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ABSTRACT

Fictitious Self-Play (FSP) is an iterative algorithm capable of learning approximate
Nash equilibria in many types of two-player zero-sum games. In FSP, at each
iteration, a best response is learned to the opponent’s meta strategy. However,
FSP can be slow to converge in continuous control games in which two embodied
agents compete against one another. We propose Adaptive FSP (AdaptFSP), a
deep reinforcement learning (RL) algorithm inspired by FSP. The main idea is that
instead of training a best response only against the meta strategy, we additionally
train against an adaptive deep RL agent that can adapt to the best response. In four
test domains, two tabular cases–random normal-form matrix games, Leduc poker–
and two continuous control tasks–Thou Shall Not Pass and a soccer environment–
we show that AdaptFSP achieves lower exploitability more quickly than vanilla
FSP.

1 INTRODUCTION

For many two-player zero-sum games such as poker (Bowling et al., 2015; Moravčík et al., 2017;
Brown and Sandholm, 2017; 2019), variants of the counterfactual regret minimization (CFR) algo-
rithm (Zinkevich et al., 2008; Brown et al., 2019; Gruslys et al., 2020) are state of the art. However, a
major limitation of CFR is that it is not clear how to extend it to continuous action spaces. Unlike
CFR, Fictitious Self Play (FSP) (Heinrich et al., 2015) extends trivially to continuous action spaces.
FSP is a iterative algorithm for solving two-player zero-sum (2p0s) games. At every iteration, each
player computes a best response to the opponent’s meta-strategy. In vanilla FSP, the meta-strategy
is a uniform average of all the policies computed at previous iterations (i.e., on iteration k it is the
uniform average of all the policies from iterations 1 through k − 1). FSP is guaranteed to eventually
converge to a Nash equilibrium in which both players’ meta-strategy is an optimal response to the
other (Brown, 1951).

FSP, unlike CFR, easily extends to continuous action spaces because each iteration can be viewed
as solving a single-agent reinforcement learning problem, of which there are many options for
continuous action space environments.

We observe that in large games, an issue with vanilla FSP is that learning the best response to the
meta-strategy with deep RL can lead to overfitting to the meta-strategy policies which consequently
slows down convergence to a low exploitability policy. For example, in a game of soccer the kicker
might adversarially figure out how to move in such a way that the population of previous goalie
policies has not seen before, causing degenerate behavior (Gleave et al., 2019).

To address these issues, we propose the algorithm AdaptFSP. AdaptFSP augments the meta-strategy
of a player on iteration k with an adaptive opponent that proactively updates its policy against the
best response. The adaptive opponent acts as a regularizer that reduces overfitting to the previous
population of policies.

We first prove that AdaptFSP falls into a category of algorithms known as Generalized Weakened
Fictitious Play, all of which provably converge to Nash equilibria in 2p0s games. We then evaluate
AdaptFSP in four tabular and continuous games. In our first set of experiments, we compare AdaptFSP
to baselines on random normal-form matrix games as well as Leduc poker. For continuous games,
we study the "you-shall-not-pass" (Bansal et al., 2017) game from OpenAI gym as well as a MuJoCo
soccer penalty kick scenario (Liu et al., 2019) based on a dm-control environment. We introduce
partial observability into these environments by delaying the observation of the opponent by ten time
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steps. We demonstrate that AdaptFSP produces policies that are more robust and less exploitable
than FSP in these settings.

2 RELATED WORK

Bansal et al. (2017) study fully observable 2p0s games in which the agents have to perform continuous
control. They use a method they call opponent sampling. In opponent sampling, when training a
policy the opponent’s behavior is sampled from a buffer of past policies. Instead of keeping all
policies, they use a sliding window of past policies. This is very similar to standard FSP. However,
they do not study the exploitability of their learned agents. Al-Shedivat et al. (2017) study the
question of meta learning in two-player competitive continuous control tasks. Two players play
several rounds against each other, and they show that the meta-learning agent performs the best out
of several candidate algorithms. The environments in these papers are fully observable, whereas we
introduce partial observability to the environments in this paper. Many algorithms that converge to
optimal policies in fully observable environments do not maintain that property in partially observable
environments.

Neural Fictitious Self-Play (Heinrich and Silver, 2016) uses deep reinforcement learning to mimic
fictitious play. It is able to learn a Nash equilbrium in 2p0s imperfect-information games from
self-play. NFSP uses a deep neural network to approximate the average policy as well as a deep
neural network to learn the policy with a RL style reward, but has only ever been shown to be effective
in games with small action spaces.

