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ABSTRACT

Deep learning models for time series forecasting, typically optimized with Mean
Squared Error (MSE), often exhibit spectral bias. This phenomenon arises be-
cause MSE prioritizes minimizing errors in high-energy, typically low-frequency
components, leading to an underfitting of crucial, lower-energy high-frequency
dynamics and resulting in overly smooth predictions. To address this, we pro-
pose Self-adaptive Retrieval-augmented Reinforcement learning for time series
Forecasting (SRRF), a novel plug-and-play training enhancement. SRRF uniquely
internalizes high-frequency modeling capabilities into base models during train-
ing, ensuring no additional inference costs or architectural changes for the base
model. The framework operates by first employing Retrieval-Augmented Gen-
eration (RAG) to provide contextual grounding via relevant historical exemplars.
Subsequently, building on this contextual guidance, a Reinforcement Learning (RL)
agent learns an adaptive policy to correct and enhance initial forecasts, optimized
via a reward function that promotes both overall predictive accuracy and fidelity
to high-frequency details. Comprehensive evaluations on diverse benchmarks
demonstrate that models trained with the SRRF methodology substantially improve
upon their original versions and other state-of-the-art techniques, especially in
accurately predicting volatile series and fine-grained temporal patterns. Qualitative
and spectral analyses further confirm SRRF’s effectiveness in mitigating spectral
bias and enhancing high-frequency representation.

1 INTRODUCTION

Accurate time series forecasting is a pivotal task across diverse domains, from optimizing energy
grids and supply chains to financial modeling and climate science (Hyndman & Athanasopoulos,
2018). The past decade has witnessed significant advancements driven by deep learning, with a pro-
liferation of sophisticated architectures based on Convolutional Neural Networks (CNNs) (donghao
& wang xue, 2024), Recurrent Neural Networks (RNNs) (Hochreiter & Schmidhuber, 1997), and
Transformers (Vaswani et al., 2017). These models have continually pushed the state-of-the-art by
effectively modeling complex temporal dependencies.

Despite these architectural innovations, a fundamental limitation persists, rooted in the near-ubiquitous
use of the Mean Squared Error (MSE) loss as the training objective. This choice, while computa-
tionally convenient, induces systemic flaws that severely limit the high-fidelity prediction capabilities
of even the most advanced models. The primary flaw is spectral bias (Xu et al., 2019). In most
real-world time series, low-frequency components (e.g., trends, seasonality) dominate the signal’s
energy. The MSE loss, being proportional to the squared error, forces gradient-based optimizers to
disproportionately prioritize fitting these high-energy components to achieve a rapid reduction in the
overall loss. This process effectively transforms the deep learning model into an implicit low-pass
filter, systematically underfitting the crucial, albeit low-energy, high-frequency details. A closely
related second flaw is amplitude suppression. In their effort to minimize squared errors across an
entire dataset, models learn a conservative, risk-averse mapping that regresses towards the mean. This
results in predictions that are confined to a narrower value range than the true signal, consistently
failing to forecast the magnitude of critical extreme events.

These two flaws are not merely theoretical concerns; they represent a critical barrier to practical
deployment. The failure of models to capture high-frequency details and predict extreme values is
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precisely what makes them unreliable in high-stakes applications. This systemic failure is illustrated
in Figure 1. On the one hand, a standard model completely ignores the high-frequency oscillations
of a signal, regressing to the mean trend. On the other hand, it systematically underestimates the
signal’s volatility, failing to predict sharp peaks and troughs.
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Figure 1: Illustration of two fundamental flaws common in standard forecasting models, using
synthetic data for a clear depiction. (a) Spectral Bias: A base model (dashed orange) ignores
the high-frequency oscillations of the ground truth (solid blue), learning only the underlying trend.
The zoomed-in view highlights this failure. (b) Amplitude Suppression: The predicted volatility
envelope (orange) is systematically compressed compared to the true volatility (blue), demonstrating
the failure to forecast extreme values.

To overcome this dual challenge, we propose the Self-adaptive Retrieval-augmented Reinforcement
learning framework (SRRF). SRRF is a novel, plug-and-play training enhancement that addresses the
root cause of the problem without altering the base model’s architecture. It integrates Reinforcement
Learning (RL) with Retrieval-Augmented Generation (RAG) to create a sophisticated correction
mechanism. The RAG component provides crucial context by retrieving historical exemplars of
complex dynamics, while the RL agent learns an adaptive policy to refine the base model’s initial
forecast. This policy is optimized via a reward function that is explicitly sensitive to both overall
accuracy and high-fidelity details, thus escaping the limitations of the MSE gradient. As SRRF is a
training-time methodology, it internalizes these enhanced capabilities into the base model, incurring
no additional overhead at inference time.

Our contributions are summarized as follows:

• We identify and characterize two systemic flaws in MSE-trained models—spectral bias and
amplitude suppression—and propose a novel framework, SRRF, designed as a plug-and-play
training enhancement to counteract them.

• We provide a rigorous, self-contained theoretical justification for SRRF in the main text,
demonstrating from both an optimization and a statistical perspective how it resolves the
gradient dilemma of standard losses and manages the bias-variance trade-off.

• We present comprehensive empirical results demonstrating that SRRF yields significant
performance improvements across a wide range of state-of-the-art models. Crucially, we
provide a head-to-head comparison against simpler differentiable alternatives, verifying the
necessity of our RL-based decoupled design.

2 PROBLEM FORMULATION AND THEORETICAL MOTIVATION

In this section, we establish the theoretical foundations that motivate our work. We first provide a
formal problem definition for time series forecasting. We then deconstruct the systemic flaws of
standard training paradigms from two complementary perspectives: an optimization view, which
reveals a fundamental gradient dilemma that hinders the learning of fine details, and a statistical
view, which frames the problem as a bias-variance trade-off in forecast correction. This analysis
provides a self-contained justification for the architectural principles of our proposed framework. For
interested readers, detailed mathematical derivations are provided in Appendix B.
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2.1 FORMAL PROBLEM DEFINITION

Let a multivariate time series be denoted as a sequence of observations X = (x1,x2, . . . ,xt, . . . ),
where each observation xt ∈ RD is a D-dimensional vector. The task of time series forecasting is,
given a lookback window of L historical observations, Xt = (xt−L+1, . . . ,xt) ∈ RL×D, to predict
the corresponding future sequence of P observations, Yt = (xt+1, . . . ,xt+P ) ∈ RP×D. A deep
forecasting model, parameterized by θ, learns a mapping fθ : RL×D → RP×D that generates a
prediction Ŷt = fθ(Xt). The parameters θ are typically optimized by minimizing a loss function
L(Ŷt,Yt) over a training dataset.

2.2 THE OPTIMIZATION VIEW: A GRADIENT DILEMMA

The choice of the loss function L profoundly impacts the learning dynamics. We argue that standard
loss functions, such as Mean Squared Error (MSE) and Mean Absolute Error (MAE), create an
irreconcilable gradient dilemma for high-fidelity forecasting.

The Vanishing Gradient Problem of MSE. The MSE loss, LMSE = 1
P ·D

∑
i,j(yij − ŷij)

2,
provides a gradient with respect to a prediction ŷ that is directly proportional to the error, i.e.,
∇ŷLMSE ∝ (y − ŷ). While this ensures smooth convergence when errors are large, it becomes the
root cause of spectral bias and amplitude suppression. For small errors, which are characteristic of the
fine-grained, high-frequency details or subtle amplitude variations that a model has almost captured,
the gradient signal becomes vanishingly small. Consequently, the optimizer lacks the necessary
signal to perform the final, precise adjustments required for high-fidelity prediction, leading to overly
smooth forecasts that neglect these critical details.

The Instability of MAE. The MAE loss, LMAE = 1
P ·D

∑
i,j |yij − ŷij |, attempts to solve

this with a constant-magnitude gradient, ∇ŷLMAE ∝ sgn(y − ŷ). This ensures a strong, non-
vanishing learning signal even for small errors. However, this property introduces training instability,
particularly during the crucial fine-tuning phase. As the model’s predictions approach the ground
truth, the persistently large gradient steps can cause the parameters to oscillate around the optima,
preventing smooth and precise convergence and often degrading the final accuracy.

The Dilemma: The Need for an Adaptive Signal. The analysis of MSE and MAE reveals a
fundamental dilemma: an ideal learning signal must be (1) strong and non-vanishing for small errors
to learn fine-grained details (like MAE), yet (2) scaled by the error magnitude to ensure stable
convergence (like MSE). No fixed loss function can satisfy both competing criteria. This necessitates
a more sophisticated mechanism capable of generating an adaptive learning signal—one that is strong
when it needs to correct meaningful details but gentle when it needs to stabilize. This motivates
the use of a reinforcement learning framework, where the advantage function A(s, a) can provide
precisely such a dynamic signal, rewarding effective corrections strongly while ignoring marginal
ones, thus resolving the gradient dilemma.

2.3 THE STATISTICAL VIEW: THE BIAS-VARIANCE CHALLENGE IN CORRECTION

From a statistical perspective, the problem can be reframed as a bias-variance trade-off. Correcting
the flaws of a base model requires reducing its bias without excessively increasing the variance of the
final prediction.

