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Abstract

Supervised fine-tuning (SFT) has become a cru-
cial step for aligning pretrained large language
models (LLMs) using supervised datasets of input-
output pairs. However, despite being supervised,
SFT is inherently limited by its generative training
objective. To address its limitations, the existing
common strategy is to follow SFT with a sepa-
rate phase of preference optimization (PO), which
relies on either human-labeled preference data
or a strong reward model to guide the learning
process. In this paper, we address the limitations
of SFT by exploring one of the most successful
techniques in conventional supervised learning:
discriminative learning. We introduce Discrimi-
native Fine-Tuning (DFT), an improved variant
of SFT, which mitigates the burden of collecting
human-labeled preference data or training strong
reward models. Unlike SFT that employs a gener-
ative approach and overlooks negative data, DFT
adopts a discriminative paradigm that increases
the probability of positive answers while suppress-
ing potentially negative ones, aiming for data
prediction instead of token prediction. Our con-
tributions include: (i) a discriminative probabilis-
tic framework for fine-tuning LLMs by explicitly
modeling the discriminative likelihood of an an-
swer among all possible outputs given an input;
(ii) efficient algorithms to optimize this discrimi-
native likelihood; and (iii) extensive experiments
demonstrating DFT’s effectiveness, achieving per-
formance better than SFT and comparable to if
not better than SFT→PO. The code can be found
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at https://github.com/Optimization-AI/DFT.

1 Introduction
Fine-tuning large language models (LLMs) has become an
essential step to adapt pretrained models to specific tasks,
significantly improving their performance and practical util-
ity (Wei et al., 2022; Ouyang et al., 2022; Touvron et al.,
2023; OpenAI, 2024; Guo et al., 2025). While pretraining
enables LLMs to acquire vast amounts of general knowl-
edge, fine-tuning tailors the model to exhibit desirable be-
haviors, and excel in specialized domains. As LLMs be-
come integral to applications like conversational AI, content
generation, and decision-making, developing effective and
efficient fine-tuning methods remains a critical challenge.

The current standard for aligning LLMs typically involves
supervised fine-tuning (SFT) followed by preference op-
timization (PO) denoted by SFT→PO, including tech-
niques such as reinforcement learning from human feed-
back (RLHF) (Stiennon et al., 2020; Ouyang et al., 2022;
Bai et al., 2022; Rafailov et al., 2024). In this approach, SFT
first aligns the model with supervised data, and PO further
refines the model using preference data labeled by humans
or a reward model that simulates human preferences. This
two-stage process has achieved significant success, particu-
larly in improving human alignment and response quality.
However, PO methods often require extensive human anno-
tations or the construction of robust reward models, both of
which are resource-intensive and may limit scalability and
applicability in highly specialized areas.

This raises an intriguing question: Can we align LLMs
without human preference data or reward models while
achieving competitive performance to SFT→PO?

To address this question, we propose Discriminative Fine-
Tuning (DFT), a novel alternative to SFT→PO that mit-
igates the burden of collecting human-labeled preference
data or training strong reward models. Unlike SFT, which
uses a generative approach and overlooks negative examples,
DFT adopts a discriminative notion, explicitly discriminat-
ing good from “bad” outputs generated by the base model
to be finetuned. We formalize this approach by introducing
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a discriminative probabilistic framework that models the
discriminative likelihood of an answer among all possible
outputs for a given input. This stands in stark contrast to
SFT, which uses a generative probabilistic framework to
model only the generative likelihood of individual tokens in
the answers. To implement this framework, we develop effi-
cient algorithms to optimize the discriminative likelihood
of good answers, ensuring both scalability and practical-
ity. Due to its strong discriminative capability, DFT delivers
competitive or superior performance compared to SFT→PO,
mitigating the requirement for human preference data and
reward models.

Our main contributions are summarized as follows:

• A novel discriminative framework: We introduce
a probabilistic framework that explicitly models the
discriminative likelihood of an answer among all pos-
sible outputs, in contrast to the generative likelihood
approach used in SFT.

• Efficient optimization algorithms: We propose scal-
able and practical methods to maximize the discrimi-
native likelihood of good answers, ensuring effective
fine-tuning of LLMs.

• Extensive empirical validation: We conduct exten-
sive experiments to demonstrate that DFT consistently
outperforms standard SFT and achieves comparable
results than preference optimization methods that rely
on explicit preference datasets.

These contributions establish DFT as a new paradigm for
enhancing pretrained language models, offering both theo-
retical and practical advancements in the field.

2 Related Work
Supervised Finetuning. The standard approach to SFT is
mimicking pretraining, which maximizes the likelihood of
tokens in the output response given input prompt (Ouyang
et al., 2022; Wei et al., 2022; Xu et al., 2023a; Wang et al.,
2023; Zhang et al., 2023; Li et al., 2024b). Although sim-
ple to implement, it often captures only superficial patterns
rather than fostering a deeper understanding of task seman-
tics (Kung & Peng, 2023; Zhang et al., 2023; Gudibande
et al., 2024). Recent works have studied inverse reinforce-
ment learning to address this limitation, but such methods
often involve interdependent updates between different mod-
els (e.g., the policy and a reward-related model), which com-
plicates the training process (Li et al., 2024a; Wulfmeier
et al., 2024). In contrast, our method neither requires on-
line sampling from the current policy model nor involves a
reward-related model, making it much more efficient.

Preference Optimization. Pioneering works proposed RL-
based PO methods (Christiano et al., 2017; Ziegler et al.,

2019; Stiennon et al., 2020; Ouyang et al., 2022; Bai et al.,
2022). These methods leverage a separate reward model,
trained on human-labeled preference data, and optimize the
SFT model against it using policy gradient methods such as
PPO (Schulman et al., 2017) and REINFORCE (Williams,
1992). Rafailov et al. (2024) proposed direct preference
optimization (DPO), which removes the step of training
a reward model and directly optimizes a pairwise loss of
the policy model on the preference data. Following DPO,
many PO methods have been proposed with different loss
functions, including R-DPO (Park et al., 2024), CPO (Xu
et al., 2024a), IPO (Azar et al., 2024), SimPO (Meng et al.,
2024), KTO (Ethayarajh et al., 2024), ORPO (Hong et al.,
2024), DPO-p (Pal et al., 2024), to name just a few among
others (Zhao et al., 2023; Jung et al., 2024).

Several works (Chen et al., 2024b; Yuan et al., 2023a; Song
et al., 2024) have considered PO with a list of ranked prefer-
ence data that may be explicitly labeled with a reward value.
Rosset et al. (2024) assumed a general preference function
is given that can produce a probability telling one output
is preferred over another output given an input. Different
from these works, we do not assume any preference data or
preference model other than annotated input-output pairs.

