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ABSTRACT

Human preference plays a significant role in measuring large language models and
guiding them to align with human values. Unfortunately, current comparing-based
evaluation (CBE) methods typically focus on a single optimization objective, fail-
ing to effectively utilize scarce yet valuable preference signals. To address this,
we delve into key factors that can enhance the accuracy, convergence, and scala-
bility of CBE: suppressing sampling bias, balancing descending process of uncer-
tainty, and mitigating updating uncertainty. Following the derived guidelines, we
propose UNICBE, a unified uniformity-driven CBE framework which simultane-
ously optimize these core objectives by constructing and integrating three decou-
pled sampling probability matrices, each designed to ensure uniformity in specific
aspects. We further ablate the optimal tuple sampling and preference aggrega-
tion strategies to achieve efficient CBE. On the AlpacaEval benchmark, UNICBE
saves over 17% of evaluation budgets while achieving a Pearson correlation with
ground truth exceeding 0.995, demonstrating excellent accuracy and convergence.
In scenarios where new models are continuously introduced, UNICBE can even
save over 50% of evaluation costs, highlighting its improved scalability.

1 INTRODUCTION

The ongoing evolution of large language models (LLMs) has made it increasingly important to
assess their alignment with human preferences (Dubois et al., 2024; Zheng et al., 2023). The pref-
erence signals provided by humans are crucial for accurately assessing and guiding models toward
safe and reliable AGI (Ji et al., 2023; Jiang et al., 2024). However, the rapid iteration of LLMs in
training and application scenarios has created a substantial demand for evaluation, complicating the
acquisition of sufficient labor-intensive human preferences (Chiang et al., 2024; Cui et al., 2023).
Therefore, exploring the use of precious preference signals for efficient model alignment evaluation
is of great significance and requires long-term research.
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Figure 1: Flowchart of the process for comparing-based evaluation.

Current mainstream model evaluation paradigms include scoring-based evaluation (SBE) (Liu et al.,
2023; Cai et al., 2023) and comparing-based evaluation (CBE) (Chiang et al., 2024; Dubois et al.,
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2024). The former requires the judge to offer preference scores for individual responses, while the
latter needs the judge to establish a preference order among multiple candidate model responses. By
directly comparing the responses of different models, Zheng et al. (2023); Liu et al. (2024) confirm
that CBE can more accurately assess model performance. However, the O(NM2) evaluation over-
head limits the practicality of CBE when there are M models to evaluate on N samples (Qin et al.,
2024). To achieve efficient CBE, various methods have been explored Chiang et al. (2024); Zhou
et al. (2024); Dubois et al. (2024). As shown in Figure 1, based on existing observational results,
these methods iteratively allocate preference budget to the next (models, sample) tuple according to
respective optimization objectives. Specific preference aggregation methods (e.g., ELO rating (Elo
& Sloan, 1978)) are then applied to predict the model capability scores based on these preference
results. Nevertheless, as shown in Table 1, the optimization objectives of these methods are often
singular, failing to simultaneously achieve the accuracy, convergence, and scalability well. We will
discuss this in detail in §2 and conduct experimental validation in §5.2.

Table 1: Optimization Objectives of widely applied CBE Methods. The number of ’+’ indicates the
degree of optimization for the objective, which is discussed in §2 and measured in Table 2.

Methods Qin et al. (2024) Chiang et al. (2024) Dubois et al. (2024) Ours
RANDOM ARENA ALPACAEVAL UNICBE

Accuracy + - - ++
Convergence - + - ++
Scalability - - ++ ++

To develop a method that can accurately assess model performance, quickly converge evaluation
results, and ensure good scalability when new models are introduced, we theoretically analyze and
summarize the following guidelines:

• Improving the accuracy of evaluation results relies on completely uniform sampling of tuple
combinations, so as to mitigate sampling bias.

• Accelerating the convergence process involves ensuring the uniformity of the win rate uncer-
tainty matrix during its descending process to reduce observation variance.

• Enhancing scalability requires sufficient budgets being allocated to new added models to ensure
the uniform allocation among models, which helps reduce updating uncertainty.

Based on these insights, we propose UNICBE, a unified uniformity-driven framework that can
achieve CBE with better accuracy, convergence and scalability. In each iteration of the evalua-
tion process, we first establish sampling probability matrices under different optimization objectives
respectively based on real-time preference results. Afterwards, we integrate these matrices to obtain
a global sampling probability matrix. Furthermore, we explore various tuple sampling strategies and
preference aggregation methods to achieve optimal evaluation results.

To comprehensively validate the effectiveness and generalizability of UNICBE, we conduct multiple
experiments involving various types of judges (LLMs and humans), different benchmarks, varied
model sets to be evaluated, diverse scenarios (static and dynamic), and multiple evaluation metrics.
The main results indicate that, compared to the random sampling baseline, UNICBE saves over
17% of evaluation budgets when achieving the same assessment accuracy (with a Pearson coefficient
exceeding 0.995 with the ground truth), demonstrating significantly better convergence and accuracy
than other baselines. Furthermore, in scenarios where new models are continuously introduced,
UNICBE can even save over 50% of evaluation costs compared to random sampling, showcasing
excellent scalability.