The High-Bias Nature of the Base Predictor and High-Variance Risk of Correction. A model
fθ trained with MSE is inherently a high-bias estimator with respect to high-fidelity signals. It
systematically underestimates both high-frequency dynamics and the magnitude of extreme events.
Formally, its bias for these components, Bias(ŷ) = E[ŷ]− y, is consistently large. To correct this,
one could introduce a corrector module that learns a correction term a, yielding ŷcorr = ŷ + a. The
goal is for a to be an unbiased estimator of the model’s residual, i.e., E[a]→ −Bias(ŷ). However,
a powerful, unconstrained corrector can easily overfit to noise, introducing a large variance term,
Var(a). This high variance can overwhelm the gains from bias reduction, as the total error is a
function of both: MSE(ŷcorr) = Bias(ŷcorr)2 + Var(ŷcorr). A naive, end-to-end joint training of a
corrector often falls into this trap.
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The Need for a Variance-Controlled Corrector. This analysis reveals that a successful solution
must be a variance-controlled corrector. It must be powerful enough to reduce the substantial biases
of the base model while being rigorously constrained to ensure that the correction itself has low
variance. This principle directly motivates the core components of SRRF. First, to constrain the search
space of possible corrections, we need a strong contextual prior. RAG provides this by grounding the
correction in plausible historical exemplars. Second, to ensure the learned correction policy is stable,
we need explicit variance-reduction mechanisms. This is achieved through the integrated design
of our RL agent, which employs techniques like temporal pooling, L2 regularization on the action
magnitude, and the use of an advantage estimator to ensure that it learns an effective, yet stable and
reliable, correction policy.

3 METHODOLOGY

As motivated in Section 2, to address the gradient dilemma of traditional losses and the bias-variance
challenge in forecast correction, we propose the Self-adaptive Retrieval-augmented Reinforcement
learning (SRRF) framework. This section delineates the proposed methodology, which integrates
a retrieval-augmented framework with an RL-based self-reflection and self-correction mechanism
designed to systematically reduce bias while controlling variance. The method is structured into three
primary phases: retrieval of similar historical sequences, fusion of model predictions with retrieved
references, and correction via an RL policy network. We begin by presenting the overall architecture
in Section 3.1, followed by the construction of the external database in Section 3.2, and conclude
with the RL-based self-reflection and correction mechanism in Section 3.3.

Database
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Base
Model
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Reward
Func
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Figure 2: Overall architecture of the proposed SRRF framework. During training, an input series x is
fed into a base model to produce an initial prediction ŷ. In parallel, a reference yref is synthesized
from retrieved historical exemplars. The state s = [ŷ;yref] is used by an RL policy network to sample
a correction term a′, leading to the final adjusted prediction yadjusted. The entire system is optimized
with a combined loss Ltotal, while the policy network is updated via policy gradients. At inference
time, only the trained base model is used, incurring no extra overhead.

3.1 FRAMEWORK OVERVIEW

The proposed framework, illustrated in Figure 2, is a plug-and-play module built upon the tslib
library, designed to enhance time series forecasting. It operates through three key phases:

• Retrieval: Retrieves the top-k similar sequences from an external database DR based on
the input sequence, obtaining their corresponding ground-truth sequences as references.
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• Fusion: Combines the model’s initial prediction ŷ with the retrieved reference yref to
compute a discrepancy signal, which is fed into the self-reflection and self-correction
(SRSC) module.

• Correction: Evaluates the discrepancy between ŷ and yref, samples a correction term using
an RL policy network, and adjusts the prediction to produce the final output.

3.2 BUILDING THE EXTERNAL DATABASE

To enable efficient retrieval, we construct an external database DR from the training dataset. For
each batch in the training set, input sequences of shape [B,L,D] (where B is the batch size, L is the
sequence length, and D is the feature dimension) are flattened along the last two dimensions to shape
[B,F ] (where F = L ·D) and stored in a FAISS index (Johnson et al., 2019) for fast similarity search
using Euclidean distance. The corresponding ground-truth sequences of shape [B,P,D] (where P
is the prediction length) are stored in a separate tensor to serve as references during retrieval. This
process can be formally expressed as:

DR =
{
(xi,yi) | xi ∈ RF ,yi ∈ RG, i = 1, 2, . . . , N

}
, (1)

where xi ∈ RF is the input sequence flattened along the sequence length and feature dimensions,
yi ∈ RG (with G = P ·D) is the corresponding ground-truth sequence, and N is the total number
of sequences in the training set. The FAISS index is constructed by adding all xi, while yi are
stored separately for retrieval. This approach ensures that DR captures the full diversity of historical
patterns, facilitating accurate retrieval of relevant sequences.

3.3 SELF-REFLECTION AND SELF-CORRECTION BASED ON REINFORCEMENT LEARNING

To elevate the predictive performance, we introduce a sophisticated self-reflection and self-correction
mechanism driven by a lightweight policy network. This mechanism dynamically analyzes the dis-
crepancy between the model’s initial prediction and a reference synthesized from retrieved sequences,
subsequently generating a correction term to refine the prediction, thereby enhancing robustness and
accuracy.

Retrieval Mechanism For a given input sequence x ∈ RF , we retrieve the top-k most similar
sequences from DR, which computes the Euclidean distance d(u,v) = ∥u− v∥2. The ground-truth
values of the retrieved sequences {yi}ki=1 are aggregated to form a reference yref via a weighted
average:

yref =

k∑
i=1

αiyi, αi =
exp(−di)∑k
j=1 exp(−dj)

, (2)

where di = ∥x− xi∥2 is the distance to the i-th retrieved sequence, d = {di}ki=1, and ϵ is a small
constant to prevent division by zero. This formulation ensures that sequences closer to the query
contribute more significantly to the reference.

Self-Reflection and Correction The policy network observes the state signal s = [yref; ŷ], capturing
the discrepancy between the reference and the initial prediction ŷ. It parameterizes a normal
distribution with mean µ and standard deviation σ, from which a correction term a is sampled:

a ∼ N (µ, σ2). (3)

To model the temporal dependencies among time steps, which are initially treated as independent by
the policy network, we apply a temporal pooling operation to the correction term. This operation can
be defined as:

a′ = Pool(a;κ, τ, ρ), (4)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

where Pool(·) denotes an average pooling function with kernel size κ, stride τ , and padding ρ,
ensuring that the correction term captures local temporal correlations, enhancing the coherence of the
adjusted prediction.

Justification for Temporal Pooling This pooling step is a crucial design choice for ensuring tempo-
ral coherence. The policy network initially predicts parameters for the correction term independently
at each timestep. Without pooling, a direct sample from this distribution could result in a noisy
correction signal where adjacent timesteps are uncorrelated, potentially introducing spurious spikes
or "glitches" into the forecast. The temporal pooling operation acts as a smoothing filter on this
raw signal. By averaging over a local window, it enforces that adjustments are correlated across
neighboring timesteps, promoting a structured and plausible correction rather than erratic, point-wise
noise. The final adjusted prediction is computed as:

yadjusted = ŷ + a′. (5)

The effectiveness of the correction is evaluated using reward functions based on the Mean Squared
Error (MSE) and Mean Absolute Error (MAE):

rMSE = MSE(ŷ, ygt)−MSE(yadjusted, ygt), rMAE = MAE(ŷ, ygt)−MAE(yadjusted, ygt), (6)

where ygt is the true target. The total reward is defined as:

r =


2, if rMSE > 0 and rMAE > 0,

1, if rMSE > 0 or rMAE > 0,

0, otherwise

(7)

A positive reward indicates that the adjusted prediction is closer to the ground truth than the initial
prediction. We opt for this discrete reward scheme as our early experiments revealed that directly
using continuous reward values often led to high variance and numerical instability in policy gradient
updates. The discrete signal provides a clearer and more stable learning signal for credit assignment.

Optimization and Regularization The policy network is optimized using an RL objective inspired
by Shao et al. (2024). For each sampled correction a′j (where j = 1, 2, . . . , N , and N is the number
of samples), we compute the reward rj and normalize it to obtain the advantage:

Aj =
rj −mean(r)

std(r) + ϵ
, (8)

where r = {rj}Nj=1, ϵ is a small constant for numerical stability. The RL loss is defined as:

LRL = −E[{aj}N
j=1∼π(a|s)]

 1

N

N∑
j=1

log π(aj |s) ·Aj

+ λ · 1
N

N∑
j=1

∥a′j∥2, (9)

where π(aj |s) is the probability of action aj given state s, and λ is the regularization coefficient to
constrain the magnitude of corrections. The total loss combines the supervised MSE loss and the RL
loss with weights:

Ltotal = γ1 ·MSE(ŷ, ygt) + γ2 · LRL, (10)

where γ1 and γ2 balance the contributions of the two loss terms. This integrated approach ensures
that the model leverages historical patterns through retrieval and dynamically refines predictions
using RL, achieving superior performance in time series forecasting tasks.
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4 EXPERIMENTS

In this section, we conduct a comprehensive set of experiments to validate the effectiveness of the
proposed SRRF framework. We first present the main forecasting results against sota baselines. We
then provide critical ablation studies to justify our core design choices. Finally, we analyze key
properties of SRRF, including its impact on spectral fidelity and its sensitivity to hyperparameters.

