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Abstract

Segment Anything Model (SAM) has demon-
strated remarkable zero-shot segmentation capa-
bilities across various visual tasks. However,
its performance degrades significantly when de-
ployed in new target domains with substantial dis-
tribution shifts. While existing self-training meth-
ods based on fixed teacher-student architectures
have shown improvements, they struggle to en-
sure that the teacher network consistently outper-
forms the student under severe domain shifts. To
address this limitation, we propose a novel Collab-
orative Mutual Learning Framework for source-
free SAM adaptation, leveraging dual-networks in
a dynamic and cooperative manner. Unlike fixed
teacher-student paradigms, our method dynami-
cally assigns the teacher and student roles by eval-
uating the reliability of each collaborative network
in each training iteration. Our framework incorpo-
rates a dynamic mutual learning mechanism with
three key components: a direct alignment loss for
knowledge transfer, a reverse distillation loss to
encourage diversity, and a triplet relationship loss
to refine feature representations. These compo-
nents enhance the adaptation capabilities of the
collaborative networks, enabling them to general-
ize effectively to target domains while preserving
their pre-trained knowledge. Extensive experi-
ments on diverse target domains demonstrate that
our proposed framework achieves state-of-the-art
adaptation performance. Our code is accessible at
https://github.com/yaboliudotug/DMLDA.
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1. Introduction

The development of deep learning technology has brought
remarkable breakthroughs to the field of computer vision
(He et al., 2016; Liu et al., 2022; Redmon et al., 2016; Car-
ion et al., 2020; Liu et al., 2025; Sun et al., 2024; Huang
et al., 2022b;a). Among these advancements, progress in
pre-training techniques has been particularly remarkable,
with models like Segment Anything Model (SAM) (Kirillov
et al., 2023) demonstrating powerful capabilities across var-
ious visual perception tasks(Oquab et al., 2023; Bai et al.,
2024). Taking advantage of its pre-training procedure on
extensive and diverse datasets, SAM demonstrates remark-
able generalization capabilities and delivers high-quality
segmentation results. However, SAM often suffers signif-
icant performance degradation when deployed in a target
domain (i.e., the testing data) that shifts significantly from
the source domain (i.e., the training data) (Zhang et al., 2024,
Chen et al., 2023; 2024). These domain shifts arise due to
differences in visual characteristics, object distributions, or
environmental conditions between the pre-training datasets
and the target domains. For example, SAM fails to perform
well in professional applications, such as medical imaging,
camouflaged object detection, and robotic vision. This high-
lights the urgent need to adapt SAM to target domains for
improved usability in real-world applications.

It is infeasible to adapt SAM in the traditional framework of
unsupervised domain adapation (UDA), as the large scale
pre-training dataset could introduce substantial computa-
tional burden and make the adaption procedure both ineffi-
cient and unscalable. In addition, the source domain data
is not always accessible due to privacy concerns, storage
limitations, or data-sharing restrictions. Source-free domain
adaptation (SFDA) has emerged as a promising solution
to address these issues. SFDA enables the adaptation of a
pre-trained model using only unlabeled target domain data,
making it particularly applicable to sensitive fields such as
medical imaging and autonomous driving. SFDA of SAM
requires the model to learn robust representations of the
target domain while avoiding catastrophic forgetting of its
pre-trained generalization capabilities.

A common approach to SFDA is self-training through
teacher-student knowledge distillation. In this paradigm,
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a teacher network generates pseudo-labels for the target
domain data, which are then used to supervise the training
of a student network (Zhang et al., 2024). This approach
assumes that the teacher consistently provides more reli-
able predictions than the student. However, this assump-
tion often does not hold in practice, especially when the
model is deployed in a new target domain. Our experiments
and analysis reveal that the student network may surpass
the teacher network in capturing domain-specific features
during training. The fixed knowledge transfer direction
in the teacher-student frameworks limits the potential of
self-training, ultimately leading to suboptimal performance.

To address these limitations, we propose a novel Collabo-
rative Mutual Learning framework that replaces the fixed
teacher-student paradigm with a more flexible and dynamic
one, inspired by (Zhou et al., 2023a). Two networks col-
laborate in equal roles in the proposed method, and they
dynamically learn from each other rather than adhere to a
static teacher or student role. This bidirectional knowledge
exchange allows both networks to leverage the strengths
of the other to achieve superior performance in the target
domain.