Liu et al. (2019) introduce the MuJoCo Soccer domain where teams of players can compete against
each other in a soccer match. They use decentralized population-based training to evolve agents
that show capabilities of cooperation and exploitation. We modify this environment for our penalty
kick domain. Liu et al. (2022) present a population-based learning method that converges to a Nash
Equilbrium in 2p0s including in the same soccer environment from Liu et al. (2019). This soccer
environment is fully observable whereas we introduce partial observability.

FSP can be viewed as a type of curriculum learning, in which there has been much work for continuous
control. Eysenbach et al. (2018) show they can maximize an information theoretic objective to learn
a diverse set of skills that are generalizable to downstream tasks. Yarats et al. (2021) present a
self-supervised technique for learning different skills based on prototypical representations that shows
strong generalization to downstream tasks.

Ghosh et al. (2021) study generalization in RL in the context of POMDPs (Partially Observable
Markov Decision Process) and show classic RL algorithms do not perform as well in POMDPs as
in MDPs. They propose an ensemble-based approach and show that it generalizes (i.e. solves the
POMDP) more effectively than vanilla RL. This does not apply directly to 2p0s games and requires
training N policies for each agent, whereas our approach requires only two policies for each agent.

3 BACKGROUND AND NOTATION

3.1 REINFORCEMENT LEARNING

We consider a finite horizon MDP defined by a tuple (S,A, b, r) where S ⊂ Rd is the state space
and A ⊂ Rk is the action space A. b : S × S × A → R is a probability density function over
the next state st+1 given a state and action tuple (st, at). r : S × A → R specifies the reward
for taking action at at state st. A policy π : S → A is a function mapping states to actions. In
continuous RL, a state is typically mapped to a distribution over actions. A trajectory is a sequence
τ = (s1, a1, r1, s2, . . . , sN , aN , rN ). The reward for the trajectory τ is given by R =

∑N
i=1 γ

iri.
A value function V : S → R is a function that maps states to future rewards, V (st) ≈

∑N
i=t γ

iri,
where γ is the discount factor. The discount factor is introduced to incentivize immediate rewards
over future rewards. The value function is typically trained with the bellman equation

V (st) = r(st, at) + γV (st+1)

A reinforcement learning algorithm is called on-policy if it updates its policy from trajectories that
were collected using its current policy, whereas an off-policy algorithm can update its policy with
data coming from arbitrary behavior trajectories.
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For continuous games, we make use of two state-of-the-art reinforcement learning algorithms, namely
Proximal Policy Optimization (PPO) and Soft-Actor Critic (SAC). These two algorithms have shown
that they are capable of solving a wide variety of reinforcement learning tasks, and have achieved
state-of-the-art performance in several continuous control tasks and games (Kostrikov et al., 2020;
Raileanu et al., 2020).

3.1.1 PROXIMAL POLICY OPTIMIZATION

PPO (Schulman et al., 2017) is an actor-critic policy gradient algorithm. Given an MPD, it learns an
approximately optimal policy πθ and a value function Vθ. It is an on-policy algorithm, and as such it
alternates from sampling data through on-policy interaction with the environment, and using that data
to maximize its objective function, JPPO.

JPG(θ) =
∑
a∈A

πθ(a|s)Âθold(s, a)

= Ea∼πθold

[
πθ(a|s)
πθold(a|s)

Âθold(s, a)

]
,

where Â(·) is an estimate of the advantage function Qθ(s, a)− Vθ(s) and πθold is the behavior policy
used to collect trajectories. The current policy parameters might be different than the behavior policy,
so we must use importance sampling to appropriately weigh the advantage terms. The full PPO
objective is the sum of a clipped version of the PG objective, a value function loss and a policy
entropy bonus.

3.1.2 SOFT ACTOR CRITIC

SAC is an off-policy actor-critic algorithm, meaning it uses a buffer of past data to continually update
its actor and critic functions. SAC learns a value function V (s), a state-action value function Qθ(s, a)
and a stochastic policy πθ(s) via the following objectives (Haarnoja et al., 2018). The Q−function is
trained from trajectories an experience buffer D via the squared Bellman error

L(Qθ) = Eτ∼D

[
(Qϕ(st, at)− (rt + γV (st+1))

2
]

and the value function Vθ is trained to compute the value of the Q−function plus an entropy bonus
Vθ(st+1) = Ea∼πθ

[
Qθ̂(st+1, a)− α log πθ(a|st+1)

]
where Qθ̂ is a moving average of the weights of the Q network. Finally, the policy is trained to
minimze the loss

L(πθ) = [Qθ(st, a)− α log πθ(a|st)]
and α is a learned parameter.

