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Abstract
Behavioral Foundation Models (BFMs) like suc-
cessor measure-based methods excel in zero-
shot policy generation but struggle with dynamic
changes, limiting real-world applicability (e.g., ,
robotics). We show that Forward-Backward (FB)
representations fail to distinguish between differ-
ent dynamics, causing latent interference. To fix
this, we propose an FB model with a transformer-
based belief estimator, enabling better zero-shot
adaptation. Additionally, clustering the policy
space by dynamics improves performance. Our
method adapts to trained dynamics and general-
izes to unseen ones, achieving up to 2x higher
zero-shot returns in discrete and continuous tasks
compared to baselines.

1. Introduction
A key goal in reinforcement learning (RL) is fast adaptation
to new tasks or environment changes, ideally in a zero-shot
manner—without test-time interaction (Touati et al., 2022).
Behavioral Foundation Models (BFMs) (Sikchi et al., 2024;
Tirinzoni et al.) advance this by learning diverse policies
from offline data, independent of rewards. At inference,
they extract near-optimal task-specific policies. Notably,
Forward-Backward (FB) (Touati & Ollivier, 2021) represen-
tations, a BFM variant, excel at imitating behaviors from
unlabeled data.

At the same time, FB possesses a fundamental drawback
that limits its adaptation ability. In our paper, we show
that FB is unable to generalize across different dynamics,
such as changes in a transition function (e.g., new obstacles)
or an environment with some latent factor variation (e.g.,
wind direction). This limitation stems from the way the
successor measure (Dayan, 1993) is estimated: FB averages
the future-occupancy state distribution over all observed
dynamics, which inevitably causes interference in policy
representations. This fact alone may severely constrain the
applicability of FB in the real-world scenarios. For example,
one of the largest robotics dataset, Open X-Embodiment
(Collaboration, 2023), consists of 22 different robot embod-
iments, and training FB on each of them simultaneously is
infeasible. In Section 3.1, we discuss this limitation and

support our claims theoretically.

To remedy this, we introduce Belief-FB (BFB), a condition-
ing method for FB through a belief estimation, a popular
technique of uncertainty quantification in Meta-RL (Dorf-
man et al., 2021; Zintgraf et al., 2020). To implement this,
we use a transformer encoder fdyn that, given a trajectory
from data, outputs a dynamics-specific vector h, which is
then passed as a condition to the future encoding function
F (·, ·, h, ·). We pre-train fdyn in a self-supervised fashion,
thus posing no additional requirements on the data structure
or the trajectory re-labeling. We discuss the implementation
of Belief-FB in Section 3.2.

Remarkably, Belief-FB enables the generalization capabili-
ties of FB not only through the dynamics seen in the train-
ing dataset, but also on the unseen test dynamics never
present in the offline data. We also find that in order to align
belief estimation better with FB, one also needs to change
sampling procedure of encoding direction, which we term
Rotation-FB (RFB). We present the theoretical support and
the implementation details of Rotation-FB in Section 3.3.
Empirically, both BFB and RFB outperform baselines for
seen and unseen dynamics, as gathered in Figure 1 and
discussed in Section D.1.

We believe that our work sufficiently broadens the possible
applicability of BFMs, yet keeping the zero-shot setting
unchanged. Our contributions are as follows:

• We demonstrate the limitation of Forward-
Backward (FB) representations (Touati & Ollivier,
2021), which lies in its inability to generalize per se
across different dynamics (e.g., new layouts). We refer
to Section 3.1 for more discussion.

• We propose Belief–FB (BFB), which employs a trans-
former encoder to infer a belief over the agent’s cur-
rent dynamics (Dorfman et al., 2021; Zintgraf et al.,
2020). Analyzing BFB’s policy space reveals that ad-
ditional disentanglement is beneficial, motivating our
Rotation–FB (RFB). Both approaches outperform sig-
nificantly other methods (Figure 1)
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Figure 1. Summary of results. Aggregate mean performance over seen (train) and unseen (test) dynamics for zero-shot RL. The error
bars indicate standard deviation over three seeds. Notably, both BFB and RFB adapt not only to the dynamics seen during training but
are also able to generalize to unseen dynamics. There are 30 (20) training (test) dynamics for FourRooms and PointMass and 16 (4) for
AntWind environments.

2. Behavioral Foundation Models
For a reward-free MDP, a Behavioral Foundation Model
(BFM) (Frans et al., 2024; Pirotta et al., 2023; Sikchi et al.,
2025; Tirinzoni et al.) is a RL agent trained in an unsuper-
vised manner on a task-agnostic dataset of transitions. The
objective of a BFM is to approximate an optimal policy for
a broad class of reward functions that are specified only at
inference.

Forward-Backward Representation (FB) (Touati & Ollivier,
2021) approximates a successor measure for near-optimal
policies across diverse tasks. The successor measure
Mπ(s0, a0, X) for subset X ⊂ S is defined as cumula-
tive discounted time spend at X starting at (s0, a0) and
following π thereafter. More formally, for tabular example:

Mπ(s0, a0, X) =
∑
t≥0

γtP(st ∈ X|s0, a0, π) , (1)

with the corresponding Q-function for a specific task r:

Qπ
r (s0, a0) =

∑
s+∈X

r(s+)Mπ(s0, a0, s
+). (2)

In continuous case, the FB representation aims to approxi-
mate successor measure through finite-rank approximation
under diverse policies through forward F : S×A×Z −→ Rd

and backward B : S −→ Rd functions. Given a set

of policies πz parametrized by task variable drawn uni-
formly from sphere zFB ∈ Unif(Z = S⌈−∞). Given ρ
as a probability distribution over states within the offline
dataset, the objective for FB is written asMπz (s0, a0, X) ≈∫
s+∈X