A key challenge in implementing mutual learning lies on the
determination of the relative reliability of the networks dur-
ing training. To address this, we introduce a dynamic role
assignment mechanism based on a knowledge-preserving
metric. This metric compares the foreground features of
each network with those extracted from the original pre-
trained SAM model, and tells how much the pre-trained
knowledge is preserved. The network that preserves more
pre-trained knowledge is considered more reliable and thus
temporarily assumes the guiding role (i.e., teacher), while
the other acts as the learner (i.e., student). This dynamic role
assignment ensures effective collaboration and adaptability
throughout the training process. In addition, we introduce
the direct knowledge distillation to align the predictions
of the student network with those of the teacher, enabling
the transfer of domain-specific knowledge at each training
iteration. We also employ the reverse knowledge distillation
loss to encourage diversity by slightly deviating the teacher
from the student, preventing both networks from collapsing
into identical representations. In this way, we achieve a
balance between exploration (via reverse distillation) and
exploitation (via direct alignment) and ensure the networks
maintain complementary strengths. To further improve fea-
ture robustness, we propose a triplet relationship loss that
models the relationships between the teacher, student, and
the pre-trained SAM.

In summary, our contributions are as follows:
* We propose a Collaborative Mutual Learning frame-

work for the source-free domain adaptation of SAM.
Our framework dynamically assigns roles to collabora-

tive networks based on their reliability and encourages
mutual learning during training.

* We introduce the direct alignment, reverse distillation,
and triplet relationship losses to ensure robust and effi-
cient adaptation.

» Extensive experiments demonstrate the effectiveness
of our framework in adapting SAM to challenging tar-
get domains, including medical imaging, camouflaged
object detection, and robotic vision.

2. Related work

2.1. Image Segmentation

Image segmentation is a fundamental problem in the field
of visual perception (Cao et al., 2023; Zhou et al., 2023b;
Jin et al., 2023; Wu et al., 2024; Zhao & Tao, 2023). Over
the years, research in image segmentation has evolved from
small, task-specific models to large foundational models.
Mask R-CNN (He et al., 2017) is a widely used two-stage
instance segmentation model that first detects the regions
of foreground instances and then generates their segmenta-
tion masks. In contrast, YOLACT (Bolya et al., 2019) is
a single-stage approach that directly outputs segmentation
masks from image feature maps. With advancements in
transformers and pre-training techniques, large visual mod-
els have garnered significant attention from researchers. The
Segment Anything Model (SAM) (Kirillov et al., 2023) is
the first visual foundational model to achieve remarkable
segmentation performance. SAM is capable of handling
various types of prompts, such as bounding boxes, points,
polygons, and text descriptions, and produces fine-grained
segmentation masks. By pre-training on massive and di-
verse datasets, SAM exhibits outstanding zero-shot gener-
alization ability, making it applicable to a wide range of
tasks. Similarly, DINO v2 (Oquab et al., 2023) leverages
self-supervised learning to acquire knowledge from large
datasets and demonstrates significant performance improve-
ments on many downstream tasks. These breakthroughs
highlight the growing potential of pre-trained foundational
models in advancing segmentation tasks.

2.2. Domain Adaptation

Domain adaptation (DA) is a critical technique for address-
ing domain shifts between the source (training) and target
(testing) domains. Many methods have been proposed to
tackle this problem effectively (Liu et al., 2023b; Chen et al.,
2018; Liu et al., 2024b; Chen et al., 2022; Liu et al., 2024a).
DANN (Ganin & Lempitsky, 2015) employs generative ad-
versarial learning with a Gradient Reversal Layer to achieve
significant improvements in unsupervised domain adapta-
tion. Recent methods like SIGMA (Li et al., 2022) and
CIGAR (Liu et al., 2023a) transform image features into
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graph space and align category-level graph node features
across domains. TENT (Wang et al., 2020) minimizes the
entropy loss of model predictions during testing to handle
domain shifts. Similarly, MLFA (Liu et al., 2024a) ad-
dresses object detection problems by modeling and aligning
the feature distributions of the source and target domains.
In the context of source-free domain adaptation, SHOT
(Liang et al., 2021) utilizes self-training with pseudo-labels
generated for target domain data, significantly improving
performance without requiring source data. DePT (Gao
et al., 2022) adopts prompt learning to address source-free
domain adaptation by fine-tuning only the visual prompts
from the source domain. WDASS (Das et al., 2023) pro-
poses a weakly supervised method to tackle unsupervised
domain adaptation problems. Wang et al. propose the Con-
tinual Test-Time Domain Adaptation (CTTA) framework
(Wang et al., 2022), which incrementally adapts a source
model to continually evolving target domains. Note (Gong
et al., 2022) introduces instance-aware batch normalization
to address the normalization challenges posed by new target
domain samples. RMT (Ddbler et al., 2023) employs sym-
metric cross-entropy loss within a mean teacher framework
to tackle the CTTA problem effectively. For SAM adap-
tation, WeSAM (Zhang et al., 2024) introduces a weakly
supervised self-training method. However, it employs a
fixed teacher-student architecture, which limits its ability to
adapt effectively in challenging target domains.

