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Abstract

We consider private federated learning (FL), where a server aggregates differentially1

private gradient updates from a large number of clients in order to train a machine2

learning model. The main challenge is balancing privacy with both classification3

accuracy of the learned model as well as the amount of communication between4

the clients and server. In this work, we build on a recently proposed method for5

communication-efficient private FL—the MVU mechanism—by introducing a new6

interpolation mechanism that can accommodate a more efficient privacy analysis.7

The result is the new Interpolated MVU mechanism that provides SOTA results on8

communication-efficient private FL on a variety of datasets.9

1 Introduction10

Machine-learned models leak information about their training data [26]. Private training methods11

have been developed to train models that provide rigorous guarantees quantifying the amount of12

information leaked [1, 8, 25]. Federated learning (FL) builds on private training to collaboratively13

train a model among many devices while keeping the data at each device private [20]. To accomplish14

this, (cross-device) FL requires that devices communicate updates to a server coordinating the training.15

These updates can be privatized using a differentially private mechanism such as DP-SGD [1] by16

injecting a controlled amount of noise into the gradient, or update direction, at each step.17

To reduce communication overhead in FL, it is also of interest to compress updates before they are18

transmitted to the server, and lossy compression can also be seen as a way of injecting noise into19

updates. Most previous work has addressed the challenges of privacy and compression separately, first20

applying a DP mechanism to privatize the response, and then compressing before transmitting [2, 12].21

Recent work [7] introduces the minimum-variance unbiased (MVU) mechanism for jointly com-22

pressing and ensuring privacy, and experimentally demonstrates that this can lead to better utility-23

compression trade-offs than other methods which first privatize and then compress. The core of24

MVU consists of a private mechanism that works for a finite number of scalar inputs. If the input is a25

bounded continuous scalar, then the solution is to dither to this finite set before applying the core26

mechanism, and this is further extended to vectors by privacy composition over all coordinates via27

Rényi DP [21]. Empirically, the MVU mechanism achieves state-of-the-art performance in the local28

DP setting for both distributed mean estimation and federated learning [7]. However, the analysis29

in [7] does not benefit from randomization introduced by dithering, and furthermore the extension to30

vectors leads to suboptimal privacy composition for the L2 geometry, which is often of interest (e.g.,31

working with L2-bounded update vectors such as in DP-SGD).32

Contributions. Building on a simplified version of the MVU mechanism with only a single scalar33

input, we propose the interpolated MVU (I-MVU) mechanism—a more natural interpolation mecha-34

nism to extend MVU to continuous inputs. By its discrete nature, the MVU mechanism can be viewed35
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as sampling from a particular categorical distribution, and hence can be expressed in exponential36

family form. The proposed I-MVU mechanism handles continuous inputs by interpolating the natural37

exponential family parameters, rather than directly interpolating the probabilities as in dithering. We38

introduce a new analysis technique and, by further exploiting special properties of the exponential39

family, obtain a tight privacy analysis for the vector extension under L2 geometry. Experimentally,40

we find that under both client-level and user-level DP settings, the I-MVU mechanism provides better41

privacy-utility trade-off than SignSGD [17] and MVU [7] at an extremely low communication budget42

of one bit per gradient dimension. Moreover, I-MVU achieves close to the same performance as the43

standard non-compressed Gaussian mechanism [1] for similar levels of (ϵ, δ)-DP.44

2 Background and Related Work45

Differential privacy. The framework of differential privacy [10] allows rigorous reasoning of46

privacy leakage through a mechanism M applied to a dataset D. We say that M is (ϵ, δ)-differentially47

private, denoted (ϵ, δ)-DP, if for any D, any x ∈ D and any output set O, we have:48

e−ϵP(M(D \ x) ∈ O)− δ ≤ P(M(D) ∈ O) ≤ eϵP(M(D \ x) ∈ O) + δ.