4.1 EXPERIMENTAL SETUP

Datasets and Baselines. Our evaluation is performed on five real-world multivariate time-series
benchmarks: ECL, ETT (with four sub-datasets), Exchange, Traffic, and Weather. We compare
SRRF against ten well-acknowledged forecasting models, encompassing Transformer-based, Linear-
based, TCN-based, and LLM-based architectures.

Evaluation Protocol. We adhere to the standard data processing and evaluation protocols estab-
lished by recent benchmark studies (Wu et al., 2022) to ensure a fair and direct comparison. The
primary metrics are Mean Squared Error (MSE) and Mean Absolute Error (MAE). For reproducibility,
detailed descriptions of the datasets, baseline implementations, and full experimental settings are
provided in Appendix C.

4.2 MAIN RESULTS

We apply SRRF on top of iTransformer, a strong baseline, and compare its performance against
the original model and other state-of-the-art methods. Table 1 summarizes the average MSE and
MAE over all prediction horizons. The results demonstrate that SRRF consistently yields substantial
performance gains, outperforming not only its base model but also other strong competitors across
most datasets. This highlights the widespread nature of the spectral bias problem and the general
effectiveness of SRRF as a solution.

Table 1: Forecasting results with prediction lengths S ∈ {96, 192, 336, 720} and fixed lookback
length T = 96. Results are averaged from all prediction lengths. Avg means further averaged by
subsets. The result of SRRF is based on iTransformer (Liu et al., 2023). Full results are listed in
Appendix D.

Models SRRF iTransformer RLinear PatchTST ModernTCN FITS DLinear GPT4TS
(Ours) (2023) (2023) (2023) (2024) (2023) (2022) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.435 0.430 0.454 0.447 0.446 0.434 0.469 0.454 0.479 0.463 0.444 0.432 0.456 0.452 0.444 0.436

ETTh2 0.374 0.399 0.383 0.407 0.374 0.398 0.387 0.407 0.413 0.430 0.381 0.402 0.558 0.515 0.379 0.406

ETTm1 0.378 0.396 0.407 0.410 0.414 0.408 0.387 0.400 0.417 0.420 0.402 0.400 0.403 0.406 0.382 0.399

ETTm2 0.277 0.322 0.288 0.332 0.286 0.327 0.280 0.326 0.321 0.360 0.285 0.325 0.350 0.400 0.280 0.325

Weather 0.244 0.273 0.258 0.278 0.272 0.291 0.259 0.281 0.247 0.274 0.250 0.278 0.265 0.316 0.260 0.280

Exchange 0.308 0.379 0.360 0.403 0.378 0.417 0.367 0.404 0.399 0.445 0.375 0.414 0.354 0.414 0.359 0.403

ECL 0.173 0.268 0.178 0.270 0.219 0.298 0.205 0.290 0.219 0.324 0.225 0.307 0.211 0.300 0.277 0.364

Traffic 0.421 0.282 0.428 0.282 0.626 0.378 0.481 0.304 0.568 0.358 0.6335 0.385 0.624 0.383 0.550 0.383

4.3 ABLATION STUDIES

We conduct two critical ablation studies to validate the core design choices of the SRRF framework.

Plug-and-Play Generalization. To demonstrate the broad, model-agnostic effectiveness of SRRF,
we integrate it into seven diverse, state-of-the-art base models. As shown in Table 2, SRRF con-
sistently improves performance regardless of the underlying architecture. The framework achieves
an average MSE reduction of 7.23% and MAE reduction of 5.89% across all tested scenarios, with
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particularly significant improvements observed in datasets exhibiting complex temporal dynamics,
such as Weather and Traffic. These results confirm SRRF’s versatility as a general-purpose training
enhancement that can be readily integrated into a wide variety of forecasting models.

Table 2: Performance promotion obtained by our SRRF framework. We report the average perfor-
mance and the relative MSE reduction (Promotion).

Models iTransformer RLinear PatchTST ModernTCN FITS DLinear GPT4TS
(2023) (2023) (2023) (2024) (2023) (2022) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETT
Original 0.383 0.399 0.380 0.390 0.380 0.397 0.407 0.418 0.378 0.390 0.441 0.443 0.371 0.391
+SRRF 0.373 0.393 0.382 0.392 0.370 0.311 0.376 0.293 0.377 0.293 0.409 0.293 0.366 0.291

Promotion 2.6% 1.5% -0.5% -0.5% 2.7% 27.6% 8.2% 42.6% 0.2% 2.3% 7.8% 51.1% 1.3% 34.3%

ECL
Original 0.178 0.270 0.218 0.298 0.204 0.290 0.188 0.289 0.225 0.307 0.211 0.300 0.277 0.364
+SRRF 0.172 0.268 0.206 0.308 0.186 0.275 0.180 0.278 0.224 0.307 0.181 0.272 0.207 0.303

Promotion 2.8% 0.7% 5.7% -3.2% 9.6% 5.4% 4.4% 3.9% 0.4% 0% 16.5% 10.2% 33.8% 20.1%

Traffic
Original 0.428 0.282 0.741 0.422 0.764 0.416 0.750 0.421 0.750 0.421 0.750 0.421 0.658 0.356
+SRRF 0.421 0.282 0.647 0.370 0.662 0.380 0.524 0.355 0.524 0.355 0.524 0.355 0.492 0.333

Promotion 1.6% 0.0% 12.7% 12.3% 13.3% 8.6% 30.1% 15.6% 30.1% 15.6% 30.1% 15.6% 25.2% 6.4%

Weather
Original 0.258 0.278 0.803 0.656 0.634 0.548 0.286 0.308 0.286 0.308 0.286 0.308 0.659 0.574
+SRRF 0.256 0.276 0.248 0.292 0.271 0.330 0.266 0.285 0.266 0.285 0.266 0.285 0.262 0.282

Promotion 0.7% 0.7% 69.2% 55.5% 57.3% 39.8% 7.2% 7.7% 7.2% 7.7% 7.2% 7.7% 60.2% 50.8%

Exchange
Original 0.360 0.403 0.379 0.416 0.367 0.404 0.399 0.445 0.375 0.414 0.354 0.414 0.360 0.403
+SRRF 0.350 0.399 0.365 0.405 0.354 0.399 0.388 0.413 0.380 0.418 0.308 0.379 0.353 0.398

Promotion 3.0% 1.0% 3.8% 3.2% 3.7% 1.2% 2.8% 7.9% -1.5% -0.8% 15.0% 9.2% 1.9% 1.1%

Necessity of the Reinforcement Learning Framework. A crucial question is whether our RL-
based framework is necessary over simpler, end-to-end differentiable alternatives. We compare SRRF
against two baselines: (1) a Joint baseline, where a correction module is trained jointly with the base
model via a standard MSE loss, and (2) an RL-only baseline, where only the RL policy is trained to
correct a frozen base model. As shown in Table 3, the Joint baseline suffers from training instability
and catastrophic performance degradation on complex datasets, indicating a destructive interference
between learning objectives. The RL-only baseline also fails, as its reward signal vanishes when
the base model improves. In contrast, our SRRF framework, which decouples the training via RL,
achieves robust and superior performance, providing strong empirical evidence for the necessity of
our design.

Table 3: Ablation study on the necessity of the
RL framework on the Weather and ECL datasets.
The Joint baseline demonstrates instability, while
our SRRF approach is robust and effective.

Method Weather ECL
MSE MAE MSE MAE

iTransformer (Baseline) 0.1736 0.2148 0.1483 0.2404
Joint (Differentiable) 0.1717 0.2131 1.2805 0.8851
RL-only 0.2126 0.2666 0.8745 0.7610
SRRF (Ours) 0.1694 0.2102 0.1461 0.2390

Table 4: Sensitivity analysis for the RL loss
weight γ2 (with γ1 = 1.0) on iTransformer
(Input-96, Predict-96). Best results for each
dataset are in bold.

γ2 Weather (MSE / MAE) ECL (MSE / MAE)
0 (Baseline) 0.1736 / 0.2148 0.1483 / 0.2404

0.1 0.1737 / 0.2170 0.1485 / 0.2423
0.5 0.1694 / 0.2102 0.1462 / 0.2393
1.0 0.1740 / 0.2180 0.1461 / 0.2390
5.0 0.1737 / 0.2170 0.1587 / 0.2508

4.4 PERFORMANCE ANALYSIS

We further analyze key properties of SRRF, including its impact on spectral fidelity and its sensitivity
to hyperparameters.

Spectral Fidelity Analysis. A core claim of our work is that SRRF mitigates the spectral bias
inherent in MSE-trained models. To validate this claim quantitatively, we analyze the Frequency Root
Mean Squared Error (FRMSE). The aggregate results in Figure 3 demonstrate that SRRF consistently
reduces frequency-domain error across a wide range of models and datasets, offering robust evidence
of enhanced spectral fidelity.