2 RELATED WORK

Comparative preference signals have long been used for model training (Ouyang et al., 2022;
Touvron et al., 2023) and evaluation (Chiang et al., 2024; Yuan et al., 2024). Centered around
comparing-based evaluation, we will discuss existing budget allocation strategies and preference
aggregation methods below.

Budget Allocation Many efforts have been made to explore preference budget allocation ap-
proaches. The most naive allocation method is to randomly select (models, sample) tuple for judging

2
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each time until the preset preference budget is reached (Qin et al., 2024). This method ensures a rel-
atively uniform sampling across different tuple combinations in expectation, thereby guaranteeing
the accuracy of evaluation results according to our derivation in §3.2. Arena (Chiang et al., 2024)
aims to sample model pairs proportionally to the variance gradient of win rate at each step, seeking
to accelerating the convergence of evaluation by reducing the uncertainty of the observed win rate
matrix in a greedy manner. AlpacaEval (Dubois et al., 2024) measures model performance by com-
paring the models under evaluation with a fixed reference model. Different models under evaluation
are expected to be assessed on the same set. Thus, when new models are introduced, preference
budget is prioritized for them to stabilize the estimation of their capabilities, thereby achieving good
scalability. Despite these methods performing well in their intended objectives, they cannot achieve
a balance among accuracy, convergence, and scalability. This makes it imperative to explore better
preference budget allocation strategy that can effectively reconcile all these attributes.

Preference Aggregation Due to the possibility that the same group of models may exhibit dif-
ferent ranking relationships across different samples, it is essential to estimate the global model
capability scores to better fit these non-transitive preference results. Dubois et al. (2024); Zheng
et al. (2023) directly use the average pair-wise win rate of each model as a measure of its capabil-
ity. Feng et al. (2024); Wu & Aji (2023) apply the classical Elo rating system (Elo & Sloan, 1978)
(see the Appendix B.1 for detailed introduction) by treating the evaluation process as a sequence
of model battles in order to derive model scores. Fageot et al. (2024); Chiang et al. (2024) employ
the Bradley-Terry model (Bradley & Terry, 1952) (see Appendix B.2 for detailed introduction) to
estimate model scores by maximizing the likelihood of the comparison results between models. We
will systematically compare the effectiveness of these preference aggregation methods in §5.3.

3 PRELIMINARY

In this section, we start by symbolically introducing the working process of CBE. Afterwards, we
introduce the key objectives for achieving efficient CBE: accuracy, convergence, and scalability,
and analyze the factors that influence them. We mainly discuss the pair-wise evaluation scenario
(where the judge provides preference between two models per time) for its wide applications (Tashu
& Horváth, 2018; Qin et al., 2024). Actually, list-wise preferences can be easily converted into
pair-wise ones, as demonstrated in §5.4, so the discussions below are general for CBE.

3.1 PROCESS OF CBE

Generally, a CBE method f can be divided into three parts: budget allocation strategy f ba, tuple
sampling strategy f ts, and preference aggregation strategy fpa. Given benchmark D : s1:N and
models under evaluation M : m1:M , we iterate the following steps: step 1. applying f ba to attain
sampling matrix P l at iteration l, where P l

i,j,k denotes the probability to select tuple (mi,mj , sk)

for judging; step 2. applying f ts to sample certain tuple (ml1,ml2, sl) based on P l; step 3. attaining
preference result rl from the judge, where rl ∈ [0, 1] denotes the degree ml1 wins over ml2 (0.5
means tie). We stop this iterative process when the preset preference budget T is achieved and then
apply fpa on preference results {(ml1,ml2, sl, rl)}Tl=1 to attain estimated model scores u1:M .

3.2 ACCURACY

Theoretically, if we have a budget of T̂ = NM(M−1)
2 , we can explore all tuples to obtain the ground

truth estimation for the model scores û1:M . However, typically T is much smaller than T̂ in reality
considering the preciousness of preference signals. Previous studies (Vabalas et al., 2019; Kossen
et al., 2021) have discussed the risks of introducing sampling bias in incomplete sampling scenarios,
which we believe could similarly lead to potential risks in CBE. Considering that the content of each
sample is (ml1,ml2, sl), we think the sample bias exists across both samples and models.

Bias across Samples. Since different models may excel at answering different types of queries,
the model scores can vary depending on the sampled data:

ut = fpa({(mi,mj , sk, ri,j,k)}i∈1:M,j∈i+1:M )t = ût + ηmt,-,sk for ∀ t, k (1)
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(a) Sampling bias with different preference aggrega-
tion strategies across samples and models.

0.0
0-0

.05

0.0
5-0

.10

0.1
0-0

.15

0.1
5-0

.20

0.2
0-0

.25

0.2
5-0

.30

0.3
0-0

.35

0.3
5-0

.40

0.4
0-0

.45

0.4
5-0

.50

0.5
0-0

.55

interval of | t, , k|

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
op

or
tio

n

(b) Interval distribution of bias across samples with
fpa
BT as preference aggregation strategy.

alpaca-7b

llama-2-13b-chat-hf

mistral-large-2402

mistral-medium

gpt-4-0125-preview

guanaco-7b

guanaco-13b

guanaco-33b

guanaco-65b

llama-2-7b-chat-hf

openchat-13b

baichuan-13b-chat

baize-v2-7b

baize-v2-13b
claude

claude-2

claude-2.1

gemini-pro

gpt-3.5-turbo-0301

gpt-3.5-turbo-0613

gpt-3.5-turbo-0613
gpt-3.5-turbo-0301

gemini-pro
claude-2.1
claude-2
claude

baize-v2-13b
baize-v2-7b

baichuan-13b-chat
openchat-13b

llama-2-7b-chat-hf
guanaco-65b
guanaco-33b
guanaco-13b
guanaco-7b

gpt-4-0125-preview
mistral-medium

mistral-large-2402
llama-2-13b-chat-hf

alpaca-7b

−0.4

−0.2

0

0.2

0.4

Loading [MathJax]/extensions/MathMenu.js

(c) Bias across models with fpa
BT as preference aggregation strategy.

