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Abstract

Quantifying how infinitesimal perturbations of training data affect a model is key to diag-
nosing and improving learning systems. This task was addressed via the notion of influence
functions (Hampel, 1974; Koh and Liang, 2017; Koh et al., 2019; Bae et al., 2022). Following
classical works, whenever the underlying problem can be cast as a weighted empirical risk
minimization problem, many such influence estimators rely on the Fisher Information Ma-
trix (FIM). Following these lines, we provide a new accuracy analysis that characterizes the
asymptotic behavior of FIM-based influence estimators and compare these to Hessian-based
influence estimators, while we further extend the theory to objectives with non-differentiable
regularizers. The results obtained are broadly applicable and admit an efficient algorithm
with favorable computational complexity. Simulations on realistic setups demonstrate its
usefulness in terms of accuracy and computational efficiency in many learning settings.

1 Introduction

Understanding how a model’s behavior changes with slight modifications to its training data is crucial
for numerous machine-learning applications. These include detecting harmful patterns and constructing
adversarial examples (Koh and Liang, 2017; Koh et al., 2019; Basu et al., 2020), conducting efficient cross-
validation (CV) for model assessment and model selection (Beirami et al., 2017; Wilson et al., 2020), enabling
data unlearning without full retraining (Sekhari et al., 2021; Wilson et al., 2020), and evaluating robustness
to data-dropping (Broderick et al., 2020), among others. A common foundation for these tasks is the use of
second-order approximations to capture the model’s sensitivity to training data perturbations.

A classical technique for this task is the The-mest—widelyused-technique-in-this-space-involvesthe Newton

step, which leverages a gradient preconditioned by the inverse Hessian matrix. However, this approach can
be computationally prohibitive and numerically unstable, particularly in high-dimensional and non-convex
scenarios (Kunstner et al., 2019; Bae et al., 2022). Several studies have explored influence approximations
based on variants of the Fisher Information Matrix (FIM) (Singh and Alistarh, 2020; Sattigeri et al., 2022;
Bae et al., 2022; Grosse et al., 2023; Choe et al., 2024). Yet, despite growing empirical adoption, there
remains a lack of theoretical understanding to guide the selection and use of FIM variants across diverse
applications. Many of these works rely exclusively on the empirical FIM, which is known to underperform
in several settings. Moreover, prior theoretical analyses of influence functions have largely assumed smooth,
differentiable regularization, most commonly ¢35, which limits their applicability in practical settings. In-
deed, modern machine learning models frequently incorporate non-differentiable regularizers (e.g., ¢1/elastic
net/group sparsity penalties, etc.), and recent work has shown that even certain neural networks can be
framed as convex optimization problems with non-smooth regularization terms (Pilanci and Ergen, 2020;
Zeger and Pilanci, 2025). This motivates the need for influence methods that are not only theoretically
grounded but also scalable and valid under general, possibly non-smooth, regularizers.

In this work, we propose the Approximate Fisher Influence Function (AFIF), a practical and theoretically
justified framework for estimating influence in statistical models. AFIF uses the Fisher information matrix
derived from an exponential family structure, offering a computationally efficient alternative to Hessian-
based methods. Unlike prior influence techniques, which often fail to handle general regularization and lack
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formal guarantees for FIM-based approximations, our approach is provably accurate in convex settings and
supports a wide class of regularization types, including non-differentiable ones. Within the similar theoretical
framework as previous influence function works (Giordano et al., 2019b; Sekhari et al., 2021; Wilson et al.,
2020; Suriyakumar and Wilson, 2022), we provide an accuracy analysis for the guarantees of this influence
estimator, and discuss their asymptotic dependence on key problem quantities, thus extending the well-
established influence estimation and related unlearning analyses (e.g., (Giordano et al., 2019b; Wilson et al.,
2020; Sekhari et al., 2021; Suriyakumar and Wilson, 2022)), to FIM-based approximations that work even
with non-differentiable regularizers.

Contributions: We provide new accuracy guarantees for influence estimators that are based on the FIM
under standard convexity and regularity conditions, while not requiring differentiable regularizers. This
yields a principled extension of several influence frameworks (e.g., (Giordano et al., 2019b; Wilson et al.,
2020; Sekhari et al., 2021; Suriyakumar and Wilson, 2022)), upgrading them to a computationally efficient
FIM-based estimator that remains applicable with non-differentiable regularization. We demonstrate our
newly developed theory via a set of experiments that correspond to different influence measurement settings.