3. Motivation

Existing single-model adaptation methods often struggle to
balance the preservation of pre-trained knowledge with the
adaptation to target-specific knowledge. Recent approaches
using knowledge distillation, such as teacher-student net-
works (Zhang et al., 2024), have shown a potential to address
this challenge. This method has a significant limitation: the
roles of teacher and student networks are fixed through-
out the training process, based on the assumption that the
teacher network consistently provides more reliable predic-
tions than the student network. However, this assumption is
often unrealistic when adapting to entirely different target
domains. In such cases, both networks may fail to provide
accurate predictions at different stages of training, limiting
the effectiveness of the adaptation process.

Our Approach: Collaborative Mutual Learning. To ad-
dress these limitations, we propose a novel framework based
on mutual learning, where two independent networks collab-
orate and dynamically learn from each other. This approach
overcomes the restrictions of fixed teacher-student meth-
ods and offers several key advantages: 1) Collaborative
Knowledge Sharing. Mutual learning enables two net-
works to exchange information during training, leading to
a more comprehensive understanding of the target domain.

Each network brings a unique perspective, allowing them
to complement one another and collaboratively explore the
characteristics of the target domains. 2) Dynamic Role
Assignment. Unlike fixed teacher-student architectures, our
method dynamically determines which network acts as the
teacher and student at each iteration. This decision is based
on the reliability of their real-time predictions. The more
reliable network guides the less reliable one, ensuring that
the learning process remains adaptive and responsive to the
changing reliability of predictions. By leveraging these ad-
vantages, our mutual learning framework achieves a more
effective and robust source-free adaptation of SAM.

4. Preliminary: Segment Anything Model

The Segment Anything Model (SAM) (Kirillov et al., 2023)
is a state-of-the-art foundational model designed for vi-
sual perception tasks. Its architecture follows an encoder-
decoder framework and comprises three key components:
an image encoder F;,, 4, a prompt encoder E;.1pt, and a
mask decoder D,,,sx. Given an input image I and asso-
ciated prompts Prompt (such as bounding boxes, points,
masks, or textual descriptions), the image encoder gen-
erates an image feature map F', and the prompt encoder
produces a prompt embedding P: F' = Ej,4,(I),P =
E\prompt (Prompt). The mask decoder then processes both
F and P to produce a segmentation score map S: S =
Dask(F, P). Finally, a binarization threshold T is applied
to the score map S to produce the segmentation mask M.
Although SAM demonstrates strong performance across
various segmentation tasks, its direct application to target
domains with significant distribution shifts often results in
suboptimal performance (Zhang et al., 2024; Chen et al.,
2023; 2024).

5. Method

In this section, we present our framework for source-free
domain adaptation of SAM, which utilizes a Collaborative
Mutual Learning strategy. We first describe the overall archi-
tecture in Sec. 5.1. Then, we detail the Mutual Learning and
Dynamic Role Assignment mechanism in Sec. 5.2. Finally,
we introduce the optimization objectives in Sec. 5.3.

5.1. Architecture

The proposed framework leverages a dual-network architec-
ture, as illustrated in Fig. 1. It consists of a frozen SAM
and two independent collaborative image encoders, denoted
as i, and Efng. Each collaborative encoder is built by
extending the SAM image encoder with a LoRA-based fine-
tuning module for efficient adaptation (Hu et al., 2022).
To encourage diversity and avoid symmetrical failures, the
collaborative encoders are initialized with slight parameter
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Figure 1. Overview of the proposed Collaborative Mutual Learning framework for source-free domain adaptation of SAM. It consists of

&

the pre-trained SAM and two collaborative image encoders (£5,,, and Efm )+ Each collaborative image encoder is built from the original
SAM image encoder and a LoORA module. Our proposed mutual learning strategy dynamically assigns the feacher and student roles to the
two cooperative networks during each training iteration. We optimize these cooperative networks using the direct distillation loss, the

reverse distillation loss, and the triplet relationship loss.

perturbations from the pre-trained SAM. Specifically, the
collaborative encoders are defined as:

Ea/ﬁ

img

= perturb(En,) + AEX?

mg’ (1)
where AEiaw/Lg represents the low-rank weights introduced
by LoRA and perturb(-) denotes the parameter perturba-
tion operation. This design enables efficient fine-tuning with
minimal additional parameters while retaining the knowl-
edge of the pre-trained SAM image encoder.