F (s0, a0, z)
TB(s+)ρ(ds). Then the policy can be

obtained greedily as:

πz(s) ≈ argmax
a

F (s, a, z)T z. (3)

For continuous case, the greedy policy is parametrized as
Gaussian. During test time the task policy parametrization
is approximated as ztest ≈ E(s,a)∈Dtest

{rtest(s, a)B(s)}.
If the inferred task vector ztest lies within the task sampling
distribution (in a linear span) Z used during training, then
the optimal policy for task rtest is obtained from Equation 2
as πz(s) ≈ argmaxaQ

πz
rtest(s, a). For more details on

training and inference procedures of FB, we refer reader
to Appendix A.3. More detailed discussion on the other
related works is included in the Appendix A.

3. Method
Problem Statement. Given the set of contexts Ctrain =
{ctrain ∈ C}, the goal is learn an agent so that it is able
to generalize to unseen ones dynamics changes during test
time, i.e., zero-shot1. We collect diverse dataset, consisting

1We use the term "zero-shot RL" following (Touati & Ollivier,
2021).
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of mix of highly exploratory or expert-like unknown poli-
cies from varying environment layouts, differing either in
dynamics (e.g., wind, friction, etc.) or environment specifi-
cations (e.g., positions of obstacles and doors). At test time,
the agent is provided with small (up to episode termination
steps) reward-free transitions from test context and should
adapt its policy. In an ideal scenario, the agent maximizes
the expected discounted return across both train and test
contexts. We refer to Appendix A for details.

3.1. Investigating latent directions space under multiple
dynamics

We begin by addressing the following question: Why
does FB representations fail to generalize effectively (both
for train and test) to different situations under dynamics
variations, i.e., if learned on data sampled from diverse
CMDPs? A closer look at the geometry of the latent di-
rections zFB ∈ Z , each indexing a policy πz uncovers
why Forward-Backwards (FB) learning struggles in cus-
tom partially-observable “Randomized Doors” grid world
(Appendix B.1). In this setting door and wall positions
change every episode; random rollouts give near-uniform
coverage of (x, y) states, so the same state s can require
different optimal actions across layouts. During training
we sample zFB ∼ Uniform(Sd−1) and evaluate F (s, ·, zFB).
Because zFB is not forced to separate layout-specific futures,
latent directions for conflicting behaviours overlap, causing
interference. Figure 10 illustrates how, when FB is trained
on a single layout family, a dominant direction emerges and
recovers the optimal policy π∗. Mixing transitions from
multiple layouts instead makes zFB blend dynamics-specific
information, averaging over futures and yielding policies
that are sub-optimal even on the training layouts. The formal
theorem can be found in the Appendix F.

3.2. Belief State Modeling

To address the interference issue (Section 3.1), we infer the
latent environment context and augment FB input with this
belief. A transformer encoder fdyn processes a set of transi-
tions {(st, at, s′t+1)}Nt=1 to produce a latent context h ∈ Rd,
where H represents all possible inferred contexts. Since
ordering is discarded, the encoder must identify dynamics-
specific mismatches (e.g., layout geometry). Permutation
invariance is crucial, as latent environment factors are order-
agnostic. This setup enables zero-shot and few-shot learning
(Snell et al., 2017).

Given episodes ({(st, at, s′t+1)ci}Nt=1 we train a transformer
encoder on unlabeled episodes (context length n) to infer
a latent variable h that captures episode dynamics. The
loss has two components: 1) h follows a Gaussian prior
and is shared across trajectories and 2) A projection head
combines h with (st, at) to predict st+1. Training can be

end-to-end or staged - we found separate training of FB and
zFB.

For each trajectory we concatenate the inferred context
vector h with the task vector zFB to obtain augmented
input [h; zFB] and condition only forward network as
M̂πz (st, at, st+1) = F (st, at, [h; zFB])

TB(st+1). Empir-
ically, conditioning the backward network B hurt perfor-
mance, yielding an oversmoothed Q function that ignored
environment structure. Thus, we kept B context-shared in
all experiments (see Algorithm 1).

At test time, the agent is provided with a short, reward-free
trajectory and it is passed to fdyn to obtain h. By plugging
the result into Equation 3, the greedy policy is obtained.

3.3. Structuring directions in the latent space

Insights from Section 3.1 showed that sampling task-vectors
zFB uniformly on the hypersphere encodes averaged poli-
cies, while Section 3.3 provided a solution through explicit
context identification. We now combine these observations
together through enhanced sampling zFB around the inferred
context h.

In Vanilla-FB, each state s draws zFB ∼ Unif(Sd−1) with
no inductive bias, so resulting policies πz conflict with each
other in CMDP setting, even if additional explicit condi-
tioning is introduced as before. We replace uniform prior
with a von Mises-Fisher (vMP) distribution centered at the
context direction for episode h = fdyn({(si, ai, si+1)}) as
zh+FB ∼ vMF(µ = h, κ) with κ controlling the spread or
diversity of policies (left and middle figures from Figure 11).
In practice, to draw zh+FB we first pick a simple vector (e.g.,
the first basis vector), perturb with vMF noise, and finally
rotate the result onto h with Householder reflection.

This enhancement has several benefits: 1) because direc-
tions h that differ in dynamics now occupy disjoint cones
on the hypersphere, FB can fit the successor measure locally
inside each cone, avoiding the destructive averaging effect
quantified in Section 3.1 and 2) alignment procedure encour-
ages the agent to explore policies that are plausible under
its current belief while still injecting controlled diversity
through κ.

