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Abstract

To achieve peak predictive performance, hyperparameter optimization (HPO) is a
crucial component of machine learning and its applications. Over the last years,
the number of efficient algorithms and tools for HPO grew substantially. At
the same time, the community is still lacking realistic, diverse, computationally
cheap, and standardized benchmarks. This is especially the case for multi-fidelity
HPO methods. To close this gap, we propose HPOBench, which includes 7
existing and 5 new benchmark families, with a total of more than 100 multi-
fidelity benchmark problems. HPOBench allows to run this extendable set of
multi-fidelity HPO benchmarks in a reproducible way by isolating and packaging
the individual benchmarks in containers. It also provides surrogate and tabular
benchmarks for computationally affordable yet statistically sound evaluations. To
demonstrate HPOBench’s broad compatibility with various optimization tools,
as well as its usefulness, we conduct an exemplary large-scale study evaluating
13 optimizers from 6 optimization tools. We provide HPOBench here: https:
//github.com/automl/HPOBench.

1 Introduction

The plethora of design choices in modern machine learning (ML) makes research on practical and
effective methods for hyperparameter optimization (HPO) ever more important. In particular, ever-
growing models and datasets create a demand for new HPO methods that are more efficient and
powerful than existing black-box optimization (BBO) methods. Especially if it is only feasible
to evaluate very few models fully, multi-fidelity optimization methods have been shown to yield
impressive results by trading off cheap-to-evaluate proxies and expensive evaluations on the real
target [1–5]. They showed tremendous speedups, such as accelerating the search process in low-
dimensional ML hyperparameter spaces by a factor of 10 to 1000 [2, 5]. However, the development
of such methods often happens in isolation, which potentially prevents HPO research from reaching
its full potential. Prior publications on new HPO methods (i) often relied on artificial test functions
and low-dimensional toy problems, (ii) sometimes introduced a new set of problems, (iii) set up
on different computing environments, having different requirements and interfaces, and (iv) often
did not open-source their code base. All of these make it difficult to compare and develop methods,
necessitating an evolving set of relevant and up-to-date benchmark problems which drives continued
and quantifiable progress in the community.

While there are efforts to simplify benchmarking HPO and global optimization algorithms [6–12],
we are not aware of efforts to collect a diverse set of benchmarks in a single library, with a unified
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interface and countering potentially conflicting dependencies that may arise over time. The latter
is particularly important because the rapid evolution of the Python-ML ecosystem can render a
benchmark no longer usable for the community after a major release was published. This creates
a significant hurdle for contribution from the community to grow a benchmark library. To solve
this issue, we propose HPOBench, a benchmark suite for HPO problems, with a special focus
on multi-fidelity problems, licensed under a permissive OSS license (Apache 2.0) and available
at https://github.com/automl/HPOBench. HPOBench provides a common interface and an
infrastructure to isolate benchmarks in their own containers and implements 12 popular benchmark
families, each with multiple problems and preserved with its dependencies in a container for long-term
use. To enable efficient comparisons, most of these benchmarks are table- or surrogate-based, enabling
resource efficient large-scale experiments, which we demonstrate in this work. Our contributions are:

1. The first available collection of multi-fidelity HPO problems. It contains 12 benchmark
families with 100+ multi-fidelity HPO problems under a unified interface, comprising
traditional HPO and neural architecture search (NAS). These benchmarks also define the
largest collection of black-box HPO problems to date.

2. The first collection of containerized benchmarks to ensure the longevity, maintainability
and extensibility of benchmarks.

3. The first set of HPO benchmarks that are available as both, the raw benchmark and the
tabular version.

4. The first HPO benchmark that also supports multi-objective optimization and transfer-HPO
across datasets (and arbitrary combinations of these with multiple fidelities).

5. We demonstrate how HPOBench can be used in an exemplary large-scale study with 13
optimizers from 6 optimization tools, assessing whether advanced methods outperform
random search and how effective multi-fidelity HPO is.

This paper is structured as follows. We first discuss background on HPO and multi-fidelity optimiza-
tion (Section 2). Then, we discuss related work on benchmarking (Section 3). Next, we describe
the challenges for an HPO benchmark and how HPOBench alleviates them (Section 4). Then, we
conduct a large-scale comparison of existing, popular HPO methods to demonstrate the usefulness of
HPOBench (in Section 5). We conclude the paper by highlighting further advantages and potential
future work (Section 6).