Notation: Random variables are represented by sans-serif fonts (x,y,z), and their realizations by regular
italics (x,y,z). The PDF of z is P,(-). Sets of values are indicated by capital calligraphic letters, such
as @ 2 {z1,29,...,2,}. Matrices are in bold capitals, with I; as the d x d identity matrix. We use
f(z) = o(g(z)) and f(z) = O(g(z)) when f(x)/g(z) = 0 and f(x)/g(x) = ¢ # 0 in the limit x — co. We
denote the Lipschitz constant of a function f by Lip(f) £ sup{||f(z) — f()||/ |z —y| : = # y € supp(f)}.
The inner product between two vectors 6; and 65 is denoted by 9? fy £ (01,63).

2 Problem Statement

Given a dataset & = (21, 29, ... z,,) where each z; is comprised of a covariate z; and a label or response y;,
it is commonplace to use empirical risk minimization (ERM) to obtain a predictive model to deploy. In this
work, we consider the problem of weighted ERM (wERM), i.e. given a loss function ¢(-), a regularizer 7 (-),
a regularization parameter A € [0, 00) and a set of weights w™ £ (wy, ..., wy), our goal is to solve for O(w™)
that is defined as

~

O(w™) £ argmin L(D,0, \,w™), (1)
0

1 n
L(D,0,\,w™) & = E wil(z;,0) + A ().
n
i=1

This formulation is equivalent to ERM when w™ = (1,...,1) 2 T, whose solution is denoted by tz)\(f) L

In many scenarios £(z,0) = —log(P (y|f(z;6))); that is, the loss can be interpreted as a negative log-
likelihood under a probabilistic model induced by a parameterized function f(x;8), often taken to be a neural
network. Moreover, we study the case where P (y|f(x;8)) belongs to an exponential-family (Wainwright
et al., 2008) whose natural parameters are f(z;6) and whose natural statistics are denoted by ¢(y), namely,
log(P (y|f(x;0))) = f(x; Q)Tt(y)flog(zgey exp(f(z;0)Tt(7)))+B(y) for some function B(y). This is satisfied
by many common loss functions in machine learning (see popular examples for such losses in App. B).
Remark 1. Following (Banerjee et al., 2005), this class of losses corresponds to loss functions that can be
captured by a Bregman divergence up to an additional term that is independent of f(x;8). See further
discussion in App. B.

2.1 Inference Objective

We study the inference objective, T(-,-) : R* x R® — R*  which maps a parameter vector § and a weight
vector w" to a desired inference target, where w"™ belongs to a family of weight vectors WW. In particular, we

I Throughout, we simplify our notation by omitting the explicit dependence on A when possible. For example, we write
L(2,0,w™) instead of L(92, 60, \,w™) whenever A = 0.
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focus on cases where w" corresponds to a leave-one-out weight vector, defined as
D7 E {w" wj = 1{j #1i}}.

This formulation captures a range of tasks, including:

Cross Validation To assess and select models, leave-one-out cross-validation (LOOCV) estimates model
performance by iterative training on all but one data point and evaluating on the omitted instance. Specifi-
cally, for each 7, it computes the evaluation metric:

T (OA(w") ,w") £ %E (zz,g(w”)> for w" e D7,

where @~ denotes the leave-one-out weight vectors, a(w") is the model trained with w™, and the corre-
sponding evaluation is taken on the omitted sample. Leave-k-out cross-validation follows analogously by
choosing weights that correspond to removing a subset of k observations in each iteration (Geisser, 1975;
Stone, 1974).

Machine Unlearning To remove the influence of a data point z;, the “unlearned model” is obtained by
computing

T (9 (w™) 7w”) =0(w") for w"ePD "
This ensures that the model parameters are updated as if z; were never included in training (Cao and Yang,

2015; Xu et al., 2024). Similarly, unlearning k data points follows the same formulation using leave-k-out
weight vectors.

Data attribution Understanding the contribution of a training sample z; € & to a model’s prediction on

a test point ziest (Koh and Liang, 2017) is formulated as comparing ¢ (ztest, GA(T)) with
T (§(wn) w”) — (ztest,é(wn)) Yy (ﬁ(w”)) for w" e D,
Attribution to a set of k points follows analogously.