Figure 2: Analyses of potential sampling bias risks in CBE.

where ηmt,-,sk represents the bias between the observed model score ut of mt and the ground truth
ût when sorely assessing on sample sk. To verify this, we conduct experiments on the AlpacaEval
benchmark (Dubois et al., 2024) using GPT-4o (OpenAI, 2024) as the judge across randomly se-
lected 20 LLMs (listed in Figure 2(c)). We first traversed all model pairs for samples s1:N to obtain
corresponding N sets of preference results and then calculate the respective |ηmi,-,sk | for i ∈ 1 : M
and k ∈ 1 : N according to equation 1 (model scores are normalized to an average of 1). We
calculate the average value of |ηmi,-,sk | across models and samples using different preference ag-
gregation strategies fpa discussed in §2. As shown in Figure 2(a), with all kinds of fpa, the average
difference between the model scores estimated on single sample and the ground truth values exceeds
0.25, indicating a significant bias across samples. We further analyze the proportion of samples with
different biases using fpa

BT in Figure 2(b) and find that they overall follow a Gaussian distribution,
showing the wide existence of sample bias in CBE.

Bias across Models. Just as humans may perform differently when facing different opponents,
models may also have varying scores when competing against different models:

ui = fpa({(mi,mj , sk, ri,j,k)}k∈1:N )i = ûi + ηmi,mj ,- for ∀ i, j (2)

We validate this from two perspectives: (1) We calculate the average |ηmi,mj ,-| according to equa-
tion 2 like the process above and show the results in Figure 2(a). Overall, although the bias across
models is significantly lower than the bias across samples, it still exists at a scale around 0.05. We
further visualize the pair-wise model score bias in Figure 2(c) to validate its wide existence. (2) We
obtain over 1.7 million pairwise preference results across 129 LLMs collected by Chatbot Arena 1.
After excluding pairs with fewer than 50 comparisons, we calculate the pairwise win rates and find
non-transitivity in 81 model triplets (win rate: A > B, B > C, C > A), which also verifies the
existence of bias across models.

1https://storage.googleapis.com/arena_external_data/public/clean_
battle_20240814_public.json
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Uniform Allocation Brings the Least Bias. Based on the discussions above, we analyze the bud-
get allocation strategy that can introduce the least bias. Considering the presence of sampling bias,
the estimation error of ui with T evaluation budget can be expressed as follows:

ui − ûi =

T∑
l=1

1ml1=mi
× ηml1,ml2,sl (3)

Considering that u = û when all the tuples are traversed, we have the following equation:

0 = ui − ûi =

M∑
j=1

N∑
k=1

ηi,j,k for ∀ i (4)

The goal of obtaining the minimum estimation error for ui is transformed into sampling T numbers
( equation 3) from MN numbers that sum to zero ( equation 4), such that the absolute value of the
sum of these T numbers is minimized. We have provided a detailed proof in Appendix A that the
best strategy is completely uniform sampling. This denotes that the score estimation error can be
minimized when the preference budgets are uniformly distributed across models and samples to
bring the least sampling bias.

3.3 CONVERGENCE

During the evaluation process, as new preference results are continuously observed, the estimated
values of the models win rate matrix and model scores also change constantly. To accelerate the
convergence process, we analyze the uncertainty of the win rate matrix as follows. Defining that:

X l
i,j =

1

P l
i,j

rl1ml1=mi & ml2=mj
+

1

P l
j,i

(1− rl)1ml1=mj & ml2=mi
(5)

The unbiased estimated win rate matrix Φ at iteration L can be calculated as follows:

ΦL =
1

L

L∑
l=1

X l (6)

We further estimate the variance matrix Θ as:

ΘL =
1

L

L∑
l=1

(X l − ΦL) ◦ (X l − ΦL) (7)

Denoting if the model pair (mi,mj) has been compared on sample sk after l iterations as Cl
i,j,k, the

uncertainty (standard deviation) of each element in the win rate matrix is as follows:

ϵli,j =

√√√√ Θl
i,j∑N

k=1 C
l
i,j,k

(8)

Allocating the next preference budget on (mi,mj) can reduce the uncertainty of their win rate by:√√√√ Θl
i,j∑N

k=1 C
l
i,j,k

−

√√√√ Θl
i,j∑N

k=1 C
l
i,j,k + 1

(9)

Considering that our core objective is to conduct accurate capability assessments for all models
and estimate their ranking relationship, we should globally ensure the uniformity of the win rate
uncertainty matrix during its descending process to achieve smooth evaluation convergence.