Finetuning via Self-play. Training a model on its own
self-generated responses has been widely explored in the
PO stage. For example, many variants of RLHF (Chris-
tiano et al., 2017; Ziegler et al., 2019; Stiennon et al., 2020;
Ouyang et al., 2022; Bai et al., 2022; Li et al., 2023; Chan
et al., 2024; Ji et al., 2024) use on-policy samples produced
by the current policy under optimization. Some studies have
exhibited benefits of using self-generated data for PO by
reducing the distribution gap between the training data and
the current model while fostering exploration of diverse
response spaces (Xu et al., 2024b; Tajwar et al., 2024; Tang
et al., 2024). Moreover, leveraging synthetic data has proven
essential for iterative (online) algorithmic improvement of
these methods (Xu et al., 2023b; Guo et al., 2024; Yuan
et al., 2024; Chen et al., 2024a; Dong et al., 2024). A more
closely related work is SPIN (Chen et al., 2024c), which
uses a similar preference optimization objective as DPO
but with data generated by the model to be finetuned as the
losing responses. Although we also use self-generated data
from the base model to be finetuned as our negative data,
our formulation is derived from a discriminative learning
framework, making our approach aided by advanced opti-
mization better than the pairwise loss function used in SPIN
and other pairwise preference optimization objectives (cf.
Section 6).

3 Preliminaries: SFT
For SFT, we are given a set of data D = {(xi,yi), i =
1, . . . , n}, where xi is an input prompt and yi is a labeled
output answer. Both the input x and output y are expressed
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as a sequence of tokens from a vocabulary of size K denoted
by V = {v1, . . . , vK}. We let x = (x[1], . . . , x[k]) and
y = (y[1], . . . , y[m′]), where x[i] ∈ V, y[j] ∈ V,∀i, j.

SFT considers the next-token prediction in the output y
given an input x. For an input-output pair (x,y), it mod-
els the conditional probability of y given x by Pg(y|x) =∏m′

j=1 pg(yj |x, y1, . . . , yj−1). The token conditional proba-
bility pg(xj |x1, . . . , xj−1) is modeled by a Transformer:

pg(xj |x1, . . . , xj−1)

=
exp(h(w;x1, . . . , xj−1)

⊤Wxj )∑K
k=1 exp(h(w;x1, . . . , xj−1)⊤Wk)

,

where W1, . . . ,WK denotes the token embedding vectors
of that in V , h(w;x1, . . . , xj−1) denotes the representation
of the input sequence of tokens produced by a transformer
network parameterized by w. We let θ = (w,W ) to denote
all parameters of the LLM.

By minimizing the negative log-likelihood of all y1, . . . ,yn,
SFT solves the following problem from a pretrained model:

min
θ

− 1

n

n∑
i=1

logPg(yi|xi). (1)

In order to differentiate from our approach, we refer to
Pg(y|x) as the generative likelihood, as it decomposes
the likelihood of generating y given x into the product of
likelihood of generating each token in y.

4 DFT: Discriminative Finetuning
In order to motivate our approach, let us first examine the
limitation of SFT. Our goal of finetuning LLMs is to ensure
that LLMs generate good answers more likely than bad
answers. However, SFT only has one-sided optimization
power by maximizing the likelihood of tokens in the good
output y given x and their preceding tokens. It does not
necessarily guarantee that the likelihood of tokens in the
bad answer is low. Let us consider a simple example:

Motivation Example

(x) What is the bigger number between 9.11 and 9.9?
(y) The bigger number between 9.11 and 9.9 is 9.9.
(y′) The bigger number between 9.11 and 9.9 is 9.11.

The good answer y and the bad answer y′ only differ in the
last token. The likelihood of all preceding tokens are the
same. Even though the likelihood of the last token “9” in
y conditioned on preceding tokens is increased during the
finetuning with this data, the likelihood of the token “11” as
the last one might still be high, making generating the bad
answer y′ likely.

To address this issue, the current mainstream approach is to
finetune the model further using PO on human preference

data. If humans label the two answers such that y ≻ y′, the
model might be able to push the likelihood of y′ given x
smaller than that of y given x. As a result, the good answer
y will be generated more likely than the bad answer y′.

However, traditional supervised learning methods never use
human preference data. For example, in image classifica-
tion, training data (x, y) denote an input image and its true
class label y ∈ {1, . . . ,K}. We do not need the preference
optimization step on preference data saying that a dog class
is preferred to a cat class for an image of a dog. So what is
the difference between traditional supervised learning and
supervised finetuning of LLMs that makes SFT not enough?
The answer lies in the fact that traditional supervised learn-
ing methods are usually discriminative approaches, while
the standard SFT method is not discriminative.

Below, we introduce our discriminative finetuning (DFT)
framework of LLMs. A discriminative approach aims to
push the “score” of the true output to be higher than that
of other possibly wrong outputs. In this paper, we examine
a classical approach through discriminative probabilistic
model. To this end, we introduce a parameterized scoring
function sθ(y,x) ∈ R, which measures the fitness of y
given x. This is similar to the prediction score in traditional
supervised learning. We will discuss shortly how to set the
scoring function for learning an LLM. In a discriminative
probabilistic model, we model the conditional probability
Pd(y|x) of one output y out of the space of all possible
texts denoted by Y . In particular, we define

Pd(y|x) =
exp(sθ(y,x)/τ)∑

y′∈Y exp(sθ(y′,x)/τ)
,∀y ∈ Y, (2)

where τ > 0 is a temperature hyperparameter. Then, given a
set of training data D = {(x1,y1), . . . , (xn,yn)}, we learn
θ by maximizing the log-likelihood of observed data, i.e.,

minθ F (θ) (3)

where F (θ) := − 1

n

n∑
i=1

τ logPd(yi|xi) =

− 1

n

n∑
i=1

sθ(yi,xi) +
τ

n

n∑
i=1

log

[ ∑
y′∈Y

exp(
sθ(y

′,xi)

τ
)

]
,

where scaling the negative log-likelihood by τ is for in-
creasing the numerical stability, which does not change the
optimal solution.

DFT marks a paradigm shift from “token” prediction to
“data” prediction. To differentiate from the generative likeli-
hood Pg(y|x), we refer to Pd(y|x) in (2) as discriminative
likelihood of y given x. By maximizing the discriminative
log-likelihood of the training data, we not only increase the
score of the true output yi for each input xi, corresponding
to the numerator of the discriminative likelihood, but also
decrease the scores of other potentially bad answers in Y ,
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which correspond to the denominator of the discriminative
likelihood.

Finally, we note that while both DFT and traditional discrim-
inative classification methods (e.g., logistic regression) use
supervised data D = {(xi,yi), i = 1, . . . , n} and model
discriminative likelihood through softmax functions, the
differences are: (1) DFT operates over an infinite space of
possible text outputs y′, whereas traditional classification
works with a finite set of class labels; (2) the summation
over all possible y′ in DFT requires advanced optimization
techniques, while summation over class labels in traditional
approaches is straightforward. This fundamental distinction
necessitates our novel sampling and estimation approach
while maintaining the core advantages of discriminative
learning principles.

4.1 The Scoring Function
The above framework is similar to the discriminative prob-
abilistic modeling for self-supervised representation learn-
ing (Wang et al., 2025). However, we cannot directly borrow
the same idea of discriminative representation learning to
design the scoring function. In particular, discriminative
representation learning uses an encoder network e(x) to
induce an embedding of any input text x, and computes the
scoring function by using the cosine similarity between e(x)
and e(y). However, this representation model e(·) is of no
use for generative tasks of LLMs.