Importantly, such a procedure not only has empirical ben-
efits as we will show in Section 4, but also lowers bound
from above in Theorem 1, making it non dependent on
number of environments k. We provide formal theoretical
result, intuition and proof in the Theorem F.2 (Section F).

4. Experiments
Can the belief estimation enable adaptation in FB? Pre-
viously, we provided the theoretical foundations and specu-
lated on the matter why FB is unable to differentiate between
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Figure 2. Ablations on data diversity and context length of transformer encoder. We show the influence of number of environments
(data diversity) and context length on train and test performance in Four-Rooms and Pointmass environments. For data-diversity ablation,
we see a clear performance boost up until some point, after which it platoes, as the Theorem 1 predicts. In our context-length ablation, we
observe similar behaviour: performance improves as the context grows up to the length of a single episode, and then levels off. The results
are averaged across three seeds, the opaque fill indicates standard deviation.

distinct dynamics and how we can use the belief estimation
to overcome this. We refer to Table 1 and Figure 1 that
show our empirical findings to support our claims.

Neither FB nor LAP are able to outperform a simple random
baseline in PointMass and FourRoom, indicating that the
policy they learn is most likely stuck due to averaging (see
Section 3.1. Only HILP, which utilizes temporal structure to
learn policy representations, is able to perform better than
random policy.

In contrast, Belief-FB and Rotation-FB outperform every
baseline method. Notably, our methods also demonstrate
generalization capabilities beyond train data on unseen test
environments.

Does change in context length input to the fdyn impacts
performance? We test how input trajectory length affects
performance by varying context length (50 to 200) in Ran-
domized Four-Rooms and Pointmass environments. Perfor-
mance is poor with context shorter than an episode (100) as
short trajectories only capture near-term goals. Longer se-
quences offer no extra benefit fdyn already encodes sufficient
information. Results show fdyn generates robust representa-
tions h that distinguish between contexts in both train and
test settings.

Does increase in dataset diversity make policies more
robust? We investigate if diversifying CMDP training
configurations improves performance. Intuitively, broader
state-action coverage should yield more accurate successor

measure estimation. Experiments support this: Figure 2
shows rapid improvement (up to N ∼ 25) or BFB and BFB,
while baselines match random policy performance. Once
learned representationsor BFB and BFB, while baselines
match random policy performance. Once learned representa-
tions h from fdyn capture all variation modes (i.e., contexts),
additional data provides marginal gains (< 3%). These
results align with Theorem 1.

5. Conclusion & Limitations
Belief-FB (BFB) and Rotation-FB (RFB) extend Forward-
Backward (FB) representations to work with new dynamics.
As we show, naive sampling of policy latents mixes con-
flicting transitions, causing interference. We propose to
mitigate this by proposing BFB which adds a permutation-
invariant transformer that encodes context (belief states)
and conditions the policy on it. Moreover, additional ro-
tation of the latent vectors so task-relevant abstractions
align with environment-specific features, keeping policy
regions separate. Both methods improve on prior FB vari-
ants theoretically and empirically, but they were tested on
limited dynamics, add a diversity hyper-parameter κ and
transformers become costly with long contexts. Future work
should check if other zero-shot RL schemes suffer similar
interference and scale these ideas to larger suites such as
XLand-MiniGrid (Nikulin et al., 2024; 2025) and Kinetix
(Matthews et al., 2025).
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A. Extended Related Works and Background
A.1. Background

Contexual Markov Decision Process. Throughout paper we will be dealing with a Contextual Markov Decision Process
(CMDP), defined by a tuple

〈
C,S,A, γ,M

〉
, where C is a context space and S,A are shared state and action spaces

across environments. FunctionM maps particular context c ∈ C to respective MDP, i.e.,M(c) =
〈
S,A, T c, Rc, µc, γ

〉
with context-dependent transition function T c : S × A × C −→ S, µc being an initial distribution over states and
γ ∈ (0, 1) a discount factor. Intuitively, the context c ∈ C represents a fixed environmental configuration, such as
obstacle positions, layout geometry, dynamics vector parameters or seed. Throughout this work, the context remains static
within each episode, consistent with prior literature (Kirk et al., 2023; Modi et al., 2018; Teoh et al., 2025). A policy
π : S −→ ∆A is optimal for context c for the reward function R if it maximizes expected discounted future reward, i.e.,
π∗
c,R(s0, a0) = argmaxπ E[

∑
γtR(st, at)|s0, a0, π, c].

When the context is fully observable, augmenting the state space with the given context reduces the CMDP to a standard
MDP, eliminating the need to model distinct dynamics T c, rewards Rc or initial states µc. However, if the context is partially
observable, the learned model must infer and track the uncertainty over true hidden configuration to maintain theoretical
optimality guarantees. Such task can be framed as posterior estimation p(c|H) or belief over possible contexts c given
accumulated history H .

Most successful methods for deriving an optimal policy across arbitrary tasks from a task-agnostic dataset leverage successor
features (Barreto et al., 2017; Borsa et al., 2019; Dayan, 1993; Park et al., 2024; Zhu et al., 2024) or their continuous
counterpart, successor measures (Agarwal et al., 2025; Blier et al., 2021; Jeen et al., 2024; Touati & Ollivier, 2021;
Touati et al., 2022). In this work, we focus on the latter framework, specifically its instantiation via forward-backward
representations (Touati & Ollivier, 2021). Below, we briefly outline its key properties.