More generally, the framework of DP seeks to bound the difference in distribution between M(D)49

and M(D \ x) so that a single record x will not affect the output of the mechanism M significantly.50

A useful variant of DP is Rényi differential privacy (RDP) [21], which instead bounds the Rényi51

divergence [23] between M(D) and M(D \x) by some ϵ. Formally, we say that M is (α, ϵ)-RDP if52

Dα(M(D) || M(D \ x)) ≤ ϵ and Dα(M(D \ x) || M(D)) ≤ ϵ,

where Dα denotes the order-α Rényi divergence [21]. Importantly, Rényi DP supports composition53

of mechanisms in a simple manner: If M1, . . . ,MT are mechanisms with Mt being (α, ϵt)-RDP54

for t = 1, . . . , T , then the composition of the T mechanisms is (α,
∑T

t=1 ϵt)-RDP. Another useful55

property of RDP is its conversion to (ϵ, δ)-DP [3]: If M is (α, ϵα)-RDP for α > 1 then it is also56

(ϵ, δ)-DP for any 0 < δ < 1 with57

ϵ = ϵα + log

(
α− 1

α

)
− log δ + logα

α− 1
. (1)

Federated learning with differential privacy. Federated learning (FL) [18, 20] allows distributed58

training of ML models across multiple clients without centralized data storage. A server coordinates59

training by acquiring model updates from clients, aggregating them, and then transmitting an updated60

model back to the clients, with the process repeating until convergence. One promise of FL is data61

privacy since the updates are computed locally on each client using their own data, and hence no62

client data is ever explicitly transmitted to the server (or anyone else) throughout the training process.63

In spite of this, a recent line of work showed that despite the clients never explicitly sharing their64

data, it is possible to reconstruct training samples from the model updates in a process called gradient65

inversion [11, 31, 32]. This vulnerability remains even if a large number of clients participate in a66

round using secure aggregation [11, 16, 30].67

Differential privacy is a principled method to ensure data privacy in FL as it provides provable68

guarantees against data reconstruction from the output of a private mechanism [4, 13, 27]. To apply69

DP to FL training, given a client update x, the client instead sends M(x) to the server. For a70

given round, the client’s privacy leakage can be computed in terms of local DP if the privatized71

update M(x) is revealed to the server, or global DP if secure aggregation is applied to aggregate the72

privatized updates before revealing it to the server. The total privacy leakage throughout training can73

then be computed via RDP composition and conversion to (ϵ, δ)-DP via Equation 1.74

Communication-efficient private mechanisms. Since model updates in FL are high-dimensional75

vectors of size equal to the number of model parameters, it is also important in practice to compress76

these updates for communication efficiency. This requirement combined with privacy has led to a77

series of prior work that designed communication-efficient private mechanisms with application to78

FL [2, 6, 7, 9, 12, 17, 24, 29]. However, compressing the model update often leads to higher variance79

and/or biasedness [7, 9], and as a result the model’s performance is subpar compared to ones trained80

using non-compressed DP mechanisms such as the Gaussian mechanism [7, 17]. In this work, we81
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Figure 1: Plot showing the expected value of M(x) for different values of x ∈ [0, 1] for the MVU
and I-MVU mechanism. While MVU is unbiased in the entire interval [0, 1], I-MVU incurs some
bias for x ̸= 0, 1, especially at higher values of the DP parameter ϵ.

drastically reduce this performance gap and show that replacing the Gaussian mechanism with the82

proposed interpolated MVU mechanism leads to the same test performance at equal privacy cost83

when using one-bit output per coordinate.84

3 Interpolated MVU Mechanism85

We introduce the interpolated MVU mechanism—a communication-efficient differentially-private86

mechanism with application to private FL training. We also present a novel privacy analysis technique87

for privatizing vectors with L2 geometry, leading to a drastic improvement in the privacy-utility88

trade-off over the previously proposed MVU mechanism [7]. To this end, we begin by defining the89

problem of private-compression and recalling the MVU mechanism.90

Problem description. Consider the private-compression problem of transmitting a vector x ∈ Rd91

with bounded L2-norm privately using at most bd bits, with b small enough so that the entire vector92

x can be transmitted efficiently. One can reduce this problem to a scalar one by considering how93

to privately compress x ∈ [0, 1] using at most b bits, and then scaling the vector x appropriately to94

[0, 1]d and applying the scalar mechanism coordinate-wise.95

The minimum variance unbiased (MVU) mechanism [7] solves the private-compression problem96

by first discretizing the interval [0, 1] into Bin points X = {x1 = 0, x2, . . . , xBin = 1} with97

xi := (i− 1)/(Bin − 1). If x = xi, the mechanism samples j ∼ Categorical(pi) using a probability98

vector pi ∈ ∆Bout−1 and outputs M(x) = aj ∈ R where {a1, . . . , aBout} is a pre-determined output99

alphabet. The probability vectors p1, . . . ,pBin and output alphabet {a1, . . . , aBout} are designed so100

that the mechanism satisfies the following three properties:101

1. ϵ-Differential Privacy: e−ϵpi′,j ≤ pi,j ≤ eϵpi′,j for all i ̸= i′ and all j.102