3.4 SCALABILITY

Due to the continuous emergence of new LLMs, the demand for scalability in evaluation method is
becoming increasingly prominent (Chern et al., 2024). Considering that we have evaluated m1:M

with T budgets, when model mM+1 is introduced for assessment, a well-scalable CBE method

5
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should be able to quickly calibrate the capability estimates of m1:M+1 with minimal additional
preference budget. In this scenario, at the beginning stage when mM+1 is introduced, avg(CM+1,-,-)
is much smaller than avg(C̸=M+1,-,-). According to equation 8, the uncertainty at this point mainly
arises from ϵM+1, which is also intuitively easy to understand. Therefore, the key to improving
scalability lies in allocating sufficient evaluation budgets to the newly added models to ensure the
uniform allocation among models, reducing the updating uncertainty.

4 UNICBE

The discussions above reveal guidelines for strengthening scalability, accuracy, and convergence in
CBE. Based on this, we propose UNICBE, a unified uniformity-driven framework that can simulta-
neously enhance these objectives well.

4.1 BUDGET ALLOCATION

To ensure the uniformity of tuple combination sampling for minimizing the introduction of sampling
bias according to §3.2, we construct P acc-l at iteration l as follows:

P acc-l
i,j,k = α−

∑N
k=1 Cl

i,j,k × α−
∑M

i=1 Cl
i,j,k × α−

∑M
j=1 Cl

i,j,k (10)

where
∑N

k=1 C
l
i,j,k denotes the times model pair (mi,mj) has been compared,

∑M
i=1 C

l
i,j,k and∑M

j=1 C
l
i,j,k denote the times model mi and mj has been tested on sk respectively. If certain model-

model combination or model-sample combination have been sampled multiple times, equation 10
will reduce the probability of such combinations being selected again, thereby achieving sufficient
uniformity to minimize the introduction of bias between models and samples, respectively.

To accelerate the convergence of evaluation results, we construct P con-l according to §3.3 as follows:

P con-l
i,j,k = ϵli,j (11)

Sampling specific model pair helps reduce the uncertainty of their win rate estimation according
to equation 9. By sampling proportionally to the win rate uncertainty matrix, we can uniformly
decrease the uncertainty for each model pair, thereby facilitating convergence.

We construct P sca-l to allocate more preference budget to the newly introduced model so as to
improving the scalability according to §3.4 as follows:

P sca-l
i,j,k = α−

∑N
k=1

∑M
i=1 Cl

i,j,k × α−
∑N

k=1

∑M
j=1 Cl

i,j,k (12)

Finally, we integrate the matrices mentioned above to obtain P l, ensuring that sampling according
to P l can simultaneously balance the accuracy, convergence, and scalability of evaluation results:

P l =
P acc-l ◦ P con-l ◦ P sca-l∑
(P acc-l ◦ P con-l ◦ P sca-l)

(13)

4.2 TUPLE SAMPLING

After obtaining P l, we need to sample tuples for judging based on it. Two tuple sampling strategies
are considered:

• probabilistic sampling f ts
p means sampling tuple directly according to P l.

• greedy sampling f ts
g means selecting the tuple with the maximum probability in P l.

The default tuple sampling strategy of UNICBE is f ts
g , which can avoid the suboptimal achievement

of objectives due to uncertainty in the sampling process.

4.3 PREFERENCE AGGREGATION

As discussed in §2, mainstream preference aggregation strategies include averaging win rate fpa
avg,

Elo rating system fpa
Elo and Bradley-Terry model fpa

BT . In our preliminary experiment (Figure 2(c))
we observe that fpa

BT can better alleviate sampling bias, for which we choose it as our default setting.

6
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5 EXPERIMENTS

Centered around UNICBE, we will empirically compare its performance with baselines and validate
its scalability in §5.2, explore the optimal variants in §5.3, and demonstrate its generalizability under
different settings in §5.4.

5.1 EXPERIMENTAL SETTINGS

Benchmarks. We choose AlpacaEval (Dubois et al., 2024) and MT-Bench (Zheng et al., 2023)
benchmarks for our experiments. For AlpacaEval, we use its default version which includes 805
high-quality human annotated instructions and corresponding responses from multiple LLMs. We
randomly choose 20 LLMs (listed in Figure 2(c)) for experiments, with GPT-4o and GPT-3.5-turbo
as judges (see Appendix D for the prompt). For MT-Bench, we use the released responses from the
all 6 LLMs and corresponding human preferences for experiments.

Baselines. We choose widely applied 2 methods RANDOM, ARENA and ALPACALEVAL as base-
lines, which have been discussed in §2 and listed in Table 1.

Metrics. To assess the effectiveness of the CBE methods, we evaluate the accuracy of both the
estimated model pair-wise win rates and the model scores. We calculate the average absolute error
between the estimated win rates and corresponding ground truth (the estimates when T = T̂ ).
We calculate the Spearman correlation coefficient rs between the predicted model scores and the
corresponding ground truth to evaluate the accuracy of the model’s rank-order relationship, and the
Pearson correlation coefficient rp to assess the accuracy of the linear relationship.

Details. To ensure the reliability of the experimental results, for each setting, we randomly select
M (default to 15 for AlpacaEval and 5 for MT-Bench) models and N (default to 805 for AlpacaEval
and 700 for MT-Bench) samples, and report the average results across 10,000 random seeds. We
don’t observe obvious performance difference in preliminary experiments when varying α within
the range of [1.5, 3] (we conduct a detailed discussion about this in Appendix F.1), thus we set the
default value of α as 2 in our experiments.
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Figure 3: Results of compared CBE methods with GPT-4o as the judge on AlpacaEval benchmark.
The X-axis (applicable to all plots below) represents the preference budget (k). ∆ denotes the mean
absolute error of the estimated win rate. rs and rp denote the Spearman and Pearson correlations
between the the estimated model scores and the ground truth respectively.