2 Background on Hyperparameter Optimization

With HPOBench we aim to provide benchmarks to evaluate HPO methods. In the following, we
briefly formalize BBO for HPO and survey multi-fidelity optimization (see Feurer and Hutter [13] for
a detailed overview), both with a focus on the methods used in our experiments.

2.1 Black-box Hyperparameter Optimization

Black-box optimization (BBO) aims to find a solution argminλ∈Λ f(λ) where f is a black-box
function, for which typically no gradients are available, we cannot make any statements about its
smoothness, convexity and noise level. In summary, the only mode of interaction with black-box
functions is querying them at given inputs λ and measuring the quantity of interest f(λ). In the
context of HPO, λ ∈ Λ is a hyperparameter configuration where the domain Λi of a hyperparameter
is often bounded and continuous, but can also be integer, ordinal or categorical. There are also
so-called conditional hyperparameters [14, 15] defining hierarchical search spaces; however, the first
version of HPOBench focuses on flat configuration spaces first as all optimizers support this.

There are three broad families of BBO methods: (i) purely explorative approaches such as Random
Search (RS) and grid search are simple but sample-inefficient; (ii) model-free Evolutionary Algorithms
(EAs) based on mutation, crossover and selection operators applied to a population of configurations
require comparably large resources to evaluate the entire population but can perform very well
given enough resources; (iii) iterative model-based methods, such as Bayesian Optimization [16],
which are guided by a predictive model trained on prior function evaluations are known as the most
sample-efficient methods. We include representative algorithms from each of these 3 families in our
exemplary experiments in Section 5.
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2.2 Multi-fidelity Hyperparameter Optimization

To efficiently optimize today’s ever-growing ML models, multi-fidelity approaches relax the black-box
assumption by allowing cheaper queries at lower fidelities b as well (argminλ∈Λ f(λ, b)). Examples
for these approximations include dataset subsets [2, 17, 18], feature subsets [19] or lower number of
epochs [19–21]. Multi-fidelity methods have been shown to lead to speedups of up to 1000× over
black-box methods [2, 5]. HPOBench will allow the community to compare different multi-fidelity
methods and in the following we give an overview of representative methods.

A popular multi-fidelity HPO approach that discretizes the fidelity space is Hyperband (HB [19]),
a very simple method with strong empirical performance. It randomly samples new configurations
and allocates more resources to promising configurations by repeatedly calling successive halving
(SH [4]) as a sub-algorithm. The simplicity and effectiveness of HB have been leveraged with
other popular black-box optimizers for improved performance: BOHB [22] combines HB with
Bayesian Optimization (BO) and DEHB [5] combines it with the evolutionary approach of Dif-
ferential Evolution (DE [23, 24]). The non-HB-based multi-fidelity case has also been researched
extensively [2, 3, 18, 20, 21, 25–28]. Not being limited to predefined fidelity values makes these
methods very powerful, but they rely on strong models to avoid poor choices of fidelities, often
making HB-based fidelity selection more robust. To study the efficacy of multi-fidelity optimization,
in our exemplary experiments in Section 5, we primarily compared black-box optimizers against their
multi-fidelity versions (i.e., RS vs. HB, BO vs. BOHB, and DE vs. DEHB). These experiments show
large speedups of multi-fidelity optimizers in the regime of small compute budgets, whereas for large
compute budgets multi-fidelity optimization is less useful.

Besides multi-fidelity optimization, a very active field of study to speed up HPO is to use transfer-
learning across datasets [29–33]; we note that transfer HPO methods can also be evaluated with
HPOBench by learning across the datasets within each of its families.

3 Related Work

Proper benchmarking is hard. It is important to be aware of technical and methodological pitfalls,
e.g. comparing implementations instead of algorithms [34, 35], comparing tuned algorithms versus
untuned baselines [36, 37], to not fall for an illusion of progress [38, 39] and to know which sources
of variance exist and control for them [40]. Also, there is a rich literature on how to empirically
evaluate and compare methods in various domains, e.g. evolutionary optimization [41], planning [42],
satisfiability and constraint satisfaction [43], algorithm configuration [44], NAS [45], and also for
benchmarking optimization algorithms [46]. Our goal is not to provide further recommendations on
how and why to benchmark, but to provide concrete benchmarks to simplify development and to
improve the reproducibility and comparability of HPO and in particular multi-fidelity methods.