Fairness Evaluation Recent works propose to evaluate the impact of z; on model fairness by computing

T (é\(w")) for w™ € @~ where T is a chosen fairness metric (Ghosh et al., 2023). For example, in a case one

wants to protect a binary attribute represented by samples {s;}?_;, then an appropriate function 7' (@(w”))
can usually be defined as (see, for example, (Shah et al., 2024)):

(6@, w") 27 (")) (2)
T (B(w")) = ‘Eﬁ(xls_o) [ 1 (x:00wm) } ~Eper [ 1 (x:0wm) ] ‘ , foruw" e,

Here, P(x = x|s = s) is the empirical distribution for s € {0,1} . For cases where the sensitive attributes
{s;} are continuous-valued, an alternative fairness metric can be defined via the x? divergence (Mary et al.,
2019; Shah et al., 2024)

~

T (g(wn) w) =T (g(wn)) =X’ (Pﬂx;?(w")),s”13f<x;5<wn>)]35) , foru® €97

The impact of removing a subset of k samples is assessed analogously by considering w™ € @~ X.

Remark 2. Each application typically targets a distinct downstream task. Our aim, therefore, is to place
them within a unified influence estimation framework rather than to develop task-specific formulations. Ac-
cordingly, we do not survey application-specific literature here and instead focus on the common formulation
as an influence-estimation problem.
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2.1.1 Inference Approximation

-~

Since O(w™) for each weight vector is often computationally expensive, many methods approximate the
inference objective using quantities derived from #(I). That is, instead of solving for A(w™) directly, we use
an approximation that combines the known vector (1) with a function of the weights w™:

B(w") ~ g <§(T),w”> 2 §(w™).
Typically, g(-,-) is derived from a Taylor series expansion around g(f), capturing the pth-order sensitivity of
the model parameters to small perturbations in w”™. Depending on p, this allows for efficient approximation
without requiring full retraining (Giordano et al., 2019b;a; Wilson et al., 2020). Two widely used approaches

to approximate the inference objective T' (5 (w™) ,w”) are:

1. Plug-in Estimator: This approach directly substitutes the approximation 6(w™) into the inference
objective:

T (tz)\(w"), w") ~T (5(10”) ,w”) =T (g (é(f),w") ,w”) .

~

2. Linearized Influence Approximation: Instead of replacing §(w™) directly, this method uses a first-
order expansion of T' (é\(w”) ,w”) around (1). The approximation function g(-,-) is then incorporated

into this expansion to estimate 6(w™):
T (é(w”) ,w") ~T (é(f) ,w”) + <V9T (5(1) w”) ,0(w™) — §(I)> . (3)

Both methods are shown in several works to reduce computational overhead while performing well empirically
(Koh and Liang, 2017; Koh et al., 2019; Wilson et al., 2020; Basu et al., 2020). However, the quality of the
approximation depends on how well g(-,-) captures the true parameter updates. In the next section, we
introduce a new method for creating such an approximation.

3 Measuring Influence Using the Approximate Fisher Matrix

In this section, we provide background on measuring influence using the FIM. Starting from the classical
Hessian-based formulation, we review why—and under what conditions—replacing the Hessian curvature
with the FIM yields a viable surrogate for influence measurement, and we highlight the associated com-
putational benefits. Our main contribution appears in Section. 4, where we build on this background to
provide new accuracy guarantees for FIM-based influence estimators in a general setting that may involve
non-differentiable regularizers.

A common approach to approximating é(w") is to optimize a surrogate to the loss function L(2, 0, A\, w™).
This paper focuses on methods based on quadratic approzimations of the objective (Cook and Weisberg, 1980;
Koh and Liang, 2017; Giordano et al., 2019b; Wilson et al., 2020), which provide computationally efficient
estimates while maintaining accuracy. These approximations yield solutions of the form:

~ ~

(w") = (1) — C (§(T),w") b (é(f),w") ,
where b(+,-) and C(,-) depend on the specific loss approximation and vary across applications.

A notable instance of this framework is the infinitesimal jackknife (1J) approximation (Giordano et al.,
2019b), denoted ' (w™), which is defined via a Newton step:

b (é(f),w”) S :LG:vgz (z 5@)) (wi — 1), (4)

¢ (01).7) = V3L (2.4(1). f)fl =1 (00), I)fl .
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Extensions of these estimators have been studied under the more general framework where the loss L contains
a non-differentiable regularizer (Wilson et al., 2020; Suriyakumar and Wilson, 2022).

o~

In this work, we examine, suggest a modified, computationally efficient second-order approximation of 6(w™)
using the natural gradient. We consider loss functions ¢ that represent the negative log-likelihood of a
parametric probabilistic model, £(z,0) = —log(P,x(y|f(x;0))), where P, (y|f(z;0)) lies on the probability
simplex of the output alphabet ) and is parameterized by 6 (Amari and Douglas, 1998; Amari, 2016; Banerjee
et al., 2005). As discussed in (Banerjee et al., 2005) (see also App. B), this property holds for a large class of
losses in machine learning. While the standard gradient identifies the direction that minimizes the objective
based on Euclidean distance, the natural gradient accounts for the underlying geometry (curvature) of the
parameter space. This is achieved by pre-multiplying the gradient with the inverse of the FIM, which
characterizes the sensitivity of the model’s likelihood function to changes in parameters. To that end, the
Hessian in (4) is replaced by:

