Under review as submission to TMLR

Influence Estimation in Statistical Models Using the Fisher
Information Matrix

Anonymous authors
Paper under double-blind review

Abstract

Quantifying how infinitesimal perturbations of training data affect a model is key to di-
agnosing and improving learning systems. We cast this task as a weighted empirical risk
minimization problem and derive an influence estimator that refines classical influence esti-
mation approaches. The formulation is broadly applicable, accommodates non-differentiable
regularizers, and admits an efficient algorithm with favorable computational complexity.
Simulations on realistic setups show that our estimator remains informative and reliable,
while offering clear runtime advantages over existing techniques, and that it further works
in settings with non-differentiable regularizers as encountered in many modern learning
systems.

1 Introduction

Understanding how a model’s behavior changes with slight modifications to its training data is crucial
for numerous machine-learning applications. These include detecting harmful patterns and constructing
adversarial examples (Koh and Liang, 2017; Koh et al., 2019; Basu et al., 2020), conducting efficient cross-
validation (CV) for model assessment and model selection (Beirami et al., 2017; Wilson et al., 2020), enabling
data unlearning without full retraining (Sekhari et al., 2021; Wilson et al., 2020), and evaluating robustness
to data-dropping (Broderick et al., 2020), among others. A common foundation for these tasks is the use of
second-order approximations to capture the model’s sensitivity to training data perturbations.

The most widely used technique in this space involves the Newton step, leveraging a gradient preconditioned
by the inverse Hessian matrix. However, this approach can be computationally prohibitive and numerically
unstable, particularly in high-dimensional and non-convex scenarios (Kunstner et al., 2019; Bae et al., 2022).
Several studies have explored influence approximations based on variants of the Fisher Information Matrix
(FIM) (Singh and Alistarh, 2020; Sattigeri et al., 2022; Bae et al., 2022; Grosse et al., 2023; Choe et al.,
2024). Yet, despite growing empirical adoption, there remains a lack of theoretical understanding to guide
the selection and use of FIM variants across diverse applications. Many of these works rely exclusively on
the empirical FIM, which is known to underperform in several settings. Moreover, prior theoretical analyses
of influence functions have largely assumed smooth, differentiable regularization, most commonly classical
Lo, which limits their applicability in practical settings. Indeed, modern machine learning models frequently
incorporate non-differentiable regularizers (e.g., ¢1/elastic net/group sparsity penalties, etc.), and recent
work has shown that even certain neural networks can be framed as convex optimization problems with non-
smooth regularization terms (Pilanci and Ergen, 2020; Zeger and Pilanci, 2025). This motivates the need
for influence methods that are not only theoretically grounded but also scalable and valid under general,
possibly non-smooth, regularizers.

In this paper, we propose the Approximate Fisher Influence Function (AFIF), a practical and theoretically
justified framework for estimating influence in statistical models. AFIF leverages an approximation of the
Fisher Information Matrix derived from exponential family structure, offering a computationally efficient
alternative to Hessian-based methods. Unlike prior influence techniques, which often fail to handle general
regularization and lack formal guarantees for FIM-based approximations, our approach is provably accurate in
convex settings and supports a wide class of regularization types, including non-differentiable ones. Through

Under review as submission to TMLR

benchmarking, we show that AFIF typically achieves substantial computational savings compared with
classical Hessian-based influence estimators, while also offering stability across diverse problem settings.

Contributions: Our main contributions can be summarized as follows:

e Theory: We provide the first (to our knowledge) guarantees that the FIM-based curvature can replace
the Hessian for key influence tasks under standard convexity and regularity assumptions, and without
requiring differentiable regularizers.

e Framework: We introduce a unified framework for influence estimation and show how it can be adapted
across different learning tasks. Unlike prior work that applies the FIM in an ad hoc manner, our formu-
lation clarifies when FIM-based influence arises naturally and offers practical guidance on when and how
to use the FIM.

o Experiments: We validate our influence estimator across a variety of machine learning applications.
Our experiments demonstrate that the estimator is effective even with non-differentiable regularizers,
and in many cases provides correct influence measures where Hessian-based methods lead to erroneous
predictions.

Notation: Random variables are represented by sans-serif fonts (x,y,z), and their realizations by regular
italics (x,y,z). The PDF of z is P,(-). Sets of values are indicated by capital calligraphic letters, such
as @ 2 {z1,20,...,2,}. Matrices are in bold capitals, with I; as the d x d identity matrix. We use
f(z) = o(g(z)) and f(z) = O(g(z)) when f(x)/g(z) = 0 and f(x)/g(x) = ¢ # 0 in the limit x — oco. We
denote the Lipschitz constant of a function f by Lip(f) £ sup{||f(z) — f(W)||/|lz —y| : = # y € supp(f)}.
The inner product between two vectors 6; and 65 is denoted by 9;92 £ (01,63).

2 Problem Statement

Given a dataset & = (21, 29, ... z,) where each z; is comprised of a covariate z; and a label or response y;,
it is commonplace to use empirical risk minimization (ERM) to obtain a predictive model to deploy. In this
work, we consider the problem of weighted ERM (WERM), i.e. given a loss function £(-), a regularizer (-,
a regularization parameter A € [0,00) and a set of weights w” £ (wy, ..., w,), our goal is to solve for f(w™)
that is defined as

~

O(w™) £ argmin L(D,0,\,w™), (1)
0

1 n
L(2,0,\,w"™) £ - > wil(z;, 0) + A ().
=1

This formulation is equivalent to classical ERM when w™ = (1,...,1) £ 1, whose solution is denoted by 5(1)
1

In many scenarios £(z,0) = —log(P (y|f(x;6))); that is, the loss can be interpreted as a negative log-
likelihood under a probabilistic model induced by a parameterized function f(z;8), often taken to be a neural
network. Moreover, we study the case where P (y|f(x;0)) belongs to an exponential-family (Wainwright
et al., 2008) whose natural parameters are f(x;6) and whose natural statistics are denoted by t(y), namely,
log(P (y|f(x;0))) = f(=; 9)Tt(y)—log(zy€y exp(f(x;0) "t(7)))+B(y) for some function B(y). This is satisfied
by many common loss functions in machine learning (see popular examples for such losses in App. B).

Remark 1. Following (Banerjee et al., 2005), this class of losses corresponds to loss functions that can be
captured by a Bregman divergence up to an additional term that is independent of f(z;6). See further
discussion in App. B.

I Throughout, we simplify our notation by omitting the explicit dependence on A when possible. For example, we write
L(2,0,w™) instead of L(92, 60, \,w™) whenever A = 0.

Under review as submission to TMLR

2.1 Inference Objective

We study the inference objective, T(-,-) : R* x R® — R* which maps a parameter vector 6 and a weight
vector w” to a desired inference target, where w”™ belongs to a family of weight vectors WW. In particular, we
focus on cases where w" corresponds to a leave-one-out weight vector, defined as

97" & {w" wy = 1{j # i}

This formulation captures a range of tasks, including:

Cross Validation To assess and select models, leave-one-out cross-validation (LOOCV) estimates model
performance by iterative training on all but one data point and evaluating on the omitted instance. Specifi-
cally, for each 7, it computes the evaluation metric:

T (é(w") ,w") £ %E (zz,g(w”)> for w" e P,

where 2% denotes the leave-one-out weight vectors, a(w") is the model trained with w™, and the corre-
sponding evaluation is taken on the omitted sample. Leave-k-out cross-validation follows analogously by
choosing weights that correspond to removing a subset of k observations in each iteration (Geisser, 1975;
Stone, 1974).

Machine Unlearning To remove the influence of a data point z;, the “unlearned model” is obtained by
computing

T (9 (w™) ,w”) =0(w™) for w"ePD "
This ensures that the model parameters are updated as if z; were never included in training (Cao and Yang,

2015; Xu et al., 2024). Similarly, unlearning k data points follows the same formulation using leave-k-out
weight vectors.

Data attribution Understanding the contribution of a training sample z; € & to a model’s prediction on

a test point zest (Koh and Liang, 2017) is formulated as comparing ¢ (ztest, 5(1)) with
T (@\(w”) ,w") =/ (ztest,é(w")) 2T (é\(w")) for w" e P
Attribution to a set of k points follows analogously.
Fairness Evaluation Recent works propose to evaluate the impact of z; on model fairness by computing

T (é\(w")) for w™ € @~ where T is a chosen fairness metric (Ghosh et al., 2023). For example, in a case one

wants to protect a binary attribute represented by samples {s;}? ;, then an appropriate function T (é\(w”))

can usually be defined as (see, for example, (Shah et al., 2024)):
T (6w, w) 27 (")) (2)
T (9(w”)> - ‘Eﬁ(xls_o) {f (x; a(w”)) } ~ B [f (x; a(w”))] ‘ , forw" € 2.

Here, P(x = x|s = s) is the empirical distribution for s € {0,1} . For cases where the sensitive attributes
{s;} are continuous-valued, an alternative fairness metric can be defined via the x? divergence (Mary et al.,
2019; Shah et al., 2024)

v n ny\ 4o YSRD _2(p - D R D n —1
T(Q ("), w) _T(e(w)) =X (Pf(X;f?(w"))s”Pf(X;f?(w"))PS)’ for w™ € 275 (3)

The impact of removing a subset of k samples is assessed analogously by considering w™ € @~ X.

Remark 2. Each application typically targets a distinct downstream task. Our aim, therefore, is to place
them within a unified influence estimation framework rather than to develop task-specific formulations. Ac-
cordingly, we do not survey application-specific literature here and instead focus on the common formulation
as an influence-estimation problem.

Under review as submission to TMLR

2.1.1 Inference Approximation

~

Since O(w™) for each weight vector is often computationally expensive, many methods approximate the

~

inference objective using quantities derived from 6(1). That is, instead of solving for 8(w™) directly, we use

A~

an approximation that combines the known vector §(1) with a function of the weights w™:

B(w™) ~ g (5(1),w") 2 g(w™).
Typically, g(-,-) is derived from a Taylor series expansion around 5(1), capturing the pth-order sensitivity of
the model parameters to small perturbations in w”™. Depending on p, this allows for efficient approximation
without requiring full retraining (Giordano et al., 2019b;a; Wilson et al., 2020). Two widely used approaches

to approximate the inference objective T (5 (w™) ,w") are:

1. Plug-in Estimator: This approach directly substitutes the approximation #(w™) into the inference
objective:

T (g(w”),w”) ~T (0 (w™) ,w”) =T (g (9(1), w”) ,w”) .