Furthermore, there have been a lot of efforts to provide optimization benchmarks for the community.
Having a common set of benchmark problems in a unified format fosters and guides research.
Prominent examples in the area of HPO are ACLib [47] for algorithm configuration, COCO [9] for
continuous optimization, Bayesmark [8] for Bayesian optimization, Olympus [12] for optimization of
experiment planning tasks, and HPO-B [48] for transfer-HPO methods (for more, see Appendix B).
However, no benchmark so far has multi-fidelity optimization problems, supports preserving a
diverse set of benchmarks for the longer term (containers), supports multiple objectives, and provides
cheap-to-evaluate surrogate/tabular benchmarks; we hope to close this gap with HPOBench.

Besides benchmarks, competitions are another form of focusing research effort by providing a
common goal and incentive. Famous examples are the AutoML challenges [49], the AutoDL chal-
lenge [50], the GECCO BBOB workshop series based on COCO [9] and the NeurIPS 2020 BBO
challenge [51] (for more, see Appendix C). In contrast to these, we do not focus on defining concrete
experimentation protocols, but rather on providing a flexible benchmarking environment to study,
develop and compare optimization methods.

4 HPOBench: A Benchmark Suite for Multi-Fidelity Hyperparameter

Optimization benchmarks

In this section, we present HPOBench, a collection of HPO benchmarks defined as follows:
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Definition 1 (HPO Benchmark) An HPO benchmark consists of a function f : λ −→ R to be
minimized and a (bounded) hyperparameter space Λ with hyperparameters [Λ1, . . . ,Λd] of type
continuous, integer, categorical or ordinal. In the case of multi-fidelity benchmarks, f can be
queried at lower fidelities, f : λ× b −→ R, and the fidelity space B describes which low-fidelities
[B1, . . . , Be] of type continuous, integer or ordinal are available.

Specifically, each benchmark consists of the implementation of that function, which returns at least
one loss. Since this function typically evaluates an ML algorithm, the benchmark defines all relevant
settings, dependencies and inputs, such as datasets, splits and how to compute the loss.

In the remainder of this section, we first discuss the desiderata of a benchmark that aids HPO research
and then highlight the features of HPOBench by detailing how its design fulfills these desiderata.

4.1 Desiderata of an HPO Benchmark

One of the challenges posed to standardized HPO research lies in the varied choices of the underlying
ML components – datasets and their splits, preprocessing, hyperparameter ranges, underlying software
versions, and hardware used. Moreover, the practices applied in HPO research itself can vary along
the lines of optimization budget, number of repetitions, metrics measured and reported. This leads to
inconsistencies and difficulties in comparison of different HPO methods across publications and over
time, affecting the reproducibility of experiments that hinders continued progress in HPO research.

In order to alleviate such issues and encourage participation by the research community, benchmarks
need to standardize these practices to allow the community to be an active stakeholder in developing
and re-using benchmarks. HPOBench is designed to both allow easy, flexible use with a minimal
API that is identical for all benchmarks (see Figure 2); and have a low barrier for contributing new
benchmark problems. We, therefore, identify 3 features of a benchmark that allow its wide-scale
use and long-term applicability: (i) efficiency by providing tabular and surrogate benchmarks for
quick, efficient experiments, along with the original benchmarks; (ii) reproducibility of results by
containerizing benchmarks; and (iii) flexibility by covering different optimization landscapes and
possible use cases, e.g. multi-objective, transfer-HPO, and even multi-fidelity optimization with
multiple fidelity variables. To our knowledge, no other existing benchmarks offer these possibilities.
HPOBench provides a framework to enable standardized, principled research and experimentation.
We list all benchmarks that are included in HPOBench in Table 1 and provide a detailed description
of the respective configuration spaces in Appendix D.

4.2 Efficiency

HPO benchmarks that follow Definition 1 exhibit the drawback that they evaluate a costly func-
tion, rendering the empirical comparison of optimization algorithms expensive and ruling out such
benchmarks for interactive development of new methods. To overcome this issue, beside such raw
benchmarks, we also provide two well-established benchmark classes which alleviate this issue:

Definition 2 (Tabular Benchmark) A tabular benchmark returns values from a lookup table with
recorded function values of a raw HPO benchmark instead of evaluating f(λ). The (bounded)
hyperparameter space is restricted to only contain these values and therefore bears a form of
discretization. In the case of multi-fidelity benchmarks, each tabular benchmark has a fidelity space
and the underlying table also contains the recorded function values on the low-fidelities.

Tabular benchmarks are popular in the HPO community as they are easy to distribute and induce little
overhead [52, 30, 53–55], however, they require to discretize the hyperparameter space. Surrogate
benchmarks [56, 57] are an alternative since they provide the original hyperparameter space.

