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Abstract—This paper is concerned with the state and distur-
bance estimation of autonomous surface vehicles (ASVs) in the
presence of measurement noises. The velocity state information is
unmeasured and the lumped disturbances consisting of internal
model uncertainties and external environmental disturbance are
unknown. Specifically, in the presence of measurement noises,
a nonlinear cascade extended state observer (CESO) based
on position-orientation measurement is presented to estimate
unmeasured velocity and unknown lumped disturbances. The
stability of the overall cascade system is validated through input-
to-state stability theory and cascade theory. Simulation results
are shown to confirm the effectiveness of the proposed observer
scheme.

Index Terms—Cascade extended state observer, state estima-
tion, disturbance estimation, measurement noises, autonomous
surface vehicles.

I. INTRODUCTION

Autonomous surface vehicles (ASVs) encounter numerous
challenges in their dynamic behavior, primarily due to un-
certainties in internal model parameters, unknown hydrody-
namic effects, and external disturbance such as wind, waves,
and ocean currents [1]–[8]. These factors collectively present
substantial obstacles to the motion control design of ASVs.
The effectiveness of motion control is heavily dependent
on the real-time identification and suppression of lumped
disturbances. Consequently, a range of innovative solutions
are developed to ensure system stability in environments char-
acterized by coexisting uncertainty and external disturbances
[9]–[11].

In [9], an adaptive neural control method based on an
innovative event-triggered strategy is proposed to tackle the
adaptive neural control problem with dynamic disturbance. In
[10], a sliding mode control method based on the extended
state observer (ESO) is presented to address the attitude

control problem of the quadrotor system under external distur-
bance. In [11], a nonlinear disturbance observer with auxiliary
variable is proposed to guarantee that the error in disturbance
estimation remains within a confined and compact range.
However, the disturbance estimation methods mentioned in
[9]–[11] all require velocity information as a reference.

Due to the simplicity and effectiveness of ESO, the utiliza-
tion of ESOs has obtained considerable attention in distur-
bance estimation [12]–[14]. In [12], a finite-time convergent
ESO is proposed to estimate the unknown velocities and
disturbances. In [13], an event-triggered ESO is designed to
prevent redundant communications and cut down communica-
tion cost between sensors and observers. In [14], a data-driven
adaptive ESO is introduced to estimate unknown input gains
absent any pre-existing data of model parameters. Typically,
increasing the gain of observers can make it converge more
quickly and lessen the impact of disturbance on the steady-
state estimation errors. Nevertheless, setting observer gain too
high can make the system more sensitive to measurement
noises, which in turn increases the estimation error and affects
overall noise resistance of the system [15]. However, the
methods proposed in [12]–[14] do not consider the effect of
measurement noises on ESOs. Several studies tackling the
concern are detailed in [16], [17]. In [16], a switched gain
observer is designed to estimate the position and velocity in the
presence of measurement noises. In [17], a high-gain observer
technique using a time-varying gain is designed to reduce the
negative impact of measurement noises. However, the observer
methods proposed in [16], [17] both require real-time control
of the observer gain.

Inspired by the previous discussions, this paper focuses on
the challenge of state and disturbance estimation of ASVs in
the presence of measurement noises. Specifically, a nonlin-



ear cascade extended state observer (CESO) method based
on position-orientation measurement is designed to estimate
the velocity state and lumped disturbances for ASVs. Then,
stability analysis of the overall cascade system is given. Last,
the simulation comparison results of the estimation perfor-
mance between CESO and classical ESO are presented in the
presence of measurement noises.

Compared to previous research efforts in [9]–[14], [16],
[17], the key contributions of the paper can be outlined below.

1) In contrast to the disturbance estimation methods dis-
cussed in [9]–[11] which rely on velocity measurement,
the proposed nonlinear CESO method can recover ve-
locity information and estimate disturbances based on
position-heading measurement.

2) In contrast to observer methods in [12]–[14] where the
contradiction of balancing the estimation accuracy of
high-gain ESOs with noises sensitivity is not consid-
ered, the proposed nonlinear CESO can overcome the
limitation of measurement noises on classical ESOs.

3) In contrast to observer methods in [16], [17] where
the observer gains are changing, the proposed nonlinear
CESO method can suppress the measurement noises
based on the fixed gain.

The rest of this paper is structured as follows: Section
II gives the problem formulation. Section III introduces the
observer design. Section IV presents the stability analysis.
Section V shows the simulation results. Section VI concludes
this paper.