~

2. Linearized Influence Approximation: Instead of replacing 6(w™) directly, this method uses a first-

order expansion of T' (5 (w™) ,w") around 6(1). The approximation function g(,) is then incorporated

~

into this expansion to estimate 6(w™):
T (a(wn) w”) ~T (5(1) w”) n <V9T (5(1) w”) G(w™) — 5(1)> . (4)

Both methods are shown in several works to reduce computational overhead while performing well empirically
(Koh and Liang, 2017; Koh et al., 2019; Wilson et al., 2020; Basu et al., 2020). However, the quality of the
approximation depends on how well g(-,-) captures the true parameter updates. In the next section, we
introduce a new method for creating such an approximation.

3 Measuring Influence Using the Approximate Fisher Matrix

In this section, we introduce our proposed method. In particular, we show in which models it naturally
arises, we demonstrate how it works with non-differentiable regularizers, and we further describe why it
improves the computational complexity relative to currently existing baselines that rely on the Hessian.

A common approach to approximating é(w”) is to optimize a surrogate to the loss function L(2, 0, A\, w™).
This paper focuses on methods based on quadratic approzimations of the objective (Cook and Weisberg, 1980;
Koh and Liang, 2017; Giordano et al., 2019b; Wilson et al., 2020), which provide computationally efficient
estimates while maintaining accuracy. These approximations yield solutions of the form:

~ —~

§(w") = 0(1) — C (@(1)7@0") b (5(1),w”) :
where b(+,-) and C(+,-) depend on the specific loss approximation and vary across applications.

A notable instance of this framework is the infinitesimal jackknife (1J) approximation (Giordano et al.,
2019b), denoted 6 (w™), which is defined via a Newton step:

b (A1), w") £ iivge (2.50)) (w, — 1), (5)

C (5(1), 1) = V2L (.92),5(1), 1)71 2y (5(1), 1)71 .

Under review as submission to TMLR

-~

In this work, we suggest a modified computationally efficient second-order approximation of #(w™) using
the natural gradient. We consider loss functions ¢ that represent the negative log-likelihood of a parametric
probabilistic model, £(z,0) = —log(Pyx(y|f(x;0))), where Py, (y|f(x;0)) lies on the probability simplex of
the output alphabet) and is parameterized by # (Amari and Douglas, 1998; Amari, 2016; Banerjee et al.,
2005). As discussed in (Banerjee et al., 2005) (see also App. B), this property holds for a large class of losses in
machine learning. While the standard gradient identifies the direction that minimizes the objective based on
Euclidean distance, the natural gradient accounts for the underlying geometry (curvature) of the parameter
space. This is achieved by pre-multiplying the gradient with the inverse of the FIM, which characterizes the
sensitivity of the model’s likelihood function to changes in parameters. To that end, the Hessian in (5) is
replaced by:

F (0 (1)) SEuy~r oy gyT\X]

x,y;0=6(1)
Gy|x £ Vo lOg (Py\x;G <Y|X7 0(1))))

where P, is the probabilistic model induced by the loss function (Martens, 2020). However, since the
covariate distribution P; is typically unknown, direct computation of the expectation is infeasible. Instead,
we approximate the FIM using empirical estimates, averaging over the observed covariates and leveraging the
network structure to evaluate expectations over P.¢ (Martens, 2020; Kunstner et al., 2019). The resulting
approzimate FIM is given by:

. a1 .
F(2,01) 2]l ;ZJEYNPYWG%)[%V a)-

Using this approximation, we define the Approzimate Fisher Infinitesimal Jackknife similarly to (5), replacing
C with the approximate FIM F (9, 5(1))

UIAF (yn) 2 §(1) — (F (9, 5(1)))_1 b (5(1),w”) . (6)

Following classical results (e.g. (Schraudolph, 2002; Martens, 2020)), when the loss function is given by
0(z,0) = —log(P (y|f(z;0))) and P(y|f) belongs to an exponential family, the approximate FIM can be
interpreted as a positive semi-definite (PSD) approximation of the Hessian. Specifically, the Hessian satisfies:

H (5(1), 1) —F (9, 5(1)) +R,

where F (9, é\(l)) is guaranteed to be PSD, and the remainder term is given by?:

iivgf (xi;g(l)) Vs log (P (yi|f (xi;a(l)») .

This remainder term can be non-zero, for example, in cases where f(x;0) is non-linear in §. However, in many
settings, including commonly used models, R shrinks to zero (in Lg sense) as training accuracy improves
(Kunstner et al., 2019; Martens, 2020) (see App. B, App. E). Thus, the approximated FIM is often viewed
as a PSD approximation of the Hessian.

3.1 Computational Efficiency By Using the FIM

Here, we show a fundamental efficiency improvement in evaluating (6) compared to the IJ approach (5).
Both methods require computing expressions of the form A~'b (5(1), w") where A = F (9, 5(1)) in (9)

and A=H (5(1), 1) for the 1J. Since directly inverting a large d x d matrix is infeasible, efficient computation

2Here “multiplication” means the mode-3 tensor—vector product: for T € R®*©*IFl and v € RIFI, T x3v = ‘kFl

e L

Under review as submission to TMLR

of inverse-matrix-vector products is essential. However, since the FIM requires only first-order differentiation
through the model, it will typically be much more computationally efficient relative to the Hessian-based
alternative. To that end, we now demonstrate a fundamental computational advantage of using the FIM over
the Hessian in a widely used influence estimation setting (Koh and Liang, 2017), which involves computing
inverse-Hessian-vector products via the LiSSA algorithm (Agarwal et al., 2017). This efficiency extends to
modern variants of influence methods that rely on stochastic inverse-matrix-vector product estimation, such
as (Guo et al., 2021; Schioppa et al., 2022), where FIM-based approximations can serve as a faster and PSD
alternatives to Hessian-based techniques.

3.1.1 Stochastic Estimation

Stochastic estimation techniques rely on generating a sequence of estimators v; = (Aflx)j that converge
in expectation to A~z as j — 0o, where each v; utilizes only a small batch of training data, yielding a
computationally tractable way to estimate A™'z. As an example of the computational superiority of the
FIM-based methods, we will demonstrate the improvement for the celebrated LiSSA algorithm (Agarwal
et al., 2017), though similar arguments holds for most automatic differentiation techniques used for carrying
out such calculations. The LiSSA algorithm approximates A" using the truncated Neumann series Aj_1 =

gZO(I — oA)? for some ¢ > 0 3, which we further note can be equivalently written via the recursion
A;l =I+(1- O'A)A;_ll. Consequently, each v; is defined by v; = ¢ + (I — 0A)v;_1 with vg = = and
final estimate v = ovy. The major computational hurdle is multiplying by A. When A depends on many

o~ ~

training points (e.g., F (@,0(1)) or H (9(1), 1)), it is typical to estimate it by using a sampled batch of

training data. We now analyze the computational complexity of these calculations for each method.
Estimation with F (9, 5(1)) . When A £ F(9,0), each Av; requires calculating

Vofi - (Vilog(P (yilf)) (v] Vofi) ") (7)
where f; = f(z;;0). Given the form of V? log(P (y;|f(z;;6))) (see App. B), computing this expression
requires the vector-Jacobian product (VJP) a; = v;'—Vg fi and the Jacobian-vector product (JVP) Vg f; -

(V3108(P (il £))) a -

~

Estimation with H (g(l), 1) . For A £H(A(1),1), each Av; requires computing,

Vi log(P (yil f:))vj, (8)

which requires computing a Hessian-vector product (HVP) with respect to all model parameters.

Comparing Computations. Computing (8) requires roughly four evaluations of the entire model
(Schraudolph, 2002; Dagréou et al., 2024). In contrast, a JVP can be computed in a single forward pass using
forward-mode automatic differentiation (Bradbury et al., 2018). Since Vfc log(P (y:|f:)) is typically simple
and depends only on the number of model outputs (not on d), evaluating (7) requires just one differentiation
in backward mode. Furthermore, given backward differentiation roughly requires twice the complexity of
model evaluation (DeepSpeed, 2024; Dagréou et al., 2024), this method significantly reduces FLOPs and
accelerates computations. We demonstrate these savings through simulations in Sec. 5. We summarize the
results in Thl. 1.

Remark 3. Although our analysis focuses on the LiSSA algorithm, the fact that the FIM depends solely
on first-order gradients means these improvements are broadly applicable to many methods that require
differentiating through a large model using the structure of the curvature matrix. For example, similar
fundamental gains were observed in (Sattigeri et al., 2022) by employing efficient matrix-inversion techniques
based on rank-one updates.

3¢ is usually a small positive constant to stabilize calculations.

Under review as submission to TMLR

Forward Backward FLOPs

8 0 2 O(4F)
®) 2 1 O(4F)
(7) 1 1 O(3F)

Table 1: Number of differentiations in forward mode, backward mode, and FLOPs required to evaluate (7)
and (8), for different evaluation options from (Dagréou et al., 2024). F denotes the FLOPs needed for a
single model forward pass.

Remark 4. The classical LiSSA method has been refined into more scalable variants (e.g., (Guo et al., 2021)),
but these approaches still rely on computing matrix—vector products. Replacing the Hessian with the FIM
in such implementations yields similar computational savings as in the standard LiSSA setting we show here.

4 Theoretical Analysis

This section presents a general theoretical framework for analyzing the accuracy of inference objective ap-
proximations based on plug-in estimates and linearization approximations and based on the FIM. Specifically,
we establish conditions under which these approximations remain close, in a well-defined sense, to the true
inference function when the loss function satisfies certain regularity properties. While similar results are well
understood for infinitesimal jackknife-based approximations, our framework extends these findings to also
cover settings when one replaces the Hessian with the approximated FIM and further adds a non-differentiable
regularizer, showing that, in general, (6) can be safely used in places currently invoking (5).