To deconstruct this quantitative improvement and provide qualitative insight, we present a case
study of the iTransformer model on the volatile Exchange dataset in Figure 5. The time-domain
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plot (left) vividly illustrates how SRRF corrects the overly smooth predictions of the base model,
faithfully capturing the sharp, transient fluctuations of the ground truth. This visual enhancement
has a clear basis in the frequency domain (right): SRRF successfully restores the high-frequency
spectral power that the base model erroneously suppresses, leading to a predicted spectrum that
aligns far more closely with that of the ground truth. This representative example, supported by
additional visualizations in Appendix D.3, provides compelling qualitative evidence for SRRF’s
ability to counteract spectral bias by capturing fine-grained temporal patterns.
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Figure 3: FRMSE before and after SRRF enhancement (Input-96, Predict-96). Blue bars correspond
to base models; red bars correspond to SRRF-enhanced versions.

Hyperparameter Sensitivity. We analyze the sensitivity of SRRF to its key hyperparameters. The
performance as a function of the retrieval count (k) and RL sample count (Ns) is shown in Figure 4.
Performance generally improves with more samples (Ns) but can degrade if too many exemplars (k)
are retrieved, likely due to noise. Furthermore, the sensitivity to the RL loss weight γ2 is presented in
Table 4. The results show a clear optimal region (γ2 ∈ [0.5, 1.0]), confirming that the RL component
acts as an effective auxiliary objective.
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Figure 4: The effect of hyperparam-
eter Ns and k.
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Figure 5: Time-domain and frequency-domain prediction
results of iTransformer on the Exchange dataset.

5 DISCUSSION

We introduce SRRF, a plug-and-play training enhancement that combines RAG with RL to mitigate
the spectral bias of MSE-optimized time series forecasting models. Our experiments show that
SRRF consistently improves accuracy across diverse state-of-the-art architectures, with pronounced
benefits for volatile and long-horizon forecasting. Nevertheless, SRRF incurs extra training costs
due to retrieval and RL sampling, and its Euclidean distance-based retrieval may overlook complex
similarities. Future directions include improving training efficiency, exploring more expressive
retrieval mechanisms, and extending SRRF to tasks such as anomaly detection, classification, and
imputation.

ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. Our work is foundational in nature, focusing
on improving the technical accuracy and spectral fidelity of time series forecasting models. The
potential positive societal impacts include more efficient resource management in sectors like energy
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and transportation, and improved modeling in climate science. We used only publicly available,
anonymized benchmark datasets that contain no personally identifiable or sensitive information.
While any forecasting technology could potentially be misused, our work does not introduce any new
or specific vulnerabilities. The proposed SRRF framework is a general-purpose training enhancement
and is not designed for any specific high-risk application. We foresee no direct negative societal
impacts stemming from this research.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have made the following resources available. Source
Code: The complete source code for the SRRF framework, along with scripts to reproduce all
experiments presented in this paper, is provided in the supplementary materials. The code is available
at the following URL: https://anonymous.4open.science/r/ACAC-9999/README.md. Theoretical
Claims: The theoretical arguments presented in Section 2 are supported by detailed, step-by-step
mathematical proofs in Appendix B, covering both the gradient dilemma and the bias-variance frame-
work. Datasets: All datasets used in our empirical evaluation are publicly available benchmarks. We
cite their original sources and provide a detailed description in Appendix C.1. Our data processing
follows the standard protocol established by prior work, also detailed in the appendix. Experimen-
tal Details: All hyperparameters and implementation details for our experiments, including the
configurations for all baseline models, are documented in Appendix C.2.
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LLM USAGE STATEMENT

In the preparation of this manuscript, we utilized a large language model (LLM) as a general-purpose
writing assistant. The primary use of the LLM was for improving the clarity, grammar, and phrasing
of the text. The LLM did not contribute to the core research ideation, the design of the SRRF
framework, the experimental methodology, or the analysis of the results. All theoretical claims
and empirical findings presented in this paper are the original work of the authors, who take full
responsibility for the content of this submission.

A RELATED WORK

A.1 EXISTING TIME SERIES MODELS

The success of deep learning in time series forecasting has given rise to a variety of architectures,
each providing different inductive biases. Traditional statistical models such as Autoregressive
Integrated Moving Average (ARIMA) (Shumway et al., 2017) and Exponential Smoothing (Hyndman
& Athanasopoulos, 2018) have been widely used due to their simplicity and interpretability. However,
these models often struggle with complex, non-linear, and high-dimensional data commonly found in
modern applications.

The success of deep learning in time series forecasting has given rise to a variety of architectures,
each providing different inductive biases. Recurrent Neural Networks (RNNs) based models, such
as particularly Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997),
have been successful in capturing temporal dependencies. Convolutional Neural Networks (CNNs)
based models have also been adapted for time series forecasting by leveraging their ability to
extract local patterns (donghao & wang xue, 2024). Meanwhile, transformer-based (Vaswani et al.,
2017) models have gained popularity due to their effectiveness in handling long-range dependencies
through attention mechanisms. Notable examples include the Informer (Zhou et al., 2021), which
introduces a probabilistic sparse attention mechanism to efficiently handle long sequences, and the
Autoformer (Wu et al., 2021), which incorporates a decomposition architecture to separate trend and
seasonal components, and FedFormer (Zhou et al., 2022) combined Fourier transforms with attention
to capture periodic features. The iTransformer (Liu et al., 2023) further innovates by applying
attention and feed-forward networks on inverted dimensions, focusing on variate tokens to capture
multivariate correlations. More recently, researchers have explored simple MLP-based architectures
coupled with clever preprocessing; for example, channel decomposition or patching techniques (Zeng
et al., 2022) allow MLP models to achieve competitive accuracy with much lower complexity. Each
of these architectures excels under certain conditions; however, they generally operate under a static
training paradigm and can struggle when patterns shift or when encountering novel behaviors not
seen in training data.

A.2 RETRIEVAL-AUGMENTED GENERATION FOR TIME SERIES FORECASTING

Retrieval-Augmented Generation (RAG)(Lewis et al., 2020) is a technique originally from natural
language processing that combines retrieval of relevant information with generative models to improve
performance. In the context of time series forecasting, RAG involves retrieving similar historical
sequences to inform the forecast of future values.

Recent studies have explored the application of RAG to time series forecasting. For instance, (Tire
et al., 2024) introduced Retrieval Augmented Forecasting (RAF), which integrates retrieval mech-
anisms into time series foundation models to enhance zero-shot forecasting performance. Their
framework demonstrates improved accuracy across diverse time series domains by leveraging related
time series examples.

Another approach by (Ravuru et al., 2024) proposes an agentic RAG framework for time series
analysis, where a multi-agent system retrieves relevant prompts from a shared repository to improve
predictions. This hierarchical architecture allows for specialized sub-agents to handle specific tasks,
leading to better performance in various time series applications.

These works highlight the potential of RAG in enhancing time series forecasting by providing
additional context and reducing the reliance on large training datasets.
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A.3 REINFORCEMENT LEARNING FOR TIME SERIES FORECASTING

Reinforcement Learning (RL) has been applied to time series forecasting in various ways, including
model selection, parameter tuning, and direct forecasting. In RL, an agent learns to make decisions
by interacting with an environment to maximize cumulative rewards.

For time series forecasting, RL can be used to dynamically select or combine models based on their
performance. (Fu et al., 2022) proposed an RL-based model combination framework that learns to
assign weights to base models in an ensemble, adapting to non-stationary time series data.

Additionally, RL can be employed to train forecasting models directly. (Kuremoto et al., 2014)
introduced a deep belief net (DBN) trained with a reinforcement learning algorithm called stochastic
gradient ascent (SGA), demonstrating improved robustness and forecasting accuracy.

In our work, we utilize RL to adjust the predictions made by our forecasting model based on retrieved
similar sequences, optimizing the adjustment policy to minimize forecasting errors. This approach is
inspired by the need to refine forecasts using historical patterns and is, to the best of our knowledge,
a novel application of RL in this context.

B DETAILED THEORETICAL PROOFS

This appendix provides the formal theoretical underpinnings for the SRRF framework. We begin by
mathematically establishing the core problem: the insufficiency of standard loss functions like MSE
and MAE for high-fidelity time series forecasting. We then prove how SRRF serves as a principled
solution to the challenges identified.

B.1 ANALYSIS OF THE GRADIENT DILEMMA

Our core argument begins with a formal analysis of why standard gradient-based optimization with
conventional losses fails to capture high-frequency details.

Spectral Analysis of the MSE Gradient. The Mean Squared Error (MSE) loss is defined as
LMSE(θ) =

1
T

∑T−1
t=0 (yt − ŷt(θ))

2. Using the discrete Fourier transform (DFT), where Y (ω) =

F(yt) and Ŷ (ω; θ) = F(ŷt(θ)), Parseval’s theorem allows us to express the loss in the frequency
domain:

LMSE(θ) =
1

T 2

T−1∑
ω=0

|Y (ω)− Ŷ (ω; θ)|2 (11)

To analyze the learning dynamics, we can conceptualize the model’s prediction for a specific frequency
ω as being controlled by a set of parameters θω. The gradient of the loss with respect to these
parameters is therefore:

∂LMSE

∂θω
∝ −

(
Y (ω)− Ŷ (ω; θ)

)
(12)

During gradient descent, the magnitude of the parameter update for frequency ω is |∆θω| ∝ |Y (ω)−
Ŷ (ω; θ)|. In the early stages of training, or for components the model has not yet learned, Ŷ (ω; θ) ≈ 0.
Thus, the update magnitude is approximately proportional to the magnitude of the true signal’s
frequency component:

|∆θω| ∝ |Y (ω)| (13)
This proportionality is the mathematical origin of spectral bias. For real-world time series where low-
frequency components have vastly larger energy (i.e., larger |Y (ω)|), their corresponding parameters
receive proportionally larger gradient updates. The learning signal for low-energy, high-frequency
components is thus comparatively minuscule, causing the model to systematically underfit them.