SAC updates a replay buffer D by collecting trajectories and performs gradient descent using ADAM
on these objective functions.

3.2 NORMAL FORM GAMES

A normal-form game (NFG) is a 2p0s game that can be specified by a matrix P ∈ Rm×n. Each
row in the matrix corresponds to an action of player 1 and each column corresponds to an action of
player 2. The entry Pij specifies the payoff if player 1 plays i and player 2 plays j. A mixed strategy
π1 ∈ R⋉ for player 1 is a vector satisfying

∑
π1
i = 1, π1

i ≥ 0. The Nash equilibrium of a normal
form game can be computed by solving the following linear program

max s

subject to s ≤ aTi Py
m∑
j=1

yj = 1

yj ≥ 0
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Figure 1: On the left, an image of the you-shall-not-pass environment. It consists of two gym ant
creatures who are competing to pass each other. On the right, an image of the soccer environment (Liu
et al., 2019). There is a kicker (red), a goalie (blue), a soccer ball, and a goal. The objective of the
kicker is to put the ball into the goal and the objective of the goalie is to keep the ball out of the goal.

The utility for player 1 of a policy profile π = (π1, π2) is defined as u1(π1, π2) and is the expected
payoff for player 1 if it follows π1 and the opponent plays π2. A two player game is called zero-sum
if u1(π1, π2) = −u2(π1, π2) for all π1 and π2.

If player i plays according to πi, a best response BR(πi) ∈ Π−i is defined as

BR(πi) ∈ argmax
π−i

u(π−i, πi)

which is the policy that does the best against player i who plays πi. There may be multiple different
best responses to a given policy. We may also denote a best response policy by β. A policy profile
π = (π1, π2) is a Nash Equilibrium if π1 = BR(π2) and π2 = BR(π1). The exploitability of a
policy π1 is defined to be how much worse the policy does against BR(π1) compared to how a Nash
equilibrium strategy π1

∗ does against BR(π1
∗), formally

E(π1) = u1(π1
∗, BR(π

1
∗))− u1(π1, BR(π1))

An ϵ-best response is an approximate best response. Formally, a policy π2 is an ϵ-best response to π1

if u2(π1, BR(π1))− u2(π1, π2) ≤ ϵ.

3.3 FICTITIOUS PLAY

Fictitous Play (FP) is an iterative algorithm that is very simple and also provably converges to a Nash
equilbrium in 2p0s games. At the first iteration agents choose a uniform policy β1

u, β
2
u and initialize

their average policy to this uniform policy π1 = β1
u, π

2 = β2
u. At each subsequent iteration, the

agent computes a best response to the opponent’s average policy βp
t = argmaxβp(βp, π−p

t−1) and
update their average policy via πp

t = t−1
t πp

t−1 +
1
tβ

p
t . Brown et al. (2020) introduce a variant of

fictitious play in which the policies are weighed linearly rather than uniformly (i.e., πt is given a
relative weight of t). This has been shown to converge more quickly than FSP and as such we use
linear weighting for our experiments in this paper. In this case, the update formula for the average
policy is πp

t = t−1
t+1π

p
t−1 +

2
t+1β

p
t .

Let βi(π−i) denote a ϵt approximate best response for player i to the policy π−i Here we state the
Generalized Weakened Fictitious Play theorem, as it appears in Leslie and Collins (2006).