Definition 3 (Surrogate Benchmark) A surrogate benchmark returns function values predicted by
an ML model trained on a tabular benchmark or recorded function values of a raw HPO benchmark.
It reuses the original hyperparameter space and can be extended to the multi-fidelity case as well.

While surrogate benchmarks are similarly cheap to query, the surrogate’s internal ML model adds
extra complexity and the benchmark’s quality crucially depends on the quality of this model and its
training data. Because surrogate benchmarks yield a drop-in replacement for raw benchmarks, they
enjoy widespread adoption in the HPO community [22, 58, 57, 59–62].
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Figure 1: Overview of benchmark environments with (upper)
and without (lower) using containers.

Figure 2: Code example initializ-
ing and evaluating a benchmark.

Furthermore, while HPOBench puts a strong focus on multi-fidelity benchmarks, it also facilitates
evaluating black-box optimization algorithms. In fact, a multi-fidelity benchmark with k different
fidelity levels can be used to define k separate (yet related) benchmarks for black-box optimization.
As such, HPOBench defines more than 400 black-box HPO benchmarks.

4.3 Reproducibility

One of the challenges that come with many new benchmarks is their one-off development and their
lack of maintenance. This means that any new update to the benchmark or its dependencies can easily
lead to conflicts and inconsistencies with respect to software dependencies and possibly old published
results (see Appendix D.1 for examples). While in practice the very same problem, also known as
dependency hell, can also occur on the optimizer side, in this paper we focus on the benchmark side.

HPOBench circumvents such issues through the containerization of benchmarks using Singularity [63]
containers.3 Each benchmark and its dependencies are packaged as a separate container, which isolates
benchmarks from each other and also from the host system. Figure 1 illustrates the advantages that
containerization provides, especially when running multiple benchmarks in the same environment.
Note that without containers, the environment needs to satisfy the union of all of its benchmarks’
requirements (which may actually be mutually exclusive!), while with containers the dependencies
for any given benchmark only need to be satisfied once: for the creation of the container. Importantly,
the dependencies do not need to be satisfied again for using the benchmarks. Each benchmark is
uploaded as a container to a GitLab container registry to provide the history of different versions
of the benchmark. Hence, any benchmark created under the HPOBench paradigm remains usable
without additional bookkeeping or installation overheads for long-term usage. Additionally, no effort
is required for maintaining already containerized benchmarks, as long as the API does not change.
Although not recommended, each benchmark can also be installed locally along with its specific
dependencies without using the containers. We provide a short code sample in Figure 2.

Our notion of reproducibility follows the Claerbout/Donoho/Peng convention as summarized by
Barba [64]. We preserve benchmarks as containers, so that they can be used without installing all
dependencies to obtain the same results. This does not immediately lead to replicability on the
level of the optimization results. Users need to make sure to for example run a sufficient number
of seed replicates to avoid unstable results [65] and to take hardware differences into account when
comparing optimizer overhead. Our work differs from other efforts to provide reproducible research.
We do not aim to make a single experiment reproducible as repo2docker [66] and we also do not aim
to package and distribute the whole runtime or workflows as Jupyter Notebooks [67] or R’s knittr [68].

4.4 Flexibility

HPOBench is a flexible framework that can be used to validate existing HPO research, and develop
and improve HPO algorithms, with a focus on multi-fidelity methods. It consists of two sets of
benchmarks, which we describe in turn: 22 existing multi-fidelity benchmarks from 7 families that
we collected from the multi-fidelity literature (Section 4.4.1); and 88 new benchmarks from 5 families
we created to allow a much more flexible use of HPOBench (Section 4.4.2).

3We chose Singularity over the popular Docker (https://www.docker.com/) alternative as it (1) does not
require super user access and (2) is available on the computer clusters we have access to.
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Table 1: Overview of raw (✓), surrogate (✗) and tabular ((✓)) benchmarks. We report the number of
benchmarks per family (#benchs), the number of continuous (#cont), integer (#int), categorical (#cat),
ordinal (#ord) hyperparameters and how many are log-scaled. Furthermore, we report the fidelity, the
optimization budget and the number of configurations for tabular and surrogate benchmarks.

Family #benchs #cont(log) #int(log) #cat #ord fidelity type opt. budget #confs Ref.