Zero-Shot RL. Given an offline dataset of transitionsD = {(si, ai, si+1)}|D|
i=1 generated by an unknown behavior policies,

the agent’s objective is to learn a unified abstraction of the environment without additional interaction. At test time, this
abstraction helps to obtain optimal policy for any reward function rtest which defines a particular task. Reward function
can be specified either as a small dataset of reward-labeled states Dtest = {(si, rtest(si)}ki=1 or as a direct mapping
s −→ rtest(s). While some prior works assume access to the context labels (Gregor et al., 2019), we focus on the setting
where the context is unknown and must be inferred from the data. Alternative formulations of zero-shot RL exist under
other formalisms, and we refer to (Kirk et al., 2023) for comprehensive overview.

A.2. Literature

Domain Adaptation and Transfer Learning in RL. While our work will focus on domain adaptation applied to
estimating successor measure for various dynamics mismatches, we start by briefly reviewing more general ideas in classic
domain adaptation and refer to (Kouw & Loog, 2019) for detailed overview. Most methods for domain adaptation can be
categorized into importance-weighting (Bickel et al., 2007; Sønderby et al., 2016; Uehara et al., 2016) and domain-invariant
feature learning (Eysenbach et al., 2021; Fernando et al., 2013; Xing et al., 2021; Zhang et al., 2020) approaches. Former
methods estimate the likelihood ratio of examples under samples from target domain versus samples from source, which
is then used to recalibrate examples from the source domain. The latter approaches learn a unified representation of the
environment, targeting to extract only task-relevant abstraction, negating distracting information.

The most relevant approach which enables FB representations to generalize across dynamics is Contexual FB (Jeen & Cullen,
2024). This approach uses importance-weighting formalism and introduces two classifiers, which estimate the likelihood of
transitions (st, at) and (st, at, st+1) being from train or test context and augment the reward function to account for those
discrepancies in the dynamics. If augmented reward function lies in the linear span of the Z space during FB training, then
the policy can be extracted as described in Equation 3. However, such an approach requires training classifiers from scratch
for each novel layout of the environment, limiting its applicability.

Meta-RL. Another major line of related works, Meta-Reinforcement Learning (Meta-RL), focuses on few-shot domain
adaptation to unseen tasks or dynamics (Beck et al., 2024). The significant part of research in Meta-RL is dedicated to
explicitly learning the belief by collecting a history of interactions with the environment on inference during test-time
(Dorfman et al., 2021; Rakelly et al., 2019; Zintgraf et al., 2020). However, recent works show that it is possible to quantify
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the belief without learning the posterior implicitly (Laskin et al., 2022; Lee et al., 2023; Polubarov et al., 2025; Sinii et al.,
2024; Tarasov et al., 2025; Zisman et al., 2024; 2025). Leveraging in-context ability of transformers (Vaswani et al., 2017),
one can learn an end-to-end supervised model, while the transformer’s context will absorb into robust representation the
adaptation-relevant information thus enabling fast adaptation. We also leverage this in-context ability to construct the belief
representation of the dynamics the agent currently in, but instead operating in a zero-shot manner.

A.3. FB Training

In this section we describe the training procedure of FB in more details. Everything follows the notation from Touati &
Ollivier (2021).

Assume that ρ is supported over all provided data, i.e., it is non-zero everywhere.

LFB = E(st,at,st+1,s+)∼D,z∼Z [(F (st, at, z)
TB(s+)− γF̂ (st+1, πz(st+1, z)

T B̂(s+))
2

− 2F (st, at, z)
TB(st+1)] (4)

Here, s+ is a future outcome either from the same trajectory or randomly sampled from data. F̂ , B̂ are target networks with
Z being a task space, encoding all possible policies. The policy πz is trained in an actor-critic formulation and parametrized
as Boltzmann policy πzi(·|si) = softmax(F (si, ·, zi)T zi/τ) for continuous environments. Additionally, B is forced to
be orthogonal for different s, which is enforced by contrastive loss E(s,s+)[B(s)TB(s+)].

B. Environment Descriptions
B.1. Randomized-Doors

The Randomized-Doors MiniGrid environment (Figure 3) is a discrete-state, discrete-action finite horizon deterministic
environment in which agent has an objective to go to goal location with maximum return of 1. Each episode terminates after
100 steps or after reaching goal location. The randomization determines possible open doors locations, fully specifying
particular layout. In our experiments, the observation state of an agent consists of (x, y) coordinates tuple, making it partially
observable. Such setting requires to properly update beliefs over unobservable layout configuration type. The action space
consists of four actions, namely {up, down, right, left}, while (x, y) coordinates across both axes are bounded by grid
size, which we take to be 9× 9.

(a) First type (b) Second Type (c) Third Type

Figure 3. Several possible layouts are visualized, each corresponding to unique possible doors configurations. The agent is denoted as a
red triangle. The task specification (goal position) with reward of 1 is denoted by green square and is also randomized. It is a custom
implementation based on Empty MiniGrid (https://minigrid.farama.org).

B.2. Randomized Four-Rooms

The Randomized Four-Rooms MiniGrid environment Figure 4 is a modification of classic Four-Rooms and is a discrete-state,
discrete-action, deterministic partially observable environment. For each episode, the maze layout (grid type) is generated

9

https://minigrid.farama.org


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Zero-Shot Adaptation of Behavioral Foundation Models to Unseen Dynamics

randomly, ensuring all of the four rooms are connected with exactly single door. Observation state consists of (x, y)
coordinates, making this environment hard and checks whether agent could successfully estimate uncertainty over hidden
configurations solely based on number of occurrence of each transition, recovering dynamics. In our experiments, we
consider 11× 11 bounds for height and width.