5.2 MAIN RESULTS

Accuracy and Convergence. The results of compared CBE methods on AlpacaEval benchmark
with GPT4-turbo as the judge are shown in Figure 3. To better illustrate the results, we also calculate
the percentage of preference budget saved by each method compared to RANDOM baseline when

2https://tatsu-lab.github.io/alpaca_eval/, https://lmarena.ai/
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achieving the same performance. In terms of performance, ALPACAEVAL << RANDOM < ARENA
< UNICBE. To understand the differences in the performance of each method, we quantitatively
analyze them based on the guidelines summarized in § 3. To achieve accuracy, convergence, and
scalability, it is supposed to allocate the preference budget in a way that ensures uniformity across
tuples, uniformity across model pairs in win-rate uncertainty, and uniformity across models. We
calculate the cosine similarity between the allocation results of these methods and the correspond-
ing expected uniform vectors for each objective as a measure, denoted as βacc, βcon, and βsca,
respectively (see Appendix E for calculating process). As shown in Table 2, the fixed inclusion of
the reference model in the tuple selection of ALPACAEVAL compromises uniformity across multi-
ple aspects, thereby resulting in lower β values and significantly poorer performance. ARENA and
RANDOM respectively improve the balance of uncertainty and suppression of sampling bias, result-
ing in higher βcon and βacc values. Following our guidelines, UNICBE improves βcon, βacc, and
βsca simultaneously and save over 17% of the preference budget compared to RANDOM with a ∆
close to 0.01, showcasing improved accuracy and convergence.

Table 2: The measurement results of the achievement of objectives in §3 for the compared methods.

Methods RANDOM ARENA ALPACAEVAL UNICBE

βacc .5803 .5725 .0925 .7364

βcon .9081 .9172 .3515 .9228

βsca .9972 .9945 .4987 .9997

Scalability. To analyze scalability, we establish a scenario where we initially have 11 models
awaiting assessment, and new models are sequentially added every 2000 samplings. As shown in
Figure 4, Whenever a new model is introduced, UNICBE can rapidly stabilize the performance
through adaptive preference allocation skewing for the new model, saving over 50% of the budget
compared to the RANDOM baseline. In contrast, ARENA and RANDOM exhibit poorer scalability
since they do not consider scalability as optimization objective. Although the budget allocated to
the reference model is significantly more than that for other models, resulting in a lower βsca for
ALPACAEVAL, the strategy of automatically allocating the budget to the new introduced models
also provides it with good scalability.
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Figure 4: Results of compared CBE methods in the scenario where new model are consistently
introduced every 2000 iterations.

5.3 VARIANTS ABLATIONS

Budget Allocation Objectives. We test the impact of different optimization objectives by remov-
ing P acc, P con, and P sca from equation 13 separately. As shown in Figure 5, the significant perfor-
mance degradation observed when removing P acc from UNICBE indicates that mitigating sampling
bias to improve accuracy is the most critical factor in achieving efficient CBE. Furthermore, we find
that P con has a considerable impact on rs. We hypothesize that this is because balancing the un-
certainty among different models helps prevent any one model from having a significant ranking
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Figure 5: Ablation studies of UNICBE with GPT-4o as the judge on AlpacaEval benchmark.

bias due to its larger uncertainty. The performance drop when removing P sca also suggests that en-
suring uniformity in sampling across models not only enhances scalability but also further reduces
sampling bias, thereby improving accuracy.

Tuple Sampling and Preference Aggregation Strategies. As shown in Figure 5, replacing
greedy sampling with probabilistic sampling f ts

p results in a significant performance drop. This
is likely because the randomness introduced by f ts

p hinders the achievement of multiple optimiza-
tion objectives. In terms of preference aggregation strategies, the Elo rating system fpa

Elo shows a
slight performance decline compared to the BT model due to its higher instability (Boubdir et al.,
2023). Moreover, the strategy of directly using the average win rate fpa

avg may introduce additional
bias, as it fails to consider the varying strengths of the opponents faced by different models, leading
to a performance decrease.

5.4 GENERALIZABILITY UNDER DIFFERENT SETTINGS

Different Judges. Apart from GPT-4o, we also experiment with GPT-3.5-turbo and Qwen-Plus as
judge on AlpacaEval, and human as judge on MT-Bench. As shown in the above part of Figure 6,
the overall conclusion with GPT-3.5-turbo is similar to GPT-4o, except for: (1) The performance of
ARENA no longer shows advantage over RANDOM. (2) There is a certain decline in the performance
of all methods, which is likely due to the increased noise in the preferences provided by GPT-3.5-
turbo, leading to slower convergence. Similar trends are observed with Qwen-Plus (See Figure 14).
Results on MT-Bench are shown in the below part of Figure 6, where UNICBE also demonstrates
better performance compared to other methods. However, due to the limited preference data in-
cluded in MT-Bench, the experimental results show relatively larger fluctuations. The results above
demonstrate the good generalizability of UNICBE across different judges and the data domain.
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Figure 6: Results of compared CBE methods with GPT-3.5-turbo as the judge on AlpacaEval (above)
and human as the judge on MT-Bench (below).
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Varied Number of Models and Samples. Finally, as shown in Figure 7, we conducte experiments
by varying the number of models M and samples N . It can be observed that UNICBE achieves
significantly better results compared to all the baselines under these settings, especially when M
and N are large.