4.1 Related work

Several works have established the accuracy of this approximation under specific conditions on the loss
function and the weight vectors w™ (Giordano et al., 2019b; Wilson et al., 2020; Suriyakumar and Wilson,
2022; Sekhari et al., 2021). These results hold under subsets of the following assumptions.

Assumption 1 (Curvature of the Objective). For each i € [n], the function 1/(z;,6) is p-strongly convex
(1 > 0), and the regularizer 7() is convex.

Assumption 2 (Lipschitz Hessian of the Objective). For each i € [n], the function 1¢(z;,6) is twice differen-
tiable with an M-Lipschitz Hessian.

Assumption 3 (Smooth Hessian of the Objective). For each i € [n], the function 1/(z;,6) is twice differen-
tiable with a C-smooth Hessian.

Assumption 4 (Bounded Moments). For given s,r > 0, the quantity By, is finite, where

T

B 2 13 Lip Vot) ot (.000)
i=1

Assumption 5 (Lipschitz Features). The feature mapping f(z;;) is C¢-Lipschitz with a C ¢-Lipschitz gradient
for all i € [n].

Assumption 6 (Lipschitz Inference Objective). The inference objective T'(6, w™) is twice differentiable, Cp, -
Lipschitz, and has a Cr,-Lipschitz gradient with respect to 6 for w™ € @~¢ and all i € [n].

For the examples in Sec. 2, the following guarantees were proved to hold under subsets of Assump. 1-
Assump. 6:

Proposition 1 (LOOCV Approximation Bound ((Wilson et al., 2020), Thm. 4)). Suppose Assump. 1,
Assump. 2, and Assump. 4 hold for (s,r) = {(0,3),(1,3),(1,4),(1,2),(2,2),(3,2)}. When the 1] is used as
a plug-in estimate for the LOOCYV objective

Under review as submission to TMLR

with w™ € D¢, the error in this approzimation is bounded as

’Z (1, () - (a<wn)))' —o(Mby B

The next proposition relies on the (e, §)-unlearning definition from (Sekhari et al., 2021).

Proposition 2 (Machine Unlearning (Suriyakumar and Wilson, 2022)). Suppose £(z,) is u-strongly convez,
twice differentiable, L-Lipschitz, with a C-smooth and M -Lipschitz Hessian for all z, and that w(0) is convez.*
When the IJ is used as a plug-in estimate for the objective T(0) = 0, we have

~ 2ML CL? ,
nl n n . .
HT(@J(U)))—T(G(w))HSW-‘FW, for w™ € D7,
Furthermore, the algorithm returning 0% (w™)+(forw™ € 9" satisfies (¢, §)-unlearning, where ¢ ~ N'(0, cI)
with ¢ = (2uM L + CL2)Y2186/49)

epdn?
Proposition 3 (Data Attribution ((Koh et al., 2019), Prop. 1)). Suppose Assump. 1, Assump. 2, and
Assump. 6 hold, and that w(0) = ||0]|°. Define Cy £ max;e] HVE (zl,a(l))H When the 1J is used as a

plug-in estimate for the inference objective
T(e) = Z(Ztesm 0) -/ (Ztest7 g(l)) ,

the approximation error is bounded as

’T (5(10")) -T (gn(w”))‘ < W, for w™ € D7

While certain loss functions may not be Lipschitz, Assump. 2 and Assump. 4 require only that the normalized
losses evaluated on the training set satisfy Lipschitz continuity— a condition that generally holds in practice
(Giordano et al., 2019b, Assump. 3). Similarly, when the inference objective is of the form ¢(ziest,),
Lipschitz continuity is required only with respect to the test point ziest. As long as zies; is not pathological,
this assumption is typically satisfied.’?

Additionally, the framework in (Giordano et al., 2019b) assumes differentiable regularization. In certain
cases, similar approximations extend to settings where the regularizer is non-differentiable (Wilson et al.,
2020; Suriyakumar and Wilson, 2022).

4.2 The Approximate Fisher Influence Function

We now present the approximate Fisher influence and its theoretical characterization. First, we introduce
an additional technical assumption about the loss function, which is essential for our proofs.

Assumption 7. The loss functions are of the form £(z,0) = —log(P (y|f(z;6))) where P (y|f) belongs to
a regular exponential family whose natural parameters are f(z;0). Moreover, we further assume that

HV? log (P (y|f(a:,9)))H <@ for some @ > 0.
To accommodate non-smooth regularizers, we utilize the proximal operator, defined as:

proxy, (v) £ argénin {(v—0)"D(w—0)+2x(0)}.

Our main lemma, Lem. 1, defines the approximate Fisher influence and bounds its discrepancy from 0 (w™)
for w™ € D7

4These assumptions strengthen Assump. 1-Assump. 4, requiring Lipschitz continuity for any z, not just the training samples

{zi}.

5The assumption that T is Lipschitz is consistent with classical works on influence functions; see (Koh et al., 2019, Prop. 1).

Under review as submission to TMLR

Lemma 1. Suppose Assump. 1, Assump. 2, Assump. 5, and Assump. 7 hold. Define E, &

Z?Zl ‘Vf log (P (yj|f (x],é\(l))>) , G = |Vl (z,,a(l))‘ and g; = 9. Then, the approximated Fisher
influence function, defined via
~ F(2.001))

f(w™) = Prox,

s

(é‘IJ’AF(w”)) , forw™ e D7 (9)

satisfies

~ ~ 2QC%3; Mg> 2§:CsE, ,
o) — 8w P 29 20 B g e @, (10)

n2u n2p? nu
Proof sketch. The proof separately bounds the distances between (i) é\(w") and 6V (w"), and (ii) 8" (w™)
and OAF (w) for w™ € @~%. The first bound follows from (Wilson et al., 2020, Lem. 1), while the second
leverages the closeness of the Hessian and the FIM to show that the estimates remain close. Full proof is
provided in App. E. O

Similar to prior results (Wilson et al., 2020; Suriyakumar and Wilson, 2022; Sekhari et al., 2021), the first
two terms in (10) depend on global problem constants (Lipschitz coeflicients, strong convexity parameter,
etc.) and the gradient at the ith training point. The third term depends on E,,, which simplifies due to the
exponential family structure of the loss and is given by (see App. G)

Vylog (P (wil f (wi:6(1) =|t(yi) —Eyop ~ [ty)]|-
5106 (7 (u1s (s:0002)))| =

ylx=x;;0(1)

Moreover, E,, can be shown to serve as an upper bound on the gradient at the optimum 5(1) (see App. B,
App. C). In App. B, we further demonstrate how this term relates to the absolute training error in classi-
fication and regression problems. Specifically, as training error decreases, this term also diminishes. In the

o~

extreme case where ¢ (zi, 9(1)) = 0 for all ¢ € [n], this term is exactly zero (see App. E). Thus, we expect

the excess term in (10) to be small whenever the model’s training loss is small. For the remaining terms in

Lem. 1, the worst-case discrepancy between a(w") and 0 (w™) for all i € [n] is controlled by gmax = mia)]< gi-
i€ln

By Assump. 4 with (s,7) = (0,1), gmax is finite.

Next, we present our main theorem, which establishes error bounds for the approximated inference objective
().

Theorem 1. Suppose Assump. 1, Assump. 2, and Assump. 5-Assump. 7 hold. Let g(w") be defined as in
(9) for w™ € D¢, Then,

HT (é(wn)) T (5(wn)) H < Cr (11)

2QC%3; N M2 N 25:C; B,
n2p2 n2y3 np

~ 2
1 2QC%5; Mg 25.CE,
CT2< = 2923—&—gf
nep o

and,

i (700) - 0) - (57) o 0| -
—c (2@0}@ L Mg, 2@6}&) | 20n,3

n2p2 n23 nu2 n2p?

Proof sketch. Both bounds follow from the smoothness properties of T' (Assump. 6), combined with Lem. 1
and Lem. 2 from App. D. Full proof is provided in App. H. O

Under review as submission to TMLR

Th. 1 enables a systematic derivation of theoretical guarantees for FIM-based influence approximations across
various application areas. Moreover, as discussed in (Giordano et al., 2019b, Sec. 3), for weight vectors

w” = D7, we expect lim, o0 gmax = 0. Consequently, whenever E, — 0, Th. 1 ensures that T (Q(w”))

and the Taylor-series approximation (Equation (4) with w" € @~%) converge to T (@(w")) for all ¢ € [n].

However, as we demonstrate in Sec. 5.1 and Sec. 5.2, in practice, #(w™) is often a good approximation of
6 (w™) even when E,, is finite.

Next, we show that our framework provides guarantees in a unified manner, analogous to Prop. 1-Prop. 3,
which establish Hessian-based guarantees for several tasks outlined in Sec. 2.

Corollary 1 (LOOCV). Suppose Assump. 1, Assump. 2, and Assump. 4-Assump. 7 hold with (s,r) =

{(0,2),(0,3),(1,2), (1,3), (1,4)}. Let T (9, 1n\i) = 10(2;,0) £ Ty(0). When 0(w") from Lem. 1 is used as a

plug-in estimate for w™ € D77, the error in the approximate cross-validation estimate satisfies:

= ~ o MBy; C}Bo CyE.B
] n\i 7 n\i < 03 f ftnbo2
3 (5 3 (1)) - ()| < o (S 4 Tty i)
Corollary 2 (Machine Unlearning). Suppose Assump. 1, Assump. 2, Assump. 5, and Assump. 7 hold.

Assume further that g; < G for all i € [n]. Then, for the inference objective T'(6) = 6, we have:

2Q03G MG? N 2GCE,

2 2 ’

for w™ € D1

HT (g(wn)> -1 (a(w”)) H = n2u n2us ni

Furthermore, the algorithm returning 6(w™) + ¢ satisfies (g, 8)-unlearning, where ¢ ~ N(0,cI) and:

<2QC]%G L MG 2G5fEn> /2 1og(5/40)
c =

n2p2 n2y3 nu2 c

Corollary 3 (Data Attribution). Suppose the assumptions of Th. 1 hold, T'(0) = €(2test, 0) — ¢ (ztcst, é(l))

and Cp = Inz[u](gi- Then,
i€n

r(6(00))-r () |0 (T M 02)

r(6(10) -1 (o) - 77) 5 ())

) 7
SO(cfcﬂog MCR,C2 Cr,C2 +CTICfEnCe>

n22 n2p? n2y.2 i
The proofs for these corollaries rely on applying Th. 1 for the settings described in Prop. 1 - Prop. 3 (see
App. I). To further demonstrate the generality of our approach, we provide guarantees for the fairness
assessment task described in Sec. 2, for which currently there is no theoretical analysis. The proof is in

App. 1.4.