To circumvent this issue, we define the scoring function
based on the generative log-likelihood logPg(y|x), as it
measures the likeliness of generating y given x. For a
good model, we expect that a high value of the generative
log-likelihood logPg(y|x) would indicate a high fitness
score of y to answer x. With such correspondence, the
above discriminative learning framework would increase the
chance of generating a good output y given x and decrease
the chance of generating possibly bad outputs given x. We
will examine two simple settings of the scoring function.

Setting 1: sθ(y,x) = logPg(y|x). Plugging this into (3)
results in the following objective:

min
θ

− 1

n

n∑
i=1

logPg(yi|xi)

+ τ
1

n

n∑
i=1

log

(∑
y′∈Y

exp

(
logPg(y

′|xi)

τ

))
. (4)

Comparing the above objective of DFT to that of SFT in (1),
we can see that the first term in (4) is exactly the same as the
objective of SFT. The difference lies in the second term that
penalizes the possibly bad outputs in Y for each xi, trying
to decrease their generative log-likelihood.

Setting 2: For the second setting, we use length normal-
ized generative log-likelihood as the scoring function, e.g.,

sθ(y,x) =
1
|y| logPg(y|x), where |y| denotes the number

of tokens in y. This will allow us to compare DFT with
some PO approaches using length normalized reward (Meng
et al., 2024). As a result, the problem becomes:

min
θ

− 1

n

n∑
i=1

1

|yi|
logPg(yi|xi)

+ τ
1

n

n∑
i=1

log

( ∑
y′∈Y

exp

(
logPg(y

′|xi)

|y′|τ

))
. (5)

4.2 The Optimization Algorithm
Although our DFT formulations (2) and (3) are nearly iden-
tical to that of the traditional discriminative probabilistic
approach for classification (e.g., logistic regression), the key
challenge lies in solving the optimization problem in (3),
particularly in handling the second term of F (θ), where Y
encompasses all possible texts. Indeed, the optimization
problem in (3) is an instance of empirical X-risk mini-
mization (Yang, 2022; Yuan et al., 2023b). We address
the optimization challenge by employing advanced opti-
mization techniques of finite-sum coupled compositional
optimization framework (FCCO) (Wang & Yang, 2022).
The idea is to write the second term of F (θ) into the form
of 1

n

∑n
i=1 f(Eζgi(θ; ζ)), where ζ is some random variable.

To this end, we introduce a sampling distribution Pi(·),
which is specified later. Then we define

gi(θ) : =
∑
y′∈Y

exp(
sθ(y

′,xi)

τ
) = Ey′∼Pi(·)

exp( sθ(y
′,xi)
τ )

Pi(y′)
.

The objective becomes:

min
θ

− 1

n

n∑
i=1

sθ(yi,xi)

+
1

n

n∑
i=1

τ log

(
Ey′∼Pi(·)

exp(sθ(y
′,xi)/τ)

Pi(y′)

)
. (6)

Next, we discuss three components of our algorithm for
solving the above problem.

Sampling Distributions. We need three properties of these
sampling distributions: (1) it is easy to sample data from
them; (2) it is possible to compute the probability value
of a sample y′; (3) the sampled outputs y′ ∼ Pi(·) are
likely to be bad outputs in answering xi. To this end, we
let Pi(·) = P 0

g (·|x̄i), where P 0
g corresponds to the base

LLM θ0 to be finetuned, and x̄i is an augmented text of xi

including some system prompts to facilitate the generation
of bad outputs. We explore this in our experiments.

Key Updates. Computing a stochastic gradient estimator
for the first term is the same as in SFT. The challenge is
how to estimate the gradient of τ log(gi(θt)) in the sec-
ond term using random samples. Its gradient is given by

τ
gi(θt)

∇gi(θt). Although ∇gi(θt) can be simply estimated
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Algorithm 1 The DFT Algorithm

1: Initialize θ0 as the base LLM, and u0 = 1
2: for t = 0, 1, . . . , T − 1 do
3: Sample a mini-batch St ⊂ {x1, . . . ,xn}
4: for each xi ∈ St do
5: Sample a mini-batch B0

i,t from P 0
g (·|x̄i) via an

offline pool
6: Update ui,t+1 according to (7)
7: end for
8: Compute a gradient estimator Gt according to (8)
9: Update θt+1 using Adam-W

10: end for

using an unbiased stochastic gradient, estimating τ
gi(θt)

can-
not simply use an unbiased stochastic estimator of gi(θt)
since it is a non-linear function gi(θt), which will yield a
biased estimator. Following Wang & Yang (2022), we main-
tain and update n moving average estimators {u1, . . . , un}
to track gi(θ) for each xi. In particular, at the t-th iteration
given a solution θt, we first sample a mini-batch of data
St ⊂ {x1, . . . ,xn}. For each data xi ∈ St, we sample one
or multiple outputs y′ ∼ P 0

g (·|x̄i), e.g., by generating them
through feeding x̄i as the input prompt to the base LLM
P 0
g . We denote these outputs as B0

i,t = {y′
i,t,1, . . . ,y

′
i,t,B}.

Then we update ui,t+1 by:

ui,t+1 = (1− γ)ui,t + γ
1

B

∑
y′∈B0

i,t

exp(
sθt (y

′,xi)

τ )

P 0
g (y

′|x̄i)
, (7)

where γ ∈ (0, 1). With ui,t, the gradient of τ log(gi(θt))
can be estimated by τ

ui,t+1
∇ĝi(θt), where

∇ĝi(θt) =
1

B

∑
y′∈B0

i,t

exp(
sθt (y

′,xi)

τ )∇sθt(y
′,xi)

τP 0
g (y

′|x̄i)

denotes a mini-batch estimator of ∇gi(θt). We emphasize
that the moving average estimator (7) is critical to calculat-
ing an accurate gradient estimator of the objective. In our
experiments, we show γ = 1 (i.e., simply using a mini-batch
estimator of gi(θt)) will yield much worse performance.

Thus, we compute an estimator of the gradient ∇F (θt) by:

Gt = − 1

|St|
∑

xi∈St

∇sθt(yi,xi)+

1

|St|
∑

xi∈St

1

ui,t+1B

∑
y′∈B0

i,t

exp(
sθt (y

′,xi)

τ )∇sθt(y
′,xi)

P 0
g (y

′|x̄i)
. (8)

Finally, we can update the model parameter θt+1 following
the momentum-based methods (e.g., Adam, Adam-W). This
method has a provable convergence guarantee for solving (3)
following Wang & Yang (2022). Our optimization method
is summarized in Algorithm 1.

Efficient Implementation. There are several implementa-

tion issues of Algorithm 1 that are worth discussing.

The first issue is the Step 5, which sample outputs from
the sampling model P 0

g (·|x̄i). This could increase the train-
ing time if it is done online. However, since the sampling
model is fixed, we can generate these data offline for all
xi, i = 1, . . . , n. This could dramatically reduce our train-
ing time. In our experiments, we generate m = E×B num-
ber of outputs for each data xi from the sampling model
and sample B outputs from this pool in Step 5 without
replacement, where E is the number of epochs.