List-wise Preference. UNICBE can also be applied to list-wise preference. Suppose the judge
provides a preference ranking for K models each time. We can compute a K + 1 dimensional P ,
similar to equation equation 13, and sample to obtain a tuple (ml-1, ...,ml-K , sl). From the judge’s
ranking of this tuple, we derive K(K−1)

2 pair-wise preferences. Figure 8 shows the results for the
case where K = 3. It can be seen that UNICBE achieves a savings compared to RANDOM of over
30% in this setting. This may be due to the fact that list-wise preference results in K(K−1)

2 pair-
wise preferences concentrated among the K models, exacerbating the sampling bias. Therefore,
UNICBE is even more needed to suppress this effect with list-wise preference.
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(d) M = 15, N = 805
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(e) M = 12, N = 805
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(f) M = 15, N = 600

Figure 7: Effects of number of models under evaluation M and number of samples N . The results
are obtained with GPT-4o as the judge on AlpacaEval.
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Figure 8: Performance of CBE methods with list-wise preference of GPT-4o on AlpacaEval.

6 CONCLUSIONS

The existing comparing-based evaluation methods are ineffective in fully utilizing valuable prefer-
ence signals due to their constrained optimization objectives. Our in-depth analysis reveals that the
key to enhancing CBE lies in mitigating sampling bias, balancing the descent process of uncertainty,
and suppressing the updating uncertainty. Based on this, we propose the UNICBE framework that
simultaneously optimizes the aforementioned objectives by promoting uniformity in corresponding
aspects to enhance accuracy, convergence, and scalability. Comprehensive experiments and analyses
confirm the strong effectiveness, improved scalability, and good generalizability of UNICBE.
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A PROOF OF THEOREM IN §3.2

Given that
∑U

i=1 Xi = 0, we want to attain sampling set S that satisfies |S| = V and:

S = argminS |
∑
i∈S

Xi| = argminS(
∑
i∈S

Xi)
2 (14)

Firstly, it is easy to know that for any sampling set S:

E[
∑
i∈S

Xi] = 0 (15)

Thus,

E[(
∑
i∈S

Xi)
2] = E[(

∑
i∈S

Xi − 0)2] = E[(
∑
i∈S

Xi − E[
∑
i∈S

Xi])
2] = E[Var[

∑
i∈S

Xi]] (16)

Considering that:
Var[

∑
i∈S

Xi] =
∑

i∈set(S)

c2iVar(Xi) (17)

where ci denotes the number of Xi in S. On this basis, we derive that:

E[(
∑
i∈S

Xi)
2] = E[Var(X)]

∑
i∈set(S)

c2i

≥ E[Var(X)](
∑

i∈set(S)

ci)
2|set(S)|−1

= V 2E[Var(X)]|set(S)|−1

≥ V 2E[Var(X)]min(U, V )−1

(18)

The equality condition of the first inequality is: the number of samples taken from each category is
equal. The equality condition of the second inequality is: the number of sampled categories equals
to min(U, V ). These two conditions imply that a completely uniform sampling strategy is optimal.

B INTRODUCTION OF ELO RATING SYSTEM AND BRADLEY-TERRY MODEL

B.1 ELO RATING SYSTEM

The Elo rating system (Elo & Sloan, 1978) is widely used to rank participants based on their relative
performance in competitive settings. Given two models, A and B, with initial ratings RA and RB ,
the expected score of model A in a pairwise comparison is calculated as:

EA =
1

1 + 10(RB−RA)/400

Similarly, the expected score for model B is:

EB =
1

1 + 10(RA−RB)/400

After the comparison, the actual results are used to update the ratings. If model A wins, its new
rating R′

A is updated as:
R′

A = RA +K(SA − EA)

where SA is the actual result of the match (1 for a win, 0 for a loss, and 0.5 for a draw), and K is
a constant that controls the sensitivity of the rating adjustment. Model B’s rating is updated in a
similar way:

R′
B = RB +K(SB − EB)

where SB is the actual result for model B.

14
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When extending the Elo rating system to multiple models, we consider a set of n models. Pairwise
comparisons between the models are conducted, resulting in

(
n
2

)
unique pairs:(

n

2

)
=

n(n− 1)

2

Each pair is evaluated using the Elo score update rules, and the results are iteratively applied to
adjust the ratings, ensuring that each model’s rating reflects its relative performance within the set.

The extension to multiple models leverages the transitive property. For any three models i, j, k ∈
{1, 2, . . . , n}, if Ri > Rj and Rj > Rk, the transitivity implies:

Ri > Rj and Rj > Rk =⇒ Ri > Rk

This property ensures consistency in the rankings, even when individual match outcomes vary. By
iterating over all

(
n
2

)
comparisons, the Elo scores converge to reflect the overall capabilities of the

models, with higher scores indicating stronger performance.