Corollary 4 (Fairness Evaluation). Suppose Assump. 1, Assump. 2, and Assump. 5 -Assump. 7 hold. If T
be given by (2) and Cp 2 mz[u](gi- Then,
i€[n

7 (3(1)) -1 (7 (1)) | <0 (Cz:c; J MOSCE CfoC;eEn> |

n2u n2py ni
To the best of our knowledge, Corol. 1 - Corol. 4 provide the first theoretical guarantees for using the FIM
in influence assessment tasks, offering a novel method with rigorous effectiveness proof. Additionally, our
framework easily extends to other problems in machine learning and statistics beyond the specific applications
discussed (e.g., data dropping (Broderick et al., 2020)).

10

Under review as submission to TMLR

Remark 5 (Non-Differentiable Regularizers). Our framework allows for a general regularizer term (not nec-
essarily differentiable), and can be calculated efficiently as long as its proximal operator can be computed
easily. Since training models with general regularization (beyond Ls) is an increasingly popular method for
adding robustness, feature sparsity, and interoperability to models (see (Lemhadri et al., 2021; Li et al.,
2021) and references therein), we see this as a major advantage of our method. Moreover, we note that this
differentiates our method from previous works that considered the FIM in influence estimation tasks, such
as (Bae et al., 2022; Choe et al., 2024; Park et al., 2023).

Remark 6 (General Non-Convex Setting). Unlike the Hessian, the FIM is positive semidefinite even for
non-convex models. As a result, FIM-based influence estimates are typically better conditioned and more
numerically stable in settings that deviate from our assumptions. We corroborate this empirically in our
experiments.

5 Experiments

We evaluate the utility of the approximate Fisher influence framework through experiments on two different
tasks, which constitute three of the different use cases listed in Sec. 2.1. Both Fisher-based and Hessian-based
influence functions are implemented within the same codebase, differing only in the automatic differentiation
components used to compute (7) and (8). Moreover, we perform experiments with both the classical Loy
regularizer and also in a case where the model is trained with an L; regularizer, akin to an example of
a non-differentiable regularization function. Detailed experimental procedures are provided in App. J. Our
objective is to demonstrate the advantages of AFIF across different tasks, as reflected by our analysis, namely,
to show that it:

1. Achieves similar or improved utility as the Hessian-based techniques; In particular, it provides a more
robust influence estimate, in contrast to Hessian-based influence estimates that might fail in some cases;

2. It has an improved computational efficiency relative to the Hessian-based techniques;

3. It reliably estimates influence even in cases with non-differentiable regularizers.

Moreover, we will demonstrate that our formulation indeed generalizes across different settings, and we will
also show that the computational benefit is fundamental and not tied to implementation using LiSSA.

5.1 Fairness and Unlearning

In this set of experiments, we aim to identify and unlearn training points that negatively impact model
fairness. To that end, we use two classical datasets from the fairness literature: the Adult (Dua and Graff,
2017) and the Crime (Redmond and Baveja, 2002) datasets. Those datasets are considered classical for
multiple different fairness problems, see for example (Shah et al., 2022; 2024; Sattigeri et al., 2022). For
the Adult dataset, the goal is to classify whether a person’s income is greater than 50,0008%, while keeping
the classifier independent of the person’s sex. For the crime dataset, the goal is to predict crime per
population (which is a continuous variable) while keeping the regressor independent of race. Fairness is
assessed using either of the two metrics described in Sec. 2.1: (2) and (3) for the binary and the continuous
cases, respectively. Our model is a two-layer network with SeLU activations, similar to the architectures from
(Ghosh et al., 2023; Shah et al., 2024; Sattigeri et al., 2022). We calculated the influence for each training
sample using the plug-in estimator from Th. 1. We then unlearned all training samples with positive
influence by applying (9). Since we just want to correct the model fairness rather than ensuring a formal
(e,0)-unlearning guarantees, we haven’t added noise to the unlearned model. All influence calculations in
this set of experiments were done using the LiSSA algorithm. Our metric for success will be the model’s
fairness metric after unlearning against accuracy, with the goal of preserving accuracy while reducing the
fairness metric as much as possible. We conduct these experiments with Ly regularization, where we will
compare the time and accuracy attained with the Fisher-based influence and those attained with the Hessian.
Full experimental details are provided in App. J.

As shown in Fig. 1, we were able to significantly improve the fairness score without substantial performance
loss. However, as predicted by our theory, the Fisher-based results are consistently faster relative to the

11

Under review as submission to TMLR

Speedup: 1.14
o

Speedup: 1.17

2.1x107! °
1 * 7x1074
o 2x10 o* oxd ° ° *
= 1.9x1071| g Fo *gx® % *
@ [6x107 * o -
o 1.8x107! n
L4 a
©1.7x10-1 > e ° T
= 5x 1074 ° ® —
M 6x 1071 * * = |
Eim ¢ .
1.5%x10-! L] *x i
102 10! 1.5%x 107! 2.1x107! 2.9%10!

fairness metric

Y Hessian @ Fisher (ours) @ ERM

fairness metric

v Hessian @ Fisher (ours) @ ERM

(a) Adult (b) Crime
Speedup: 1.15 Speedup: 1.18 .
4x107t X 1010
9 * * 107 *
- _
E 3x10°1! w i
* (2] 104 *
1S
s i ="
- * (] 10 *
W2x107t o ® o @ o* XX . N
_ 10721 *
mar oX @» eumNE
1073 1072 1071 1071

fairness metric fairness metric

% Hessian @ Fisher (ours) @ ERM % Hessian @ Fisher (ours) @ ERM

(c) Adult (alt. hyperparameters) (d) Crime (alt. hyperparameters)

Figure 1: Model performance versus fairness metric for Fisher-based influence, Hessian-based influence, and
the ERM solution from (1), evaluated on the Adult and the Crime datasets using a two-layer classifier with Lo
regularization. Runtime results are averaged over ten independent experiments. All cases demonstrate that
the Fisher-based computations are faster than the Hessian-based computations, yet still yield similar overall
utility. Moreover, we further see that for some configuration of hyperparameters, the estimate obtained with
the Hessian might be inconsistent, while with the FIM, we get stable estimates in both cases, akin to the
fact that the FIM is guaranteed to be PSD.

Hessian-based approaches, demonstrating the computational efficiency of the Fisher-based influence. More-
over, for some configurations of hyperparameters, the estimates obtained with the Hessian are not stable
and lead to erroneous corrections with poor accuracy, further showing that influence estimates that rely on
the FIM are more stable, akin to the fact that the FIM is PSD. Furthermore, we note that the error rates
and MSE of the ERM minimizers are strictly positive, corresponding to a finite E,,. Nevertheless, the AFIF
effectively identifies and unlearns samples that negatively impact fairness, demonstrating its usefulness when
E,, is finite.

5.2 Cross-Validation

In our second experiment, we evaluate both the computational cost and the accuracy of our influence-based
CV approximation. We reuse the two-layer network from Sec. 5.1 on the Friedman-1 dataset (Friedman,
1991) and track performance across training epochs. To facilitate the need for L; regularization, we have
artificially added random features to the training set, such that a feature selection is needed for optimal
performance, and we thus trained the model with L, regularization. To approximate LOOCYV efficiently, we
use five-fold CV and apply our FIM-based update (Corol. 1, adapted to leave-k-out) and also a variant that

12

Under review as submission to TMLR

CV Estimates and Calculation Time

0.84 .-
2x107] S, N
» '-'k.
0.6 Bt
w
% , o
S 10-4 = 0.4+
[
02] ===t Nt =
6 x 101
| | | | \ 0.0+ | | | | |
2 4 6 8 10 2 4 6 8 10
Epoch Epoch
=e= Real Test Loss =¢: Full CV =#= Time: Approx. CV via Fisher (ours)
Approx. CV: Hessian =+= Time: Approx. CV (Hessian) Time: Full CV

=== Approx. CV: Fisher (ours)

Figure 2: Held-out test loss, exact five-fold CV, FIM-based approximate CV (Corol. 1 adapted to leave-k-
out), and average per-epoch compute time (averaged across folds) for a two-layer network on the Friedman-1
dataset (Friedman, 1991). The time represents the average accumulated time to create one CV estimate for
a certain number of epochs.

uses the Hessian instead of the FIM. For each epoch we report: (i) the held-out test loss, (ii) exact five-fold CV
(obtained by retraining the model on a subset of the training set and testing it on an held-out validation set),
(iii) our FIM-based approximate CV and an Hessian-based approximate CV, and (iv) the average wall-clock
time to compute each CV quantity across the five folds. On this dataset, we can form F~'v and H™ v via a
direct linear solver rather than an iterative stochastic LiSSA approximation, highlighting that the observed
speedups stem from the FIM formulation itself rather than the particular linear solver. As is clear from
Fig. 2, our influence measurement technique allows for a reliable CV approximation and at a substantially
reduced computation time, supporting the claim that our method gives an option for measuring influence in
situations where one uses non-differentiable regularizers, and that further our framework generalizes across
different settings.

6 Concluding Remarks

In this work, we introduced the AFIF, a method for quantifying influence in machine learning models. We
presented a general formulation that relies on the FIM instead of the Hessian, and we showed why this is
fundamentally faster than existing influence function baselines, yet provides similar error guarantees across a
set of tasks. Moreover, our framework extends the applicability of influence measurement to a broader range
of scenarios—including those involving non-differentiable regularizers. In our empirical evaluations, we have
further demonstrated the computational efficiency of AFIF relative to traditional Hessian-based techniques
and its usefulness in providing reliable influence estimates across a set of tasks and with general regularizers.