Definition 1 A generalised weakened fictitious play is a sequence of mixed strategies {Πt} such that

Πi
t+1 ∈ (1− αt+1)Π

i
t + αt+1(b

i
ϵt(Π

−i
t ) +M i

t+1)

where αt → 0, ϵt → 0 as t→∞ and Mt is a sequence of perturbations such that for all δ > 0

lim
t→∞

sup
k

{∥∥∥∥∥
k−1∑
i=t

αi+1Mi+1

∥∥∥∥∥ s.t.
k−1∑
i=t

αi+1 ≤ δ

}
= 0
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Algorithm 1 Fictitious Play
1: Initialize π1

1 , π
2
1 to uniform policies

2: for t = 1, . . . , N do
3: for p = 1, 2 do
4: βp

t+1 ← argmaxβp

(
βp, t

t+2π
−p
t−1 +

2
t+2β

−p
t−1

)
5: πi

t+1 ← t−1
t+1π

p
t−1 +

2
t+1β

p
t

6: end for
7: end for

4 DESCRIPTION OF ADAPTIVE FICTITIOUS PLAY

Algorithm 2 Adaptive Fictitious Play
1: Input: N number of iterations, M number of inner loop iterations
2: Initialize π1

0 , π
2
0 to be uniform policies

3: for i = 1, 2, . . . , N do
4: for j = 1, 2, . . . ,M do
5: for p = 1, 2 do
6: ψp

j ← AV G({βp
1 , . . . , β

p
j−1})

7: βp
j ← BR(AV Gj({π−p

i , ψp
j })

8: end for
9: end for

10: for p = 1, 2 do
11: πp

i ← AV G({πp
i−1, β

p
M})

12: end for
13: end for
14: Output: Approximate Nash equilibrium
15: π = (π1

N , π
2
N )

4.1 EXACT CASE

We first present our algorithm in the tabular case where it is possible to compute exact best responses
(algorithm 2). Similar to vanilla fictitious play, we run N iterations (or until convergence). Rather
than computing a best response to the meta strategy of the opponent, we compute a best response to a
linear combination of the meta strategy and a regularizer policy. Suppose that we are at iteration i of
AdaptFP, i.e. that we have meta strategies for each player π1

i , π
2
i . We initialize the regularizer policy

to be the null policy, and in each iteration j of the inner loop, we compute

ψp
j = AV G({βp

1 , . . . , β
p
j−1})

βp
j = BR(AV Gj({π−p

i , ψp
j })

where AV G is a uniform average and AV Gi(x, y) =
i−1
i x+ 1

i y. From player 1’s perspective (it is
symmetric for player 2), the inner loop for player 2 is adversarially finding a best response to the
opponent’s, and player 1 must learn a best response to an opponent that is allowed to adapt.

At the end of the inner loop the most recent best response is added to the meta policy. It is not fair to
compare exploitability purely based on iterations since in the adaptive case we are computing many
more best responses than in the non-adaptive case. Thus in our figures we show results based on the
total number of best responses computed for each player.

Proposition 1 proves that AFP converges to a Nash equilibrium in 2p0s games. The crux of the proof
is that AFP is an instance of a broader category of algorithms called Generalized Weakened Fictitious
Play (Leslie and Collins, 2006) (GWFP). All instances of GWFP converge to a Nash equilibrium in
2p0s games.
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Proposition 1 AFP converges to a Nash equilibrium in two-player zero-sum games.

Proof 1 Assume that the range of payoffs in the game isM . On each iteration t, βp
t = BR( t−1

t π−p
t−1+

1
tψ

−p
t ), so βp

t is an ϵt-best response to π−p
t−1 where ϵt ≤ M

t and ϵt → 0 as t→∞. Thus, FSP is a
form of GWFP with αt =

1
t .

4.2 ADAPTIVE FICTITIOUS SELF PLAY

The approximate case is similar, but instead of the inner loop of finding best responses we just
continuously train a player 2 regularizer agent during the process of approximating the best response
for player 1. At each iteration i, we train a policy βp

i for player p as well as a regularizer πp
r , which is

reinitialized each iteration. This policy is trained with a reinforcement learning algorithm (e.g. SAC
or PPO) independently of β−p

i . In training, the opponent’s behavior is sampled from the average of
the first i best responses βp

1 , . . . , β
p
i as well as the regularizer πp

r .

In the continuous control setting we cannot simply average the policies as in the tabular case. As
such, we adopt the same method as used in DREAM (Steinberger et al., 2020) and sample the average
policy as follows: At the start of each episode, we sample a policy from the set of policies according
to the weights and run the entire episode with that policy. The pseudocode is in algorithm 3.