F <§(T)) ZEuynp  ~ [Gyix 'gyT\X}

x,y;0=0(T)
Gyix = Vg log (Py|x;9 (Y\X; §(T)>) ,

where P, is the probabilistic model induced by the loss function (Martens, 2020). However, since the
covariate distribution Pj is typically unknown, direct computation of the expectation is infeasible. Instead,
we approximate the FIM using empirical estimates, averaging over the observed covariates and leveraging the
network structure to evaluate expectations over P, g (Martens, 2020; Kunstuner et al., 2019). The resulting
approzimate FIM is given by:

o~

-, A 1 T
¥ <@, (1)) B @ ;Z]EYNPY\X:I;G:?(I) [gylx . gﬂX]. (5)

Using this approximation, the Approzimate Fisher Infinitesimal Jackknife is defined similarly to (4), replacing
C with the approximate FIM F (9, g(f))

GUAF (ym) 2 §(T) — (F (9,(5@)))_1 b (é(f),w”) . (6)

Following classical results (e.g. (Schraudolph, 2002; Martens, 2020; Barshan et al., 2020)), when the loss
function is given by £(z,0) = —log(P (y|f(x;0))) and P(y|f) belongs to an exponential family, the approx-
imate FIM can be interpreted as a positive semi-definite (PSD) approximation of the Hessian. Specifically,
the Hessian satisfies:

-~

H (6(1),7) = F (2,0(1)) + R,

~

where F (9, G(T)) is guaranteed to be PSD, and the remainder term is given by?:

LS 03 (20(D) 108 (P (lf (w:0(D) ) )
i=1

This remainder term can be non-zero, for example, in cases where f(z;0) is non-linear in §. However, in many
settings, including commonly used models, R shrinks to zero (in Lg sense) as training accuracy improves
(Kunstuer et al., 2019; Martens, 2020) (see App. B, App. E). Thus, the approximated FIM is often viewed
as a PSD approximation of the Hessian.

Remark 3. The definition of the approximated FIM (5) matches the definition from (Kunstner et al., 2019,
Eq. 5). As discussed by Kunstner et al. (2019), some works call this quantity the empirical FIM. However,
we adopt the terminology of (Kunstner et al., 2019), and refer to the empirical FIM as the quantity which
uses the observed y € @ rather than taking expectation over P,y (Kunstner et al., 2019, Eq. 6).

2Here “multiplication” means the mode-3 tensor—vector product: for T € R®*©*IFl and v € RIFI, T x3v = ‘kFl

e L
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Remark 4. The approximate Fisher infinitesimal jackknife estimator éu’AF(w") has been considered as an
alternative to the jackknife influence estimator 6 (w™) in multiple different works, for example (Bae et al.,
2022; Barshan et al., 2020; Teso et al., 2021). However, as we show in Section. 4, our new analysis provides
new accuracy guarantees for such estimators in a more general setting that might involve a non-differentiable
regularizer.

3.1 Computational Efficiency By Using the FIM

Here. | fand | effici . . Husking(6) | he 1) b (4)-
One advantage of using the FIM instead of the Hessian is its more favorable computational efficiency, which
we demonstrate next. Both the Hessian and the FIM-based estimators require computing expressions of the

form At (é\(f), w") where A = F (9, é\(f)) in(9)and A =H (é\(f), T) for the IJ. Since directly inverting
a large d x d matrix is usually infeasible, efficient computation of inverse-matrix-vector products is essential.

However, since the FIM requires only first-order differentiation through the model, it will typically be much
more computatlonally eﬁiment relative to the Hessian- based alternatlve %%h&&eﬂd—we«ﬂe’%demeﬂs%&e—a

%ieﬁ—set—mﬁg(Koh and Llaung7 2017) wh}ekk%ehe&eemp&mﬂgﬂﬁveﬁse—ﬂessmﬂ—veetew%eé&ets—w&%he We
demonstrate this property by analyzing the application of the FIM with the LiSSA algorithm (Agarwal et al.,

2017). Similar efficiency arguments extend to modern variants of influence methods that rely on stochastic
inverse-matrix-vector product estimation, such as (Guo et al., 2021; Schioppa et al., 2022).