The Optimization Challenge of MAE. A natural alternative to address the vanishing gradient for
small errors is the Mean Absolute Error (MAE) loss, LMAE = 1

T

∑T−1
t=0 |yt − ŷt|. Its gradient with

respect to a prediction ŷt is:
∂LMAE

∂ŷt
= −sgn(yt − ŷt) (14)
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The magnitude of the gradient is constant, |∂LMAE

∂ŷt
| = 1 (for yt ̸= ŷt). While this solves the

vanishing gradient problem, it introduces a critical optimization challenge. During the fine-tuning
stage of training, when the prediction ŷt is already very close to the true value yt, the MAE loss
continues to provide a large, constant-magnitude update signal. This can cause the optimization
process to repeatedly "overshoot" the minimum, leading to oscillations and preventing smooth,
precise convergence.

The Dilemma. The analysis of MSE and MAE reveals a fundamental gradient dilemma: an ideal
loss function should provide a learning signal that is (a) strong and non-vanishing for small errors to
counteract spectral bias, but also (b) scaled by the magnitude of the error to ensure stable convergence.
Neither MSE nor MAE satisfies both criteria. This necessitates a more advanced mechanism that can
generate an adaptive learning signal.

B.2 SRRF AS A PRINCIPLED, VARIANCE-CONTROLLED SOLUTION

Having established the problem, we now prove how SRRF provides a systematic solution from two
complementary perspectives.

The Advantage Function as an Adaptive Learning Signal. The Reinforcement Learning (RL)
agent in SRRF is updated via a policy gradient method. The gradient of the objective J(ϕ) =
Ea∼πϕ

[r(a)] is estimated using an advantage function A(s, a):
∇ϕJ(ϕ) = Ea∼πϕ

[∇ϕ log πϕ(a|s) ·A(s, a)] (15)
In our implementation, the advantage for a specific sampled action aj is empirically estimated and
normalized:

Aj =
rj − r̄

std(r) + ϵ
, where r̄ =

1

Ns

Ns∑
i=1

r(ai) (16)

The advantage function Aj resolves the gradient dilemma. Our reward function r is designed to be
highly sensitive to high-frequency corrections (via its MAE component). When a corrective action
aj is highly effective (i.e., successfully captures a high-frequency detail), it yields a high reward
rj ≫ r̄, resulting in a large positive advantage Aj . This provides a strong, targeted update signal.
Conversely, when an action is only marginally effective, rj ≈ r̄, resulting in Aj ≈ 0. This provides a
vanishing update signal, ensuring stability. The advantage function thus acts as an adaptive learning
signal, providing strong updates only when necessary and ensuring stability otherwise.

The Bias-Variance Framework for SRRF. The second perspective demonstrates that SRRF is
also a statistically robust framework for managing the bias-variance trade-off. The objective of the RL
agent is to produce actions that counteract the bias of the base model: E[a]→ −Bias(ŷ). The core
challenge is to do so without excessively increasing the variance of the final prediction, Var(ŷ + a).
SRRF employs four mechanisms to provably control the variance of the correction term, Var(a):

1. RAG as a Conditional Prior. By the law of total variance, conditioning on the retrieved
reference yref reduces variance:

Var(a) = Eyref [Var(a|s)] + Varyref(E[a|s]) (17)

A relevant yref provides a strong prior, reducing the conditional variance Var(a|s) and
constraining the conditional mean E[a|s].

2. Temporal Pooling. For a sequence of independent corrections {at} with average variance
σ̄2, pooling over a window of size κ yields a new sequence {a′t} with reduced variance:

Var(a′t) = Var

(
1

κ

∑
i

ai

)
=

1

κ2

∑
i

Var(ai) =
σ̄2

κ
(18)

3. Explicit L2 Regularization. The RL loss includes the termLreg = λ·E[∥a′∥2]. Minimizing
this term penalizes the second moment E[(a′)2], which directly constrains the variance since
Var(a′) = E[(a′)2]− (E[a′])2.

4. Advantage-Based Gradient Estimation. Using the advantage A(s, a) instead of the raw
reward r(s, a) is a standard variance reduction technique for the policy gradient estimator
itself, leading to more stable training and a lower-variance policy.
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Empirical Validation of Theoretical Necessity. Beyond the formal mathematical arguments,
the necessity of our RL-based framework is further validated by empirically investigating simpler
alternatives. As demonstrated in our ablation studies (Section 4.3), a fully differentiable Joint
baseline suffers from catastrophic performance degradation on complex datasets. This empirical
failure provides critical evidence that the learning objectives of the base predictor and the high-
frequency corrector are often in conflict, leading to destructive interference under a single, monolithic
loss. The empirical failure of this simpler alternative thus serves as a practical proof of the necessity
for a decoupled training mechanism, which SRRF provides.

C IMPLEMENTATION DETAILS

C.1 DATASET DESCRIPTIONS

To evaluate the performance of our proposed model, we conducted experiments on seven real-world
datasets. These datasets include:

1. ETT (Zhou et al., 2021): This dataset contains 7 factors of electricity transformers from
July 2016 to July 2018. It includes four subsets: ETTh1 and ETTh2 are recorded hourly,
while ETTm1 and ETTm2 are recorded every 15 minutes.

2. Exchange (Wu et al., 2021): This dataset collects panel data of daily exchange rates from 8
countries from 1990 to 2016.

3. Weather (Wu et al., 2021): This dataset includes 21 meteorological factors collected every
10 minutes from the Weather Station of the Max Planck Biogeochemistry Institute in 2020.

4. ECL (Wu et al., 2021): This dataset records the hourly electricity consumption data of 321
clients.

5. Traffic (Wu et al., 2021): This dataset collects hourly road occupancy rates measured by
862 sensors on San Francisco Bay Area freeways from January 2015 to December 2016.

We followed the same data processing and train-validation-test set split protocol used in Times-
Net (Wu et al., 2022), where the train, validation, and test datasets are strictly divided according to
chronological order to ensure no data leakage issues. As for the forecasting settings, in the ETT,
Weather, ECL, and Traffic datasets, we fixed the length of the lookback series as 96, and the prediction
length varies in {96, 192, 336, 720}. The details of the datasets are provided in Table 5.

Table 5: Detailed dataset descriptions. Dimension denotes the variate number of each dataset.
Prediction Length denotes the future time points to be predicted and four prediction settings are
included in each dataset. Dataset Size denotes the total number of time points in (Train, Validation,
Test) split respectively. Frequency denotes the sampling interval of time points.

Dataset Dimension Prediction Length Dataset Size Frequency Information
ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily Economy

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation
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C.2 IMPLEMENTATION DETAILS

Algorithm 1 SRRF Training Process (for one batch)

Require: Input lookback series x ∈ RL×D; Ground truth future series ygt ∈ RP×D; Base forecast-
ing model Mbase(·; θbase) with parameters θbase; Policy network πϕ(·|·;ϕ) with parameters ϕ;
External retrieval database DR; Number of retrieved exemplars k; Number of RL action samples
Ns

1: ŷ←Mbase(x; θbase) ▷ Obtain initial prediction from base model
▷ Phase 1: Retrieval (RAG)

2: Retrieve k most similar historical sequences {xret
j ,yret

j }kj=1 from DR based on x

3: yref ←WeightedAggregation({yret
j }kj=1) ▷ yref ∈ RP×D

▷ Phase 2: RL-based Self-Reflection and Correction
4: Define state for RL agent s← [yref; ŷ] ▷ ▷ Concatenated reference and prediction
5: Initialize lists: Rlist ← [], LogProbslist ← [], A′

list ← []
6: for idx← 1 to Ns do ▷ ▷ Sample Ns actions
7: Sample correction term aidx ∼ πϕ(·|s), where πϕ(·|s) = N (µ(s;ϕ), σ2(s;ϕ))
8: Apply temporal pooling a′idx ← Pool(aidx;κ, τ, ρ) ▷ ▷ a′idx ∈ RP×D

9: Compute adjusted prediction yadjusted,idx ← ŷ + a′idx
10: ridx ← R(ŷ,yadjusted,idx,ygt) ▷ ▷ Compute reward
11: Append ridx to Rlist

12: Append log πϕ(aidx|s) to LogProbslist
13: Append a′idx to A′

list
14: end for
15: Compute advantages Aidx ← Normalize(Rlist)[idx] for idx = 1, . . . , Ns

16: Compute RL loss
▷ Phase 3: Total Loss Computation and Parameter Optimization

17: Compute base model loss Lbase ← MSE(ŷ,ygt)
18: Compute total loss Ltotal ← γ1 · Lbase + γ2 · LRL
19: Update base model parameters θbase ← θbase − ηbase∇θbase

Ltotal
20: Update policy network parameters ϕ← ϕ− ηpolicy∇ϕLRL
21: return Updated θbase, ϕ

All the experiments are implemented in PyTorch (Imambi et al., 2021) and conducted on a single
NVIDIA A100 40GB GPU. We utilize ADAM (Kitaev et al., 2020) with an initial learning rate in
{10−3, 5× 10−4, 10−4} and L2 loss for the model optimization. The batch size is uniformly set to
{16,32} and the number of training epochs is fixed at 10. The number of retrievals is set to {3,5}
and the number of samples is set to {4, 8}. All the compared baseline models that we reproduced
are implemented based on the benchmark of TimesNet (Wu et al., 2022) Repository, which is fairly
built on the configurations provided by each model’s original paper or official code. We provide the
pseudo-code of SRRF in Algorithm 1.