II. PROBLEM FORMULATION

Generally, the motion of ASVs on a horizontal plane is
characterized using both a earth-fixed coordinate system and
a reference frame that is fixed to the body of the vehicle, as
shown in Fig. 1. The dynamic of the ASV is defined by{

η̇ = R(ψ)ν,
Mν̇ = −C(ν)ν −D(ν)ν + g(ν) + τw + τ,

(1)

where

R(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 ,M =

 mu 0 0
0 mv 0
0 0 mr

 ;

η = [x, y, ψ]T denotes the position and the yaw angle vector;
ν = [u, v, r]T denotes the surge velocity, sway velocity, and
yaw rate; M is the inertial matrix; C(ν) is the coriolis and
centrifugal matrix; D(ν) is the damping matrix; g(ν) denotes
the unmodelled hydrodynamics; τw = [τwu, τwv, τwr]

T de-
notes the environmental force; τ = [τu, τv, τr]

T is the control
input.

Define the lumped disturbances σ = [σu, σv, σr]
T =

M−1(−C(ν)ν−D(ν)ν+g(ν)+τw), the ASV dynamic model
in (1) can be redefined as{

η̇ = R(ψ)ν,
ν̇ = σ +M−1τ,

(2)

Although the classical ESO can be used to estimate the un-
known lumped disturbances σ, there may be noise disturbance

in measuring the position-orientation measurement. This paper
is focused on the design and implementation of an observer
that, in the presence of measurement noises, utilizing position
and orientation measurements not only to reconstruct the states
of ν but also to effectively estimate the disturbances σ.
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Fig. 1. Geometrical illustration of two reference frames.

III. OBSERVER DESIGN

In this section, a nonlinear CESO based on position-
orientation measurement is designed to estimate the velocity
states and lumped disturbances while suppressing measure-
ment noises.

Based on (2), a two-level nonlinear CESO is designed to
achieve real-time estimation of ν and σ, detailed as follows:

∏
1 :


˙̂η1 = −3ω1(η̂1 − yη) +R(ψ)ν̂1,
˙̂ν1 = −3ω2

1R
T(ψ)(η̂1 − yη) + σ̂1 +M−1τ,

˙̂σ1 = −ω3
1R

T(ψ)(η̂1 − yη),

(3)

∏
2 :


˙̂η = −3ω2(η̂ − η̂1) +R(ψ)ν̂,
˙̂ν = −3ω2

2R
T(ψ)(η̂ − η̂1) + σ̂ +M−1τ,

˙̂σ2 = −ω3
2R

T(ψ)(η̂ − η̂1),

(4)

where yη = η + νη with νη being the measurement white
noises; η̂1, ν̂1, σ̂1, and σ̂2 are intermediate variables; σ̂ is
the estimated value of the extended state variable with σ̂ =
σ̂1 + σ̂2; ω1 and ω2 are the positive observer gains.

Let  η̃1 = η̂1 − η, s1 = η̃1(ω1t)ω
2
1 ,

ν̃1 = ν̂1 − ν, s2 = ν̃1(ω1t)ω1,
σ̃1 = σ̂1 − σ, s3 = σ̃1(ω1t),

(5)

it renders that
ṡ1 = −3s1 +R(ψ)s2 + 3ω2

1νη,
ṡ2 = −3RT(ψ)s1 + s3 + 3ω2

1R
T(ψ)νη,

ṡ3 = −RT(ψ)s1 − σ̇1

ω1
+ ω2

1R
T(ψ)νη.

(6)



Define S1 = [sT1 , s
T
2 , s

T
3 ]T ∈ <9, the error dynamics (6)

can be denoted by

Ṡ1 = AS1 −B
σ̇1
ω1

+ Cω2
1νη, (7)

where

A =

 −3I3 R(ψ) 03
−3RT(ψ) 03 I3
−RT(ψ) 03 03

 ,
B =

 03
03
I3

 , C =

 3I3
3RT(ψ)
RT(ψ)

 .
Let  η̃ = η̂ − η, s4 = η̃(ω2t)ω

2
2 ,

ν̃ = ν̂ − ν, s5 = ν̃(ω2t)ω2,
σ̃2 = σ̂2 − σ, s6 = σ̃2(ω2t),

(8)

it renders that
ṡ4 = −3s4 +R(ψ)s5 + 3ω2

2 η̃1
ṡ5 = −3RT(ψ)s4 + s6 + 3ω2

2R
T(ψ)η̃1

ṡ6 = −RT(ψ)s4 − σ̇2

ω2
+ ω2

2R
T(ψ)η̃1.