Another issue is the numerical stability when calculat-
ing the stochastic gradient estimator in Step 8 (c.f. (8)).
Take sθ(y,x) = logPg(y|x) as an example. Then,
exp(sθt(y

′,xi)/τ) = Pg(y
′|x)1/τ , which could be a

very small value as we are trying to decrease the gener-
ative likelihood of generated outputs y′. As a result, the
value of estimators ui,t can be extremely small, e.g., 10−x

where x is a large number, causing some numerical is-
sues. This issue is tackled by maintaining and updating
{log u1, . . . , log un} instead of {u1, . . . , un}. Specifically,

we denote by wi,t,y′ =
exp(

sθt
(y′,xi)

τ )

P 0
g (y

′|x̄i)
. Then (7) can be

reformulated to:

exp(log ui,t+1) = exp(log(1− γ) + log ui,t)

+ exp(log γ + log
1

B

∑
y′∈B0

i,t

wi,t,y′).

For simplicity, let bi,t = log(1 − γ) + log ui,t and wi,t =
log γ + log 1

B

∑
y′∈B0

i,t
wi,t,y′ , we have

exp(log ui,t+1) = exp(bi,t) + exp(wi,t)

If wi,t < bi,t, we let

exp(log ui,t+1) = exp(bi,t)(1 + exp(wi,t − bi,t));

otherwise, we let

exp(log ui,t+1) = exp(wi,t)(1 + exp(bi,t − wi,t)).

Combining these two cases, we have the following:

exp(log ui,t+1) (9)
= exp(max{bi,t, wi,t})(1 + exp(−|bi,t − wi,t|))
= exp(max{bi,t, wi,t})σ−1(|bi,t − wi,t|),

where σ(·) denotes the sigmoid function. Taking the log on
both sides gives the update for log ui,t+1. To summarize,
we maintain and update ūi,t = log ui,t as following:

bi,t = log(1− γ) + ūi,t

wi,t = log γ + log
1

B

∑
y′∈B0

i,t

wi,t,y′

ūi,t+1 = max{bi,t, wi,t} − log σ(|bi,t − wi,t|).

(10)

Then Gt is calculated using exp(ūi,t+1) in place of ui,t+1.
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Algorithm 2 The DFT2 Algorithm

1: Initialize θ0 as the base LLM, and u0 = 1
2: for t = 0, 1, . . . , T − 1 do
3: Sample a mini-batch batch St ⊂ {x1, . . . ,xn}
4: for each xi ∈ St do
5: Sample a mini-batch B0

i,t from S0
i

6: Update ūi,t+1 according to (12) and (10)
7: end for
8: Compute a gradient estimator Gt according to (13)
9: Update θt+1 using Adam-W

10: end for

5 DFT2: An Approximation Approach
Compared with SFT, DFT has an extra cost of computing
P 0
g (y

′|x̄i) at each forward step during training. We can
further reduce this cost by using an approximation. The
idea is simple by just using the length-normalized gen-
erative log-likelihood as the scoring function sθ(y,x) =
1
|y| logPg(y|x) and dropping P 0

g (y
′|x̄i) in the update of

ui,t+1 and the gradient estimator Gt. Below, we explain
this approximation from two perspectives.

We first explain the approximation via approximating∑
y′∈Y exp(sθ(y

′,x)) by using the data generated by the
base LLM model. Let S0

i = {y′
i,1, . . . ,y

′
i,m} denote

a set of outputs sampled for each data xi following the
base model P 0

g (·|x̄i). Considering that the base LLM
has already been trained significantly on a large corpus,
hence exp(sθ(y

′,x)/τ) for y′ ∼ P 0
g (·|x̄i) would be much

larger than a random y′ in Y . This is verified by Fig-
ure 1. Hence, we approximate

∑
y′∈Y exp(sθ(y

′,x)/τ) ≈∑
y′∈S0

i
exp(sθ(y

′,x)/τ). The second explanation is
drawn from an observation made in Meng et al. (2024).
They observed that the samples from a LLM have roughly
the same values of sθ(y′,x) = 1

|y′| logPg(y
′|x). Hence,

we can approximate gi(θ) by

gi(θ) ≈
1

m

∑
y′∈S0

i

exp( sθ(y
′,x)

τ )

P 0
g (y

′|x̄i)
∝ 1

m

∑
y′∈S0

i

exp(
sθ(y

′,x)

τ
),

where the second step is justified by that exp(sθ(y′,x)/τ)
are approximately the same, hence the weighting by
1/P 0

g (y
′|x̄i) becomes insignificant.

With either approximation, we end up with the following
optimization problem:

min
θ

− 1

n

n∑
i=1

sθ(yi,xi)

+
1

n

n∑
i=1

τ log

(
1

m

∑
y′∈S0

i

exp(sθ(y
′,x)/τ)

)
. (11)

We solve the above problem using the same optimization

technique, except for the change on ui,t+1 and Gt:

ui,t+1 = (1− γ)ui,t +
γ

B

∑
y′∈B0

i,t

exp(
sθt(y

′,xi)

τ
) (12)

Gt = − 1

|St|
∑

xi∈St

∇sθt(yi,xi)+ (13)

1

|St|
∑

xi∈St

1

ui,t+1B

∑
y′∈B0

i,t

exp(
sθt(y

′,xi)

τ
)∇sθt(y

′,xi).

We refer to the algorithm for solving (11) similar to Algo-
rithm 1 with the above updates of ui,t+1 and Gt as DFT2.

Computational Costs: As shown in Figure 4, DFT2 has
a dramatic reduction in computation costs compared with
DFT, as it does not need to load the sampling model P 0

g into
the memory and compute P 0

g (y
′|xi), which DFT requires.

Compared with SFT, DFT2 has additional costs for comput-
ing ∇sθt(y

′,xi), y
′ ∈ B0

i . Nevertheless, such costs appear
in the preference optimization step of existing approaches.

6 Comparison with PO and Self-play
Let us compare DFT2 with preference optimization (PO)
approaches. A standard setting of PO is to finetune a LLM
based on a set of preference data {(xi,yi,y

′
i)}ni=1, where

yi denotes a winning response to xi and y′
i denotes a losing

response, labeled either by a human or a reward model.
Most PO approaches can be cast into the following pairwise
loss minimization problem:

min
θ

1

n

n∑
i=1

ℓ(rθ(yi,xi), rθ(y
′
i,xi)),

where rθ(y,x) denotes some reward function. This
framework can be easily extended to incorporate
multiple losing responses in the preference data
{(xi,yi,y

′
i1,y

′
i1, . . . ,y

′
im)}ni=1, by solving the following

problem:

min
θ

1

n

n∑
i=1

1

m

m∑
j=1

ℓ(rθ(yi,xi), rθ(y
′
ij ,xi)). (14)

For example, DPO uses a reward function
rθ(y,x) = β log

Pg(y|x)
P 0

g (y|x)
and a logistic loss function

ℓ(rθ(y,x), rθ(y
′,x)) = − log σ(rθ(y,x) − rθ(y

′,x)).
Self-play finetuning (SPIN) uses the same objec-
tive as DPO except for that y′ is generated by
the base LLM. SimPO uses a reward function
rθ(y,x) = β

|y| logPg(y|x) and adds a margin parameter
γ to the logistic loss function ℓ(rθ(yi,xi), rθ(y

′
i,xi)) =

− log σ(rθ(yi,xi)− rθ(y
′
i,xi)− γ).