3.1.1 Stochastic Estimation

Stochastic estimation techniques rely on generating a sequence of estimators v; = (A_lx)j that converge
in expectation to A7'z as j — oo, where each v; utilizes only a small batch of training data, yielding a
computationally tractable way to estimate A~ 'z. As an example of the computational superiority of the
FIM-based methods, we will demonstrate the improvement for the celebrated LiSSA algorithm (Agarwal
et al., 2017), though similar arguments holds for most automatic differentiation techniques used for carrying
out Such calculations. The LiSSA algorithm approximates A ™! using the truncated Neumann series Aj_1 =

oI — oA)? for some ¢ > 0 3 which we further note can be equivalently written via the recursion
A_ =1+ ({I—-cA)A} !, Consequently, each v; is defined by v; = x + (I — ¢ A)v;_; with vg = z and
ﬁnal estimate v = ovy. The major computational hurdle is multiplying by A. When A depends on many
training points (e.g., F (9, é\(f)) or H (0( ), ) ), it is typical to estimate it by using a sampled batch of

training data. We now analyze the computational complexity of these calculations for each method.
Estimation with F (@, 5@)) . When A £ F(2,0), each Av; requires calculating

Vofi- (va log(P (yilf))) (U;’rvefi)T) (7)

where f; = f(z;;0). Given the form of V? log(P (y;|f(z;;6))) (see App. B), computing this expression
requires the vector-Jacobian product (VJP) a; = ’U;FVQ fi and the Jacobian-vector product (JVP) Vyf; -

(V3 108(P (il1)) a]
Estimation with H (é(f), T) For A2 H (0( ), ) each Awv; requires computing,

Vi log(P (yil fi))v;, (8)

which requires computing a Hessian-vector product (HVP) with respect to all model parameters.

3¢ is usually a small positive constant to stabilize calculations.
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Comparing Computations. Computing (8) requires roughly four evaluations of the entire model
(Schraudolph, 2002; Dagréou et al., 2024). In contrast, a JVP can be computed in a single forward pass
using forward-mode automatic differentiation (Bradbury et al., 2018). Since Vfc log(P (y;|f:)) is typically
simple and depends only on the number of model outputs (not on d), evaluating (7) requires just one
differentiation in backward mode that happens inside the VJP. We note that this operation is the only com-
putationally heavy backward differentiation, which usually requires one forward pass followed by a backward
pass (Dagréou et al., 2024), in contrast to direct HVP evaluation, which usually requires two backward
differentiations. Furthermore, given backward differentiation roughly requires twice the complexity of model
evaluation (DeepSpeed, 2024; Dagréou et al., 2024), this method significantly reduces FLOPs and accelerates
computations. We demonstrate these savings through simulations in Section. 5. We summarize the results
in Thl. 1.

Forward Backward FLOPs

(8) 0 2 O(4F)
(8) 2 1 O(4F)
(7) 1 1 O(3F)

Table 1: Number of differentiations in forward mode, backward mode, and FLOPs required to evaluate (7)
and (8), for different evaluation options from (Dagréou et al., 2024). F denotes the FLOPs needed for a
single model forward pass.

Remark 5. Although our analysis focuses on the LiSSA algorithm, for which implementations with the
approximated FIM have been previously explored (Bae et al., 2022), the fact that the FIM depends solely
on first-order gradients means these improvements are broadly applicable to many methods that require
differentiating through a large model using the structure of the curvature matrix. For example, similar
fundamental gains were observed in (Sattigeri et al., 2022) by employing efficient matrix-inversion techniques
based on rank-one updates.

Remark 6. The classical LiSSA method has been refined into more scalable variants (e.g., (Guo et al., 2021)),
but these approaches still rely on computing matrix—vector products. Replacing the Hessian with the FIM
in such implementations yields similar computational savings as in the standard LiSSA setting we show here.

4 Theoretical Analysis

Following Section. 3, since the FIM usually behaves as a viable replacement of the Hessian, which is also
usually more computationally efficient, it is necessary to have an accuracy analysis for tasks that use it
for influence measurement. To that end, we now present our new theoretical analysis, where we provide
guarantees on the accuracy of a general influence estimator that is based on the FIM. We then demonstrate
the applications of these guarantees for multiple different problems involving influence estimation. While
similar results are well understood for infinitesimal jackknife-based approximations (Giordano et al., 2019b;
Wilson et al., 2020; Suriyakumar and Wilson, 2022; Sekhari et al., 2021), our framework extends these
findings to also cover settings when one replaces the Hessian with the approximated FIM and further adds
a non-differentiable regularizer, showing that, in general, (6) can be safely used in some places currently
invoking (4).