(9)

Define S2 = [sT4 , s
T
5 , s

T
6 ]T ∈ <9, the error dynamics (9)

can be denoted by

Ṡ2 = AS2 −B
σ̇2
ω2

+ Cω2
2 η̃1, (10)

A transformation characterized by block-diagonal properties
is hereby presented: {

E1 = QS1

E2 = QS2,
(11)

with Q = diag
{
RT(ψ), I3, I3

}
.

By combining (7), (10), and (11), it can be obtained that

Ė1 = A0E1 + kZTE1 −B
σ̇1
ω1

+ C0ω
2
1νη, (12)

Ė2 = A0E2 + kZTE2 −B
σ̇2
ω2

+ C0ω
2
2 η̃1, (13)

with ZT = diag
{
ZT, 03, 03

}
, and

A =

 −3I3 I3 03
−3I3 03 I3
−I3 03 03

 ,
Z =

 0 −1 0
1 0 0
0 0 0

 , C0 =

 3I3
3I3
I3

 .
The formula (7) can be viewed as a system defined by the

state vector S1 and the inputs σ̇1, νη; the formula (10) can
be viewed as a system defined by the state vector S2 and the
inputs σ̇2, η̃1(S1). Thus, (S1, S2) can be regarded as a cascade
system.

Remark 1: From (3) and (4), only
∏

1 is influenced by
measurement noises. In contrast,

∏
2 relies solely on the

estimates from
∏

1 as its benchmark. This two-level approach
effectively reduces the noise impacting of the final estimates

in
∏

2. Additionally, the gain of the observer for
∏

1 is
intentionally set lower than that of

∏
2, the gain of the observer

for
∏

2 corresponds to the classical ESO, which helps to
minimize the noise affecting of

∏
1.

IV. STABILITY ANALYSIS

In Section 3, a nonlinear CESO algorithm is proposed. This
section analyzes the stability of the overall cascade system.

Assumption 1: ‖σ̇1‖ ≤ σ∗
1 , ‖σ̇2‖ ≤ σ∗

2 with σ∗
1 , σ

∗
2 ∈ R+.

A theorem is presented to summarize the result discussed in
Section 3 as follows: Theorem 1: The cascade system (S1,S2)
with the inputs σ̇1, νη, σ̇2 consisting of subsystem (7) and
subsystem (10) is input-to-state stable (ISS).

Proof: Construct the following Lyapunov function

V1 =
1

2
ET

1 P1E1 (14)

where P1 is a positive definite matrix, it satisfies the following
simultaneous Lyapunov inequalities [18]{

AT
0 P + PA0 + βI ≤ k∗

(
ZT
TP + PZT

)
,

AT
0 P + PA0 + βI ≤ −k∗

(
ZT
TP + PZT

)
,

(15)

where β ∈ R+ and k∗ ∈ R+ complying with |k| ≤ k∗.
Deriving the derivative of V1 over time and employing (12),

one has:

V̇1 =
1

2
ET

1 (P1A0 +AT
0 P1 + k(P1ZT + ZT

TP1))E1

+ ET
1 P1B(− σ̇1

ω1
) + ET

1 P1C0(ω2
1νη).

(16)

Obviously, band-limited white nosie νη is bounded. Substi-
tuting (15) into (16), one has:

V̇1 ≤ −
β

2
‖E1‖2 +

‖E1‖‖P1B‖‖σ̇1‖
ω1

+ ω2
1‖E1‖‖P1C0‖‖νη‖.

(17)

Since

‖E1‖ ≥
2‖P1B‖‖σ̇1‖

ω1βρ1
+

2ω2
1

βρ1
‖P1C0‖‖νη‖, (18)

it results in

V̇1 ≤ −
β

2
(1− ρ1) ‖E1‖2 (19)

with 0 < ρ1 < 1. It implies that the system (12) is ISS, and
there exists a KL function α and a K function Υ complying
with

‖E1(t)‖ ≤ max{α(‖E1(0)‖, t),Υ(|σ̇1|) + Υ(|νη|)} (20)

with

Υ(s) =

√
λmax(P1)

λmin(P1)

(
2‖P1B‖s
ω1βρ1

+
2ω2

1‖P1C0‖s
βρ1

)
. (21)

Note that ‖E1‖ = ‖S1‖, it renders that

‖S1(t)‖ ≤ max{α(‖S1(0)‖, t),Υ(|σ̇1|) + Υ(|νη|)}, (22)

thus, the subsystem (7) is ISS.



Construct the following Lyapunov function

V2 =
1

2
ET

2 P2E2 (23)

where P2 is a positive definite matrix, it satisfy (15), similar
to P1.