C.3 COMPUTATIONAL OVERHEAD

To provide a clear picture of the trade-offs of our method, we conduct a benchmark to quantify the
training overhead introduced by SRRF. We test the iTransformer model on a broad set of datasets with
a batch size of 128 on two Tesla T4 GPUs(one for faiss index, one for model training). We measure
the average training time per epoch (averaged over the first three epochs) for different numbers of RL
action samples (Ns). The results are presented in Table 6.

The results clearly show that the training time increases linearly with the number of samples, Ns.
This is expected, as each sample requires a forward pass through the policy network and reward
calculation. It is crucial to reiterate, however, that this is a training-time overhead. As SRRF does
not alter the base model’s architecture, the inference time and throughput remain identical to the
baseline model, which is a key benefit of our approach.
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Table 6: Training overhead analysis of SRRF on iTransformer (batch size 128, Tesla T4). Time is
averaged per epoch.

Ns ETTh1 (s/epoch) Weather (s/epoch) ECL (s/epoch)
0 (Baseline) 3.53 31.21 153.51

4 6.65 43.42 173.46
8 8.21 50.17 183.55
16 11.86 72.46 206.40

D FULL RESULTS

The full multivariate forecasting results are provided in the following section due to the space
limitations of the main text.

D.1 FULL PROMOTION RESULTS

We compare the performance of various strong baselines and their SRRF-enhanced counterparts
across multiple benchmarks in Table 9. Consistent improvements can be observed for most models
and datasets, demonstrating the general effectiveness of SRRF in enhancing long-term forecasting.
These results suggest that spectrum-aware representations offer a promising direction for improving
time series models across architectures and domains.

Table 7: Full results of the long-term forecasting task: Comparison of base models and models
enhanced with SRRF. All prediction lengths are shown for each Model. Input sequence length is 96.
Best performance for each model pair (Base vs. SRRF) is in bold red, second best in underlined blue.

Model iTransformer PatchTST DLinear RLinear ModernTCN FITS GPT4TS
(2023) (2023) (2022) (2023) (2024) (2023) (2023)

Metric Base +SRRF Base +SRRF Base +SRRF Base +SRRF Base +SRRF Base +SRRF Base +SRRF

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.386 0.405 0.374 0.397 0.414 0.419 0.385 0.401 0.386 0.400 0.383 0.397 0.386 0.395 0.386 0.394 0.408 0.415 0.387 0.396 0.389 0.398 0.389 0.394 0.374 0.397 0.371 0.395
192 0.441 0.436 0.427 0.426 0.460 0.445 0.430 0.432 0.437 0.432 0.433 0.426 0.437 0.424 0.435 0.422 0.467 0.447 0.437 0.424 0.441 0.424 0.440 0.424 0.431 0.428 0.429 0.423
336 0.487 0.458 0.469 0.449 0.501 0.466 0.474 0.453 0.481 0.459 0.478 0.459 0.479 0.446 0.476 0.443 0.511 0.469 0.475 0.442 0.480 0.445 0.480 0.444 0.471 0.445 0.467 0.443
720 0.503 0.491 0.474 0.473 0.500 0.488 0.481 0.481 0.519 0.516 0.515 0.514 0.481 0.470 0.478 0.467 0.531 0.523 0.484 0.464 0.466 0.462 0.466 0.459 0.501 0.475 0.473 0.462

E
T

T
h2

96 0.297 0.349 0.293 0.345 0.302 0.348 0.289 0.343 0.333 0.387 0.314 0.361 0.288 0.338 0.288 0.338 0.306 0.351 0.299 0.346 0.299 0.345 0.291 0.339 0.293 0.345 0.289 0.342
192 0.380 0.400 0.374 0.395 0.388 0.400 0.375 0.394 0.477 0.476 0.428 0.440 0.374 0.390 0.377 0.393 0.430 0.440 0.382 0.396 0.383 0.395 0.380 0.393 0.371 0.395 0.370 0.394
336 0.428 0.432 0.417 0.429 0.426 0.433 0.422 0.431 0.594 0.541 0.545 0.513 0.415 0.426 0.424 0.434 0.463 0.471 0.426 0.428 0.421 0.428 0.419 0.427 0.419 0.432 0.416 0.428
720 0.427 0.445 0.416 0.437 0.431 0.446 0.423 0.443 0.831 0.657 0.682 0.586 0.420 0.440 0.439 0.450 0.453 0.457 0.411 0.432 0.421 0.438 0.419 0.437 0.433 0.453 0.427 0.449

E
T

T
m

1 96 0.334 0.368 0.327 0.364 0.329 0.367 0.329 0.366 0.345 0.372 0.343 0.373 0.355 0.376 0.351 0.369 0.334 0.373 0.325 0.365 0.341 0.368 0.340 0.368 0.321 0.362 0.319 0.361
192 0.377 0.391 0.373 0.383 0.367 0.385 0.356 0.380 0.380 0.389 0.376 0.390 0.391 0.392 0.388 0.386 0.390 0.406 0.370 0.393 0.380 0.386 0.379 0.385 0.363 0.384 0.362 0.384
336 0.426 0.420 0.406 0.406 0.399 0.410 0.390 0.403 0.413 0.413 0.413 0.412 0.424 0.415 0.420 0.407 0.443 0.436 0.410 0.413 0.411 0.406 0.411 0.406 0.390 0.405 0.389 0.405
720 0.491 0.459 0.474 0.445 0.454 0.439 0.444 0.435 0.474 0.453 0.472 0.451 0.487 0.450 0.480 0.440 0.502 0.466 0.490 0.453 0.476 0.441 0.476 0.440 0.454 0.444 0.442 0.443

E
T

T
m

2 96 0.180 0.264 0.180 0.265 0.175 0.259 0.176 0.260 0.193 0.292 0.176 0.261 0.182 0.265 0.181 0.264 0.194 0.273 0.172 0.254 0.178 0.259 0.178 0.259 0.176 0.259 0.174 0.257
192 0.250 0.309 0.249 0.310 0.241 0.302 0.248 0.307 0.284 0.362 0.261 0.315 0.246 0.304 0.260 0.312 0.292 0.349 0.239 0.297 0.248 0.299 0.247 0.305 0.243 0.305 0.239 0.300
336 0.311 0.348 0.309 0.343 0.305 0.343 0.300 0.340 0.369 0.427 0.306 0.345 0.307 0.342 0.319 0.348 0.337 0.375 0.304 0.339 0.312 0.348 0.308 0.342 0.300 0.340 0.299 0.339
720 0.412 0.407 0.411 0.405 0.402 0.400 0.394 0.395 0.554 0.522 0.424 0.406 0.407 0.398 0.435 0.413 0.464 0.443 0.412 0.400 0.404 0.394 0.407 0.397 0.399 0.399 0.398 0.396

w
ea

th
er 96 0.174 0.214 0.169 0.207 0.177 0.218 0.175 0.216 0.196 0.255 0.172 0.221 0.192 0.232 0.172 0.222 0.156 0.204 0.156 0.205 0.166 0.214 0.166 0.214 0.177 0.217 0.176 0.216

192 0.221 0.254 0.220 0.253 0.225 0.259 0.225 0.253 0.237 0.296 0.235 0.293 0.240 0.271 0.236 0.268 0.208 0.253 0.206 0.250 0.215 0.256 0.214 0.256 0.225 0.258 0.223 0.258
336 0.278 0.296 0.278 0.296 0.278 0.297 0.269 0.295 0.283 0.335 0.283 0.312 0.292 0.307 0.278 0.301 0.272 0.297 0.266 0.293 0.271 0.296 0.266 0.292 0.281 0.298 0.282 0.299
720 0.358 0.347 0.357 0.349 0.354 0.348 0.349 0.345 0.345 0.381 0.358 0.359 0.364 0.353 0.355 0.351 0.351 0.342 0.347 0.345 0.350 0.347 0.345 0.343 0.357 0.348 0.356 0.344

E
C

L

96 0.148 0.240 0.146 0.239 0.181 0.270 0.158 0.251 0.197 0.282 0.194 0.277 0.201 0.281 0.178 0.285 0.153 0.257 0.150 0.254 0.209 0.291 0.208 0.293 0.178 0.261 0.178 0.261
192 0.162 0.253 0.162 0.253 0.188 0.274 0.169 0.262 0.196 0.285 0.156 0.248 0.201 0.283 0.197 0.301 0.179 0.281 0.165 0.266 0.208 0.293 0.207 0.293 0.293 0.389 0.200 0.303
336 0.178 0.269 0.176 0.269 0.204 0.293 0.188 0.281 0.209 0.301 0.172 0.266 0.215 0.298 0.212 0.315 0.201 0.302 0.186 0.278 0.221 0.307 0.221 0.306 0.321 0.408 0.217 0.318
720 0.225 0.317 0.207 0.309 0.246 0.324 0.232 0.316 0.245 0.333 0.203 0.299 0.257 0.331 0.239 0.334 0.222 0.318 0.220 0.315 0.262 0.337 0.262 0.337 0.318 0.400 0.235 0.333