2. Unbiasedness:
∑Bout

j=1 ajpi,j = xi for all i.103

3. Minimum variance:
∑Bin

i=1 Var(M(xi)) is minimal among all mechanisms satisfying 1 and 2.104

The MVU mechanism can then be applied to all x ∈ [0, 1] by randomly dithering x to the nearest105

xi and xi+1 such that the dithering is unbiased in expectation. One can also view this dithering106

procedure as linearly interpolating between pi and pi+1. It is straightforward to generalize the107

mechanism to any bounded x by scaling it to [0, 1] and then applying the MVU mechanism.108

For a d-dimensional vector x, the MVU mechanism can be applied independently to each coordinate109

and the privacy cost is dϵ by composition if x ∈ [0, 1]d (or in general, if ∥x∥∞ is bounded). However,110

the privacy analysis becomes much more complicated for L2-norm bounded vectors—as is often111

the case for DP-SGD training [1]. We address this problem by expressing the MVU mechanism in112

exponential family form and interpolating in the natural parameter space, allowing us to use special113

properties of exponential family distributions to derive tight privacy analysis for the L2 geometry.114

Interpolated MVU mechanism. As mentioned above, by dithering an input x ∈ [xi, xi+1] to xi or115

xi+1, for general inputs x /∈ X , the MVU can be seen as linearly interpolating between the probabilty116

vectors pi and pi+1. Here we improve upon MVU by introducing a better form of interpolation. The117
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pmf for the categorical distribution with natural parameter η can be written as:118

P(j|η) = exp(e⊤j η −A(η)), A(η) = log

∑
j

exp(ηj)

 (2)

where ej is the j-th standard basis vector. Note that if p ∈ ∆Bout−1 then its natural parameter is119

η = logp. To define the interpolated MVU (I-MVU) mechanism, let p1,p2 ∈ ∆Bout−1 be sampling120

probability vectors obtained from the MVU mechanism with Bin = 2 and let ηi = logpi for i = 1, 2121

be the natural parameters. Given x ∈ [0, 1], the I-MVU mechanism samples j ∼ P(·|η(x)) according122

to Equation 2 and outputs aj from the MVU output alphabet, where123

η(x) = (1− x)η1 + xη2. (3)

In other words, instead of linearly interpolating between p1 and p2 to construct the sampling124

probability vector for x, we interpolate in the natural parameter space of the categorical distribution.125

Doing so incurs some bias1 when x /∈ {0, 1}; see Figure 1 for a plot illustrating this phenomenon.126

Nevertheless, this bias is small in comparison to the noise induced by differential privacy, and we127

show empirically that it does not affect the performance of the I-MVU mechanism for FL training.128

Input scaling. One way to extend I-MVU to arbitrary bounded ranges is to first scale the input129

to [0, 1] and then apply the mechanism as usual. However, note that the interpolation scheme in130

Equation 3 is in fact well-defined for any x ∈ R, and hence the scaled input does not need to be strictly131

in the range [0, 1]. We leverage this property by introducing a scaling factor β: For u ∈ [−C,C], the132

β-scaled I-MVU mechanism is defined as133

Mβ(u) = M
(
1

2
+

βu

2C

)
,

where M is the plain I-MVU mechanism. Note that this scaling effectively ensures that the input134

to M is in the range [(1− β)/2, (1 + β)/2], with β = 1 corresponding to scaling the input to [0, 1].135

For vectors u with ∥u∥2 ≤ C, the β-scaled input x = 1
2 + βu

2C satisfies ∥x∥2 ≤ β/2136

One advantage for using β-scaling is that if the distribution of u is highly concentrated near zero, then137

scaling with β > 1 ensures that the input to M is more spread out in the range [0, 1]. This ensures138

that the input distribution more closely reflects the minimum variance requirement (property 3) for139

the MVU mechanism. For L2-norm bounded vectors u this is especially true, where the distribution140

of coordinates of u is likely concentrated near zero. Consequently, for compressing client updates141

with bounded L2-norm, β-scaling with a large β is essential for achieving good performance.142

3.1 Privacy Analysis143

We analyze privacy leakage of the I-MVU mechanism for L2-norm bounded vectors in terms of144