Taking the time derivative of V2 and using (13), one has:

V̇2 =
1

2
ET

2 (P2A0 +AT
0 P2 + k(P2ZT + ZT

TP2))E2

+ ET
2 P2B(− σ̇2

ω2
) + ET

2 P2C0(ω2
2 η̃1).

(24)

Substituting (15) into (24), one has:

V̇2 ≤ −
β

2
‖E2‖2 +

‖E2‖‖P2B‖‖σ̇2‖
ω2

+ ω2
2‖E2‖‖P2C0‖‖η̃1‖.

(25)

Since

‖E2‖ ≥
2‖P2B‖‖σ̇2‖

ω2βρ2
+

2ω2
2

βρ2
‖P2C0‖‖η̃1‖, (26)

it results in

V̇2 ≤ −
β

2
(1− ρ2) ‖E2‖2 (27)

with 0 < ρ2 < 1. It implies that the system (13) is ISS, and
there exists a KL function ζ and a K function Γ complying
with

‖E2(t)‖ ≤ max{ζ(‖E2(0)‖, t),Γ(|σ̇2|) + Γ(|η̃1|)} (28)

with

Γ(s) =

√
λmax(P2)

λmin(P2)

(
2‖P2B‖s
ω2βρ2

+
2ω2

2‖P2C0‖s
βρ2

)
. (29)

Note that ‖E2‖ = ‖S2‖, it renders that

‖S2(t)‖ ≤ max{ζ(‖S2(0)‖, t),Γ(|σ̇2|) + Γ(|η̃1|)}, (30)

thus, the subsystem (10) is ISS.
Due to the subsystem (7) and the subsystem (10) being ISS,

Lemma 4.6 in [19] shows that the two subsystems are referred
to a cascade system (S1,S2) concerning the inputs σ̇1, νη , σ̇2,
and the cascade system is ISS.

V. SIMULATION RESULTS

In this section, the classical nonlinear ESO and the pro-
posed nonlinear CESO are utilized to verify and compare
the effectiveness of velocity state and disturbance estimation
for surface vehicles, respectively. The parameters of nonlinear
CESO algorithm are referenced in Table I.

Simulation results are depicted in Figs. 2-13. In this paper,
two observer gain modes are designed. Figs. 2-7 show the state
and disturbance estimation effects of classical nonlinear ESO
and nonlinear CESO in the case of ω1 = 10, ω2 = 30. It can be
seen that in the presence of measurement noises, the nonlinear
CESO has better estimation performance compared to the
nonlinear ESO. Figs. 8-13 shows the state and disturbance
estimation of classical nonlinear ESO and nonlinear CESO in
the case of ω1 = 10, ω2 = 40. It can be seen that the increase

in the gain of observers amplifies the impact of measurement
noises on both state and disturbance estimation performance,
which reflects the superiority of the proposed nonlinear CESO
in suppressing the measurement noises.

 

Fig. 2. Surge velocity estimation(ω1 = 10, ω2 = 30).

 

Fig. 3. Sway velocity estimation(ω1 = 10, ω2 = 30).

TABLE I
SIMULATION PARAMETERS OF NONLINEAR CESO ALGORITHM

Parameter Value
mu 25.8
mv 33.8
mr 2.76
ω1 10
ω2 30, 40
τwu −0.2 cos(t) cos(1.5t)
τwv 0.1 sin(0.1t)
τwr −0.3 sin(2t) cos(2.3t)



 

Fig. 4. Yaw rate estimation(ω1 = 10, ω2 = 30).

 

Fig. 5. Disturbance estimation in the surge direction(ω1 = 10, ω2 = 30).

 

Fig. 6. Disturbance estimation in the sway direction(ω1 = 10, ω2 = 30).

 

Fig. 7. Disturbance estimation in the yaw direction(ω1 = 10, ω2 = 30).

 

Fig. 8. Surge velocity estimation(ω1 = 10, ω2 = 40).

 

Fig. 9. Sway velocity estimation(ω1 = 10, ω2 = 40).



 

Fig. 10. Yaw rate estimation(ω1 = 10, ω2 = 40).

 

Fig. 11. Disturbance estimation in the surge direction(ω1 = 10, ω2 = 40).

 

Fig. 12. Disturbance estimation in the sway direction(ω1 = 10, ω2 = 40).

 

Fig. 13. Disturbance estimation in the yaw direction(ω1 = 10, ω2 = 40).

VI. CONCLUSION

In this paper, a state and disturbance estimation method is
introduced for ASVs in the presence of measurement nois-
es. A nonlinear CESO method based on position-orientation
measurement is proposed to extract the unmeasured velocity
and lumped disturbances. The stability of the overall cascade
system is confirmed by utilizing the input-to-state stability and
cascade theory. Simulation results substantiate the effective-
ness of the proposed method in this paper.
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