During training, each collaborative encoder processes a dif-
ferently augmented view of the input image I, denoted as
I49 and Ig‘“g . The image augmentations (e.g., , random
color, brightness, contrast, shadows) expose the collabora-
tive encoders to diverse visual patterns, encouraging them
to learn complementary representations of the target do-

main. The resulting feature maps are: F, /3 = Efiﬁf (1—;4759 ),
where F,, /5 € R"**X¢ and h, w, and ¢ denote the height,

width, and channel dimensions of the feature map.

We adopt the same method as WeSAM (Zhang et al., 2024)
to generate prompts (Prompt). Specifically, five positive
points within the ground truth mask and five negative points
outside it are randomly selected as point prompts. Polygon
prompts are generated by fitting coarse polygons around the
ground truth masks. The shared mask decoder integrates
image features and prompt embeddings to produce a seg-
mentation score map: S, /3 = Sigmoid[Dyask (Fo g, P)].
The score map S, /3 is binarized with a threshold T to pro-
duce the final segmentation mask: M, /3 € 0, 1"%%  These
components form two independent collaborative SAM net-
works:

SAM.,/5 = Dimask[Efhs (I214), Eprompt (Prompt)].

@

By fine-tuning only the collaborative image encoders
via LoRA, the framework achieves efficient and domain-
specific adaptation while preserving the rich representations
of the pre-trained SAM. At the end of training, the better-
performing network is selected as the adapted target SAM
model.

5.2. Mutual Learning and Dynamic Role Assignment

The core innovation of our framework is the mutual learning
mechanism, which dynamically assigns the roles of teacher
(7) and student (S) to the two collaborative SAM networks
(SAM,, and SAMy). Different from the fixed-role knowl-
edge distillation, this dynamic role assignment allows the
networks to guide each other alternatively.

A. Reliability Estimation

In the adaptation process, the pre-trained models often for-
get their knowledge due to overfitting. This may degrade the
reliability of the models. Normally, more knowledge pre-
served means higher reliability (Zhang et al., 2024). To this
end, we extract the foreground representations from the im-
age feature maps and corresponding pseudo-segmentation
masks of two collaborative networks (SAM,, /5) and a ref-
erence network (SAM,, original pre-trained SAM). Given
the segmentation score map S, g/~ and image feature map
F, 5/~ generated by these three networks, the foreground
representation f, 3/, is computed as the mean feature vec-
tors of pixels within the predicted foreground region:

how g q(qbd
o/B/y how1 [ arind ’
Zi,j 1( a/B)y > T)
where F;/J 8/ € R€ represents the feature vector at pixel



Mutual Learning for SAM Adaptation: A Dual Collaborative Network Framework for Source-Free Domain Transfer

(4,4), and 1(+) is an indicator function that identifies fore-
ground pixels based on the threshold T. Given a foreground,
we assume that the cooperative network that preserves more
knowledge produces a more similar feature map to the refer-
ence network. So we calculate the cosine similarity between
the foreground representation of each collaborative network
(fa or fg) and that of the pre-trained reference SAM (f,):

fa'fref fﬂ'fref
[ falll frefll” sl fresll

Although f, remains frozen throughout, it encodes rich
and reliable pre-trained knowledge learned from large-scale
datasets. The similarity to f, measures how much pre-
trained knowledge is preserved during adaptation. Collabo-
rative Networks with higher similarity to f,, are considered
more reliable, as their updates are more cautious and less
prone to overfitting to noisy or domain-specific features. So
we consider the network with the higher similarity score to
be the teacher, while the other becomes the student:

(a, B)
(8, )

This dynamic assignment mechanism ensures that the roles
are updated adaptively in each iteration based on the relia-
bility of networks, enabling them to learn from each other
effectively.

SiMy = simg = (@)

if simqo > simg, )

otherwise.

(T’ S) = {

B. Role Assignment Distillation

Once the teacher and student roles are assigned, knowledge
distillation is performed to share information between the
collaborative networks while preserving their complemen-
tary strengths. This is achieved through the direct alignment,
the reverse distillation, and the triplet relationship losses.