4.1 Related work

Several works have established the accuracy of this approximation under specific conditions on the loss
function and the weight vectors w™ (Giordano et al., 2019b; Wilson et al., 2020; Suriyakumar and Wilson,
2022; Sekhari et al., 2021). These results hold under subsets of the following assumptions.

Assumption 1 (Curvature of the Objective). For each ¢ € [n], the function
(1 > 0), and the regularizer 7(6) is convex.

L10(z,0) is p-strongly convex

Assumption 2 (Lipschitz Hessian of the Objective). For each i € [n], the function +¢(z;, ) is twice differen-
tiable with an M-Lipschitz Hessian.
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Assumption 3 (Smooth Hessian of the Objective). For each i € [n], the function 1/(z;,6) is twice differen-
tiable with a C-smooth Hessian.

Assumption 4 (Bounded Moments). For given s, > 0, the quantity Bs, is finite, where

T

B & 13" Lip Vot ) ot (.000)
=1

Assumption 5 (Lipschitz Features). The feature mapping f(z;;6) is Cy-Lipschitz with a C r-Lipschitz gradient
for all ¢ € [n].

Assumption 6 (Lipschitz Inference Objective). The inference objective T'(6,w™) is twice differentiable, Cr,-

Lipschitz, and has a Cr,-Lipschitz gradient with respect to 8 for w™ € @~* and all i € [n].

For the examples in Section. 2, the following guarantees were proved to hold under subsets of Assumption. 1-
Assumption. 6:

Proposition 1 (LOOCV Approximation Bound ((Wilson et al., 2020), Thm. 4)). Suppose Assumption. 1,
Assumption. 2, and Assumption. 4 hold for (s,7) = {(0,3),(1,3),(1,4),(1,2),(2,2),(3,2)}. When the 1] is
used as a plug-in estimate for the LOOCYV objective

Ti(0) 2 T(,w™) = %é(zi,ﬂ),

with w™ € D¢, the error in this approzimation is bounded as

’i (Ti (§IJ(U1”)) - T; (é\(w")))‘ =0 (AjSi(;s " 5;122> .

wn

The next proposition relies on the (g, §)-unlearning definition from (Sekhari et al., 2021).

Proposition 2 (Machine Unlearning (Suriyakumar and Wilson, 2022)). Suppose £(z,0) is u-strongly conver,
twice differentiable, L-Lipschitz, with a C-smooth and M -Lipschitz Hessian for all z, and that w(6) is convez.*
When the 1J is used as a plug-in estimate for the objective T'(0) = 0, we have

~ OML CL? _
niJ n n N »
|7 (@) ~1 (@wn)| < 5z +mm forwtea
Furthermore, the algorithm returning 0% (w™)+C forw™ € D~ satisfies (e, §)-unlearning, where ¢ ~ N (0, cl)
with ¢ = (2uM I + CL2)Y2186/19)

epdn?
Proposition 3 (Data Attribution ((Koh et al., 2019), Prop. 1)). Suppose Assumption. 1, Assumption. 2,
and Assumption. 6 hold, and that w(0) = ||0||*>. Define Cy £ max;ey HVE (Zzaé\(T))‘ . When the 1J is used

as a plug-in estimate for the inference objective

T(0) = ((z1est,0) € (21, B(D))

the approximation error is bounded as
~ ~ MCr, C? -
’T (9 (w”)) -T (OIJ(w”))‘ < 27733@, forw™ e 27
n2p
While certain loss functions may not be Lipschitz, Assumption. 2 and Assumption. 4 require only that
the normalized losses evaluated on the training set satisfy Lipschitz continuity— a condition that generally
holds in practice (Giordano et al., 2019b, Assump. 3). Similarly, when the inference objective is of the form

4These assumptions strengthen Assumption. 1-Assumption. 4, requiring Lipschitz continuity for any z, not just the training
samples {z;}.
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£(Ztest, 0), Lipschitz continuity is required only with respect to the test point ziest. As long as ziest is not
pathological, this assumption is typically satisfied.®

Additionally, the framework in (Giordano et al., 2019b) assumes differentiable regularization. In certain
cases, similar approximations extend to settings where the regularizer is non-differentiable (Wilson et al.,
2020; Suriyakumar and Wilson, 2022).

4.2 The Approximate Fisher Influence Function

We now present an influence estimator that is based on the FIM and its accuracy guarantees. As mentioned,
our estimator accommodates non-differentiable regularizers, and our analysis provides new theoretical guar-
antees for influence measurement using the FIM. First, we introduce an additional technical assumption
about the loss function, which is essential for our proofs.