Observation space consists of raw discrete (x, y) coordinates on the grid, while actions correspond to a set of possible moves
{up, down, left, right}. For every layout we record 500 episodes of length 100, yielding a dataset that covers
almost all possible (s, a) transitions. For testing on unseen configurations, we fix agent starting position to coordinates of
the first empty cell and evaluate performance across 3 static goal positions, farhest away from starting position.

Figure 4. Different layout configurations from randomized Four-Rooms environment. During inference, the goal for the agent
(depicted in blue) is to achieve green location. In our experiments we fix starting agent position and fix 3 goals, one for each room.

B.3. Ant-Wind

The AntWind environment is a modified version of the Ant locomotion task from the MuJoCo simulator, commonly used
to test an agent’s adaptability to changing dynamics. In this environment, an ant-like robot must learn to move forward
while being subjected to external wind forces varying in magnitude and direction. In our experiments we consider 17
environments for training, covering three quadrants of possible wind directions on the circle, while leaving others for test,
checking extrapolation on the fourth quadrant.

For our experiment, we collect dataset by training SAC (Haarnoja et al., 2018) on 3/4 of all possible directions, which
results in 16 environments and hold out the other 1/4 for evaluation. Resulting dataset consists of 3400 transition tuples,
where each environment configuration is represented as trajectory of length 256.

B.4. Randomized Pointmass

Randomized Pointmass is a modification of pointmass environment from D4RL (Fu et al., 2020). Each episode the
environment grid structure is randomized, ensuring all cells are interconnected. The observation space consists of (x, y)
transitions. Start position is determined as a first empty cell, while goal location is chosen to be the fartherst away from start
(based on Manhattan distance) and ensuring existence of at least one valid trajectory (e.g., through BFS).

Observation space consists of (global x,global y) position, similar to Four-Rooms. We fix dataset size to be 1e6, only
varying number of layouts and episodes per layout, while fixing episode length to 250. We use explore policy, which is a
random policy with a portion of actions repeated ("sticky-actions").

C. Experimental Setup & Baselines
For experiments, we consider the following experimental setups: (i) discrete, partially observable Randomized Four-Rooms
(Appendix B.2), (ii) continuous AntWind (Appendix B.3), and lastly (iii) continuous partially observable Randomized-
Pointmass (Appendix B.4). We vary the number of train layouts for each experiment, while fixing the number of held-out
unseen context settings to 20 for Randomized Four-Rooms and Randomized-Pointmass, and 4 for Ant-Wind. We perform
comparisons against following baselines:

HILP (Park et al., 2024) is a method that learns state representations from offline data so that the distance in the learned
representation space is proportional to the number of steps between two states in original space. FB (Touati & Ollivier,

10
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Figure 5. Examples of pointmass grid variations.

Figure 6. Randomized-Doors environment for three different layouts, each produced through varying the grid structure (exact
randomization procedure is a hidden variable) (left-middle) From state s, the goal of an agent is to capture a diamond at target location
by picking up the most probable policy πz (yellow for the first type and purple for the second) to move to the closest open door based
on internal representation. (middle) When there are multiple possible future outcomes in the training data from the same state, the πz’s
(different colors) interfere with each other, leading to picking up an averaged policy.

2021) is an original version of the FB, described in Section 2. Laplacian RL (LAP) (Wu et al., 2019) constructs a
graph Laplacian over state transitions from experience replay, then computes its eigenvectors to form low-dimensional
representations that capture the environment’s intrinsic structure. Random agent, which randomly explores the environment
in a task-independent manner.

D. Additional Experiments
The interference problem discussed in Section 3.1 highlights a fundamental trade-off. Namely, FB is expressive enough to
model any task, yet when it is trained in unsupervised manner across environments with distinct unobserved parameters, the
lack of contextual conditioning forces it to average different dynamics rather than separate them. The resulting successor
measure merges transitions from distinct layouts and entangles directions in the latent space Z . To disentangle these
directions we must represent uncertainty about the hidden context explicitly.

D.1. Do BFB and RFB capture hidden properties of the environment?

For an agent to refine its policy, it needs to keep track and update the uncertainty over possible environment configurations.
Both Belief-FB and Rotation-FB accomplish this. Figure 9 illustrates this phenomenon visually. In Randomized-Door
(left), the episodic trajectories from five layouts form non-overlapping clusters in the first two principal components of h,
effectively disentangling different dynamics.

In Ant-Wind, the embeddings lie almost perfectly on a circle whose azimuth matches the underlying wind direction,
generalizing smoothly to the 4 held-out wind angles. The quantitative results for evaluation in Table 1 (averaged across all
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environments) reveal that the baseline methods fail to recover those environment-specific properties and therefore produce
sub-optimal policies even for train cases. In particular, HILP tends to predict an average direction in Randomized Four-rooms
and ignores obstacles, while FB outputs same policy and Q function for almost all environments. Figure 8 shows that Q
function is properly estimated only for BFB and RFB, respecting wall positions.

D.2. How κ in RFB influences performance?

As described in Section 3.3, RFB concentration κ regularizes the diversity of policies for each environment. One the one
hand, concentration should be high to ensure non-overlapping policy parametrized clusters πz for different h, while at the
same time it should not exceed certain value to control the diversity of policies in the environment, preventing collapsed
solutions. Figure ?? shows that lower values of κ, meaning task-vectors zFB are sampled with high deviation around h,
likely producing overlapping clusters. As κ grows, task-vectors become more specialized, lowering variance which results
in higher performance.