Direct Alignment via Knowledge Distillation. The stu-
dent network is trained to align its predictions with those of
the teacher network, enabling the transfer of task-specific
knowledge. The direct alignment loss minimizes the differ-
ence between their segmentation score maps:

(T,S) = (B, )

- JLsam(x: Sa,y: Sp)
Ldz'r‘ect - { (7—’ S) — (Of’ﬂ) (6)

Lsam(z:Sp,y: Sa)

Similarly to (Zhang et al., 2024) and (Carion et al., 2020),
the SAM loss L4 consists the focal loss Focal (Ross &
Dollar, 2017) and the Dice loss Dice (Milletari et al., 2016):

Lsanm(z,y) = Focal(z, detach(y)) + Dice(x, detach(y)). (7)

The detach operation detach(-) ensures that the target score
map (from the teacher) does not participate in backpropaga-
tion, providing stable supervision for the student network.

Reverse Distillation for Network Diversity. Inspired by
(Zhou et al., 2023a; 2022), we introduce a reverse distil-
lation loss to avoid over-convergence and ensure diversity

4 Reverse distillation N

~
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Figure 2. The instruction of the loss components in our proposed
collaborative mutual learning method.

between two collaborative networks. Different from direct
alignment, this loss encourages the teacher network to devi-
ate slightly from the predictions of the student, preventing
both networks from collapsing into identical representations.
The loss also expands the solution space of the teacher net-
work, avoiding local minima caused by over-alignment with
the student. The reverse distillation loss is defined as:

—— {ESAW S5,y 5) (T,8) = (8,0)

(7.8) = (@, 8). ®

—Lsam(x: Sa,y: Sa)

Similar to (Zhang et al., 2024), to prevent catastrophic for-
getting of the pre-trained SAM, we also constrain the out-
puts of both collaborative networks to remain close to the
reference predictions of SAM. This is achieved by minimiz-
ing the SAM loss between each collaborative network and
the reference:

178 JLsam(z i Sp/asy:Sy) (T,8) = (B,a),
(T,8) = (o, B),

©))

Triplet Relationship Loss. To further enhance the robust-
ness of feature learning, we employ a triplet relationship
loss to model the relationships between the teacher, student,
and the reference foreground features. During each training
iteration, the foreground representations of the teacher (f7),
student (fs), and reference (f,) are extracted following Eq.
(3). The triplet relationship loss is defined as:

Livipier = max(0, | fs — £ 12 = | fr — foll5 +6), (10)

preserve — ,CSA]W(x : S&/ﬁyy : S’Y)

where 6 > 0 is a margin hyperparameter. This loss en-
sures that the teacher features remain closer to the reference
features while pushing the student features further away.
This loss can maintain the feature consistency across the
pre-trained SAM, teacher, and student networks. Prevent-
ing excessive divergence and overfitting ensures meaningful
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feature relationships and works synergistically with reverse
distillation and direct alignment losses to enable robust opti-
mization.

5.3. Model Optimization
The total optimization loss is defined as:

Ltotal - Ldirect + )\'r'e'uerseL'r'e’ue'r'se + )\tripletLtriplet

an
+ Lgrese'rve + (1 + )\PT'ESE""UE)L;Z-Teservm

where Areperses Apresercve, and Agriprer are weights of re-
verse distillation, knowledge preserve, and triplet relation-
ship losses, respectively. Arcyerse 1S set to a smaller value,
while Apcserve €Xerts a larger weight on Lyeserve t0 im-
prove the stability of teacher network training. As shown
in Fig. 2, the gradients from Lg;s¢i11, Lireverse, and Lypiplet
encourage convergence toward complementary yet distinct
networks, while Ly,cserve preserve pre-trained knowledge
of original SAM.

6. Experiment
6.1. Datasets and Evaluation

To evaluate the effectiveness of our proposed method, we
conduct extensive experiments on four types of downstream
segmentation tasks, including natural images, medical im-
ages, camouflaged images, and robotic images. These tasks
exhibit varying degrees of domain shift from the pre-trained
dataset of SAM. We used the Mean Intersection over Union
(mlIoU) as the primary metric to assess adaptation perfor-
mance on specific target domains. The results of all compar-
ative methods were obtained from (Zhang et al., 2024). To
provide a more comprehensive evaluation of each adapta-
tion method, we calculated the average mloU, which reflects
the mean performance of the method across three types of
prompts (box, points, and polygon) used for image segmen-
tation. Additionally, we introduced the GAIN metric to
quantify the performance improvement of each adaptation
method over the original SAM (source model). There are six
benchmark datasets employed in our experiments: COCO
(Lin et al., 2014), Pascal VOC (Everingham et al., 2015),
Kvasir-SEG (Jha et al., 2020), CAMO (Le et al., 2019),
CODI10K (Fan et al., 2020), and OCID (Suchi et al., 2019).

COCO. COCO is a widely used dataset in computer vision
tasks, including object detection, segmentation, keypoint
detection, and image captioning. It contains over 330,000
images and 200,000 labeled images. It provides pixel-level
instance segmentation labels of 80 categories.