Assumption 7. The loss functions are of the form £(z,0) = —log(P (y|f(x;0))) where P (y|f) belongs to
a regular exponential family whose natural parameters are f(x;0). Moreover, we further assume that

HV? log (P (y|f(x,9)))H <@ for some @ > 0.
To accommodate non-smooth regularizers, we utilize the proximal operator, defined as:

proxy. (v) £ arggnin {(v=0)"D(v—0)+2x7(0)}.

We note that the usage of the proximal operator in influence measurement tasks has been done previously
in the context of cross-validation (Wilson et al., 2020) and machine unlearning (Suriyakumar and Wilson,
2022). Our formulation below extends this to settings that use the FIM instead of the Hessian.

Our main lemma, Lemma. 1, defines the approximate Fisher influence and bounds its discrepancy from
6 (w™) for w™ € D1
Lemma 1. Suppose Assumption. 1, Assumption. 2, Assumption. 5, and Assumption. 7 hold. Define E,, £

LG = ‘Vgﬁ (zl,g(f))‘ and g; = %. Then, the approximated Fisher

S| V108 (P (wilf (25:0(1))))

influence function, defined via

f(w") = Proxiggﬂ(l))

(@J’AF(w")) , foruw™e D (9)

satisfies

, forw™ e D" (10)

2 021‘ G2 5.0 E
‘< QC39:  Mg:  25.CrE,

HH(w )= 0" n2u? n2u3 nu?

Proof sketch. The proof separately bounds the distances between (i) 8 (w™) and 6% (w"), and (ii) 6% (w")
and 0YAF (w™) for w™ € @~*. The first bound follows from (Wilson et al., 2020, Lem. 1), while the second
leverages the closeness of the Hessian and the FIM to show that the estimates remain close. Full proof is
provided in App. E. O

Similar to prior results (Wilson et al., 2020; Suriyakumar and Wilson, 2022; Sekhari et al., 2021), the first
two terms in (10) depend on global problem constants (Lipschitz coefficients, strong convexity parameter,
etc.) and the gradient at the ith training point. The third term depends on E,,, which simplifies due to the
exponential family structure of the loss and is given by (see App. G)

[V 5108 (P (3ilf (2:0D)) )| = \t<yi> S 119)
Moreover, E,, can be shown to serve as an upper bound on the gradient at the optimum g(f) (see App. B,
App. C). In App. B, we further demonstrate how this term relates to the absolute training error in clas-
sification and regression problems. Specifically, as training error decreases, this term also diminishes. In

5The assumption that T is Lipschitz is consistent with classical works on influence functions; see (Koh et al., 2019, Prop. 1).
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the extreme case where ¢ (zl,g(f)) = 0 for all 4 € [n], this term is exactly zero (see App. E). Thus, we
expect the excess term in (10) to be small whenever the model’s training loss is small. For the remaining

terms in Lemma. 1, the worst-case discrepancy between g(w”) and 6 (w™) for all i € [n] is controlled by
Jmax = max g;. By Assumption. 4 with (s,7) = (0,1), gmax is finite. Next, we present our main theorem,
i€[n

which establishes error bounds for the approximated inference objective T'().

Theorem 1. Suppose Assumption. 1, Assumption. 2, and Assumption. 5-Assumption. 7 hold. Let g(w") be
defined as in (9) for w™ € D=, Then,

HT (é(wn)) T (é(w”)) H < Cn, (11)

2QC35:  Mg? N 25:CE,
n2u? n2u3 nu?

~ 2
1 2QC%q; Mg  25,CE,
O, < 17 29 29it)

n2y.2 n2p3 nu2
and,
HT (a(w")) T (a@)) . <VT (5( )) f(w™) — f (12)

2QC35;  Mg? 2gl ZOngl
<Cr, 22 + n2u .

Proof sketch. Both bounds follow from the smoothness properties of 7' (Assumption. 6), combined with
Lemma. 1 and Lemma. 2 from App. D. Full proof is provided in App. H. O

Theorem. 1 enables a systematic derivation of theoretical guarantees for FIM-based influence approximations
across various application areas. Moreover, as discussed in (Giordano et al., 2019b, Sec. 3), for weight vectors
w™ = D~ we expect lim, o0 gmax = 0. Consequently, whenever E,, = O(n~1) , Theorem. 1 ensures that

T (g(w”)) and the Taylor-series approximation (Equation (3) with w™ € 2~%) converge to T (g(w")) for
all i € [n]. However, as we demonstrate in Section. 5, in practice, g(w") is often a good approximation of
) (w™) even when E,, is finite.