Future Research. Generalizing our analysis to more complex, real-world influence measurement methods
that are based on the FIM and currently lack rigorous theoretical support (for example, techniques based
on the Kronecker-Factored FIM (Choe et al., 2024)) is a promising future research direction that will open
the door to systematically determining when and how such methods can be most effectively applied across
diverse tasks. Moreover, developing computationally efficient variants of higher-order influence measurement
techniques, such as those explored in (Giordano et al., 2019a; Basu et al., 2020) (see also the discussion in
(Koh and Liang, 2017)), by utilizing the underlying statistical nature of the optimization problem, is another
future research direction that is currently under investigation.

13

Under review as submission to TMLR

References

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine learning
in linear time. Journal of Machine Learning Research, pages 1-40, 2017.

Shun-ichi Amari. Information geometry and its applications, volume 194. Springer, 2016.

Shun-Ichi Amari and Scott C Douglas. Why natural gradient? In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, volume 2, pages 1213-1216. IEEE, 1998.

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions are the
answer, then what is the question? In Advances in Neural Information Processing Systems, volume 35,
pages 17953-17967, 2022.

Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering with Bregman
divergences. Journal of Machine Learning Research, pages 1705-1749, 2005.

Samyadeep Basu, Xuchen You, and Soheil Feizi. On second-order group influence functions for black-box
predictions. In Proceedings of the International Conference on Machine Learning, pages 715-724, 2020.

Ahmad Beirami, Meisam Razaviyayn, Shahin Shahrampour, and Vahid Tarokh. On optimal generalizability
in parametric learning. Advances in Neural Information Processing Systems, 30, 2017.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. JAX: composable trans-
formations of Python+ NumPy programs. https://github.com/jax-ml/jax, 2018. GitHub repository.

Tamara Broderick, Ryan Giordano, and Rachael Meager. An automatic finite-sample robustness metric:
when can dropping a little data make a big difference? arXiv preprint arXiv:2011.14999, 2020.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In Proceedings of
the IEEE Symposium on Security and Privacy, pages 463—480, 2015.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya Pratapa,
Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to GPT? LLM-scale
data valuation with influence functions. arXiv preprint arXiv:2405.13954, 2024.

R Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for detecting
influential cases in regression. Technometrics, pages 495-508, 1980.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. How to compute Hessian-vector
products? In ICLR Blogposts 2024, 2024. URL https://iclr-blogposts.github.io/2024/blog/
bench-hvp/. https://iclr-blogposts.github.io/2024/blog/bench-hvp/.

Santanu Das, Jatin Batra, and Piyush Srivastava. A direct proof of a unified law of robustness for Bregman
divergence losses. IEEE Transactions on Information Theory, 2025.

DeepSpeed. Deepspeed tutorials: Flops profiler. https://www.deepspeed.ai/tutorials/
flops-profiler/#flops-measurement, 2024.

Dheeru Dua and Casey Graff. UCI machine learning repository. https://archive.ics.uci.edu/ml, 2017.
University of California, Irvine, School of Information and Computer Science. Accessed: 2025-10-04.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, pages 211-407, 2014.

Jerome H Friedman. Multivariate adaptive regression splines. The Annals of Statistics, pages 1-67, 1991.
Seymour Geisser. The predictive sample reuse method with applications. Journal of the American Statistical

Association, pages 320-328, 1975.

14

https://github.com/jax-ml/jax
https://iclr-blogposts.github.io/2024/blog/bench-hvp/
https://iclr-blogposts.github.io/2024/blog/bench-hvp/
https://iclr-blogposts.github.io/2024/blog/bench-hvp/
https://www.deepspeed.ai/tutorials/flops-profiler/#flops-measurement
https://www.deepspeed.ai/tutorials/flops-profiler/#flops-measurement
https://archive.ics.uci.edu/ml

Under review as submission to TMLR

Soumya Ghosh, Prasanna Sattigeri, Inkit Padhi, Manish Nagireddy, and Jie Chen. Influence based ap-
proaches to algorithmic fairness: A closer look. In XAT in Action: Past, Present, and Future Applications,
2023.

Ryan Giordano, Michael I Jordan, and Tamara Broderick. A higher-order swiss army infinitesimal jackknife.
arXiv preprint arXiw:1907.12116, 2019a.

Ryan Giordano, William Stephenson, Runjing Liu, Michael Jordan, and Tamara Broderick. A swiss army
infinitesimal jackknife. In International Conference on Artificial Intelligence and Statistics, pages 1139—
1147, 2019b.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit Steiner,
Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization with influence
functions. arXiv preprint arXiv:2308.03296, 2023.

Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. FastIF: Scalable influence
functions for efficient model interpretation and debugging. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 10333-10350, November 2021.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In Proceedings
of the International Conference on Machine Learning, pages 1885-1894, 2017.

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. On the accuracy of influence functions
for measuring group effects. Advances in Neural Information Processing Systems, 32, 2019.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical Fisher approximation for
natural gradient descent. In Advances in Neural Information Processing Systems, volume 32, 2019.

Ismael Lemhadri, Feng Ruan, Louis Abraham, and Robert Tibshirani. Lassonet: A neural network with
feature sparsity. Journal of Machine Learning Research, pages 1-29, 2021.

Gen Li, Yuantao Gu, and Jie Ding. ¢; regularization in two-layer neural networks. IEEE Signal Processing
Letters, pages 135-139, 2021.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine Learning
Research, pages 57765851, 2020.

Jérémie Mary, Clément Calauzenes, and Noureddine El Karoui. Fairness-aware learning for continuous
attributes and treatments. In Proceedings of the International Conference on Machine Learning, pages
4382-4391, 2019.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science
& Business Media, 2013.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. TRAK:
Attributing model behavior at scale. In Proceedings of the 40th International Conference on Machine
Learning, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: an imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, volume 32, 2019.

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time convex
optimization formulations for two-layer networks. In International Conference on Machine Learning,
pages 7695-7705, 2020.

Michael Redmond and Alok Baveja. A data-driven software tool for enabling cooperative information sharing
among police departments. Furopean Journal of Operational Research, pages 660678, 2002.

15

Under review as submission to TMLR

Prasanna Sattigeri, Soumya Ghosh, Inkit Padhi, Pierre Dognin, and Kush R Varshney. Fair infinitesimal
jackknife: Mitigating the influence of biased training data points without refitting. Advances in Neural
Information Processing Systems, pages 35894-35906, 2022.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence functions. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages 8179-8186, 2022.

Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural
Computation, pages 1723-1738, 2002.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what you want
to forget: Algorithms for machine unlearning. In Advances in Neural Information Processing Systems,
volume 34, pages 18075-18086, 2021.

Abhin Shah, Yuheng Bu, Joshua K Lee, Subhro Das, Rameswar Panda, Prasanna Sattigeri, and Gregory W
Wornell. Selective regression under fairness criteria. In Proceedings of the International Conference on
Machine Learning, pages 19598-19615, 2022.

Abhin Shah, Maohao Shen, Jongha Jon Ryu, Subhro Das, Prasanna Sattigeri, Yuheng Bu, and Gregory W
Wornell. Group fairness with uncertain sensitive attributes. In Proceedings of the IEEE International
Symposium on Information Theory, pages 208-213. IEEE, 2024.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural network
compression. Advances in Neural Information Processing Systems, 33:18098-18109, 2020.

M. Stone. Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Statistical
Society: Series B, pages 111-133, 12 1974.

Vinith Suriyakumar and Ashia C. Wilson. Algorithms that approximate data removal: New results and
limitations. In Advances in Neural Information Processing Systems, volume 35, pages 18892-18903, 2022.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and variational
inference. Foundations and Trends® in Machine Learning, pages 1-305, 2008.

Ashia Wilson, Maximilian Kasy, and Lester Mackey. Approximate cross-validation: guarantees for model
assessment and selection. In International Conference on Artificial Intelligence and Statistics, pages 4530—
4540, 2020.

Jie Xu, Zihan Wu, Cong Wang, and Xiaohua Jia. Machine unlearning: Solutions and challenges. IEEE
Transactions on Emerging Topics in Computational Intelligence, 2024.

Emi Zeger and Mert Pilanci. Unveiling hidden convexity in deep learning: A sparse signal processing
perspective, 2025. Preprint.

16

Under review as submission to TMLR

A Definitions and Useful Lemmas

In our paper we use the next classical definitions from the convex optimization theory (Nesterov, 2013).

Definition 1 (Matrix Operator-Norm). For any matrix A we define its operator-norm by |[|A[| =

sup —[[Av] /]|
vER:||v||#£0

Definition 2 (Strong convexity). Let 5 > 0. A function f(-) is S-strongly convex if and only if
s
f) = f(@) + VT @)y =)+ 5 e =l , ¥(w,y) € dom(f)
Definition 3 (Lipschitz). A function f(-) is C-Lipschitz if

1f(x) = FW)ll < Cllz = yll, ¥V(z,y) € dom(f).

In that case, C is called the Lipschitz constant of f and is denoted by C' £ Lip(f(z)).
Definition 4 (Smooth). If f(-) is differentiable, then f() is K-smooth if

V(@) =Vl < Klz—yl, v(z,y) € dom(f).
In that case, K is called the gradient-Lipschitz constant of f and is denoted by K = Lip, (f(z)).
Definition 5 (Lipschitz-Hessian). If f(-) is twice differentiable, then f(-) is M-Lipschitz Hessian if
V2 f (@) = V2 (W), < Mz —yll, ¥(z.y) € dom(f)

op —
In that case, M is called the Lipschitz-Hessian constant of f and is denoted by M £ Lip,(f(z)).

Throughout the manuscript, we will further make use of the next connections between Lipschitz coefficients
and gradient bounds for differentiable functions.

Corollary 5 (Nesterov (2013)). Let f(x) be a differentiable function VY € dom(f). Then, f(x) is C-Lipschitz
if and only if

IVf(z)| < C, Yz € dom(f).
If f(x) is twice-differentiable Vo € dom(f) then f(x) is K-smooth if and only if
IV2f(2)]lop < K, Y € dom(f).