E. Experiments Details
Randomized-Doors. For didactic example from Section 3.1 we collect diverse dataset from different layout configurations
(open door locations) such that visitation distribution over all states is non-zero. Black color denotes obstacles. The episode
length is set to be 100, which is equal to the context length of the transformer encoder for this experiment. Overall, we
collect 500 episodes per layout and coverage heatmap is visualized in Figure 7.

Table 1. Comparison of proposed approaches against baselines on test (unseen) environments.
Results for Fourrooms and Pointmass are averaged across 20 mazes configurations.

Environment (Test) Method

Random Vanilla-FB HILP Lap Belief-FB Rotation-FB

Randomized-Fourrooms 0.05 ±0.01 0.15 ±0.06 0.2 ±0.02 0.1 ±0.1 0.4 ±0.02 0.61 ±0.02

Randomized-Pointmass 0.03 ±0.01 0.1 ±0.1 0.25 ±0.02 0.1 ±0.1 0.45 ±0.05 0.55 ±0.05

Ant-Wind 250 ±200.0 250 ±98.5 410 ±40.5 290 ±22.5 550 ±50.5 640 ±30.7

Table 2. Comparison of proposed approaches against baselines on train environments.
Results for Fourrooms and Pointmass are averaged across 20 mazes configurations.

Environment (Train) Method

Random Vanilla-FB HILP Lap Belief-FB Rotation-FB

Randomized-Fourrooms 0.18 ±0.02 0.25 ±0.02 0.4 ±0.02 0.2 ±0.1 0.7 ±0.02 0.85 ±0.02

Randomized-Pointmass 0.0 ±0.05 0.2 ±0.2 0.45 ±0.1 0.15 ±0.15 0.76 ±0.18 0.88 ±0.2

Ant-Wind -190 ±250 390 ±120 410 ±90 340 ±150 680 ±80 740 ±70

E.1. Dataset Generation

For Randomized Four-Rooms, we produce four training datasets with the following parameters:

# Transitions # layouts # episodes
per layout

episode
length

1000000 10 1000 100
1000000 20 500 100
1000000 30 250 100
1000000 50 150 100

Table 3. Details for Randomized Four-Rooms datasets
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(a) Randomized-Doors (b) Randomized Four-rooms

Figure 7. State occupancy measures visualizations for collected datasets for discrete-based environments.

Vanilla-FB RFBBFB

Tr
ai
n

Te
st

Figure 8. Q-function and deterministic policy visualizations (Equation 3) on Randomized Four-Rooms environment. Vanilla-FB
ignores grid structure and resulting policy moves through obstacles. BFB and RFB do not have such issue.

Randomized Four-Rooms. For experiments on Randomized Four-Rooms during dataset collection we generate randomly
grid layout, ensuring that each room is interconnected by exactly one door. For evalution we fix agent start position to (1, 1)
with the goal of reaching 3 other goals, specified at other rooms. Each episode terminates after 100 steps. The evaluation
protocol is averaged success rate across 3 across 20 environments.

AntWind. For AntWind we first collect trajectories by varying wind direction d and training an expert-like SAC agent.
After training, we collected evaluation trajectories from trained agent. This ensures that all directions are covered and
explicitly sets dynamics context. As said in Experiments section, we train on 16 environments with wind directions
corresponding to first 3 quadrants of circle, leaving other 4 (last quadrant) for hold out.
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Figure 9. 2D projections of zdyn inferred from different trajectories across number of different contexts (color), showing effective
disentangling environments based on transition function or other mismatches. (left) First two principal components are visualized for
estimated zdyn from five trajectories, each representing different layout type in Randomized-Doors. (right) Inferred context variables zdyn

recover hidden wind direction parameter in AntWind environment both for train and test, proving successful extrapolation properties.

Figure 10. Three different environment configurations from Figure 6 are visualized (yellow, purple and mixed trajectories).
For a fixed state s and same goal across configurations, arrows depict latent directions zFB ∈ Z and colored by optimal action as
acolor = argmaxa F (s, a, zFB)

T zFB. (left-middle) When FB is trained on the two distinct configurations in separation, most of the latent
directions agree on the optimal policy πz . (right) When FB is trained on mix of CMDPs and at test time tasked with any particular
configuration from train, obtained policy is ambiguous, since most policy-encoding directions do not agree on the action.

F. Theoretical Results
To formally study optimality guarantees of the zero-shot fast adaptation to new situations, we employ the following
assumption commonly used for dynamics generalization (Eysenbach et al., 2021; Jeen & Cullen, 2024):

Assumption 1 (Coverage). Let Pc(st+1|st, at) be a transition probability given small dataset of reward-free random
interactions either from test or train context. Then, Pctest(st+1|st, at)⇒ Pctrain(st+1|st, at) ∀st, st+1 ∈ S, at ∈ A .

F.1. Theorem 1

Let {Mπi}ki=1 be a collection of successor measures corresponding to optimal policies {πi}ki=1 for distinct CMDPs defined
by hidden context configurations ci ∈ C. Assume that ρ is the state-action distribution supported on the offline dataset
used for FB training and Mπi(s, a, ·) ≈ F (s, a, zi)

TB(·) is approximated via rank d factors. Define the worst-case
approximation error ϵk over context-dependent k successor measures as follows:

ϵk := inf
F,B

max
1≤i≤k

||Mπi − F (·, ·, zi)TB(·)||L2(ρ). (5)
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Figure 11. Visualization of inferred contexts h from space of all possible contexts H (depicted as arrows) and task vectors zFB

(depicted as points on sphere boundary). Transitions from same CMDP colored the same. Concentration parameter κ defines
spread of clusters. (left) Untrained transformer fdyn output for different transitions is unstructured and same transitions coming from
same CMDP (identical colors) are not collinear. (middle) New sampling procedure aligns policy specific vectors zFB with context specific
h, but clusters overlap before training. (right) After training, h for transitions from the same context are aligned and policies zFB do not
interfere between different environment configurations.