B.2 BRADLEY-TERRY MODEL

The Bradley-Terry model (Bradley & Terry, 1952) estimates the probability that one model outper-
forms another in pairwise comparisons. For two models Mi and Mj with strength parameters ξi and
ξj , the probability that model i beats model j is modeled as:

P (Mi > Mj) =
1

1 + eξj−ξi
(19)

where ξ is an |M |-length vector of Bradley-Terry coefficients. Given a set of comparing results
S = {(M t

i ,M
t
j , R

t)}Tt=1 where Rt represents the degree M t
i wins over M t

j . We set mean(ξ) = 0.
After attaining the BT scores using fpa, we calculate the estimated win rate matrix with equation 19.

C MORE EXPERIMENTAL ANALYSES
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Figure 9: Results of compared CBE methods in a scenario where models and samples are dynami-
cally added or removed at a random frequency.

C.1 PERFORMANCE IN SCENARIOS CLOSE TO REALITY

We think that conducting experiments in settings that are closer to real-world scenarios (highly
dynamic and requiring real-time evaluation) can help us more comprehensively assess UNICBE and
the baseline methods. To this end, we perform the following experiments: Starting with a sample
size of N = 600 and model number of M = 12, we execute a random operation at each time step.
The operations included: adding one model to be evaluated with a probability of 0.01, removing one
model with a probability of 0.01, adding one potential sample with a probability of 0.01, randomly
deleting one sample with a probability of 0.01, and taking no action with a probability of 0.96. Based
on the experimental results shown in Figure 9, we have the following observations:
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• The convergence speed of all baseline methods significantly slowed down compared to Fig-
ure 3. None of the baseline methods achieve a Spearman correlation coefficient of 0.96 or a
Pearson correlation coefficient of 0.97 by T = 2000, highlighting the difficulty of model eval-
uation in this setting. In contrast, UNICBE achieve rapid convergence, reaching a Spearman
coefficient of approximately 0.97 and a Pearson coefficient exceeding 0.98 by T = 2000.

• Over the long term, as T increases, UNICBE consistently demonstrates over 10% savings in
preference budget across all metrics, even under this challenging setting, showcasing its strong
practicality.

• An interesting observation is that ALPACAEVAL exhibits better convergence in the early stages
compared to RANDOM and ARENA, supporting our previous conclusions in Table 1. However,
as T increases, ALPACAEVAL’s lack of accuracy optimization objective leads to its perfor-
mance being surpassed by RANDOM and ARENA.

C.2 ABLATION STUDY OF UNIFORMITY CONSTRAINTS

Based on our analysis in §3, the degree to which uniformity is achieved is positively correlated with
performance in terms of accuracy, convergence, and scalability. To explore the empirical relationship
between the degree of uniformity constraints and the final outcomes, we draw inspiration from the
concept of temperature-based control in random sampling. By adjusting the temperature T in the
following formula for sampling f ts

T , we regulate the extent of uniformity constraints according to
P l in equation 13:

f ts
T (i, j, k) =

(P l
i,j,k)

−T∑
(P l)−T

(20)

As T increases, the uniformity constraints become more relaxed. When T = 0, it corresponds
to greedy sampling f ts

g , which imposes the strictest uniformity constraints. When T = 1, it
corresponds to probabilistic sampling f ts

p , which imposes general uniformity constraints. When
T = +∞, it corresponds to random sampling, where no uniformity constraints are applied. Our
experimental results are shown in Figure 10. As T increases from 0 to T = +∞, the evaluation re-
sults progressively deteriorate. This indicates that adopting greedy sampling to impose the strictest
uniformity constraints yields the optimal evaluation performance. This observation also validates
the correctness of our conclusions in §3.
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Figure 10: Results of UNICBE with different sampling temperatures.

C.3 ADJUSTING THE WEIGHTS OF OPTIMIZATION OBJECTIVES

In equation 13, we integrate sampling matrices targeting different optimization objectives with
equal weights. In practice, when faced with varying requirements, it is straightforward to prioritize
a specific objective by adjusting the weights θacc, θcon, and θsca for these matrices, as shown in
equation 21.

P l =
(P acc-l)θacc ◦ (P con-l)θcon ◦ (P sca-l)θsca∑
((P acc-l)θacc ◦ (P con-l)θcon ◦ (P sca-l)θsca)

(21)

As demonstrated in Table 3, we set different settings and calculate the degree of achievement β
for each optimization objective following the procedure described in §E. Compared to equal-weight
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integration, users can increase the corresponding β (e.g., βacc) by assigning a larger weight to a
specific optimization objective (θacc), thereby better meeting their practical needs (accuracy). We
also observe that enhancing a specific optimization objective often comes with a slight decrease in
the achievement of other objectives. In Figure 11, we illustrate an example of improving accuracy,
where θacc is increased from 1 to 2. We find that the increased focus on accuracy objective slightly
slows down the convergence speed. As a result, when T is relatively small, the performance of
θacc = 2 lags behind that of θacc = 1. However, in the later stages, after convergence, the enhanced
accuracy objective enables θacc = 2 to outperform θacc = 1, resulting in greater savings in the
preference budget.

Table 3: The measurement results of the achievement of objectives in §3 for UNICBE with varied
hyperparameters.