Similarity: From the perspective of PO, we can regard
the sampled data y′ ∈ S0

i in DFT2 as potentially losing
response to xi and the given output yi as the winning re-
sponse. Hence, the objective of DFT2 integrates both the

6
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Figure 1: Distribution of sθ(y′,x) computed with the model
checkpoint after one epoch of training on UltraFeedback
data, comparing two groups of y′. Random y′ samples are
generated using a very high temperature, while the “Sam-
pling” group represents y′ generated with temperature less
than 1 as used in our method.

power of SFT and PO.

Difference: To understand the difference between the objec-
tive of DFT2 and the pairwise loss used in PO approaches,
we can rewrite (11) as:

min
θ

1

n

n∑
i=1

τ log

(
1

m

∑
y′∈S0

i

exp(
sθ(y

′,x)− sθ(yi,xi)

τ
)

)
.

It can be seen that the difference between DFT2
and PO is that they use different losses for each
data xi. In particular, DFT2 uses the log-sum-
exp loss function τ log( 1

m

∑
y′∈S0

i
exp( sθ(y

′,x)−sθ(yi,xi)
τ ))

for each data xi, while PO uses an averaged loss
1
m

∑m
j=1 ℓ(rθ(yi,xi), rθ(y

′
i,xi)) for each data. Like the

cross-entropy loss for classification or the contrastive loss
for self-supervised representation learning, the log-sum-exp
loss has the property of giving higher weights to a potentially
bad output y′ with a larger score sθ(y

′,x) in the gradient
computation. In contrast, the averaged loss in PO does not
enjoy this property.

7 Experiments
Setup: We evaluate our proposed DFT framework under two
distinct training settings. First, we focus on improving the
mathematical reasoning capability of a base LLM by using
DFT on the MetaMathQA dataset (Yu et al., 2024), which
contains 395K samples generated through bootstrapped
mathematical questions with augmented reasoning paths.
In this setting, we set B = 4. Second, we fine-tune a base
LLM using DFT on the UltraFeedback (UF) dataset (Cui
et al., 2023), comprising 61K samples. UF is originally used
as a preference dataset, where each data pairs a winning re-
sponse yw and a losing response yl. For SFT and DFT, we
regard the winning responses yw as the ground-truth and
discard all losing responses. In this setting, we set B = 2
and generate y′ by adding an adversarial prompt like “You

are an unhelpful assistant.” to the input xi in a chat template
(cf. Appendix B.5) and use it as input to the base LLM
for generation. For both settings, we use Mistral-7B-v0.1
as our base model. More details of implementation and
hyper-parameter tuning are described in Appendix A.

Evaluation Benchmarks. For the first training setting, we
evaluate our methods on two widely adopted benchmarks:
GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021b). We use zero-shot test accuracy as our evaluation
metric to assess the model’s true reasoning capabilities. For
the second training setting, we evaluate on seven diverse
benchmarks from the Huggingface Open Leaderboard, in-
cluding MMLU (Hendrycks et al., 2021a), TruthfulQA (Lin
et al., 2022), HellaSwag (Zellers et al., 2019), WinoGrande
(Sakaguchi et al., 2019), GSM8K (Cobbe et al., 2021), ARC
(Clark et al., 2018), and IFEval (Zhou et al., 2023). We
follow the few-shot evaluation protocol from Chen et al.
(2024c). For IFEval, we report the prompt-level strict accu-
racy. In addition, we also consider evaluation using GPT4-
as-a-judge on AlpacaEval2 (Dubois et al., 2024).

7.1 Results
Table 1 shows the performance of DFT(2) on improving
mathematical reasoning capabilities. Table 2 and Table 3
compare DFT(2) with self-play methods and SFT→PO
methods, respectively, for the second training setting. We
describe our observations below.

Observation 1: DFT variants improve standard SFT.
Both DFT and DFT2 surpass MetaMath-Mistral-7B trained
by SFT, achieving state-of-the-art performance among
7B-parameter models on GSM8K (79.15%) and MATH
(28.62%). Similarly, for general language tasks (Table 2),
DFT improves SFT across almost all benchmarks except
for MMLU, on which both methods are competitive. In
addition, both DFT and DFT2 outperform SFT on average.

Observation 2: DFT variants consistently outperform
PO methods on self-play data. In Table 2, we compare
DFT(2) with PO approaches using self-play data that is gen-
erated by the base model as negative data, including SPIN,
SimPO, KTO, ORPO, DPO-p and SimPO-SFT, where the
last one just combines the SimPO loss and the SFT loss simi-
lar to Xu et al. (2024a). Comparing with SimPO-SFT allows
us to verify the advantage of our objective over SimPO loss.
For these baselines, we use the same generated y′ as in DFT
as their negative data and finetune the same base model. The
results in Table 2 show that these PO approaches on self-
play data can not improve SFT. This is different from the
observation in Chen et al. (2024c); Xu et al. (2024a), as their
experiments are for finetuning an SFT model. Comparing
DFT(2) with SPIN and SimPO can justify the effectiveness
of our objectives and the optimization algorithm.

Observation 3: DFT is competitive with SFT→PO ap-
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Table 1: Testing accuracy on GSM8K and MATH

METHOD GSM8K MATH
METAMATH-7B 66.5 19.8
METAMATH-MISTRAL-7B 77.7 28.2
DFT (MISTRAL-7B-BASE) 79.15 28.34
DFT2 (MISTRAL-7B-BASE) 78.77 28.62

proaches. We compare with state-of-the-art PO methods
including DPO, SimPO, RRHF, R-DPO, CPO, IPO, and
KTO after SFT in Table 3. It is notable that the existing
training pipeline for PO-based methods first trains an SFT
model on the UltraChat-200k (UC) dataset (Ding et al.,
2023) and then applies PO on the UF preference dataset.
However, this training pipeline gives worse performance
than SFT on UF winning data. It is probably because the
winning responses in the UF dataset give better ground-truth
than the data in UC. To mitigate this issue, we implement
three methods SFT→DPO, SFT→SimPO and SFT→KTO
using an improved pipeline (UF→UF) that first performs
SFT on UF winning data and then applies PO on the UF
preference data.

Our results in Table 3 show that DFT variants signifi-
cantly outperform all methods using the standard UC→UF
pipeline. When compared to the improved UF→UF
pipeline, DFT enjoys competitive performance with state-of-
the-art PO methods including DPO, SimPO and KTO. This
is particularly noteworthy as DFT achieves these results in
a single training stage, directly fine-tuning the pretrained
Mistral-7B-v0.1 model without the preference data.