Pascal VOC. Pascal VOC is a dataset composed of natural
images, featuring 20 object categories with corresponding
bounding box and pixel-level labels. We utilize its 2012
version as the target domain, which includes 11,530 images
and 27,450 labeled instances.

Kvasir-SEG. Kvasir-SEG is a medical image segmentation
dataset containing a large number of gastrointestinal en-
doscopy images. It provides pixel-level segmentation masks
for diseased areas, such as gastrointestinal polyps. This
dataset is used as the target domain for medical-specific
segmentation tasks.

CAMO. CAMO is a dataset for camouflaged object detec-
tion. It primarily contains images of camouflaged animals
and artificially hidden objects. The dataset includes 1,000
images with pixel-level segmentation masks. We employ
CAMO to evaluate the adaptation performance when trans-
ferring from natural images to camouflaged scenarios.

COD10K. CODI10K is a widely used dataset for camou-
flaged object detection. It contains 10,000 images catego-
rized into five super-categories and 69 sub-categories. The
camouflaged objects include animals, plants, artificial ob-
jects, and more. This dataset provides a diverse evaluation
of methods for detecting camouflaged objects.

OCID. OCID is a dataset designed for object detection and
segmentation in indoor scenes, with a focus on recogniz-
ing objects in high-density stacking scenarios. The images
are collected from various indoor environments to simulate
object stacking and occlusion challenges encountered dur-
ing robotic operations. OCID contains over 20,000 images
across 89 categories.

6.2. Implementation Details

The collaborative encoder E%g is initialized using the pre-
trained SAM image encoder with a ViT-B backbone. To
prevent symmetrical failures in the collaborative image en-
coders, we set the amplitude of the normally distributed
random noise perturb to 0.001. During the adaptation
process, we freeze the SAM model and utilize LoRA to
fine-tune only a small subset of parameters, enabling effi-
cient adaptation. We use the Adaptive Moment Estimation
(Adam) optimizer (Kingma, 2014) with a learning rate of
0.0001 and a weight decay of 0.0001. The model is trained
for 20,000 iterations on each target domain, with a batch
size of 1. The hyperparameters A\,cyerse and Apreserve N
the total optimization loss are set to 0.1. To balance the train-
ing between the teacher and student networks, A¢pipiet 1S
set to a small value of 0.01. All experiments are conducted
using four NVIDIA A100 GPUs.

6.3. Comparison with State-Of-The-Arts

Adaptation to natural target domains. Tab. 1 presents
the comparison results on downstream target domains with
natural images. Our method achieves an average mloU of
71.50 on COCO and 76.45 on Pascal VOC, outperforming
existing methods. Compared with WeSAM, WDASS, and
SHOT, our approach improves the average mloU on COCO
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Table 1. Comparison Results on COCO and Pascal VOC. Source and Target denote the models trained with source domain data and
target domain data, respectively. WeSAM* denotes reproduced results of WeSAM.

Method . COCO . Pascal VOC

box point  poly  Average GAIN | box point  poly  Average GAIN
Source 7429 55.06 65.64 65.00 - 69.21 69.21 60.79 66.40 -
Target 81.50 69.77 73.39 74.89 9.90 | 81.23 7698 71.32 76.51 10.11
TENT (Wang et al., 2020) 7821 5299 71.51 67.57 258 | 80.24 7497 65.03 73.41 7.01
SHOT (Liang et al., 2021) 75.18 58.46  69.26 67.63 2.64 | 79.80 7426 63.38 72.48 6.08
soft Teacher (Xu et al., 2021) 7594 4336 68.27 62.52 -2.47 | 7293  56.09 62.20 63.74 -2.66
TRIBE (Su et al., 2024) 77.56 49.56  70.99 66.04 1.05 | 7887 69.21 65.39 71.16 4.76
DePT (Gao et al., 2022) 71.00 3735 63.27 57.21 S7.78 | 74.09 4299  59.94 59.01 -7.39
WDASS (Das et al., 2023) 7729 60.55 70.19 69.34 4.35 80.12 76.15 66.98 74.42 8.02
WeSAM* (Zhang et al., 2024) | 77.32 60.50 70.77 69.53 454 | 80.27 74.15 66.72 73.71 7.31
ours 7897 63.00 72.54 71.50 6.51 | 8290 76.24 70.20 76.45 10.05

Table 2. Comparison Results on CAMO and COD10K. Source and Target denote the models trained with source domain data and

target domain data, respectively.