Then, the extracted policy πzi for (s, a) satisfies:
Theorem 1 (Regret-bound for Multiple Dynamics). For any bounded reward ||r||∞ ≤ R and particular test-time CMDP,

E(s,a)∼ρtest [Q
π∗

r (s, a)−Qπzi
r (s, a)] ≤ 2γϵk||r||∞

(1− γ)2
. (6)

Because ϵk+1 ≥ ϵk (monotonicity), the worst case regret per any CMDP at test time increases as more environments are
included during training.

Intuitively, Theorem 1 tells that as number of environments k grows, FB is forced to average over incompatible future
dynamics. However, this bound can be tightened, which we show in Section 3.3.
Lemma 1. Theorems 8-9 from Touati & Ollivier (2021) prove this inequality for single instance of MDP, showing that if FB
approximation error in L2(ρ) is at most ϵ then pointwise value gap is bounded by:

(Q∗
r −Q

πzi
r ) ≤ γ

1− γ
(Pπ∗ − Pπz

)(I − γPπ∗)−1E(z)r) (7)

with E(z) being a point-wise error matrix over state-actions as E(z) =Mπz (s, a, s′)− F (s, a, z)TB(s, a). Since

||(I − γP )−1||∞ ≤
1

1− γ
(8)

results in coefficient 2γ/(1− γ)2 in Equation 1.

Proof. Define a transition kernel Pi of CMDP at index i andMπi its successor measure. LetEi =Mπi−F (s, a, zi)TB(·) =
Mπi

− M̂i. Then, using Q∗ = (I − γPπ∗)−1r value gap decomposes as

Q∗ −Qπzi = γ(I − γPπ∗)−1(Pπ∗ − Pπzi
)(I − γPπzi

)−1r (9)

Since each of the resolvent factors (denote them as Ei)are at most 1/(1− γ) in L∞, then from triangle inequality:

||Q∗ −Qπzi ||∞ ≤
2γ

(1− γ)2
||Ei||L2

ρ
||r||∞ (10)

From Assumption 1 on absolute continuity,

E(s,a)∼ρtest{Q
∗ −Qπzi} ≤ ||Q∗ −Qπzi ||∞ (11)

Substituting this into Equation 10, gives desired inequality bound in Theorem 1.
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F.2. Theorem 2

Section 3.3 introduced a new sampling procedure of zFB, which improves upon usual uniform sampling. This procedure can
also be studied more formally.

Given an L possible contexual representations h of the environments coming from fdyn, define a cone around each of the
context axes {h1, h2 . . . hL} ∈ Sd−1, with the angle between any two latent vectors θmax set

Cj = {zFB ∈ Sd−1|⟨zFB, h
j⟩ ≥ cos θmax} (12)

Corresponding policy task vectors are defined for each cone ziFB ∈ Cc(i), with c(i) ∈ {1, . . . L} being a classification
function, mapping index i to one of the predifined context axes. For functions F,B define per environment error as:

Ei(F,B) := ||Mπi − F (·, ·, ziFB)
TB(·)||L2(ρ) (13)

With following optimization tasks:

ϵk := inf
F,B

max
1≤i≤k

Ei(F,B), ϵj := inf
F,B

max
i∈Sj

Ei(F,B) (14)

with Sj = {i|c(i) = j} being a set of task vectors (zFB) indices that fall into the j-th cone of the latent space partition.

Theorem (Regret-bound under latent space partitioning). Under assumptions above, the Gram matrix of the directions
{zFB}ki=1 is block diagonal w.r.t. partition {Sj} and

ϵk = max
j≤L

ϵj , ϵk ≤ ϵkmax (15)

with kmax := maxj |Sj | being the size of a largest cone block.

In order to prove this theorem, assume that collection of contexual embeddings {hj}Li=1 obtained from L environments are
almost orthogonal.

Proof. Define a k×k Gram matrix asG = ⟨ziFB, z
j
FB⟩with i, j corresponding to cone partition. Because cones, corresponding

to different contexual embeddings h, are disjoint and lie in a span{hi}, the resulting Gram matrix is block diagonal
G = diag(G(1), G(2), .., GL). For a fixed rank d of F,B, the worst case approximation error is

ϵk(F,B) = max
1≤i≤k

||Mπi
− M̂πi

||L2(ρ) = max
j≤L

max
i∈Sj

||Mπi
− M̂πi

||L2(ρ) (16)

Since matrix G is block-diagonal, optimization of F,B decouples over blocks of G. Namely, minimizer on the full set is
obtained by minimizing each block separately, hence:

ϵk = inf
F,B

ϵk(F,B) = max
j≤L

ϵj (17)

By taking kmax = maxj |Sj | and ϵk ≤ ϵkmax for each block, we obtain desired inequality.

Notably, such orthogonal cone partitioning eliminates interference. Once each cone has its own slice of the latent space,
adding more cones does not enlarge the worst-case error bound, and with representation capacity of F and B being d ≥ kmax
the FB model can reach zero approximation error in principle.

Intuitively, Theorem F.2 states that after the partitioning procedure of the latent space into non-overlapping clusters based
on context representations h, the global worst-case FB approximation error ϵk = maxj≤L ϵj is determined only by the
cluster whose error ϵj is largest. Importantly, this bound does not depend on number of training environments k. We provide
a more formal treatment and a full proof in Appendix F.