Rényi DP [21]. Our strategy is to first analyze the scalar mechanism and express its Rényi divergence145

for two differing inputs x1 and x2 as a function of (x2 − x1)
2 (Lemma 1). Then, by independently146

applying the mechanism across coordinates, we can sum the Rényi divergence across coordinates and147

upper bound the total RDP ϵ as a function of ∥x2−x1∥22 (Theorem 1). Our analysis depends crucially148

on a measure of information known as Fisher information, which we define below for completeness.149

Definition 1. Let f be the density function of a distribution parameterized by x ∈ R. The Fisher150

information of x contained in a sample Z ∼ f(·|x) is:151

IZ(x) := EZ

[(
d

dx
log f(Z|x)

)2
]
. (4)

In our setting, the distribution P(·|η(x)) is defined by the private data x, and Fisher information152

measures how much information is revealed about x through a sample j ∼ P(·|η(x)). It is noteworthy153

that such a reasoning has also been used to define Fisher information as a privacy metric [14].154

Lemma 1. Let M = supx∈R IZ(x) be an upper bound on the Fisher information of the mechanism155

M. Then for any x1, x2 ∈ R:156

Dα(P(·|η(x1)) || P(·|η(x2))) ≤ αM(x2 − x1)
2/2. (5)

1In spite of this, we still name our mechanism I-MVU for its connection to the MVU mechanism.
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Figure 2: Privacy vs. accuracy plot for the client-level DP scenario on MNIST (left) and CIFAR-10
(right). Each point represents a single hyperparameter setting and the Pareto frontier is shown in
dashed line. Across the entire range of ϵ, I-MVU consistently performs as well as the non-compressed
Gaussian mechanism while requiring only one bit communication per update coordinate.

Theorem 1. Let M be the Fisher information constant from Lemma 1. Suppose that x1,x2 ∈ Rd157

satisfy ∥x2 − x1∥2 ≤ C. Then the I-MVU mechanism is (α, αMC2/2)-RDP for all α > 1.158

Proof sketch. We first derive the Taylor series expression for the Rényi divergence between159

P(·|η(x1)) and P(·|η(x2)). Since Rényi divergence is minimized and is equal to 0 when x1 = x2,160

the zeroth-order and first-order terms in the Taylor series are 0. The coefficient for the second-order161

term is given by the Fisher information IZ(x1) [15], and thus we give a numerical method to compute162

M = supx∈R IZ(x) in Appendix B and use it in Equation 5 to bound the RDP ϵ. Full proofs of163

Lemma 1 and Theorem 1 are provided in Appendix A.164

4 Experiments165

We evaluate the I-MVU mechanism for federated learning under the local DP setting, i.e., clients166

transmit the privately compressed model update M(x) to the server before aggregation. We consider167

private mechanisms that output one bit per coordinate of the update vector. This extreme level of168

compression reflects realistic constraints in FL and is very challenging for existing mechanisms.169

Previous work [7] found that the two most competitive baselines are the MVU mechanism with b = 1170

bit communication budget and SignSGD [17]. The latter applies the Gaussian mechanism for gradient171

perturbation [1] and then takes the sign of the perturbed gradient to obtain one-bit per coordinate.172

4.1 Client-level DP173

We first evaluate under the client-level DP setting on MNIST and CIFAR-10 [19]. Here, the privacy174

analysis guarantees that the learning algorithm is differentially private with respect to the removal of175

any client. We divide the training set among the clients with client sample size 1. Each client performs176

a single local gradient update in every FL round. This setting is equivalent to DP-SGD training [1]177

but with the Gaussian mechanism replaced by a communication-efficient private mechanism.178

Training details. Following [7], we train a linear model on top of ScatterNet features [28], which179

remains to date the state-of-the-art DP model for MNIST and CIFAR-10 without leveraging any180

public data. We perform a grid search over hyperparameters such as number of update rounds, step181

size, gradient norm clip, and mechanism parameters σ (for Gaussian and SignSGD) and ϵ (for MVU182

and I-MVU). We use the same hyperparameter values reported in Tables 3 and 4 in [7].183

Result. Figure 2 shows the privacy vs. test accuracy curve on MNIST (left) and CIFAR-10 (right).184

Privacy is measured in terms of (ϵ, δ)-DP at δ = 10−5. Each point in the scatter plot corresponds185

to a single hyperparameter setting and the dashed line shows the Pareto frontier of optimal privacy-186

accuracy trade-off. The yellow line corresponds to the standard Gaussian mechanism without187

compression, which attains the best test accuracy at any given privacy budget ϵ. Both SignSGD and188