Cartpole 1 4(1) 3(3) - - repetitions ✓ 1d - [22]
BNN 2 3(1) 2(2) - - samples ✓ 1d - [22]

Net 6 5 1 - - time ✗ 7d - [22]

NBHPO 4 - - 3 6 epochs (✓) 10
7sec 62 208 [69]

NB101 3
- - 26 -

epochs (✓) 10
7sec 423k [54]- - 14 -

21 1 5 -

NB201 3 - - 6 - epochs (✓) 10
7sec 15 625 [70]

NB1Shot1 3
- - 9 -

epochs (✓) 10
7sec

6 240

[71]- - 9 - 29 160

- - 11 - 363 648

LogReg 20 2(2) - - - iter ✓, (✓) 100× 625 new
SVM 20 2(2) - - - data ✓, (✓) average 441 new
RandomForest 20 1 3(2) - - #trees ✓, (✓) runtime on 10k new
XGBoost 20 3(2) 1(1) - - #trees ✓, (✓) the highest 10k new
MLP 8 2(2) 3(2) - - epochs ✓, (✓) fidelity 30k new

4.4.1 Existing Community Benchmarks

Firstly, to allow comparability with previous experiments, we collected 22 existing multi-fidelity
benchmarks from 7 families from the multi-fidelity literature; HPOBench preserves these benchmarks
by containerizing them and encapsulating them all under a common API (which was not the case
before). This not only ensures important previous work to remain accessible, but it also bypasses
dependency issues enabling long term usage (see Appendix D.1).

Specifically, these benchmarks comprise raw benchmarks tuning a reinforcement learning agent
(PPO on Cartpole [22]) and a Bayesian neural network (BNN [22]), a random forest-based surrogate
benchmark tuning an MLP (Net [22]) and four popular NAS benchmark families (NBHPO [69],
NB101 [54], NB201 [70], and NB1Shot1 [71]). However, these existing community benchmarks also
have certain limitations: they are only of limited use for transfer HPO (since there are only between 1
and 6 benchmarks per family), they only offer a single fidelity dimension, and they only evaluate a
single metric. We therefore augmented them with 5 new families of benchmarks we describe next.

4.4.2 New Benchmarks

To substantially increase the range of possible applications of HPOBench, we defined 5 new bench-
mark families with up to 20 different datasets per family, comprising a total of 88 new multi-fidelity
benchmarks. These new benchmarks also provide multiple metrics and multiple fidelity dimensions
to go beyond the aforementioned limitations of the community benchmarks.

Our new benchmarks are based on the following popular ML algorithms: SVM, LogReg, XGBoost,
RandomForest, and MLP. All of them evaluate the respective ML algorithm as implemented in
scikit-learn [72] and XGBoost [73] on 20 publicly available datasets (8 for the MLP due to its high
computational cost) from the OpenML AutoML benchmark [74]. We give the OpenML [75] task IDs
in Table 7 in Appendix D, which provide fixed train-test splits; for each such task, we used 33% of
the training set as the validation split, determined through stratified sampling under a fixed seed. The
entire objective function then consists of preprocessing, training the model on the remaining 66% of
the fixed OpenML training split, prediction on the fixed validation split, evaluating 4 different metrics
(see Appendix D.3), and recording model fit and inference times.4 The fidelities are algorithm-specific

4While preparing the CRC we observed that we accidentally trained the models on the OpenML training
split. We are currently regenerating the data and will post an updated version of the paper at arXiv:2109.06716.
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if possible (number of trees, iterations, epochs) or dataset subsets otherwise (which is used for SVM).
These benchmarks are available both as raw and tabular versions, have the same API and exist in
independent, non-conflicting containers; for the tabular versions, we discretized each hyperparameter
(and fidelity) and evaluated 5 different seeds for each configuration of the resulting grid.

Also, four of our new benchmark families (LogReg, RandomForest, XGBoost, MLP) allow up to
two fidelity dimensions. This enables the development and benchmarking of methods for multi-
fidelity optimization with multiple fidelity dimensions, a direction that we deem very promising yet
understudied. Similarly, our tabular data collected over multiple datasets (up to 20) allows the effective
use of these benchmarks for transfer-HPO, and the recording of multiple evaluation metrics also
allows these benchmarks to be used for multi-objective optimization. Moreover, each configuration
is recorded on different fidelities with their associated costs, which further lends HPOBench great
potential in future research in cost-based meta-learning or multi-fidelity multi-objective optimization.

To demonstrate the diversity of our new benchmarks, we show the empirical cumulative distribution
function (ECDF) for each family in Figure 3. Each line corresponds to one dataset and shows how the
objective values are distributed. From the varying amounts of well and badly performing normalized
regrets we can conclude that the benchmarks yield different landscapes and thus are diverse in
smoothness, resulting in varying algorithm performance. Moreoever, the 5 new spaces vary in their
dimensionality (up to 5 for MLP), in the hyperparameter data types and their range (see Appendix D).