E
xc

ha
ng

e 96 0.086 0.206 0.084 0.204 0.088 0.205 0.084 0.202 0.088 0.218 0.077 0.196 0.093 0.217 0.082 0.200 0.092 0.218 0.083 0.202 0.093 0.216 0.092 0.216 0.086 0.203 0.085 0.202
192 0.177 0.299 0.176 0.299 0.176 0.299 0.176 0.298 0.176 0.315 0.156 0.290 0.184 0.307 0.179 0.299 0.180 0.308 0.176 0.297 0.187 0.309 0.186 0.309 0.179 0.300 0.172 0.295
336 0.331 0.417 0.326 0.415 0.301 0.397 0.300 0.397 0.313 0.427 0.261 0.385 0.351 0.432 0.332 0.417 0.352 0.427 0.340 0.418 0.335 0.420 0.334 0.420 0.333 0.419 0.322 0.411
720 0.847 0.691 0.813 0.678 0.901 0.714 0.854 0.699 0.839 0.695 0.737 0.645 0.886 0.714 0.866 0.702 0.972 0.828 0.953 0.734 0.885 0.713 0.911 0.726 0.841 0.688 0.833 0.685

tr
af

fic

96 0.395 0.268 0.395 0.270 0.462 0.295 0.460 0.294 0.650 0.396 0.649 0.397 0.649 0.389 0.649 0.389 0.613 0.385 0.480 0.315 0.657 0.398 0.656 0.394 0.641 0.344 0.485 0.313
192 0.417 0.276 0.407 0.275 0.466 0.296 0.466 0.278 0.598 0.370 0.597 0.370 0.601 0.366 0.602 0.367 0.501 0.335 0.494 0.330 0.609 0.374 0.605 0.371 0.489 0.310 0.482 0.308
336 0.433 0.283 0.425 0.283 0.482 0.304 0.482 0.304 0.605 0.373 0.605 0.373 0.609 0.369 0.609 0.369 0.537 0.345 0.536 0.345 0.615 0.377 0.615 0.373 0.523 0.349 0.514 0.335
720 0.467 0.302 0.457 0.300 0.514 0.322 0.507 0.317 0.645 0.394 0.646 0.325 0.647 0.387 0.647 0.387 0.622 0.370 0.614 0.367 0.653 0.393 0.652 0.391 0.548 0.353 0.544 0.352

D.2 VISUALIZATION OF FORECASTING RESULTS

To elucidate the impact of the SRRF framework on diverse base forecasting models (Liu et al., 2023;
Nie et al., 2023; Li et al., 2023; donghao & wang xue, 2024; Xu et al., 2023; Zeng et al., 2022; Zhou
et al., 2023), we present representative prediction cases from two datasets.
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Figure 6 presents forecasting performance on the Traffic dataset, characterized by pronounced
periodic variations. In this context, base models generally exhibit proficient performance in capturing
the dominant, low-frequency cyclical components of the time series; as illustrated, the predictions
from all seven base models manifest inherent periodicity, with principal distinctions observed in the
rendition of peak magnitudes. The integration of SRRF, however, yields discernible improvements,
particularly in the fidelity of peak forecasting. This enhancement is, nonetheless, contingent upon
the capabilities of the underlying base model and notably more pronounced for Transformer-based
architectures (e.g., iTransformer and PatchTST) compared to other model classes. This disparity
can be primarily attributed to a key characteristic of Transformer architectures: the richer and more
nuanced representations ŷ learned by Transformers may provide a more conducive foundation upon
which SRRF’s reinforcement learning agent can develop a refined corrective policy specifically
for sharp peak dynamics. In contrast, models with simpler architectures, such as linear variants
(DLinear, RLinear), may possess insufficient capacity to inherently model the pronounced non-
linearities characteristic of traffic peaks, thereby circumscribing the extent of refinement achievable
by SRRF. Other architectures, like Temporal Convolutional Networks (TCNs, e.g., ModernTCN) or
frequency-domain models (e.g., FITS), while effective for general pattern recognition, might exhibit
inductive biases (e.g., fixed receptive fields in TCNs or specific spectral smoothing in FITS) that are
less synergistic with SRRF’s time-domain corrective actions for extreme peak events when compared
to the dynamic and context-aware aggregation capabilities inherent in Transformers.
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Figure 6: Forecasting results on the Traffic dataset (Input-96, Predict-96).

In contrast, Figure 7 showcases results on the Weather dataset, a series characterized by less distinct
periodicity and a greater prevalence of stochastic, high-frequency fluctuations. On this dataset, the
limitations of the base models in tracking such volatile dynamics are often more apparent. Their
predictions frequently exhibit significant deviations from the true underlying trend, an underesti-
mation of the amplitude of high-frequency fluctuations, and a temporal lag in capturing abrupt
changes. The application of SRRF in this setting often results in more substantial improvements.
The SRRF-enhanced models demonstrate a superior capability to adapt to these rapid, non-periodic
variations, producing forecasts that align more closely with the ground truth’s complex trajectory.
As can be visually ascertained from the plots, SRRF exhibits a clear tendency to correct the initially
deviated predictions of the base models towards the actual values. However, owing to the end-to-end
joint training paradigm of SRRF with the base model, the ultimate performance enhancement remains
intrinsically linked to the foundational capabilities of the base model; a stronger performing base
model generally facilitates better performance from the SRRF-enhanced counterpart.

D.3 DETAILED ANALYSIS OF SRRF ON FREQUENCY DOMAIN RMSE

As discussed in Section 4.4 of the main text, the SRRF framework generally enhances spectral fidelity,
measured by the overall Frequency Root Mean Squared Error (FRMSE). This section provides a
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Figure 7: Forecasting results on the Weather dataset (Input-96, Predict-96).

Table 8: Overall FRMSE promotion and band-specific Prediction Error Energy Reduction (L =
96, P = 96). Frequency bands are normalized (0.5 Hz Nyquist). Improvements >50% are in bold.

Dataset Model FRMSE FRMSE Error Energy Reduction (%) in Frequency Band

Base +SRRF Promotion (%) 0.0-0.1 Hz 0.1-0.2 Hz 0.2-0.3 Hz 0.3-0.4 Hz 0.4-0.5 Hz

E
C

L

iTransformer 0.1649 0.0505 69.39 -84.05 223.76 17.80 49.46 59.35
RLinear 0.0850 0.0846 0.41 -0.44 0.41 1.72 0.62 3.29
PatchTST 0.0597 0.0301 49.58 243.30 -25.40 0.53 18.85 -0.88
ModernTCN 0.0838 0.0348 58.44 217.41 9.10 33.57 -13.83 63.69
FITS 0.0243 0.0231 5.12 -4.48 -0.41 1.39 19.34 12.05
DLinear 0.0462 0.0458 0.83 0.57 1.94 2.86 -5.92 2.98
GPT4TS 0.0885 0.0821 7.25 -5.87 -1.86 3.79 16.48 10.02

Tr
af

fic

iTransformer 0.4789 0.2842 40.65 132.02 168.42 40.03 15.20 11.24
RLinear 0.7107 0.7085 0.30 1.35 2.09 1.52 -1.34 -0.22
PatchTST 0.5744 0.3104 45.97 228.76 170.63 105.55 187.46 -13.95
ModernTCN 0.3440 0.2213 35.67 -49.32 12.96 -16.37 -32.85 102.57
FITS 0.3990 0.3947 1.07 1.65 2.16 2.66 -1.39 -1.88
DLinear 0.6129 0.6094 0.57 -0.94 -0.50 -1.41 -0.31 -13.37
GPT4TS 0.5659 0.5422 4.18 11.36 -1.60 3.96 13.39 6.60

W
ea

th
er

iTransformer 0.2818 0.1893 32.82 -52.32 90.43 15.10 -35.81 -8.91
RLinear 0.0538 0.0476 11.52 -18.13 -10.23 -16.44 -14.25 -2.82
PatchTST 0.1185 0.0487 58.92 -88.61 118.14 -39.60 115.93 -26.29
ModernTCN 0.1714 0.0469 72.62 -93.20 -60.34 59.32 -35.83 42.70
FITS 0.1533 0.1524 0.57 -1.01 0.49 -4.60 10.06 5.70
DLinear 0.1528 0.1481 3.07 -5.47 11.44 9.62 -23.29 19.74
GPT4TS 0.2499 0.2124 15.02 -26.24 12.64 7.07 120.10 32.04
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more granular analysis by breaking down the prediction error energy into distinct frequency bands.
Table 8 presents the percentage reduction of error energy, while Table 9 shows the raw error energy
values before and after applying SRRF. This detailed view aims to substantiate our hypothesis that
SRRF mitigates spectral bias by improving the representation of mid-to-high frequency information.