MVU are competitive, achieving close to the same level of accuracy as the Gaussian mechanism,189

but a non-negligible gap remains, especially on CIFAR-10. In contrast, I-MVU attains nearly the190

same performance as the Gaussian mechanism at all values of ϵ on both MNIST and CIFAR-10.191
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Figure 3: Privacy vs. accuracy plot for the sample-level DP scenario on FEMNIST. Each point
represents a single hyperparameter setting and the Pareto frontier is shown in dashed line. I-MVU
with one-bit communication budget per coordinate consistently performs better than SignSGD and is
competitive with the non-compressed Gaussian baseline across the entire range of ϵ.

Since MVU and I-MVU are near-identical mechanisms, we argue that the performance gain comes192

primarily from the tight privacy analysis for L2 geometry using Fisher information (Section 3.1).193

4.2 Sample-level DP194

Next, we evaluate under the sample-level DP setting on the FEMNIST dataset [5] for classifying195

written characters into 62 distinct classes. Privacy analysis guarantees that the learning algorithm is196

differentially private with respect to the removal of any training sample from a client. The dataset197

has a pre-defined train split with 3, 500 clients, from which we randomly select 3, 150 clients for198

training and the remaining 350 clients for testing. A set of 5 clients is selected in each training199

round, who then performs full batch gradient descent for a single local gradient update to compute200

the update vector. The update vector is privatized using a communication-efficient private mechanism201

and transmitted to the server.202

Training details. We train a simple 4-layer convolutional network for classification. The model203

achieves 84% accuracy when trained non-privately. The client optimizer is SGD with a learning204

rate of 0.1 and no momentum. The server implements FedAvg [20] with a momentum of 0.9. We205

perform a grid search on the local and server learning rates, the clipping factor, the noise multiplier206

σ for both Gaussian and SignSGD baselines, and the ϵ and scale hyperparameters for I-MVU. The207

hyperparameter ranges are given in Tables 1, 2 and 3 in the appendix. In particular, SignSGD requires208

much lower server-side learning rates since the updates (in {±1}) have higher magnitude.209

Result. We show the privacy-accuracy trade-off for FEMNIST in Figure 3. Each point in the scatter210

plot represents a single hyperparameter setting and the Pareto frontier (dashed line) represents the211

optimal privacy-accuracy trade-off. The DP privacy budget ϵ is given at δ = 10−5. We observe212

that I-MVU (blue dashed line) performs better than SignSGD (silver dashed line) for the same213

communication budget of one bit per update coordinate across the entire range of considered privacy214

budgets ϵ. Moreover, I-MVU performs on par with the non-compressed Gaussian baseline (yellow215

dashed line), where clients perform local DP-SGD without compressing model updates.216

5 Conclusion217

We proposed the Interpolated MVU (I-MVU) mechanism that drastically reduces the amount of218

uplink communication in (cross-device) FL while providing differential privacy guarantees. Our219

proposal builds on the recently introduced MVU mechanism to extend it to continuous-valued vectors220

with L2 geometry using a more efficient privacy analysis. Under both client-level and sample-level221

local DP settings, I-MVU with an extreme compression level of one bit per update coordinate attains222

close to the performance of the non-compressed Gaussian mechanism. Given this strong empirical223

performance, we advocate for I-MVU as a practical tool for communication-efficient private FL.224
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A Proofs315

Lemma 1. Let M = supx∈R IZ(x) be an upper bound on the Fisher information of the mechanism316

M. Then for any x1, x2 ∈ R:317

Dα(P(·|η(x1)) || P(·|η(x2))) ≤ αM(x2 − x1)
2/2.