Method . CAMO ' CODI10K

box point  poly  Average GAIN | box point  poly  Average GAIN
Source 62.72 5743 50.85 57.00 - 66.32 63.61 40.04  56.66 -
Target 79.17 7701 67.12  74.43 1743 | 78.06 7844 6490  73.80 17.15
TENT (Wang et al., 2020) 71.24  59.59  60.29 63.71 6.71 69.36 6194 4336 58.22 1.57
SHOT (Liang et al., 2021) 71.61 6278 58.72 64.37 737 | 69.09 6525 4238 58.91 2.26
soft Teacher (Xu et al., 2021) | 6230 48.64 51.26 54.07 -293 | 6632 50.04 3227 4954 -7.11
TRIBE (Su et al., 2024) 66.00 6197 60.54 62.84 584 | 67.84 63.62 4275 58.07 1.42
DePT (Gao et al., 2022) 5544 33.07 48.63 45.71 -11.29 | 59.32 34.06 3551 42.96 -13.69
WDASS (Das et al., 2023) 7125 6339 6229 65.64 8.64 | 71.42 65.61 4393 60.32 3.67
WeSAM (Zhang et al., 2024) | 7342 65.55 62.90 67.29 1029 | 71.93 70.55 45.87 62.78 6.13
ours 7446 70.21 67.54  70.74 13.74 | 73.89 7283 47.27 64.66 8.01

by 1.97, 2.16, and 3.87, respectively. On Pascal VOC, our
method surpasses WeSAM by 2.74 and WDASS by 2.03 in
average mloU. These results highlight the effectiveness of
our approach in adapting to challenging scenarios.

Adaptation to camouflaged target domains. As illustrated
in Tab. 2, we report the performance of various state-of-
the-art methods on the COCO and COD10K datasets. Our
method achieves the highest average mloU of 70.74 on
COCO and 64.66 on COD10K. Specifically, compared to
the self-training method WeSAM, our approach delivers
substantial improvements of 3.45 and 1.88 in average mloU
on CAMO and CODI10K, respectively. In terms of GAIN,
our method also achieved the largest improvement 13.74
on CAMO and 8.01 on COD10K. Additionally, when com-
pared with other methods like WDASS and SHOT, our
method maintains consistent superiority across all metrics,
further demonstrating its robustness and versatility.

Adaptation to medical target domains. We summarize the
comparison results on kvasir-SEG in Tab. 3. Our method
achieves an average mloU of 83.29, significantly outper-
forming all competing methods. Compared with WeSAM,
TRIBE, and WDASS, our approach improves the average
mloU by 7.26, 5.06, and 12.43, respectively. Our method
achieves a remarkable GAIN improvement of 17.32, sur-

passing WeSAM by 7.26 and TRIBE by 9.06, demonstrating
its clear superiority.

Adaptation to robotic target domains. Tab. 4 lists the
results on the OCID dataset. The segmentation results using
polygon prompts are significantly better than those obtained
with box or point prompts. These results might be caused by
the sparse supervision provided by box and point prompts,
which often includes multiple overlapping or similar in-
stances. Such cases result in ambiguous boundaries and
imprecise masks. In contrast, polygon prompts explicitly de-
fine instance boundaries, reducing ambiguity and enabling
more accurate segmentation. Our method achieves an aver-
age mloU of 84.02, outperforming all competing methods.
Compared with WeSAM and WDASS, our approach sur-
passes them by 2.14 and 3.52 in average mloU. Additionally,
our method achieves a GAIN of 7.16, which is significantly
higher than that of SHOT (2.71) and TRIBE (0.19). These
results demonstrate the effectiveness and robustness of our
method in adapting to the target domain.

6.4. Qualitative Results

Fig. 3 presents the qualitative results of our proposed
method alongside the comparison methods, SAM and We-
SAM. The visualizations demonstrate that our method
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Ground truth

Image and box prompt

Figure 3. Qualitative comparison results on the CAMO target domain among SAM, WeSAM, and our proposed method.

Table 3. Comparison Results on kvasir-SEG. Source and Target
denote the models trained with source domain data and target
domain data, respectively.

kvasir-SEG

Method box  point poly Average GAIN
Source 81.59 6230 54.03 65.97 -
Target 85.89 7754 8l.64 81.69 15.72
TENT 8247 61.84 6297 69.09 3.12
SHOT 8230 63.76 61.34 69.13 3.16
soft Teacher | 84.12 73.53 58.15 71.93 5.96
TRIBE 85.05 73.03 64.61 74.23 8.26
DePT 8191 52.06 61.55 65.17 -0.80
WDASS 84.01 63.78 64.78 70.86 4.89
WeSAM 85.47 7523 67.40 76.03 10.06
ours 86.92 76.18 86.78 83.29 17.32

Table 4. Comparison Results on OCID. Source and Target denote
the models trained with source domain data and target domain data,
respectively.