Settings
θacc = 2 θacc = 1 θacc = 1 θacc = 1

θcon = 1 θcon = 2 θcon = 1 θcon = 1

θsca = 1 θsca = 1 θsca = 2 θsca = 1

βacc .7380(+.0016) .7355(-.0009) .7351(-.0013) .7364
βcon .9221(-.0007) .9235(+.0007) .9217(-.0011) .9228
βsca .9996(-.0001) .9997(.0000) .9998(+.0001) .9997
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Figure 11: Results of UNICBE with different θacc.

D PROMPT FOR HAVING AN LLM ACT AS JUDGE

We follow AlpacaEval3 to instruct the LLMs act as judge with the following prompt:

You are a helpful assistant, that ranks models by the quality of their answers.

I want you to create a leaderboard of different of large-language models.
To do so, I will give you the instructions (prompts) given to the models, and
the responses of two models. Please give the winner model based on which
responses would be preferred by humans. All inputs and outputs should be python
dictionaries.

Here is the prompt:
{
”instruction”: ”””{instruction}”””,
}

Here are the outputs of the models:
{
”model”: ”model1”,
”answer”: ”””{output1}”””
},
{
”model”: ”model2”,

3https://github.com/tatsu-lab/alpaca_eval
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”answer”: ”””{output2}”””
}

Now please give the winner model according to the quality of their an-
swers, so that the winner model has the best output. Then return the winner model
in the following format if modelx is the winner: winner: modelx

You need to strictly follow the format above. Please provide the ranking
that the majority of humans would give.

E THE CALCULATION PROCESS OF β IN TABLE 2

We calculate the β values for each CBE method to measure how well they align with the optimization
objectives we analyzed in §3: ensuring uniformity across tuples, uniformity across model pairs in
win-rate uncertainty, and uniformity across models. Specifically, we first construct Uacc1, Uacc2,
U con and Usca as follows:

Uacc1
i,j =

{
0, if i = j

1
M(M−1) , else

Uacc2
i,k =

1

MN

(22)

U con
i,j =

{
0, if i = j

1
M(M−1) , else

(23)

Usca
i =

1

M
(24)

On this basis, we calculate βacc, βcon and βsca as follows:

βacc = CosineSim(Uacc1,C.mean(dim = −1))× CosineSim(Uacc2,C.mean(dim = 0)) (25)

βcon = CosineSim(Ucon, ϵ) (26)

βsca = CosineSim(Usca,C.mean(dim = −1).mean(dim = −1)) (27)

F FURTHER DISCUSSIONS

F.1 AFFINITY OF THE THREE OPTIMIZATION OBJECTIVES

We have discussed in §3 that the keys to strengthen the accuracy, convergence and scalability of
CBE are: ensuring uniformity across tuples, uniformity across model pairs in win-rate uncertainty,
and uniformity across models. Below we discuss their compatibility. Firstly, ensuring uniformity
across models can be seen as a sub-goal of ensuring uniformity across tuples, therefore they exhibit
a strong affinity. The former can be considered a refinement of the latter, specifically focusing on
model uniformity. Moreover, as shown inequation 8, the uncertainty in win-rate between models
ϵi,j is inversely proportional to the number of comparisons between models. Therefore, improv-
ing uniformity across model pairs in win-rate uncertainty ϵ will also contribute to a more uniform
distribution of comparisons between models. This further implies that ensuring uniformity across
model pairs in win-rate uncertainty and ensuring uniformity across tuples are compatible goals with
a strong affinity. Furthermore, as shown in Table 2, all β values of UNICBE are improved com-
pared to the baselines, experimentally validating the fact that optimizing the three objectives can
be mutually beneficial. Based on this analysis, we can infer that changing α essentially adjusts
the optimization emphasis on different objectives. However, since the three objectives are mutually
reinforcing, the effect of changing α will be relatively small.

F.2 DISCUSSION ON SAMPLING BIAS IN INCOMPLETE SAMPLING SCENARIOS

Previous studies have discussed the risks of introducing sampling bias in incomplete sampling sce-
narios. Specifically, Vabalas et al. (2019) demonstrated through simulation experiments that K-fold
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cross-validation (K-fold CV) can produce significant performance estimation bias when dealing with
small sample sizes. This bias persists even when the sample size reaches 1000. In contrast, meth-
ods like nested cross-validation (Nested CV) and train/test split have been shown to provide robust
and unbiased performance estimates regardless of sample size. Kossen et al. (2021) introduced a
weighting scheme, as described in (Farquhar et al., 2021), to mitigate sampling bias in active test-
ing scenarios. Vivek et al. (2024) proposed leveraging information obtained from source models to
select representative samples from the test set, thereby reducing sampling bias. Additionally, Polo
et al. (2024) employed Item Response Theory (Lord & Novick, 2008) to correct sample bias in
addressing this issue.

These studies inspired us to investigate the bias problem in the CBE scenario. Unlike the afore-
mentioned studies, we found that in CBE scenario, not only does sample bias exist, but model bias
also plays a role, and the two are coupled. This coupling poses greater challenges for analyzing
and mitigating these biases. To address this, based on the analyses outlined in §3, we propose the
UNICBE method, which effectively alleviates biases in this scenario.
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Figure 12: Results of compared CBE methods with GPT-3.5-turbo as the judge on AlpacaEval.
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Figure 13: Results of compared CBE methods with human as the judge on MT-Bench.
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Figure 14: Results of compared CBE methods with Qwen-Plus as the judge on AlpacaEval.
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