B Example for Losses From an Exponential Family

We now present a few examples of commonly used loss functions in machine learning that can be viewed
as the negative log-likelihood of an exponential-family model. A more comprehensive list can be found in
Banerjee et al. (2005). Specifically, let

Uy, f(2:0)) = —log (P (y|f(x:9))),

where P(y | f(z;6)) belongs to a (discrete) exponential family. Throughout this paper, we adopt the
following form of an exponential family:

Y|
log (P (4] f(2:0)) = f(:0)T t(y) — 1og(§jexp{f<x;eft(z7>}) T B, (13)

y=1

where t(y) are the natural statistics and f(z;0) are the natural parameters.® The term 3(y) depends only
on y (thus does not affect parameter learning) and ensures proper normalization. Below, we illustrate
two popular examples of loss functions (see also (Martens, 2020, Sec. 9.2)) that arise naturally from this
exponential-family framework.

6The above is a discrete version; for continuous), one replaces the sum with an integral.

17

Under review as submission to TMLR

1. Cross-Entropy Loss. A standard approach in multi-class classification over || classes is the softmax
parameterization:

1Y
log (P (yl(x:0))) = (£(2:0)), ~log | Y exp {(F@:0));} | wie (L. V]

Here, f(z;0) is a vector of length |)|. By defining e, as the one-hot vector with a 1 in the y-th entry and
0 elsewhere, we see that

[
log P (y | f(a:6)) = f(x30)Te, —log | _exp {f(@:0)Te;} |,

y=1

thus matching (13) with natural statistics ¢(y) = e, and natural parameters f(z;60). The corresponding
loss,

Uy, f(x:0)) = —log (P (y|f(x:0))),

is the well-known cross-entropy.

2. Mean Squared Error (MSE). In a regression setting with a continuous target y € R, a unit-variance
Gaussian model with mean p = f(z;0) leads to

log (P (yf(2:0))) = —3(y— f(@:6))" = f(x;0)y — % - M

Comparing with (13), this corresponds to an exponential family whose natural statistics are (y, y2) and
whose natural parameters are (f(z;0), —%) The negative log-likelihood here,

(y, f(230)) = —log (P (y|f(:0))) = 1 (y — f(2;6))* + (constant),

is precisely the mean squared error (MSE) loss up to an additive constant.

B.1 Bregman Losses

Following (Banerjee et al., 2005, Thm. 4), whenever the representation P(y|f(x;6)) correspond to a regular
exponential family, then the loss — log(P(y|f(z;0))) can be expressed as

—log(P(ylfo(x))) = dy(t(y), n(fo(x))) +log(by(t(y))) + C

where u(fo(x)) = E[t(y)] is the expected value of ¢(y) using the underlying exponential family distribution,
dy(-,-) is a Bregman divergence and C' is a constant. As shown by (Banerjee et al., 2005, Table 1) (see also
Das et al. (2025)), this result implies that many classical losses in machine learning, including cross-entropy
and mean squared error, can be viewed as special cases of Bregman divergences, and further belong to the
exponential family framework discussed in our work.

B.2 Properties of the Cross-Entropy and MSE Losses

We now demonstrate how the assumptions on loss minimization, Hessian boundedness, and simplified second-
order gradients follow for the two loss functions introduced above.

1. Cross-Entropy Loss. Recall the parameterization

log (P (y|f(2:6))) = (f(2:6)), —log | D exn{(f(:6));} |,

yey

18

Under review as submission to TMLR

and let

(v J(a:0)) = ~log (P (vl (x:0))) = log | Y- exp {(f(z:0));} | — (J(a:0)),.

yey

We focus first on the gradient of the log-probability itself, which is given by :

Vilog (P (ylf(x;0))) = Vs

(f(:0))y —log | D exp { (f(w:0));} 1
yey
= e, — softmax(f(z;6)),

where e, is the one-hot vector selecting entry y, and softmax(Iz 9)) is the vector of class probabilities
assigned by the model.

Zero Gradients Under Perfect Prediction. For any training example (z;,y;), if the model classifies
it with perfect confidence, i.e.
(softmax(f(z;;6(1)))), = 1,

Yi

then V¢ log P(yi | f (s é(l))) = 0. Consequently, if the model perfectly predicts all training labels, then
all these gradients vanish simultaneously.

Bounded Hessian. Next, we show that the second derivative (the Hessian) of log (P (y|f(x;0))) with
respect to f is bounded in norm. From the above,

Vs log (P (y]f(2:0)) = e, — softmax(f(x:6)),
so taking another derivative,
Vilog (P (ylf(x:0))) = — Vg |[softmax(f(x;0))].

Denote Cy £ V [softmax(f(z;6))]. By the well-known derivative of softmax, the (i, j)th entry of Cy is

0
(Cy)ij = 8(f(x;e))j[softmax(f(:lc;(9))11 = softmax(f(x;0)); [6”» - softmax(f(:r;@))j],

which implies:
(Cy)ii = softmax(f(z;0)); - [1 — softmax(f(z; 9))1-]7
(Cy)ij = —softmax(f(z;6)), - softmax(f(z;0)); (i # j).

Because each softmax(f(z;6)); € [0,1], the entries of Cy lie in [—1,1], and indeed one can show ||Cy]|
is bounded by a constant (depending only on |)Y|, not on the dimension of the parameters). Hence
V? log (P (y|f(z;6))) = —Cy is also bounded in norm, establishing the desired Hessian bound.

2. Mean Squared Error (MSE). For the MSE loss arising from a unit-variance Gaussian,
1 2
log (P (y|f(2:0))) = —35 [y~ f(z:0)]",
the gradient with respect to f(x;8) is simply
Vi log (P (ylf(z;0) =y — f(;0).

Hence, if at é(l) the model predictions perfectly match all targets, this gradient becomes zero for each
training pair, indicating perfect minimization of the training error.

19

Under review as submission to TMLR

Bounded Hessian. Since
V% log (P (ylf(2:0))) = = V3[4 (v~ f@:0)] = =(-La) = L,

the Hessian with respect to f is simply the identity (for the one-dimensional f). Its norm is therefore
trivially bounded by 1, and it does not depend on the dimension d of the parameters in 6. Moreover,
the Hessian can be evaluated with no complicated operations—just the constant identity matrix at each
sample.

C Gradient Bound for Minimizing Losses From the Exponential Family

Given a training set {(x;,y;)}"; and the loss function (13) we derive gradient of the empirical risk (1) which
we aim to minimize. To that end, we note that

nVL(2,0,1 Zf 2i;0)t(ys) —log | D exp{f T (zss0)t(H)} | + Bly:)
geY

S (0T iy ey VS @i 0)4@) exp{fT (i)t(9)}

= Z (Ve flai; 0)t(y;) Zgley explf T (z:;0)t(i1)}

S o Sy @) el s 0))}
= ;ve f(l'q,, 0) <t(yl) Egley eXp{fT(l'i; 9)t(§1)} >

and the norm of this gradient is upper-bounded by
nIV0L(2,0, DI £ 3 IV f (is Ol |t(5) = Eyory o (O
i=1
Thus, whenever the features are Lipschitz, we have

922,001 < LS i) - By)|

and we expect this upper bound to be small at the minimizer § = é(l) As a consequence, we note that
the sum > 31, [|t(yi) — Ey~p,,_,., [t(y)] || is in fact an upper bound on the gradient. Thus, when evaluated

on § = 5(1), we expect this quantity to be small, establishing the validity of the arguments from Sec. 4.2,
which claims that the additional factor that depends on E,, is indeed of negligible contribution to the final
influence estimate.

D Proof of Closeness of (1) and é(l”\i)

We will use the next lemma throughout our proofs.

Lemma 2. Let 0 (1”\i) defined as in (1) and let L0(z;,0) be a differentiable function in 6 for any z; € D
and %E(zi, 0) + A (0) be a u-strongly convex function in 0 for any z; € D. Then, Vi € [n]

H9 (1"\l) — 9 H < — - max

1€[n]

Vgé zl, H
n

Proof. Similarly to the developments from (Wilson et al., 2020, App. B.1), we get that

20

Under review as submission to TMLR

Jo () -0l <

(é (1) -6 (1"\i))T (Vo(L(2,0(1), 1,17\ — L(2,0 (1), \, 1))
2

20 =o () voe (s0)

s [0 =0 (7)ot (50)]

IN

IN

IN

where all the steps are by Cauchy-Schwartz inequality. The proof follows by maximizing over i. O

We note that whenever %E(zi,ﬁ) is Lipschitz, the upper bound is finite. Moreover, since we normalize
by n, the bound will go to zero with n whenever the gradient grows as o(n), as is usually the case in
many popular machine learning problems (see (Giordano et al., 2019b, Sec. 3)). We further note that
under a more restrictive assumption that the £(z;,) are Lipschitz then the bound is given by i—g for C' =

max HV9€ (zi, 0 (1))

i€[n]

and C < oo.

E Proof of Lem. 1

The proof uses the following lemma from Wilson et al. (2020):
Lemma 3 (Optimizer Comparison, Wilson et al. (2020)). Let

Ty, € argminpy(x), ,, € argmin s(x).
x x
If each @; is p-strongly convex and po — @1 is differentiable, then
"
5”%@1 - 5%2”% < ’(9%1 - mcpz)—r (V(p2 — 801)(xs01))’ .

Proof. For the sake of the proof, we will assume that the FIM and the Hessian are invertible matrices. Under
the probabilistic interpretation of the loss elements, the overall loss function for w™ = 1™\ is

L(2,0,0,1) 2 5™ log(P (3] (2;;0))) + An(9)
J#i

and we assume that P (y|f(x;0)) belongs to an exponential family whose natural parameters are the features

f(z;0), namely, log(P (y|f(x;0))) = fT (x;0)t(y) — log(z'ljy:‘1 exp {f " (z;0)t(7)}) + B(y) for some natural
statistics ¢(y). For this model, we have

Vo log(P (y|f(2:0))) = Vo f(x;0)V s log(P (ylf(x;0))).

Thus, the approximated FIM, F(9,6), is given by

F(2,0) = %ZEwa‘X:m,,e [Vof(xi:0)V s log(P (vl f(x:;0))Vf log(P (y|f (2::0)))Vy f(x:;)]
i=1

S Vol OBy o [~V 08(P (51 (i3 0)))] T fi:0) (142)
1=1

- _% ZVQf(xi? 0)V$log(P (yil f (i)V, f(x:;0)

i=1

where (14a) is by using classical properties of the exponential family, and where the last equality is since the
Hessian of an exponential family with respect to the natural parameters f is independent of y (see App. G).