Algorithm 3 Adaptive Fictitious Self Play
1: Input: N number of iterations, T number of inner loop episodes
2: Initialize β1

1 , β
2
1 to be random policies

3: for i = 1, 2, . . . , N do
4: Initialize β1

r , β
2
r regularizer policies

5: Initialize data buffers D1, D2

6: Initialize β1
i , β

2
i

7: for t = 1, 2, . . . , T do
8: π̃1 = AV Gi({π1, π1

r})
9: π̃2 = AV Gi({π2, π2

r})
10: Collect episode sampled from π1, π̃2 and add to D1

11: Collect episode sampled from π̃1, π2 and add to D2

12: β1
i ← ReinforcmentLearning(β1

i , D1); β1
r ← ReinforcmentLearning(β1

r , D1)

13: β2
i ← ReinforcmentLearning(β2

i , D2); β2
r ← ReinforcmentLearning(β2

r , D2)
14: end for
15: for p = 1, 2 do
16: πp

i ← AV G({βp
1 , . . . , β

p
i })

17: end for
18: end for
19: Output: Approximate Nash equilibrium
20: π = (π1

N , π
2
N )

5 EXPERIMENTS

We run all experiments on a machine with two Nvidia RTX 3090 GPUs.

5.1 NORMAL FORM MATRIX GAMES

First, we compare FP and AFP in normal-form games. As a test bed, we use 500x500 random matrix
games where the matrix entries are drawn from a uniform distribution on [0, 1). We run the algorithm
with 10 different random matrices and plot average exploitability at each iteration as well as error
bars. We compute exact best responses at each iteration of FP and AFP with linear programming.
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Figure 2: Results for tabular experiments. The y-axis is on a log scale. We plot exploitability agains
the number of iterations of each algorithm. The left handside are the results for Leduc poker, where
we run FP, AFP, and CFR. The right hand side are the results for random normal form games. We
over ten matrices and compute error bars at a 95% confidence interval.

5.2 LEDUC POKER

Leduc poker is a simplified version of poker (Southey et al., 2012). It is played with six cards: two
jacks, two queens, and two kings. Each player gets dealt a single card, and places a one unit ante.
There are two betting rounds, and each betting round the player can have a maximum of two raises.
A community card is revealed after the first round of betting, and payouts are determined similarly to
regular poker: paired cards beat unpaired cards, and otherwise K > Q > J.

We run experiments with Fictitious Play, Adaptive Fictitious Play, and Counterfactual Regret Min-
imization. All three implementations are either from or based on the Openspiel python code base
(Lanctot et al., 2019).

Figure 3: Results for soccer task. The y-axis is on a log scale. We plot exploitability against the
number of iterations for each algorithm. We compare self-play, FSP, and AFSP. For each environment
we run five seeds.

5.3 YOU-SHALL-NOT-PASS

This environment consists of two ant-like creatures starting at opposite sides of an alleyway, pictured
in the left side of figure 1. The winner is declared if the ant can reach the opposite side of the alley.
We train all of the algorithms for 65 rounds. At the start of each round we initialize the new policy
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Figure 4: Results for you-shall-not-pass task. The y-axis is on a log scale. We plot exploitability
against the number of iterations for each algorithm. We compare self-play, FSP, and AFSP. For each
environment we run five seeds.

with the weights from the most recent round in order to speed up training. We find it does not make a
significant difference in exploitability and significantly speeds up training.

In training the best response, we use several snapshots of the parameters from various points in
training and train all of them against the policy in order to ensure we are getting as close to a true best
response as possible. Each agent gets a reward of 1000 if they win and there is an auxiliary reward
that encourages forward movement (i.e. movement toward the goal).

We run self play (DiGiovanni and Zell, 2021), FSP and AFSP each for five seeds in this environment.
We use the PPO reinforcement learning algorithm since we find it to be most effective in this
environment. Observations consist of data on the agent’s current position as well as the opposing
agent. the To introduce imperfect information into the game, the opponent’s agent is lagged by 10
time steps.

At the start of each episode, we sample a policy from the set according to the given weights and use
that policy for the whole episode. We repeat this for the entire training of the best response, which
assures that the policy is trained against the average policy.

5.4 SOCCER

The penalty kick environment consists of two players, a kicker and a goalie and an object which is
the soccer ball, pictured in the right side of figure 1. The kicker tries to maneuver the soccer ball into
the goal, and the goalie tries to not let this happen. The kicker has a time limit of 2500. If it does
not succeed, the goalie gets reward of 1000 and the kicker gets reward of -1000. If the kicker does
succeed, these rewards are swapped.