Proof. We first derive an explicit form for the Fisher information. Let f(z;x) denote the pmf in318

Equation 2 for any z ∈ {e1, . . . , eBout}. The log pmf is:319

log f(z;x) = z⊤η(x)−A(η(x)) (6)

Taking derivative with respect to x gives:320

d

dx
log f(z;x) = (z− σ(η(x)))⊤(η2 − η1),(

d

dx
log f(z;x)

)2

= (η2 − η1)
⊤(z− σ(η(x)))(z− σ(η(x)))⊤(η2 − η1),

where σ denotes the sigmoid function. Taking expectation over z gives the Fisher information:321

IZ(x) = (η2 − η1)
⊤U(η2 − η1), (7)

with U = diag(σ(η(x)))− σ(η(x))σ(η(x))⊤.322

To derive the upper bound, we first define a function F for the Rényi divergence of the mechanism323

for a fixed x1 and varying x2:324

Fα(x2;x1) = Dα(P(·|η(x1)) || P(·|η(x2))). (8)

By Taylor’s theorem, we can express F as:325

Fα(x2;x1) = Fα(x1;x1) + (x2 − x1)F
′
α(x1;x1) + (x2 − x1)

2F ′′
α (ξ;x1)/2

for some ξ ∈ [x1, x2]. Note that Fα(x1;x1) = 0 and F ′
α(x1;x1) = 0 (since x1 is the global326

minimizer of Fα(·;x1)), so F is locally a quadratic function:327

Fα(x2;x1) = (x2 − x1)
2F ′′

α (ξ;x1)/2. (9)

Since f is the pmf of an exponential family distribution, we can use the closed form expression [22]328

for Rényi divergence of exponential family distributions to express F and its derivatives:329

Fα(ξ;x1) =
1

α− 1
[A(αη(x1) + (1− α)η(ξ))− αA(η(x1))− (1− α)A(η(ξ))]

F ′
α(ξ;x1) = (σ(η(ξ))− σ(αη(x1) + (1− α)η(ξ)))⊤(η2 − η1)

F ′′
α (ξ;x1) = (η2 − η1)

⊤(V + (α− 1)W )(η2 − η1)

where V = diag(σ(η(ξ))) − σ(η(ξ))σ(η(ξ))⊤, W = diag(σ(η(x′))) − σ(η(x′))σ(η(x′))⊤, and330

x′ = αx1 + (1− α)ξ. Hence F ′′
α (ξ;x1) = IZ(ξ) + (α− 1)IZ(x′) by Equation 7. Upper bounding331

IZ(ξ) and IZ(x′) by M := supx∈R IZ(x) and combining with Equation 9 gives the desired result.332

333

Theorem 1. Let M be the Fisher information constant from Lemma 1. Suppose that x1,x2 ∈ Rd334

satisfy ∥x2 − x1∥2 ≤ C, then the I-MVU mechanism is (α, αMC2/2)-RDP for all α > 1.335
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Proof. Let a = M(x) ∈ {a1, . . . , aBout}d be the output of the vector I-MVU mechanism that336

independently applies the scalar mechanism to each coordinate. Then:337

Dα(M(x1) || M(x2)) =
1

α− 1
log

∑
a∈{a1,...,aBout}d

d∏
k=1

P(ak|η((x2)k))
α

P(ak|η((x1)k))α−1

=

d∑
k=1

1

α− 1
log

∑
ak∈{a1,...,aBout}

P(ak|η((x2)k))
α

P(ak|η((x1)k))α−1
by independence

=

d∑
k=1

Dα(P(·|η((x1)k)) || P(·|η((x2)k)))

≤
d∑

k=1

αM((x2)k − (x1)k)
2/2 by Lemma 1

= αM∥x2 − x1∥22/2.
338

B Computing Fisher Information339

In this section we describe a method for computing M = supx∈R IZ(x). We first define a condi-340

tion for η1,η2 that allows us to reduce this problem to maximizing IZ(x) over a bounded range341

[xmin, xmax].342

Definition 2. Two vectors η1,η2 ∈ RB are said to be anadromic if for all j = 1, . . . , B, we have343

(η1)j = (η2)B−j+1.344

The following technical lemma proves several useful properties that hold when η1 and η2 are345

anadromic.346

Lemma 2. Suppose that η1,η2 ∈ RB are anadromic. Let θ = η2 − η1 and suppose that j+ =347

argmaxj θj , j
− = argminj θj are unique. Then the following hold:348

(i) θj = −θB−j+1 for all j, and hence j− = B − j+ + 1.349

(ii) η(x)j = η(1− x)B−j+1 for all j.350

(iii) σ(η(x)) → ej+ as x → ∞ and σ(η(x)) → ej− as x → −∞.351

(iv) IZ(x) = IZ(1− x) for all x ∈ R.352

(v) x = 1/2 is a stationary point for IZ(x).353

(vi) If σ(η(x))j+ ≥ 1/2 then IZ(x) ≤ 4θ2
j+σ(η(x))j+(1− σ(η(x))j+).354

Proof. (i) Since η1 and η2 are anadromic,355

θj = (η2)j − (η1)j = (η2)j − (η2)B−j+1 = −((η2)B−j+1 − (η1)j) = −θB−j+1.