21

Under review as submission to TMLR

Moreover, we note that the Hessian of the loss is given by

H(9,1™\) = V2L(2,6,1™V)
=V2L(2,0,1"\ —1) 4+ V2L(2,6,1)
) 1 n
= VoL(2,0.1" = 1) + — 3 V3 f(2::0)Vlog(P (yilf(21;0))) + F(2:0).
=1

We start by defining the next functions

V1(0) 2 2L(D,0,\, 1™V = 2L(2,0,1™\%) + 227 (6),
pa(0) £ =207 (0(1),1™V) - (B(1) —) + (0(1) — 0) T VL(D,0(1), 1) (A(1) —) + 2Aw(6),
ws(0) £ =207 (9(1), 1”\2) (6(1) = 60) + (6(1) —6)T - F - (B(1) - 0) + 2Am(0)

= (60— (0(1) —=F " (0(1),1™\))) TF(— (0(1) —F~" - b(6(1),1"\"))) + 2An(6) + J

~

where J is a constant (which is independent of §) and F is an abbreviation for F(2,60(1)). We first note
that the minimizer of ; is #(1™\?) and that the minimizer of 3 is §(1"\") from (9).

We note that Assump 1 and Assump. 2 guarantees that the overall loss, L, is u-strongly convex and that
the difference L(2,0(1),A,1"\) — L(2,6(1),\,1) is differentiable. Thus, using Lem. 2, which follows by
applying the optimizer comparison lemma with L(Z, 6,), 1"\i) and L(9,0,,1) allows us to derive the
following upper bound

16(1) — (1) < % Vot b1 2 22 (15)

The optimizer comparison lemma (Wilson et al., 2020, Lem. 1) with ; and 5 and Cauchy-Schwartz
inequality yields

g\lé(ln\i) —OMP < [(BA™) = 0™ \)) T(V (s — 41)(B(1™V)))]
< 6™ =A™)V (s — 1) (B(L™)]|

We divide both sides by [|0(1™\") — 6(1"\%)||, and by using the triangle inequality we get

210 = 6™ | < V(s —) (EA™))]
< V(s = $2)(B1™) + V(i = ¥1) (61| (16)
< V(s — 2)(6 <1"\1>>|\ + ||V<w2 —) (0)|
< IV2L(@,0(1),1"V) - >H||é<> BN+ (Ve — 1) (EA™)]
= [IV2L(2,0(1), 17 — Zvef 215 0(1)V s log(P(yil f (235) [16(1) — 61 |
i=1

+ (9 =)(BA™)))]

< ol = Vo (w33 001) V3 og(P (3l (22 601)) V7 f (243 0(1) (17)

3 VS B0V log Pl S O] + 1

22

Under review as submission to TMLR

where (16) is since the differences 13 — 19 and 19 — 91 are differentiable and where (17) is by using the next
bound:

1V (2 — w0 (B
= 2[b(6(1), 1"V) + V2L(@,0(1), 1) (91" — B(1)) — VL(@.6(1"V), 17V

=2|VL(Z,0(1),1™\) + V2L(2,0(1),1"\)(0(1"\) — (1)) — VL(D, H(1™\H), 17\ | (18a)
< M- o - é(1>H2 (18b)
L 4Mg;

U2

where (18a) is by the structure and the convexity and differentiability assumptions on L, leading to

VL(2,0(1),1) = 0, (18b) implied by the Hessian Lipschitzness of L (see also [3, Lem. 1.2.4]) and the
last inequality is by Lem. 2.

We further use the triangle inequality to get the next upper bound
Hyihrqn\e n\1 0 A
LA V) =6 S, (IIVef(xz, 0(1)) V7 log(P(yil f(:;6(1))) Vg f(:;6(1))]|

MgZ

+ZIIVﬁf(fci;9(1))Vf10g(P(yi|f(:ci; oI +

i=1

and by using Assump. 5, Assump. 7 and the boundedness of the Hessian of the loss relative to the features
(see App. B.2) we get the final bound

N s , i Mg?
1607) = @) < 2T p(as B + S5

+ 2% vam, 1))V 1 log(P (il (22 6(1)))]

2QC%9; M 2 10
< § . gl g f
np

Z IV 5 log(P(yil f (x:;0(1))))|
where @ is a constant s.t. HV? log(P (y|f (x; 9)))” <Q. O

We now emphasize how the third term disappears whenever our model interpolates the training data (namely,
((z,0(1)) = 0,Vi € [n]). In that case, we have P(y;|f(z:;;0(1))) = 1, Vi € [n] 7. Thus, following the
notation of App. G we have that Ey~p [t(y)] = t(y:) and since V;log(P(yi|f(zi;0(1)))) = t(y;) —
Eyr ., o0 [t(y)] we get that the third term is zero.

F Comment on Lem. 1 When 7(6) is Twice-Differentiable

Whenever 7(0) is twice differentiable, an equivalent argument to that of Lem. 1 can be stated without the
usage of a proximal operator. Specifically, since in this case the entire loss elements %E(zi, 0) + A\m(0) can be

approximated using a second-order Taylor expansion, and a solution that uses C (é(l), 1) =F (9, é(l)) +

AV27 (é(l)) leads to similar arguments as those from App. E. For this approximation, we define the solution

via
g (1"\i) 29(1) - (F (97 é(1)) + AV (é(l)))_l b (é(1), 1"\i)

and a similar analysis to that of App. E can be carried out and to lead to similar guarantees. An example
for such arguments from a similar application can be found in (Wilson et al., 2020, Thm. 2).

In the continuous case, this amounts to P(y;|f(zi;0(1))) converging to a delta-function, concentrated around the value y;

23

Under review as submission to TMLR

G Fisher Information Matrix for Exponential Families

Using the fact that the distribution P (y|f(x;#)) belongs to an exponential family, namely

[

log(P (ylf (2:0))) = fT (x;0)t(y) — log (Z exp {1 (; 9)t(17)}> +5(),

we can directly evaluate the terms Ey,.p __ ., [Vf log(P (y|f(:v;9)))V}— log(P (y|f(x,9)))} and
By Pca, 0 [Vi log(P (ylf(xi; 9)))} to establish the desired equality. First, we find that:

Vilog(P (ylf(2:0))) =V (fT(:v; 0)t(y) — log (Z exp {f ' (x; ﬂ)t(y)}))

yey
=t(y) — Eyopy, o [EY)]
and
Eymry.. o [V 108(P (] (2:60)))V] log(P (y]/ (x:6)))]
= By |(H0) = By o BODCEY) = By LD T

Next, we observe that:

_ i) ex T (2 0)t(3
—V?logw(mf(a:;e))):vf(ZM“Z") p {7 >t<y}>

)
> gy & LT (@ OHG)}

S0 R 0 A 0] [oAU 10%)) € WS 1 07)
= Eynbao [(0) = By o BODEY) = Eyony, DT

Moreover, we note that this final result holds for any y. This concludes the proof. [

H Proofof Th. 1

Proof. We start by writing the Taylor expansion of T'(6(1™\"),1"\) around 0(1™\) to get ®:

T(O™),1"V) = T(O(1"), 1"V) + Vg T(O(1™), 1) (H(1"V) — 6(1")) (19)
1~ni Hrq1n\i n\s n\i\/g/qn\i nr1n\i
+50001 V) = 6(1M)) TVET (Brmia (1Y), 1"V) (6(1™) = H(1"\))
where Omiq(1™V) = (1™ + k- (O(1™V) — H(1™\)) for some & € [0,1]. By (19) and by the Lipschitz

assumptions on T we get
7@, 1) = TG, 17|
= IV TO™), 1) (3(1"V) - 9(1m))
BN = O TVRT (Bia (17, 1) (B(17) — O]
< VT (B, 1617 - 01m)| (200)
4 G IVETBuia (1), 1) (17 — (170

~ . ~ . 1 ~ . N)
< Cpy [[0(1™) = 6™ + 5 O, [0(1™Y) = 01"V, (20b)

8the existence of the Taylor expansion of T is guaranteed by Assump. 6

24

Under review as submission to TMLR

The proof is completed by substituting (10) into (20b). To prove (12), we write the expansion of T'(6(1"\))
around 6(1), to get

IT(O™), 1"\ = T(0(1), 1Y) = V4T(9(1), 1"V)(O(1™) — (1))
= [VeT(9(1), 1"V)(B(1™) — 6(1™))
+ 5(9(1"\i) = 0(1)) VT (Bria, 1"V) (O™ — (1))

_ R _ 1 R . .
< COp, 6™ — 6(1™V) | + FOm10(1) — o1\

where Omig = 0(1"V) + k- (6(1) — H(1™\)) for some x € [0,1]. Substituting (10) and (15) concludes the
proof. O

I Proofs of Corol. 1 - Corol. 4

1.1 Proof of Corol. 1

We now show how to use Th. 1 to approximate LOOCV with similar guarantees to the Hessian-based
technique from (Wilson et al., 2020). Throughout the proof, we will use a refined version of (20b), which
requires the Lipschitzness of the T(-,1™\") only at §(1). We start by defining ACV £ LSz, 6(1m\%)
and recall that CV £ L 3" 4(z;, 0(1™\")). Then, similarly to App. H we get

IACV — CV|

_ M":

0=, 0(1") — €z, é(ln\i))‘

=1

[z, 017) = £(z,007\))|

INA
SRS

«
Il
-

1 & 2QC%5: Mg 25;CiE
<= Uz, 6(17\Y) H] i i 21
< g HV" 2 e stk (21a)

~ 2
1. 2QC%3; Mg 2§,CsE,
+ ELlp(Vgﬁ(zi,H)) (22 SEWE + 2

1 & 4g? 2QC75: Mg 25.CiE,

< ﬁ; (HVQZ zi,0 H + Lip(Vel(z;,0)) (nz/ﬂ)) (2 + 20 + e (21b)