AlpacaEval2 Results. Finally, we briefly discuss the GPT4-
as-a-judge evaluation on instruction following by reporting
the length-controlled winning rate (LC) on AlpacaEval2.
The comparison between DFT(2) with SFT and PO-based
methods on self-play data is shown in Figure 2a, which
demonstrates DFT(2) outperforms these baselines. The
comparison between DFT(2) and SFT→PO approaches on
preference data is shown in Appendix B.1, which shows that
DFT(2) is competitive with some PO approaches using the
preference data, such as KTO, but worse than SimPO and
DPO. However, DFT(2) have much shorter lengths for the
outputs with an average length of 1359. In contrast, KTO,
DPO, SimPO have average lengths of 1449, 1477, 1868,
respectively. The GPT4-as-a-judge evaluation tends to favor
outputs that are longer. Nevertheless, DFT has competitive
if not better performance on verifiable instruction following
benchmark IFEval (cf. Table 3).

7.2 Ablation Studies
We present more results to illustrate the effectiveness of DFT
compared with SFT and PO-based objectives, the advantage
of our optimization using moving-average estimators u, and
the effect of the number of generated samples B in each
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Figure 2: (a) AlpacaEval2 LC win rate of DFT, SFT, and
PO methods based on self-play data. (b) Average testing
accuracy of DFT under different γ values.

0 50 100 150
Training Steps

1000

500

lo
gP

g(
y|

x) SFT
SIMPO
DFT

(a) Log-likelihoods of positives

0 50 100 150
Training Steps

4000

2000

0

lo
gP

g(
y′

|x
)

SFT
SIMPO
DFT

(b) Log-likelihoods of negatives

Figure 3: (a) Log-likelihoods of positive examples during
training for different methods. (b) Log-likelihoods of nega-
tive examples during training for different methods.

iteration.

Training Curves for the Log-likelihood. Figure 3a and
Figure 3b illustrate the learning dynamics of different meth-
ods by tracking the log-likelihood of positive and generated
negative examples during training. We compare DFT with
SFT and SimPO as in the Table 2. For positive examples
(Figure 3a), DFT maintains a trajectory similar to SFT, while
SimPO shows a decreasing trend, which means the objective
of SimPO is not effective if using the self-generated nega-
tive examples for PO. For self-generated examples (Figure
3b), DFT successfully decreases the log-likelihood, demon-
strating its effectiveness in distinguishing between positive
and negative examples.

Comparison with SFT→PO without Preference data
Table 4 presents results comparing DFT methods with
SFT→PO without human preference data, where all meth-
ods use the same generated outputs from the base model
as negative examples. We use the same UF→UF pipeline
as in Table 3, while the only difference is that we replace
the losing responses with the same generated responses as
DFT in the PO stage of SFT→PO methods. These results
demonstrate that the single stage training of DFT(2) is more
effective than the two-stage training of SFT→PO methods
for using the self-generated data.

The advantage of using moving-average estimators u.
In the second training setting, we train DFT using differ-
ent values of γ ranging from 0.8 to 1.0. The value of 1.0
corresponds to using the mini-batch estimator of gi(θ) for
estimating the gradient. The average testing accuracy on

8
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Table 2: Comparison between DFT, SFT, and PO methods on self-play data in the second training setting. All methods
use the same UF winning responses as positive examples and the same generated outputs from the base model as negative
examples, ensuring a fair comparison.

METHOD MMLU TRUTHFULQA HELLASWAG WINOGRANDE GSM8K ARC IFEVAL AVG.
SFT 62.18 50.04 83.59 78.06 45.26 63.65 49.72 61.79
SPIN 61.99 49.91 83.75 77.90 46.02 61.95 23.11 57.80
SIMPO 62.39 52.08 83.89 78.14 2.58 61.86 18.85 51.40
SIMPO-SFT 62.28 49.59 83.46 77.90 42.53 61.52 43.62 60.13
KTO 61.59 49.32 82.88 79.24 43.97 61.60 38.08 59.53
ORPO 62.26 48.26 83.07 79.16 45.41 62.20 53.41 61.97
DPO-P 62.01 48.66 84.03 78.61 40.48 62.20 25.32 57.33
DFT 61.69 52.23 83.95 78.37 48.22 64.25 51.20 62.84
DFT2 61.66 54.14 83.20 77.82 45.49 64.42 51.20 62.56

Table 3: Comparison between DFT and SFT→PO approaches on preference data in the second training setting. DFT use
only the UF winning responses, while SFT→PO methods use explicit preference pairs.

METHOD DATA MMLU TRUTHFULQA HELLASWAG WINOGRANDE GSM8K ARC IFEVAL AVG.
SFT→DPO UC →UF 57.49 53.15 83.60 77.43 30.55 61.52 39.93 57.67
SFT→SIMPO UC →UF 58.33 50.67 83.39 76.95 33.36 61.86 40.48 57.86
SFT→RRHF UC →UF 56.40 43.70 80.37 77.51 0.45 52.99 37.52 49.85
SFT→R-DPO UC →UF 58.29 46.10 84.11 76.40 28.43 61.26 38.63 56.17
SFT→CPO UC →UF 58.05 47.10 80.73 77.11 35.86 57.17 40.67 56.67
SFT→IPO UC →UF 59.10 45.45 83.14 77.43 34.12 60.24 42.88 57.48
SFT→KTO UC →UF 59.72 56.65 84.92 78.14 40.49 63.57 43.62 61.01
SFT→KTO UF →UF 62.15 54.53 84.77 77.98 45.41 64.51 51.94 63.04
SFT→DPO UF →UF 62.28 55.67 84.79 78.22 47.54 64.68 47.69 62.98
SFT→SIMPO UF →UF 61.20 59.36 85.18 77.03 44.12 63.74 43.81 62.06
DFT UF (x,yw) 61.69 52.23 83.95 78.37 48.22 64.25 51.20 62.84
DFT2 UF (x,yw) 61.66 54.14 83.20 77.82 45.49 64.42 51.20 62.56

Table 4: Comparison of DFT with SFT→PO methods without human preference data, where all methods use the same
generated outputs from the base model as negative examples.

METHOD MMLU TRUTHFULQA HELLASWAG WINOGRANDE GSM8K ARC IFEVAL AVG.
DFT 61.69 52.23 83.95 78.37 48.22 64.25 51.20 62.84
DFT2 61.66 54.14 83.20 77.82 45.49 64.42 51.20 62.56
SFT→DPO 61.11 62.22 85.31 78.69 30.71 65.53 26.43 58.57
SFT→SIMPO 60.59 66.47 85.65 78.22 2.43 66.13 39.37 56.98

the seven benchmarks of Huggingface Open Leaderboard is
shown in Figure 2b with more detailed results reported in Ta-
ble 8 in Appendix B.2. It shows that using a moving-average
estimator with γ ∈ [0.80, 0.95] significantly improves the
performance compared to not using the moving-average
estimators corresponding to γ = 1.0, justifying the effec-
tiveness of our optimization algorithm.

The effect of B. We compare different values of B =
1, 2, 4 in the second training setting on UF data. The results
of DFT(2) and other PO-based approaches using the self-
play data are shown in Appendix B.3. The results show
that increasing B from 1 to 2 improves the performance,
especially on AlpacalEval2. However, further increasing

it to B = 4 decreases the performance. We suspect that
this is probably due to overfitting, and expect more training
data will accommodate a larger B, e.g., DFT on the larger
MetaMathQA dataset with B = 4 is better than B = 2.

