 14 test set

up to date with the current state-of-the-art transla- 391

tion systems, we also evaluate our models using 392

COMET (Rei et al., 2020)5 and BLEU scores on 393

the recent WMT 21 test set. The same test set was 394

used in the WMT 21 Efficiency Task. 395

Table 2 shows the BLEU scores of our NAR 396

models on the WMT 14 test set. We show the re- 397

sults of the five variants of the NAR models and 398

we include three of the best-performing NAR ap- 399

proaches from the related work. We see from the 400

table that using BLEU, the “Large” model scores 401

among the best NAR models on the WMT 14 test 402

set. As the NAR model size decreases, so does 403

the translation quality, with the notable exception 404

of the En→De “Micro” model, which outperforms 405

the “Base” model consistently on different test sets. 406

In Table 3, we report the automatic evaluation 407

results of our AR and NAR models on the multi- 408

reference WMT 21 test set (Akhbardeh et al., 2021). 409

We compare our NAR models to the AR large 410

teacher models from Section 4.1, an AR base model 411

trained on the original clean data, and an AR base 412

student model trained on the distilled data. Follow- 413

ing Heafield et al. (2021), we use references A, C, 414

and D for English-German translation. 415

We see that there is a considerable difference in 416

the translation quality between the NAR models 417

and the AR large teacher model. This difference 418

grows with beam search and ensembling applied 419

on the AR decoding, techniques not usually used 420

with NAR models because of the speed cost. We 421

also note that when we train an AR base model 422

on the distilled data, it outperforms the NAR large 423

model by a considerable margin. 424

Another thing we notice is the enormous differ- 425

5We use the COMET model wmt20-comet-da from
version dd2298 (1.0.0.rc9).
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En → De COMET BLEU

AR – Large 0.4110 50.5 ±1.3

+ beam 0.4053 50.8 ±1.3

+ ensemble 0.4332 52.2 ±1.3

AR – Base 0.3881 47.9 ±1.3

+ beam 0.3873 48.0 ±1.3

Student AR – Base 0.4550 51.6 ±1.2

NAR models
Large 0.1485 47.8 ±1.2

Base -0.0521 41.8 ±1.1

Small -0.0752 41.9 ±1.1

Micro -0.0083 43.5 ±1.1

Tiny -0.3333 34.7 ±1.0

Table 3: Results of quantitative evaluation of English-
German translation quality using automatic metrics on
the multi-reference WMT 21 test set. The confidence
intervals were computed using Sacrebleu.

ence in the COMET scores between the AR and426

NAR models. The AR base models achieve compa-427

rable BLEU scores to the NAR large models, but428

differ substantially in the COMET score. From429

a look at the system outputs, we hypothesize that430

the NAR systems produce unusual errors which431

BLEU does not penalise as heavily as COMET.432

This might suggest that NAR models would rank433

poorly in human evaluation relative to their autore-434

gressive counterparts, despite the reasonable BLEU435

score values.436

Decoding speed. We follow the decoding time437

evaluation methodology of the WMT 21 Efficient438

Translation Shared Task (Heafield et al., 2021). We439

recreate the hardware conditions that were used440

in the task. For the GPU decoding measurements,441

we use a single Nvidia Ampere A100 GPU. The442

CPU evaluation was performed on a 36-core CPU443

Intel Xeon Gold 6354 server from Oracle cloud.444

To amortize for the various computation overheads,445

the models submitted to the shared task are evalu-446

ated on a million sentence benchmark dataset.447

We measure the overall wall time to translate the448

shared task dataset with different batching settings449

on both the GPU and the 36-core CPU. The decod-450

ing times are shown in Figures 2 and 4 for the GPU451

and CPU times, respectively. We do not report the452

single-core CPU latencies as the decoding speed453

of the NAR models falls far behind the efficient454

AR models in this setup and the translation of the455

Model Latency (ms)

Gu et al. (2018) 39
Wang et al. (2019) 22
Sun et al. (2019) 37

Ours – Large 14

Table 4: The comparison of the decoding time of various
NAR models for a single sentence in a batch on a P100
GPU. Note that this table should serve merely as an
illustration, since the results were measured on different
datasets.