LogReg RandomForest SVM XGBoost MLP

Figure 3: Empirical cumulative distribution. Each plot corresponds to one ML algorithm, and each
line within a plot corresponds to one dataset. The lines show the ECDF of the normalized regret of
all evaluated configurations of the respective ML algorithm on the respective dataset.

5 Experiments

Now, we turn to an exemplary use of our benchmarks in order to demonstrate some features of
HPOBench and its utility for HPO research. We used our benchmark suite to run a large-scale
empirical study comparing 13 optimization methods on our 12 benchmark families (we report
detailed results in Appendix H). We first give details on the experimental setup and then study the
following two exemplary research questions: (RQ1) Do advanced methods improve over random
baselines? and (RQ2) Do multi-fidelity methods improve over single-fidelity methods?

5.1 Experimental Setup

For each benchmark and optimizer, we conducted 32 repetitions with different seeds to avoid reliance
on individual seeds [65]. For our new benchmarks, which have multiple metrics, we minimized
1−accuracy. For each run, we allowed an optimization budget as described in Table 1 and accumulate
time taken by the benchmark (recorded time for tabular benchmarks, predicted time for surrogate
benchmarks and wallclock time for raw benchmarks; for our new benchmarks, we used the tabular
versions to avoid unnecessary compute costs and CO2 exhaustion) and the optimizer (wallclock time).
We kept track of all evaluations and computed trajectories, i.e., the best-seen value at each time step,
as follows: If for an evaluation we cannot find another evaluation conducted on the same or a higher
fidelity, we treat it as the best-seen value; if it is on the highest fidelity evaluated so far, we treat it as
the best seen value if it has a lower loss than the best-seen so far on that fidelity; otherwise, we do not
consider this evaluation for the trajectory. This decision reflects the multi-fidelity setting, where a
higher budget results in a better estimate of the actual value of interest but can cause jumps in the
optimization trajectory, (e.g., when a configuration is the first to be evaluated on a higher budget but
is worse than the best configuration on a lower budget). To aggregate and report results, we use either
the final performance (per benchmark, see Appendix H), performance-over-time (per benchmark, see
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Appendix H) or rank-over-time (across multiple benchmarks). For tabular and surrogate benchmarks
we report optimization regret (the difference between the best-found value and the best-known value)
and for the other benchmarks, we report the actual optimized objective value.5

We give details on the hardware and required compute resources in Appendix E and F and release
code for the experiments here: https://github.com/automl/HPOBenchExperimentUtils.

5.2 Considered Optimizers

We evaluated a wide set of optimizers including baselines for black-box and multi-fidelity optimiza-
tion. Our selection of optimizers does not aim at finding the best optimization algorithm, but to
study a broad range of different implementations and tools (for more details see Appendix G). As
black-box optimizers, which only access the highest fidelity, we considered random search (RS),
differential evolution (DE [23, 24]) and BO with different models: a Gaussian Process model (BOGP ),
a random forest (BORF [76]), a kernel density estimator (KDE) (BOKDE [22]). Lastly, we also used
the winning solution of the NeurIPS BBO challenge (HEBO [77]). For multi-fidelity optimization,
we used multi-fidelity extensions of some methods mentioned above: Hyperband (HB [19]) and
its combination with KDE-based BO (BOHB [22]), with RF-based BO (SMAC-HB [78]) and with
DE (DEHB [5]). Additionally, we use Dragonfly [79] using a GP with multi-fidelity optimization
and combinations of optimization and multi-fidelity algorithms implemented in Optuna [80] (see
appendix). 6

5.3 RQ1: Do advanced methods improve over random search?

To demonstrate the validity of our benchmarks, we independently replicate the findings of the 1st
NeurIPS Blackbox Optimization challenge [51]: “decisively showing that BO and similar methods
are superior choices over RS and grid search for tuning hyperparameters of ML models”. While
this question has already been studied before [14, 81, 36, 15, 33, 82, 83], we will also study it
w.r.t. multi-fidelity optimization and using the popular HB baseline. We leave out grid search as RS
has been shown to be superior [81] and as there is no multi-fidelity version of grid search.