OCID

Method box point  poly  Average GAIN
Source 86.35 7141 72.81 76.86 -
Target 91.24 89.22 79.23 86.56 9.71
TENT 87.77 66.61 77.53 77.30 0.45
SHOT 88.06 74.39 76.25 79.57 2.71
soft Teacher | 84.98 68.46 73.75 75.73 -1.13
TRIBE 86.77 67.86 76.50 77.04 0.19
DePT 82.00 56.52 7092 69.81 -7.04
WDASS 87.68 77.13 76.70 80.50 3.65
WeSAM 88.09 80.14 7741 81.88 5.02
ours 88.07 77.33 86.66 84.02 7.16

Table 5. Performance comparison of our proposed method with
different loss components. Direct, Reverse, and Triplet denote
the direct alignment distillation loss, reverse distillation loss, and
triplet relationship loss, respectively.

Direct Reverse Triplet CAMO CODIOK
v 68.83 63.21
v v 70.22 64.13
v v 69.75 63.75
v v v 70.74 64.66

achieves finer and more precise segmentation performance
in the downstream segmentation task.

6.5. Ablation Studies

To evaluate the effectiveness of each component in our pro-
posed method, we conduct ablation studies on the adaptation
tasks from source to CAMO and COD10K. We employ the
Average mloU as the metric for evaluating their adaptation
performance.

Ablation on the reverse distillation loss. Tab. 5 shows the
impact of the Reverse Distillation loss on adaptation perfor-
mance. By comparing the baseline method with only Direct
loss (68.83 on CAMO and 63.21 on COD10K) to the method
with both Direct and Reverse losses (70.22 on CAMO and
64.13 on COD10K), it is evident that the Reverse loss signif-
icantly enhances performance. The improvements of 1.39
on CAMO and 0.92 on COD10K demonstrate that the Re-
verse Distillation loss boosts network diversity, enabling the
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Figure 4. Segmentation performance curves of our method and WeSAM. The experiments were conducted in different prompt forms
on two target domain datasets. The orange, blue, and light blue curves represent the performances of WeSAM, SAM,, and SAM, in

our method, respectively.

model to learn more robust and complementary features for
better adaptation results.

Ablation on the triplet relationship loss. Tab. 5 highlights
the contribution of the Triplet Relationship loss to adapta-
tion performance. Adding the Triplet Relationship loss to
the baseline with Direct loss achieves performance gains
from 68.83 to 69.75 on CAMO and from 63.21 to 63.75
on CODI10K. These improvements (0.92 on CAMO and
0.54 on COD10K) show that the Triplet loss effectively cap-
tures the triplet relationships, leading to enhanced feature
representation and improved adaptation performance.

6.6. Effectiveness and Efficiency Analysis

Fig. 4 illustrates the mIoU performance curves of our pro-
posed dual collaborative-network method (Ours) and the
baseline method (WeSAM) on two datasets. Our method
exhibits significantly faster performance improvement com-
pared to WeSAM on both datasets. The mloU curves of
SAM, and S AMg in our method show alternating improve-
ments, demonstrating the mutual learning process. This
allows our model to achieve higher performance levels in
fewer epochs. Furthermore, the final performance of both
SAM, and SAMg surpasses that of WeSAM, highlight-
ing the effectiveness of collaborative mutual learning. The

dynamic teacher-student role switching and collaborative
mutual learning in our method lead to faster convergence
and superior performance, validating its efficiency and ef-
fectiveness over fixed-role approaches.

7. Conclusion

We propose a Collaborative Mutual Learning framework
for source-free domain adaptation of the Segment Anything
Model (SAM). Our approach introduces a dual-network
structure and facilitates their interaction through a flexi-
ble and adaptive training process. During the adaptation
process, we estimate the reliability of the two collabora-
tive networks and propose a Dynamic Role Assignment
mechanism to dynamically assign teacher and student roles
to the networks. To enhance learning, we incorporate the
direct alignment loss, enabling the student network to effec-
tively learn domain-specific features from the teacher. Ad-
ditionally, we employ the reverse distillation loss to avoid
over-convergence and ensure the diversity of the teacher
network. Furthermore, we design a triplet relationship loss
to encourage robust feature learning while preserving the
pre-trained knowledge of SAM. Extensive experiments con-
ducted across various challenging target domains demon-
strate the effectiveness and adaptability of our framework.
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