dataset takes too long. 456

We can see that in case of GPU decoding that 457

all models benefit from having larger batch sizes. 458

However, the non-autoregressive models are much 459

faster when the batch size is small. We also ran the 460

evaluation on an Nvidia Pascal P100 GPU, which 461

showed that when the batch size is large enough, 462

autoregressive models eventually match the speed 463

of non-autoregressive models. We show the decod- 464

ing times on the Pascal GPU in Figure 3. In Table 465

4, we compare the latencies measured on the Pas- 466

cal GPU to some of the related NAR approaches 467

that report results on this GPU type. Due to imple- 468

mentation reasons, the maximum batch size for our 469

NAR models is around 220 sentences. 470

Comparison with Efficient AR Models. In Ta- 471

ble 5, we present a comparison on the million 472

sentence test set with “Edinburgh base”, one of 473

the leading submissions in the WMT 21 efficiency 474

task (Behnke et al., 2021). First, we see that using 475

three different evaluation metrics (ChrF, COMET, 476

and BLEU), our models lag behind the Edinburgh 477

base model. In line with our previous observa- 478

tion, we see a considerable drop in the COMET 479

score values. In terms of decoding speed, the only 480

scenario in which the non-autoregressive model is 481

better is on GPU with batch size 1. This is in line 482

with our intuition that the parallelization potential 483

brought by the GPU is utilized more efficiently by 484

the NAR model. On one hand, larger batches open 485

up the parallelization possibilities to AR models. 486

On the other hand, limited parallelization potential 487

(in form of CPU decoding) reduces the differences 488

between AR and NAR models. The batch size of 489

the Edinburgh base model was 1,280 in the batched 490

decoding setup. 491
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Figure 2: The decoding times to translate the efficiency task test set using various batch size settings, computed on a
single Nvidia Ampere A100 GPU, i.e. the GPU type used for evaluation in the efficiency task.
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Figure 3: The decoding times to translate the efficiency task test set using various batch size settings, computed on a
single Nvidia Pascal P100 GPU.
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Figure 4: The decoding times to translate the efficiency task test set using various batch size settings, computed on
36 CPU cores.
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Translation quality Decoding time (seconds)
ChrF COMET BLEU GPU, b>1 GPU, b=1 CPU, b>1

Edinburgh base (Behnke et al., 2021) 61.5 0.527 55.3 140 16,851 500

AR – Large (teacher) 59.2 0.411 50.5 1,918 > 24h 9,090
AR – Base (student) 59.5 0.455 51.6 1,465 > 24h 2,587

NAR – Large 58.6 0.149 47.8 782 7,020 7,434
NAR – Micro 57.3 -0.008 43.5 311 2,322 897

Table 5: A comparison of our AR and NAR models with one of the submissions to the WMT 21 efficiency task. We
show the results of automatic translation quality evaluation using three different metrics, and the decoding time to
translate the test set using a GPU and 36-core CPU with either latency (b=1) or batched (b>1) decoding.

6 Conclusions492

In this paper, we challenge the evaluation methodol-493

ogy adopted by the research on non-autoregressive494

models for NMT.495

We argue that in terms of translation quality,496

the evaluation should include newer test sets and497

metrics other than BLEU (particularly COMET498

and ChrF). This will provide more insight and put499

the results into the context of the recent research.500

From the decoding speed perspective, we should501

bear in mind various use-cases for the model502

deployment, such as the hardware environment503

or batching conditions. Preferably, the research504

should evaluate the speed gains across a range of505

scenarios. Finally, given that the latency condi-506

tion – translation of one sentence at a time on a507

GPU – already translates too fast to be perceived508

by human users of MT, there is currently no com-509

pelling scenario that warrants the deployment of510

NAR models.511
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Ondřej Bojar, Christian Buck, Christian Federmann, 561
Barry Haddow, Philipp Koehn, Johannes Leveling, 562
Christof Monz, Pavel Pecina, Matt Post, Herve Saint- 563
Amand, Radu Soricut, Lucia Specia, and Aleš Tam- 564
chyna. 2014. Findings of the 2014 workshop on 565
statistical machine translation. In Proceedings of the 566
Ninth Workshop on Statistical Machine Translation, 567
pages 12–58, Baltimore, Maryland, USA. Associa- 568
tion for Computational Linguistics. 569
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