We report ranks-over-time in Figure 4, comparing black-box (DE, BOGP , BORF , HEBO, BOKDE ;
1st column) and multi-fidelity (BOHB, DEHB, SMAC-HB, DF; 2nd column) optimizers on existing
community (top row) and new (bottom row) benchmarks. On both benchmark sets most black-box and
multi-fidelity optimizers clearly outperform the respective baseline (RS (blue) and HB (light green)) on
average. We also observe that BO improves over the evolutionary algorithm DE in the beginning, but,
except for HEBO, looses to it in the very long run on the existing community benchmarks [84, 60, 5].
This does not happen on the new benchmarks, as their time limits are set more aggressively and the
methods developed for this setting (HEBO [77], BOGP , BORF and SMAC-HB [85]) achieve lower
ranks. Considering per-benchmark results (Appendix H), we also observe that methods which appear
clearly inferior in the ranking plots perform very well on individual benchmarks (e.g. DF7 on NB201).
Finally, we find HEBO to substantially improve over all other black-box methods.

Besides qualitative measures, we also quantitatively measure whether the advanced methods outper-
form the respective baselines by counting the number of wins, ties and losses and using the sign test
to verify significance [86] on the existing community benchmarks in Table 2 (the new benchmarks
yield similar results; see Appendix H). We can observe that four out of five black-box methods are
significantly better than RS. In the multi-fidelity case, only two out of four methods are significantly
better than HB and two methods are consistently worse than HB. Overall, we conclude that advanced
methods consistently outperform random search.

5Since we study optimizers, we report optimization performance (in the case of ML the validation perfor-
mance, which is the objective value seen by the optimizer. We note that HPOBench in principle allows to
compute test performance (the loss computed on a separate test set on the highest fidelity).

6We include this framework to show compatibility of HPOBench with popular frameworks, but note that it
expects to freeze and thaw evaluations. HPOBench implements a stateless objective function and, thus, runs
that could be thawed and continued instead get accounted the full costs of rerunning them, which slows down
optimization. We defer stateful benchmarks to future work.

7We would like to note that the bad rank of DF for some benchmarks is due to its overhead which prevented
it from spending sufficient budget on function evaluations; see Section F for details.
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Table 2: P-value of a sign test for the hypothesis that advanced methods outperform the baseline RS
for black-box optimization and HB for multi-fidelity optimization. We underline p-values that are
below α = 0.05 and boldface p-values that are below α = 0.05 after multiple comparison correction
(dividing α by the number of comparisons, i.e. 5 and 4; boldface/underlined implies that the advanced
method is better than RS/HB). We also give the wins/ties/losses of RS and HB against the challengers.

DE BOGP BORF HEBO BOKDE

p-value against RS 0.00043 0.01330 0.00001 0.00217 0.06690
wins/ties/losses against RS 18/2/2 15/3/4 19/3/0 17/2/3 13/4/5

BOHB DEHB SMAC-HB DF
p-value against HB 0.06690 0.00001 0.00011 0.99783
wins/ties/losses against HB 13/4/5 20/2/0 18/3/1 5/0/17

black-box multi-fidelity black-box + multi-fidelity subsets

Figure 4: Mean rank-over-time across 32 repetitions of different sets of optimizers (lower is better).
The left part shows rank across all existing community (upper row) and new (lower row) benchmarks .
The right part reports results on the existing community benchmarks only for subsets of optimizers.

5.4 RQ2: Do multi-fidelity methods improve over black-box methods?

Next, we study whether multi-fidelity optimization methods are able to consistently improve over
black-box optimization methods given a fixed time budget. For this, we look again at ranking-over-
time in Figure 4. We first compare black-box methods with their respective multi-fidelity extension,
i.e., DE vs. DEHB and BOKDE vs. BOHB in the two plots in the rightmost column. We can see
that in the beginning HB and the multi-fidelity optimizers perform very similarly and consistently
outperform RS and the respective black-box version. After a while, the multi-fidelity versions improve
over the HB baseline, and given enough time, the black-box versions catch up. Second, we compare
all optimizers on the existing community (3rd column, top) and new (3rd column, bottom) benchmarks.
Here, we can observe a similar pattern in that HB is a very competitive baseline in the beginning but
is outperformed first by the advanced multi-fidelity methods and then also by the black-box methods.
This is less pronounced on the new benchmarks, which we attribute to the tighter time limits.