8 Conclusion
In this paper, we have proposed a discriminative probabilis-
tic framework for finetuning a pretrained large language
model without using any preference data or a reward model.
Efficient and effective optimization algorithms are devel-
oped. Extensive experiments have demonstrated the ef-
fectiveness of the proposed methods compared with the
standard supervised finetuning method and the existing pref-
erence optimization methods.
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A Implementation Details
Our implementations are based on alignment-handbook1 and TRL (von Werra et al., 2020) training framework. Below we
provide comprehensive details about our experimental setup and implementation choices.

A.1 Similarity Score
In all experiments, we use the unnormalized generative score sθ(y,x) = logPg(y|x) for DFT, and use the normalized
generative score sθ(y,x) =

1
|y| logPg(y|x) for DFT2.

A.2 Hyper-parameters Tuning
Setting 1. For both DFT and DFT2, we follow Yu et al. (2024), and set the batch size to 128, max sequence length to 512,
and number of epochs to 3. We tune the learning rate in {5e− 7, 8e− 7, 2e− 6}. For DFT, we tune the τ in {0.8, 0.9, 1.0}
and for DFT2, we tune the τ in {0.1, 0.2, 0.3}. Details of the chosen hyper-parameters are summarized in Table 5.

Table 5: Hyper-parameters for DFT methods under setting 1.

Hyperparameters DFT DFT2
τ 1.0 0.1
γ 0.95
Batch Size 128
max sequence length 512
Learning Rate 8e-7
LR Scheduler Cosine
Warmup Ratio 0.1
Optimizer AdamW
Epochs 3

Setting 2. We compare DFT variants against several baseline methods: SFT, SPIN, KTO, SimPO, and SimPO-SFT. For all
methods, we use a batch size of 128, a maximum sequence length of 1024, and a training duration of 2 epochs. We perform
learning rate tuning across {3e− 7, 5e− 7, 8e− 7, 2e− 6}, except for KTO where we use a larger learning rate of 5e-6. For
DFT variants, we tune τ in {0.8, 0.9, 1.0} for DFT and τ in {0.1, 0.2, 0.3, 0.4} for DFT2, with γ in {0.80, 0.85, 0.9, 0.95}
for both variants. The most effective values of τ are found to be 1.0 for DFT and 0.3 for DFT2. For the baseline methods,
we tune their respective hyperparameters: β in {0.01, 0.05, 0.1} for SPIN; β in {6, 8, 10, 12} with a gamma-beta-ratio of
0.5 for SimPO; and β in {6, 8, 10, 12} with a gamma-beta-ratio of 0.5 and combining weight of 1 for SimPO-SFT. For KTO,
we set λU = 1, and tune β ∈ {0.01, 0.05, 0.1}, λD ∈ [B, 1.5B].

Details of the chosen hyperparameters are summarized in Table 6.

Table 6: Hyper-parameters for DFT methods under setting 2.

Hyperparameters DFT DFT2
τ 1.0 0.3
γ 0.85 0.90
Batch Size 128
max sequence length 1024
Learning Rate 2e-6
LR Scheduler Cosine
Warmup Ratio 0.1
Optimizer AdamW
Epochs 2

1https://github.com/huggingface/alignment-handbook
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A.3 Implementation of SFT→PO
For SFT→PO methods under the UC→UF pipeline, we use the released checkpoints produced by SimPO (Meng et al.,
2024), where models are first trained using SFT on UltraChat-200k for 1 epoch and then undergo preference optimization
on UltraFeedback for 1 epoch. For SFT→PO methods under the UF→UF pipeline, we first train the SFT model on
UltraFeedback with a learning rate of 2e-6 for 2 epochs, then conduct preference optimization on UltraFeedback for 1 epoch.

A.4 Training Costs
We compare the training efficiency of different methods, with results shown in Figure 4. For DFT methods, the time is
for training of 2 epochs. For SFT→SimPO and SFT→DPO, training time is split into two phases: an initial SFT phase
of 2 epochs followed by a preference optimization phase of 1 epoch. Despite the higher computational cost compared to
SFT alone, DFT2 offers comparable efficiency to the two-stage SFT→DPO pipeline. All experiments were conducted on
4×A100 80G GPUs. Generation time for negative samples (approximately 1.33 hours for both DFT methods) is not included
in this comparison, as it can be performed offline as a preprocessing step.
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Figure 4: Comparison of total training time (in hours) for DFT methods and SFT→PO methods on the UltraFeedback
dataset.
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Figure 5: (a) AlpacaEval2 average generation length of DFT and SFT→PO approaches. (b) AlpacaEval2 LC win rate of
DFT and SFT→PO approaches. SIMPO*, KTO*, and DPO* denote training under the UF→UF pipeline.

A.5 Benchmark Details
Table 7 provides detailed information about the evaluation protocol used for each benchmark in the second training setting.
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Table 7: Benchmark evaluation details including number of shots, metrics, and use of chat templates.

Benchmark Shot(s) Metric Chat Template
GSM8k 5 strict-match ✗
ARC 25 acc norm ✗
HellaSwag 10 acc norm ✗
TruthfulQA 0 acc ✗
MMLU 5 acc ✗
Winogrande 5 acc ✗
IFEval 0 prompt level strict ✓

Table 8: Results of DFT with different γ values for finetuning on UF winning data.

METHOD MMLU TRUTHFULQA HELLASWAG WINOGRANDE GSM8K ARC IFEVAL AVG.
DFT W/ γ = 0.8 61.42 51.08 83.90 78.14 48.22 64.51 52.50 62.82
DFT W/ γ = 0.85 61.69 52.23 83.95 78.37 48.22 64.25 51.20 62.84
DFT W/ γ = 0.9 61.75 52.19 83.88 78.37 47.84 64.33 50.46 62.69
DFT W/ γ = 0.95 61.82 50.78 83.93 78.30 46.47 64.42 51.94 62.52
DFT W/ γ = 1 59.46 45.38 80.54 76.64 22.14 63.05 19.96 52.45

B Additional Evaluation Results
B.1 AlpacaEval2 Results
Figure 5a and Figure 5b presents a detailed comparison between DFT variants and SFT→PO approaches on AlpacaEval2.
The results demonstrate that DFT variants perform competitively to some PO methods such as SFT→KTO. They also tend
to generate shorter output than models finetuned by most PO-based approaches. It is interesting to see that SFT→SimPO
trained using UC→UF pipeline generates the longest outputs and it has the highest AlpacaEval2 score. However, its results
on benchmark datasets in Table 3 is much worse than our method.

B.2 DFT with Different γ
As shown in Table 8, γ = 1.0 leads to a significant performance degradation across all tasks, with particularly severe drops
in GSM8K and IFEval. But the performance across this range γ ∈ (0.8, 0.9) is consistently good.