G. Implementation Details
G.1. Forward-Backward Representations

G.1.1. GPUS

We run each experiment on 4 Nvidia 4090.
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Table 4. Hyperparameters for FB The additional hyperparameters for Belief-FB and Rotation-FB are highlighted in

Hyperparameter Value

Latent dimension d 150 (100 for discrete)
F / ψ dimensions (1024, 1024)
B / φ dimensions (256, 256, 256)
Preprocessor dimensions (1024, 1024)
Std. deviation for policy smoothing σ 0.2
Truncation level for policy smoothing 0.3
Learning steps 1,000,000
Batch size 1024
Optimiser Adam
Learning rate 0.0001
Learning rate of fdyn 0.0001
Discount γ 0.99
Activations (unless otherwise stated) GeLU
Target network Polyak smoothing coefficient 0.05
z-inference labels 10,000
z mixing ratio 0.5

κ 50, 100 for Pointmass
Contexual representation h dimension 150 (100 for discrete)
Next state predictor gpred (256, 256, 256)

G.1.2. ARCHITECTURE

The forward-backward architecture described below mostly follows the implementation by (Touati et al., 2022). All other
additional hyperparameters are reported in Table 4.

Forward Representation F (s, a, z). The input to the forward representation F is always preprocessed. State-action pairs
(s, a) and state-task pairs (s, z) have their own preprocessors which are feedforward MLPs that embed their inputs into a
512-dimensional space. These embeddings are concatenated and passed through a third feedforward MLP F which outputs a
d-dimensional embedding vector. Note: the forward representation F is identical to ψ used by USF so their implementations
are identical (see Table 4).

Backward Representation B(s). The backward representation B is a feedforward MLP that takes a state as input and
outputs a d-dimensional embedding vector.

Actor π(s, z). Like the forward representation, the inputs to the policy network are similarly preprocessed. State-action
pairs (s, a) and state-task pairs (s, z) have their own preprocessors which feedforward MLPs that embed their inputs into a
512-dimensional space. These embeddings are concatenated and passed through a third feedforward MLP which outputs a
a-dimensional vector, where a is the action-space dimensionality. A Tanh activation is used on the last layer to normalise
their scale. Note the actors used by FB and USFs are identical (see Table 4).

Misc. Layer normalisation and Tanh activations are used in the first layer of all MLPs to standardise the inputs as
recommended in original paper for both discrete and continuous becnhmarks.

G.2. Task Sampling Distribution Z

Vanilla-FB. FB representations require a method for sampling the task vector z at each learning step. (Touati et al., 2022)
employ a mix of two methods, which we replicate:

1. Uniform sampling of z on the hypersphere surface of radius
√
d around the origin of Rd,

2. Biased sampling of z by passing states s ∼ D through the backward representation z = B(s). This also yields vectors
on the hypersphere surface due to the L2 normalization described above, but the distribution is non-uniform.
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We sample z 50:50 from these methods at each learning step as in original work by (Touati & Ollivier, 2021).

Rotation-FB. After transformer fdyn pretraining stage, RFB at each gradient step chooses task-conditioning vector zFB
based on i) context representation h acting as axes coming from fdyn and ii) drawing task encoding vectors zFB around this
axes. We also perform normalization as in Vanilla-FB by projecting resulting vector on a surface of hypersphere of radius√
d.

Stage ii) is implemented as drawing samples as zFB ∼ vMF(µ = h, κ). In order to remove high computational costs, we
implement this sampling procedure through Householder reflection around context axes, by first drawing z from one of the
basis vectors (e.g., north pole) and then performing rotation. This is depicted Pseudocode section Section 1:

G.3. Pseudocode

Algorithm 1 Belief-FB Training
1: Input: offline diverse dataset D consisting of transitions based on hidden configuration variable ci
2: Initialize transformer encoder fdynθ

, Fη , Bω , number of gradient steps for transformer pre-training K, context length T , Polyak
coefficient, β, batch size B learning rates λf , λF , λB

3: while update steps < K do
4: sample batch of B trajectories of length T {(si,t, ai,t, si,t+1)}i=1,...B,t=1,...,T ∼ D
5: (µi; logσi),= fdynθ

(
{si,t, ai,t, si,t+1}Mt=1

)
, i = 1, . . . , B,

6: zi = µi + ϵi ⊙ exp
(
logσi

)
,

7: Zi,t = zdyni , t = 1, . . . , T # Representation zdyn is shared across each sequence
8: ŝi,t+1 = gpred(si,t, ai,t,Zi,t) t = 1, . . . , T, i = 1, . . . , B

9: Lcontext = 1
B T

∑B
i=1

∑T
t=1

∥∥ŝi,t+1 − si,t+1

∥∥2

2

10: θfdyn ← θfdyn − λf∇θLcontext(θ)
11: end while
12: while not converged do
13: ηF ← ηF − λF∇ηF J(F,B)(ηF ) # FB training, Equation 4
14: ωB ← ωB − λB∇ωBJ(F,B)(ωB)
15: end while

Algorithm 2 Sampling zFB for RFB

input B (batch size), d (latent dimension), anchor matrix H∈RB×d, κ (concentration)
output Z∈RB×d

1: Normalize anchors: ui ← Hi/(∥Hi∥2 + ε) {for i = 1, . . . , B}
2: S← VMF_SAMPLE_NORTHPOLE(B, d, κ) {draw B VMF samples}
3: for i← 1 to B do
4: Ri ← HOUSEHOLDER_ROTATION(ui)
5: zi ← Ri Si

6: end for
7: Z← PROJECT_TO_SPHERE

(
{zi}Bi=1

)
8: return Z
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