In particular, the kicker gets a reward for moving the ball toward the goal, and the goalie gets a
reward for moving toward the ball. Having auxiliary rewards has been shown to significantly speed
up training and is widely used (Bansal et al., 2017). We run self play, FSP, and AFSP for 5 seeds
each. In this environment, we find that the agents train most efficiently with SAC. We train the best
response the same as we do in you-shall-not-pass.

Observations consist of data on the agent’s current position, the position relative to the ball, the posi-
tion relative to the goal, and the opponent’s position. Similar to the thou-shall-not-pass environment,
we introduce imperfect information to the game by lagging the observation of the opponent’s state by
10 time steps.
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6 DISCUSSION

While there has been tremendous progress in finding equilibria in games with discrete action spaces,
there has not been as much progress in doing so with continuous action space games. In particular,
CFR is the state of the art in games with discrete action spaces, but it is not currently possible to apply
CFR to continuous action space games. FSP works both in discrete and continuous action spaces, but
may converge slowly. In continuous control where training best responses is expensive it is important
that the algorithm is as efficient as possible. Similarly, pure self-play is not optimal in the presence of
imperfect information or intransitivity. We show that AdaptFSP is more efficient than both FSP and
self-play.

We can interpret fictitious play as a form of curriculum learning. The past policies of the opponent
make up the curriculum, and the agent can never forget how to beat a previous policy in order to
maintain good performance. However, one issue with this is that, especially early on in training, it is
possible for the policy to overfit to the opponent’s curriculum and learn behavior that is capable of
beating the current opponents but is not robust to new opponents. We address this issue by introducing
an adaptive regularizer agent to the curriculum which the best response agent also attempts to beat.
Since this regularizer agent is adaptive, the best response training cannot overfit as much to the
current policies.

We prove that AFSP converges to a Nash equilibrium. In our experiments, we first show in small
games, specifically random matrix normal-form games and Leduc poker, that tabular AFSP converges
to a Nash equilibrium more quickly than FSP. In two continuous control games, specifically the
“you shall not pass” environment and the soccer environment, we use state-of-the-art reinforcement
learning algorithms (PPO and SAC) and study the approximate version of AFSP. we introduce
imperfect information into these environments by lagging the observation of the opponent’s state,
and we show here that AFSP converges more quickly and to a lower final exploitability than either
pure self play or FSP.

In the future, much work remains to develop robust algorithms to solve continuous control games.
This type of game is very important as many real-world applications involve continuous action
spaces, including application involving robots in the world. While this work focuses on two-player
zero-sum games, we view this as just an initial step toward developing agents that can more broadly
act effectively in real-world interactions. A next step is to move toward more complex continuous
state and action space environments, including environments that involve both cooperation and
competition.
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7 APPENDIX

7.1 EXPERIMENT HYPERPARAMETERS

A link to the code is https://anonymous.4open.science/r/AdaptFSP-7383/
README.md

7.2 SOCCER HYPER-PARAMETERS

Table 1: Hyperparameters for SAC in the soccer environment.

First column Second column
Episodes 2500
Actor learning rate 3e-3
Critic learning rate 3e-3
Batch size 512
Hidden units 256
Replay buffer size 1e6
Non-linearity ReLU
β1 .9
β2 .999
Optimizer Adam
γ .99

7.3 YOU SHALL NOT PASS HYPER-PARAMETERS

Table 2: Hyperparameters for PPO in the soccer environent

First column Second column
Episodes 1000
Actor learning rate 3e-4
Critic learning rate 3e-4
Hidden units 512
Timesteps per rollout 512
Minibatches per rollout 32
Number of workers 16
Environments per worker 1
Optimizer Adam
γ .99
Entropy bonus .01
Value loss coefficient .5
PPO epochs 10
PPO clip range .2

12

https://anonymous.4open.science/r/AdaptFSP-7383/README.md
https://anonymous.4open.science/r/AdaptFSP-7383/README.md

	Introduction
	Related Work
	Background and Notation
	Reinforcement Learning
	Proximal Policy Optimization
	Soft Actor Critic

	Normal form games
	Fictitious Play

	Description of Adaptive Fictitious Play
	Exact case
	Adaptive Fictitious Self Play

	Experiments
	Normal form matrix games
	Leduc poker
	You-shall-not-pass
	Soccer

	Discussion
	Appendix
	Experiment hyperparameters
	Soccer hyper-parameters
	You shall not pass hyper-parameters