~ ~ — 2
2QC3g; Mg? 2§icfEn>

1
CLi ,
+3 1p(V9€(zl,0))< e 2 e

where (21a) is by using (20a) together with the bound from Th. 1 and by replacing the Lipschitz constants
Cr, and Cr, of the objective with the corresponding gradients from (20a) and (21b) is by using the Taylor

25

Under review as submission to TMLR

expansion of Vgl(z;, é(l"\z)) around é(l) and by using Lem. 2. Expanding this expression yields

[ACV — CV| < (M n2]2“ QCfE) Z Hvef 2.0 H (/J n2> ié “Vgé(zi,é(l))":s

8QC? scfE

|

un4 pin3

> ZLlp Vol(z;,0 HVQE 21,9())H3

+

P n4> ZLlp (Vol(z;,0 HV@Z zi,0(1))H4

[
(7
(2@204 QCﬁEn
S
(7
(o

+

[An? 1402

) £ 3 LSt 0) [t |

|

) ZLlp Vol(z;,0 HV@E 21,9())H3

+

4
> ZLlp Vg[Z7, HVOE 22,9())H

n4

MC’fE)
+

ZLlp (Vol(zi,0)) | Vatlz:, 01))H3

4 (W) ZLlp Vol(z:,0)) | Vot(z:, 01)))]2

C7% Boz
12n?2

+ C’fE' BOQ + MB()g). |

13n2

whose decay rate is dictated by the first two terms and is given by O (

1.2 Proof of Corol. 2

The proof follows similarly to that from (Suriyakumar and Wilson, 2022) by using the bound g; < G in (10)
and then using the Gaussian mechanism for differential privacy (Dwork et al., 2014, App. A). O

We note that Corol. 2 parallels a similar result to that of Prop. 2, with different Lipschitz constants and
with an additional term that depends on FE,,.

1.3 Proof of Corol. 3

The proof is by substituting §; = ||Vef(z;,0(1))| in (11) and (12) and maximizing over i. O

We note that this proof parallels a similar result to that of Prop. 3, with two additional terms: one that
depends on F),, and the other that depends on the Lipschitz coefficient of the features C/.

1.4 Proof of Corol. 4

By using the definition of T' from (2) and using the linearity of expectation and the triangle inequality we
get that the Lipschitz coefficient of T' from (2), C'ry, is given by 2C¢. Then, the proof follows by substituting
Gi = || Vol(z,0(1))|| in (11) and maximizing over . O

J Experimental Details

All experiments were implemented using the PyTorch (Paszke et al., 2019) framework and ran on NVIDIA
A100 GPU.

26

Under review as submission to TMLR

J.1 Datasets

J.1.1 Adult
We utilized the Adult dataset (Dua and Graff, 2017) from

https://archive.ics.uci.edu/ml/machine-learning-databases/adult, to perform the task of predict-
ing whether an individual’s income is more than 50,0008 using 14 demographic features such as age, edu-
cation, marital status, and country of origin. We aimed to keep sex as a sensitive attribute (the one that
requires fairness, which in this case corresponds to the sex attribute) that requires fairness. The dataset
contains 48,842 samples, divided into 32561 train samples and 16281 test samples. During pre-processing,
we remove the sensitive attribute from the set of input features, discard rows with any missing data, convert
textual values to categorical ones, and normalize the numerical data using the StandardScaler () function
from the sklearn.preprocessing module. These pre-processing steps are consistent with those used in
previous analyses of this dataset (e.g., (Shah et al., 2024)). We randomized the sample order by enabling
the Shuffle option when creating the Dataloaders using torch.utils.data.DataLoader, ensuring the data
was shuffled before being split into batches. The metric (2) was estimated on the training data.

J.1.2 Crime

We utilized the crime dataset (Redmond and Baveja, 2002) from https://archive.ics.uci.edu/dataset/
183/communities+and+crime, which considers predicting the number of violent crimes per 100K population
using socio-economic information of communities in the U.S. The sensitive attribute is the percentage of
people belonging to a particular race in the community. During pre-processing, we drop all the samples
with the value of the sensitive attribute less than 5% to remove any outliers. We also remove the non-
predictive attributes and the sensitive attribute from the set of input features, and normalize all attributes
to the standardized range of [0, 1]. The resulting data has 1,112 samples, and we use a train-test split ratio
0.8:0.2. We randomized the sample order by enabling the Shuffle option when creating the Dataloaders
using torch.utils.data.DataLoader, ensuring the data was shuffled before being split into batches. The
x? metric from (3) was estimated on the training data.

J.1.3 Friedman-1

In our CV experiments we use the Friedman—1 regression benchmark Friedman (1991). We draw feature
vectors with coordinates i.i.d. Unif(—1, 1) and generate responses as

2
Yp = 10sin(7 x%l)mgf)) +20 (mf) - %) +102® + 525 + 0.1z, z, ~N(0,1).

Only the first five coordinates are informative; the remaining d — 5 are nuisance. To study a higher-
dimensional, sparse regime, we append 300 i.i.d. random features independent of (z,y) and train with ¢;
regularization. Unless stated otherwise, we use N = 2000 samples and d = 100 base features (before
appending the 300 random features).

J.2 Models

All models were trained either using a cross-entropy loss or using an MSE loss, implemented via
torch.nn.CrossEntropyLoss() and torch.nn.MSELoss(). We have conducted our experiments with two
different regularizers: L; and Ly, namely, 7(6) = [|0]|* or 7(0) = HGH?

Two-Layer Network: We have tested our models with a two-layer fully-connected network. For the Adult
dataset, we have used a softmax activation, whereas for the crime and the Friedman 1 datasets (where the
task is regression), we didn’t use any activation. The activation function for the hidden layer was chosen as
SeLU activation. We used two variants of this model:

1. For the task from Sec. 5.1, the width of the hidden layer was chosen to be 1000. We trained the model
for 100 epochs using the AdamW optimizer, with a learning rate of 10~#, batches of size 100, momentum
parameters (31, 32) = (0.9,0.999), and a weight-decay of 1076.

27

https://archive.ics.uci.edu/ml/machine-learning-databases/adult
https://archive.ics.uci.edu/dataset/183/communities+and+crime
https://archive.ics.uci.edu/dataset/183/communities+and+crime

Under review as submission to TMLR

2. For the task from Sec. 5.2, the width of the hidden layer was chosen to be 100. We trained the model
using the SGD optimizer, with a learning rate of 1074, batch size of 32 and a weight-decay of 10™%. We
also added an ¢; regularization component of strength 10~2. We varied the number of epochs from 1 to
10.

J.3 Details for Fairness and Unlearning

We trained the model on the training set of each dataset. Using the trained model, we estimated the fairness
metric (either (2) or (3)) on the training data and measured the influence of each sample on this metric
using the Taylor series-based approximation. We then selected all indices with a positive influence and
unlearned them from the model by applying (9). The vector w™ used for generating 0"AF had zeros at the
selected indices and ones elsewhere. In all cases, we have measured influence using the LiSSA algorithm (see
detailed description in Bae et al. (2022); Agarwal et al. (2017)). However, we have tested multiple different
configurations of hyperparameters:

1. For the Adult’s experiments, we have used 3 repetitions and a depth of 2000. Then, we have varied the
scale parameter between 500 (first row in Fig. 1) and 250 (second row in Fig. 1).

2. For the Crime’s experiments, we have used 3 repetitions and a depth of 2000. Then we have varied the
scale parameter between 500 (first row in Fig. 1) and 125 (second row in Fig. 1).

J.4 Details for Cross-Validation

We have performed a leave-k-out CV to estimate the test loss. In particular, we have trained the previously
mentioned two-layer model on the Friedman dataset from App. J.1.3, and set the width of the middle layer
to be 100. In our experiments, we have fixed the L; regularization coefficient on 1072, the learning rate on
10~4, the batch size on 32, and we have further trained the model with SGD with added weight decay of
strength 10~* (added in addition to the L; regularization). Our (full and approximate) CV estimates are
over five different folds. For the CV approximation, we have calculated quantities of the form v = F~'v
(correspndingly for « = H™'v) by solving the linear system Fu = v (Hu = v) and where we have used
PyTorch’s autograd for calculating quantities of the form Fu (Hu). The linear system was solved using

scipy.sparse.linalg.cg running with maximum number of iterations set to 5000.

K Additional Experiments

K.1 Additional Experiments for Sec. 5.1

Here we provide additional experiments that use the FIM and the Hessian for measuring influence within
the LiSSA framework of the fairness and unlearning experiments. In particular, we have changed the hyper-
parameters of the LiSSA-based influence estimator such that:

1. For Adult experiments, we set repetitions to 3, depth to 3000, and scales to 750 (first row) and 400 (second
row).

2. For Crime experiments, we set repetitions to 5, depth to 5000, and scales to 1000 (first row) and 500
(second row).

As is clear from the figures, a similar trend follows in these plots as the FIM is consistently faster, while for
some configuration of hyperparameters, the estimates with the Hessian become unstable.

28

Under review as submission to TMLR

Speedup: 1.14
*
2.1x1071
© 2x10t
ol
©1.9x107! R
518x107 (1Y
E17x101
w

1.6 x 107! _m
e
1072 1071
fairness metric

o,

o«

* ® (R
**

% Hessian @ Fisher (ours) @ ERM

(a) Adult

Speedup: 1.15

*

4x1071 X
) o
e
©3x10? *
1Sy
£ g *

-1 oS
w2x1071 o o ® xo
mat
1072 1071

fairness metric

% Hessian @ Fisher (ours) @ ERM

(c) Adult (alt. hyperparameters)

*

Speedup: 1.16

* ° N
CH ® Hom
[] + Y ‘K: L) ¢ (.; :L. -]
2x10°1 3x 1071
fairness metric
Hessian @® Fisher (ours) @ ERM

(b) Crime

Speedup: 1.17
*

*
x X
*

*
*@o©@ mm ¥

107!
fairness metric

% Hessian @ Fisher (ours) @ ERM

(d) Crime (alt. hyperparameters)

Figure 3: Additional experiment results with a different set of hyperparameters for the LiSSA algorithm.
Top row: baseline settings; bottom row: a configuration where Hessian-based influence may be unreliable

while FIM remains stable.

29