Similarly to RQ1, we again counted the wins, ties and losses and used the sign test to verify
significance [86] on the existing community benchmarks for 100%, 10% and 1% of the total budget
in Table 3 (the new benchmarks yield similar results; see Appendix H). We can observe that only HB
is able to outperform its black-box counterpart for all three budgets we check. For two multi-fidelity
methods there is a significant improvement over the black-box methods for 1% of the budget. For the
full budget we can no longer state that any of the multi-fidelity methods is statistically better than
their counterpart, but judging by the wins and losses the multi-fidelity methods are still competitive.

Overall, multi-fidelity optimizers outperform black-box optimizers for relatively small compute
budgets. Given enough budget, black-box optimizers become competitive with their multi-fidelity
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versions; in particular, DE and BORF performed very well in the end. However, we need to take into
account that for the existing community benchmarks the potential catch-up (if at all) only happens after
a very substantial amount of (simulated) wallclock time (e.g., 10 Mio. seconds). Hence, multi-fidelity
methods are crucial to efficiently tackle real, expensive optimization problems.

Table 3: P-values of a sign test for the hypothesis that multi-fidelity outperform their black-box
counterparts. We boldface p-values that are below α = 0.05 (implying that multi-fidelity is better).

Budget HB vs RS DEHB vs DE BOHB vs BOKDE SMAC-HB vs BORF

100%
p-values 0.00074 0.73827 0.14314 0.73827

w/t/l 16/5/1 6/8/8 12/4/6 6/8/8

10%
p-values 0.00845 0.09462 0.14314 0.50000

w/t/l 16/2/4 10/9/3 12/4/6 8/7/7

1%
p-values 0.00074 0.03918 0.06690 0.03918

w/t/l 17/3/2 14/3/5 14/2/6 13/5/4

To conclude, in general when low-fidelities are available and they are representative of the true
objective function, multi-fidelity methods are clearly beneficial. In practice, we found that DEHB
and SMAC-HB are reliable multi-fidelity optimizers that work well across the whole collection of
benchmarks, while other multi-fidelity optimizers are not able to improve over HB consistently. By
exploring a very broad range of benchmarks, we also found an existence proof that black-box methods
can outperform multi-fidelity methods for very high budgets and that even advanced methods can
be outperformed by RS in individual benchmarks. We pose it as a challenge to the field to develop
methods that do not exhibit poor performance in any of the many benchmarks in HPOBench.

6 Discussion and Future Work

We proposed HPOBench, a library for multi-fidelity HPO benchmarks. It serves two purposes: (a) to
provide benchmarks with a unified API, and (b) to make them easy to install and use by containerizing
them and thus enable rapid prototyping and the development of new multi-fidelity methods that
are crucial for ML research and applications. Finally, our library is open-source and we welcome
contributions of new benchmarks to keep the library up-to-date and evolve it.

On the technical side, so far, we focused on developing a benchmark library, but we see a large
potential in connecting our library with other benchmarking frameworks (e.g. COCO [9] and
Bayesmark [8]), optimization frameworks (e.g. Nevergrad [10] and Sherpa [87]) and extending it
with further benchmarks [11, 12, 60, 62, 88–90] to increase diversity and to simplify evaluation and
comparison of optimizers. For this, it would be interesting to also containerize the optimizers since
they can suffer from the same issues as benchmarks. Furthermore, so far, HPOBench only contains
stateless benchmarks starting a single container. We would like to extend the library to also support
optimizers requiring stateful benchmarks (to freeze and thaw evaluations) or running in parallel.

Our set of benchmarks already covers raw, tabular, and surrogate benchmarks, but it would be
useful to have all three versions available for all benchmarks, and to automatically generate tabular
and surrogate-based benchmarks from raw benchmarks. Also, our new benchmarks can be used
to evaluate multi-objective (multiple metrics) and meta-learning (across datasets) methods or even
meta-learned multi-fidelity multi-objective methods. We hope for the community to play a large
role in defining the protocols for the different special cases; e.g., budgets need to be set differently
for black-box multi-objective optimization and single-objective hyperparameter transfer learning.
Additionally, it would be interesting to study hierarchical search spaces to cover work in AutoML.
Furthermore, there is a large potential in automatically creating multi-fidelity benchmarks from any
ML algorithm by using data subsets as a low-fidelity.

We also conducted a large-scale study evaluating 13 algorithm implementations to demonstrate
compatibility with a wide range of optimization tools, and we thus believe that our library is well
suited for future research on multi-fidelity optimization. We showed that advanced HPO methods are
preferable over RS and HB baselines, and that multi-fidelity extensions of popular optimizers improve
over their black-box version. Lastly, to reduce computational effort, we would like to study whether
we can learn which benchmarks are hard and whether there is a representative subset of them [91].
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