To quantitatively assess the SRRF framework’s efficacy in enhancing the capture of diverse frequency
components, we employ the Frequency Root Mean Squared Error (FRMSE). This metric evaluates the
RMSE between the Discrete Fourier Transform (DFT) of the predicted series and that of the ground
truth, offering insight into the spectral fidelity of the forecasts. Lower FRMSE values signify a more
accurate reconstruction of the signal’s amplitude spectrum. Figure 3 illustrates the overall FRMSE for
the selected baseline models and their SRRF-enhanced versions across the ECL, Traffic, and Weather
datasets, providing a global measure of spectral error. For a more detailed examination, Table 8 and
Table 9 subsequently present an analysis of prediction error energy within specific frequency bands.
This multi-faceted analysis aims to substantiate our hypothesis that SRRF mitigates spectral bias and
improves the representation of high-frequency information.

The data in Table 8 reveals a complex pattern of spectral error redistribution, indicating that SRRF’s
impact is not uniform across all frequencies or models. First, examining the foundational 0.0-0.1
Hz band, which typically captures dominant trends and seasonal components, SRRF exhibits a
notable "bidirectional" effect. On one hand, in certain instances, SRRF substantially enhances the
model’s ability to fit core low-frequency dynamics. For example, on the ECL dataset, PatchTST and
ModernTCN achieved remarkable error energy reductions of 243.30% and 217.41%, respectively,
indicating that SRRF helped them more accurately capture primary periodicities and trends. Similarly,
on the Traffic dataset, iTransformer and PatchTST also achieved significant error energy reductions
of 132.02% and 228.76%, respectively. These are highly positive indicators, suggesting SRRF’s
potential to improve predictions of the fundamental signal structure. On the other hand, we also
observe instances where SRRF, conversely, increased the error energy in this lowest frequency band.
For example, on the ECL dataset, iTransformer (-84.05%), on the Traffic dataset, ModernTCN (-
49.32%), and on the Weather dataset, iTransformer (-52.32%), PatchTST (-88.61%), and ModernTCN
(-93.20%) all exhibited an increase in error energy (i.e., performance degradation) in the 0.0-0.1 Hz
band. This phenomenon might imply that as SRRF strives to correct mid-to-high frequency details
neglected by base models (due to MSE’s spectral bias), its adjustment mechanisms might, in some
cases, lead the model to make "sacrifices" in the fitting precision of the smoothest low-frequency
components, or perhaps a "transfer" of error from higher to lower frequencies occurs.

Table 9: Prediction Error Energy (Base vs. +SRRF) and Improvement (%) across frequency bands
(L = 96, P = 96). Frequency bands are normalized (0.5 Hz Nyquist). Positive Impr. % indicates
error energy reduction by SRRF (improvement). Improvements >50% are in bold.

Model iTransformer PatchTST DLinear RLinear ModernTCN FITS GPT4TS
(2023) (2023) (2022) (2023) (2024) (2023) (2023)

Metric Base +SRRF Impr. Base +SRRF Impr. Base +SRRF Impr. Base +SRRF Impr. Base +SRRF Impr. Base +SRRF Impr. Base +SRRF Impr.

Energy Energy % Energy Energy % Energy Energy % Energy Energy % Energy Energy % Energy Energy % Energy Energy %

E
C

L

0.0-0.1 14386.65 2294.07 -84.1 537.93 1846.71 243.3 8791.90 8842.13 0.6 12680.77 12625.43 -0.4 737.53 2340.97 217.4 2994.85 2860.62 -4.5 21491.95 20231.42 -5.9
0.1-0.2 12.06 39.04 223.8 13.12 9.79 -25.4 6.20 6.32 1.9 62.71 62.97 0.4 52.05 56.78 9.1 16.78 16.71 -0.4 45.70 44.85 -1.9
0.2-0.3 7.41 8.72 17.8 7.85 7.89 0.5 1.39 1.43 2.9 17.00 17.29 1.7 10.39 13.88 33.6 1.37 1.39 1.4 8.09 8.40 3.8
0.3-0.4 3.63 5.42 49.5 4.32 5.14 18.8 0.10 0.09 -5.9 19.65 19.77 0.6 7.16 6.17 -13.8 0.00 0.00 19.3 1.56 1.81 16.5
0.4-0.5 1.71 2.72 59.4 1.51 1.49 -0.9 0.02 0.03 3.0 19.49 20.13 3.3 3.83 6.27 63.7 0.00 0.00 12.1 1.52 1.68 10.0

tr
af

fic

0.0-0.1 134514.47 312101.78 132.0 43845.23 144147.03 228.8 226288.58 224163.80 -0.9 38276.48 38792.35 1.3 80493.44 40793.63 -49.3 112821.19 114685.78 1.7 139308.28 155137.06 11.4
0.1-0.2 13845.59 37164.70 168.4 10170.56 27524.41 170.6 14304.52 14233.28 -0.5 4305.86 4395.75 2.1 1012.68 1143.90 13.0 13605.63 13898.84 2.2 12222.49 12027.21 -1.6
0.2-0.3 3626.76 5078.51 40.0 1119.85 2301.87 105.6 748.04 737.51 -1.4 394.70 400.70 1.5 356.04 297.76 -16.4 845.08 867.56 2.7 5875.70 6108.24 4.0
0.3-0.4 182.00 209.66 15.2 124.57 358.10 187.5 29.14 29.04 -0.3 67.93 67.02 -1.3 468.26 314.45 -32.8 0.01 0.01 -1.4 274.63 311.39 13.4
0.4-0.5 16.20 18.02 11.2 70.76 60.89 -13.9 0.57 0.49 -13.4 93.10 92.89 -0.2 141.31 286.25 102.6 0.00 0.00 -1.9 176.85 188.53 6.6

w
ea

th
er

0.0-0.1 39640.37 18902.46 -52.3 6337.55 721.74 -88.6 12809.06 12108.35 -5.5 1972.25 1614.65 -18.1 13356.35 908.40 -93.2 12925.99 12796.02 -1.0 31359.90 23132.61 -26.2
0.1-0.2 2.84 5.40 90.4 5.32 11.59 118.1 0.36 0.40 11.4 63.73 57.21 -10.2 15.77 6.26 -60.3 10.72 10.77 0.5 4.06 4.58 12.6
0.2-0.3 2.80 3.22 15.1 5.44 3.29 -39.6 0.11 0.12 9.6 95.58 79.87 -16.4 3.44 5.49 59.3 2.53 2.42 -4.6 3.49 3.74 7.1
0.3-0.4 4.88 3.13 -35.8 3.09 6.68 115.9 0.03 0.02 -23.3 35.18 30.16 -14.3 9.92 6.37 -35.8 0.00 0.00 10.1 2.23 4.92 120.1
0.4-0.5 4.00 3.64 -8.9 7.24 5.33 -26.3 0.03 0.04 19.7 55.72 54.15 -2.8 10.68 15.24 42.7 0.00 0.00 5.7 1.88 2.48 32.0

Next, we analyze the mid-to-high frequency bands (0.1-0.5 Hz). SRRF’s performance in these bands
is equally complex but more clearly reflects its potential to capture high-frequency details, which
aligns with our primary goal of mitigating spectral bias. On the ECL dataset, in the 0.1-0.2 Hz
band, iTransformer demonstrated an exceptionally large error energy reduction of 223.76%, a very
significant improvement. ModernTCN also achieved a 63.69% improvement in the 0.4-0.5 Hz band
on ECL. For the Traffic dataset, iTransformer reduced error energy in the 0.1-0.2 Hz band by 168.42%,
while PatchTST achieved striking improvements across three consecutive bands: 170.63% (0.1-0.2
Hz), 105.55% (0.2-0.3 Hz), and 187.46% (0.3-0.4 Hz). ModernTCN also reduced error energy by
102.57% in the 0.4-0.5 Hz band on Traffic. In the volatile Weather dataset, iTransformer (0.1-0.2 Hz:
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90.43%), PatchTST (0.1-0.2 Hz: 118.14%; 0.3-0.4 Hz: 115.93%), ModernTCN (0.2-0.3 Hz: 59.32%),
and GPT4TS (0.3-0.4 Hz: 120.10%) all displayed significant error energy reductions in specific
mid-to-high frequency bands. These instances provide strong evidence that SRRF can effectively
enhance the model’s ability to capture previously overlooked rapid changes and fine-grained patterns.

However, not all models exhibit performance improvements across all mid-to-high frequency bands.
For instance, on the ECL dataset, PatchTST’s error energy increased by 25.40% (i.e., a reduction
percentage of -25.40%) in the 0.1-0.2 Hz band. On the Weather dataset, iTransformer also experienced
increased error energy in the 0.3-0.4 Hz and 0.4-0.5 Hz bands. This inconsistency highlights the
inherent difficulty of high-frequency component correction, which can be influenced by the quality of
retrieved historical exemplars, the generalization capability of the RL policy, and the base model’s
own structural response characteristics to high-frequency signals.

In summary of these observations, although SRRF’s performance in specific frequency bands (es-
pecially the lowest) can vary by model and dataset, sometimes even leading to increased error, its
demonstrated ability to significantly reduce error energy in mid-to-high frequency bands supports
SRRF’s core value. This value lies in effectively mitigating the spectral bias from MSE optimiza-
tion by enhancing learning in the mid-to-high frequency components, thereby promoting a more
comprehensive spectral representation of time series.
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