In particular, argmaxj θj = B − (argminj θj) + 1.356

(ii) η(x)j = (1− x)(η1)j + x(η2)j = (1− x)(η1)B−j+1 + x(η2)B−j+1 = η(1− x)B−j+1.357

(iii) Let η̄ = (η1+η2)/2 so that η(x) = η̄+(x−1/2)θ for all x ∈ R. It is clear that σ(η(x)) → ej+358

as x → ∞ since j+ is unique. A similar argument shows that σ(η(x)) → ej− as x → −∞.359

(iv) Using the expression of IZ(x) in the proof of Lemma 1, we get360

IZ(x) =
∑
j

θ2
jσ(η(x))j −

∑
j

θjσ(η(x))j

2

=
∑
j

θ2
B−j+1σ(η(1− x))B−j+1 −

∑
j

θB−j+1σ(η(1− x))B−j+1

2

by (i) and (ii)

= IZ(1− x).
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(v) Differentiating IZ(x) and using the above argument gives:361

I ′
Z(x) = (θ3)⊤σ(η(x))− 3θ⊤σ(η(x))(θ2)⊤σ(η(x)) + 2(θ⊤σ(η(x)))3

= −(θ3)⊤σ(η(1− x)) + 3θ⊤σ(η(1− x))(θ2)⊤σ(η(1− x))− 2(θ⊤σ(η(1− x)))3

= −I ′
Z(1− x).

Then I ′
Z(1/2) = −I ′

Z(1/2), so I ′
Z(1/2) = 0 and x = 1/2 is a stationary point.362

(vi) Using the fact that 0 ≤ θ2
j ≤ θ2

j+ for all j and∑
j

θjσ(η(x))j ≥ θj+σ(η(x))j++θj−(1−σ(η(x))j+) = θj+σ(η(x))j+−θj+(1−σ(η(x))j+) ≥ 0,

we have:363

IZ(x) =
∑
j

θ2
jσ(η(x))j −

∑
j

θjσ(η(x))j

2

≤ θ2
j+ − (θj+σ(η(x))j+ − θj+(1− σ(η(x))j+))

2

= θ2
j+(1− (2σ(η(x))j+ − 1)2)

= 4θ2
j+σ(η(x))j+(1− σ(η(x))j+).

364

Algorithm. To use Lemma 2 to compute M , we first compute I∗ = IZ(1/2) since x = 1/2 is a365

stationary point by Lemma 2(v). By setting366

4θ2
j+σ(η(x))j+(1− σ(η(x))j+) ≤ I∗

and solving this quadratic equation for σ(η(x))j+ , we can use the bound in Lemma 2(vi) to obtain367

that IZ(x) ≤ I∗ when σ(η(x))j+ ≥
(
1 +

√
1− I∗/θ2

j+

)
/2 ≥ 1/2. Since σ(η(x))j+ → 1 as368

x → ∞ by (iii), we can determine the value xmax for which IZ(x) ≤ I∗ when x ≥ xmax. By (iv),369

xmin = 1− xmax satisfies IZ(x) ≤ I∗ when x ≤ xmin. We can then do line search in [xmin, xmax]370

(or equivalently, in [1/2, xmax] by Lemma 2(iv)) to obtain M .371

C Hyperparameters for FEMNIST372

Hyperparameter Values

ε 0.25, 0.5, 0.75, 1, 2, 3, 5, 6, 7, 8, 9, 10
Server-side learning rate 0.5, 1, 2
Scaling factor β 32, 64, 128

Table 1: Hyperparameter range for I-MVU on FEMNIST.

Hyperparameter Values

σ 0.6, 0.8, 1, 2, 4, 6, 8, 10, 16, 32, 64, 128
Server-side learning rate 0.5, 1, 2
Clipping factor 0.5, 1, 2

Table 2: Hyperparameter range for Gaussian on FEMNIST.
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Hyperparameter Values

σ 0.6, 0.8, 1, 2, 4, 6, 8, 10, 16, 32, 64, 128
Server-side learning rate 0.0001, 0.001, 0.01
Clipping factor 0.5, 1, 2

Table 3: Hyperparameter range for SignSGD on FEMNIST.
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