B.3 Detailed Analysis of B Effect
We conducted extensive experiments varying the number of negative samples (B) used during training. Table 9 presents
comprehensive results comparing DFT, SFT, and PO methods across different values of B (1, 2, and 4). Figure 6 shows the
AlpacaEval2 results. We can see that B = 2 has a dramatic improvement over B = 1, especially on AlpacaEval2 evaluation.
However, increasing B to 4 will decrease the performance.
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Figure 6: Comparison of different methods (DFT, SFT and PO methods) on AlpacaEval2 LC win rate across B ∈ {1, 2, 4}.

B.4 Experiments with Different Base Models
To validate that our approach is effective across different model architectures, we conducted additional experiments using
Qwen-2.5-0.5B and Llama3-8B-instruct models. For both models, we applied the same training protocol as Setting 2, using
the UltraFeedback dataset for fine-tuning.
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Table 9: Comparison between DFT, SFT and PO methods for fine-tuning Mistral-7B base model on self-play data across
B ∈ {1, 2, 4}. The results show performance across 7 different benchmarks and their average.

METHOD MMLU TRUTHFULQA HELLASWAG WINOGRANDE GSM8K ARC IFEVAL AVG.
SFT 62.18 50.04 83.59 78.06 45.26 63.65 49.72 61.79

B = 1
SPIN 62.16 50.23 83.67 78.06 46.10 62.03 19.59 57.41
SIMPO 62.29 50.75 83.84 78.06 2.88 61.69 19.41 51.27
SIMPO-SFT 62.53 48.83 83.55 77.82 43.44 61.60 42.70 60.07
KTO 61.27 50.28 83.30 78.53 40.79 63.74 42.51 60.06
DFT 61.76 50.89 83.95 77.98 46.70 64.42 50.65 62.33
DFT2 61.92 52.87 83.02 78.14 44.81 64.68 51.57 62.43

B = 2
SPIN 61.99 49.91 83.75 77.90 46.02 61.95 23.11 57.80
SIMPO 62.39 52.08 83.89 78.14 2.58 61.86 18.85 51.40
SIMPO-SFT 62.28 49.59 83.46 77.90 42.53 61.52 43.62 60.13
KTO 61.59 49.32 82.88 79.24 43.97 61.60 38.08 59.53
DFT 61.69 52.23 83.95 78.37 48.22 64.25 51.20 62.84
DFT2 61.66 54.14 83.20 77.82 45.49 64.42 51.20 62.56

B = 4
SPIN 61.94 49.60 83.70 77.98 46.02 62.03 20.70 57.42
SIMPO 62.31 51.39 83.83 77.90 4.47 61.86 19.04 51.54
SIMPO-SFT 62.46 49.47 83.47 78.06 42.15 61.69 39.93 59.60
KTO 60.99 49.87 82.06 78.61 41.62 61.86 40.11 59.30
DFT 61.52 51.80 83.97 78.53 46.32 64.51 50.65 62.47
DFT2 61.78 53.67 83.35 77.90 45.64 65.02 48.80 62.31

Table 10 shows the performance of DFT and DFT2 compared to SFT when applied to the Qwen-2.5-0.5B model. Both DFT
variants demonstrate improvements over standard SFT, with average gains of 0.44% and 0.54% respectively.

Table 11 presents the results when applying our methods to Llama3-8B-instruct. Both DFT variants show substantial
improvements, achieving average gains of 1.88% and 1.86% respectively over SFT.

B.5 Impact of Prompting Strategies
We investigated four different prompting strategies for generating the self-play data: (1) direct prompting without any special
formatting; (2) structuring prompts using the same chat template as during fine-tuning; (3) in addition to (2), structuring
prompts with beneficial system messages. (4) in addition to (2), structuring prompts with deliberately adversarial system
messages. For setting (3), we follow the generation scripts of UltraFeedback. For setting (4), we add “You are an unhelpful
assistant.” to the system prompt. Examples of these prompts are given in the box at the end of the appendix. For all settings,
we sample the negatives with the following parameters: a temperature of 0.7, a top-p of 1.0, a top-k of 50, and a max-tokens
of 320.

Figure 7 illustrates the comparative performance of these strategies. Our analysis reveals that using structured prompts with
adversarial system messages tends to generate more challenging negative samples, leading to better performance. Below, we
provide an example of how each prompting strategy is implemented:
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Figure 7: Average performance scores across different prompting strategies for generating negative samples. “CT” indicates
whether chat template formatting was used, and “sys msg” refers to system messages. Results show that using chat templates
with adversarial (“Bad”) system messages achieves the best performance (62.84%), while beneficial (“Good”) system
messages yield a lower score (62.35%).

Table 10: Performance comparison using Qwen-2.5-0.5B as the base model

METHOD MMLU TRUTHFULQA HELLASWAG WINOGRANDE GSM8K ARC IFEVAL AVG.
SFT 47.34 42.88 51.20 55.41 33.43 36.60 17.56 40.63
DFT 47.49 42.77 51.30 56.59 35.56 36.43 17.38 41.07
DFT2 47.15 44.86 51.57 56.67 32.83 37.37 17.74 41.17

Table 11: Performance comparison using Llama3-8B-instruct as the base model

METHOD MMLU TRUTHFULQA HELLASWAG WINOGRANDE GSM8K ARC IFEVAL AVG.
SFT 65.66 49.93 78.90 76.40 73.76 58.95 69.31 67.56
DFT 65.72 54.43 79.66 75.84 75.74 63.73 70.97 69.44
DFT2 65.40 56.03 78.96 75.45 74.60 63.82 71.71 69.42

Examples of Different Prompting Strategies

Raw Prompt Message:
{"content": "Which animal has two hands, a hyrax or a dog?", "role": "user"}

Direct Prompting:
Which animal has two hands, a hyrax or a dog?

Chat Template:
<|user|>
Which animal has two hands, a hyrax or a dog?</s>
<|assistant|>

Chat Template + Good System Messages:
<|system|>
The assistant should answer truthfully and be faithful to factual knowledge
as well as given contexts, never making up any new facts that aren’t true
or cannot be grounded in the instruction.</s>
<|user|>
Which animal has two hands, a hyrax or a dog?</s>
<|assistant|>

Chat Template + Bad System Messages:
<|system|>
You are an unhelpful assistant.</s>
<|user|>
Which animal has two hands, a hyrax or a dog?</s>
<|assistant|>
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B.6 Impact of Sampling Temperature
This subsection examines how different sampling temperatures when generating negative examples from the base model
affects DFT’s performance. Table 12 presents the results of DFT trained with negative samples generated at four different
temperature values ranging from deterministic sampling (0) to high-temperature sampling (1.0). The results show that
moderate temperatures (particularly 0.7) yield the best overall performance across benchmarks.

Table 12: Results of DFT with different temperaure values during sampling.

SAMPLING
TEMPERATURE MMLU TRUTHFULQA HELLASWAG WINOGRANDE GSM8K ARC IFEVAL AVG.

0 62.01 50.75 83.76 77.90 46.17 63.99 50.46 62.15
0.3 61.96 50.29 83.77 77.82 46.63 63.99 52.13 62.37
0.7 61.69 52.23 83.95 78.37 48.22 64.25 51.20 62.84
1.0 62.04 52.32 83.90 78.61 45.94 64.25 51.76 62.69
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