Next, building on Theorem. 1 and by leveraging influence function techniques established in prior works
(Giordano et al., 2019a; Wilson et al., 2020; Sekhari et al., 2021; Suriyakumar and Wilson, 2022), we derive
results analogous to those presented in Proposition. 1 through Proposition. 3.

Corollary 1 (LOOCYV). Suppose Assumption. 1, Assumption. 2, and Assumption. 4- Assumptzon 7 hold with
(s,7) = {(0,2),(0,3),(1,2),(1,3), (1 4)}. Let T (0,1"\') = L4(2;,0) 2 Ty(9). When 0(w™) from Lemma. 1
is used as a plug-in estimate for w™ € D=7, the error in the approximate cross-validation estimate satisfies:

3 (0. (3(1) i) <o (M e i)

11202 12

Corollary 2 (Machine Unlearning). Suppose Assumption. 1, Assumption. 2, Assumption. 5, and Assump-
tion. 7 hold. Assume further that g; < G for all i € [n]. Then, for the inference objective T(0) = 0, we
have:

[ (3wm) 7 (A | < 222 MO 20Oy e o

Furthermore, the algorithm returning g(w”) + ¢ satisfies (,0)-unlearning, where ¢ ~ N (0,cl) and:

n22 n2y3 nu2 c

(2620]%6' MG? zaéfEn> 21og(5/49)
C = .

10
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Corollary 3 (Data Attribution). Suppose the assumptions of Theorem. 1 hold, T(0) = £(ztest,0) —
£ (st (1)) and G & ma Gi. Then,
€

@) -2 )] <o T+ T 4 ),
T (#(1)) -7 (0) - (vr (001) .8 (1) - (D)
<0 (c;chce MCrCf | CrCE CTlafEnC£>

2 2 an

nZu n2ud n2u
The proofs for these corollaries rely on applying Theorem. 1 for the settings described in Proposition. 1 -
Proposition. 3 and follow via similar analysis techniques as presented in the prior works (Giordano et al.,
2019b; Wilson et al., 2020; Sekhari et al., 2021; Suriyakumar and Wilson, 2022) (see App. I). Fo—further
derﬂeﬂ-str&te—theugeﬂerahty—ef—eur—appreaeh We further provide guarantees for the fairness assessment task

described in Section. 2, for which currently there is no theoretical analysis. The proof is in App. 1.4.

Corollary 4 (Fairness Evaluation). Suppose Assumption. 1, Assumption. 2, and Assumption. 5 -

Assumption. 7 hold. If T be given by (2) and Cyp £ m?)]< gi. Then,
€N

‘T (5(1’“\1‘)) —-T (§(fn\i))’ <0 (C?Cz N MC;C? N CféfceEn> .

n22 n2p3 nu?

formulatlon further extends to addltlonal problems in machlne 1earn1ng and statistics beyond the specific
applications discussed (e.g., data dropping (Broderick et al., 2020)).

Remark 7 (Practicality of Technical Assumptions). Our analysis relies on standard regularity conditions on
the per-sample losses {£(z;;0)}, the functions {f(x;;0)}, and the objective T'(6,w™). These are broadly con-
sistent with those used in closely related work (e.g., (Giordano et al., 2019b; Sekhari et al., 2021; Koh et al.,
2019)). In particular, Assumption. 1-Assumption. 3 mirror Assumptions 1-4 of Giordano et al. (2019b) for
the data-fit term (i.e., the loss excluding ), while Assumption. 4 is analogous to the bounded-moment con-
dition in Wilson et al. (2020, Assumption 2). Moreover, Assumption. 6 matches the Lipschitz/smoothness
requirements that are standard in classical influence-function analyses (e.g., (Koh et al., 2019)), and As-
sumption. 7 is satisfied by many common objectives functions in machine learning. Finally, Assumption. 5
typically holds in many practical settings (see, for example, (Virmaux and Scaman, 2018)).

Remark 8 (Non-Differentiable Regularizers). Our framework allows for a general regularizer term (not nec-
essarily differentiable), and can be calculated efficiently as long as its proximal operator can be computed
easily. Since training models with general regularization (beyond Ls) is an increasingly popular method for
adding robustness, feature sparsity, and interoperability to models (see (Lemhadri et al., 2021; Li et al.,
2021) and references therein), we see this as a major advantage of our method. Moreover, we note that this
differentiates our method from previous works that considered the FIM in influence estimation tasks, such
as (Bae et al., 2022; Choe et al., 2024; Park et al., 2023). Furthermore, as mentioned in (Wilson et al., 2020;
Suriyakumar and Wilson, 2022), since only a single step of the proximal operator is needed, its calculation
is feasible and can be made computationally efficient in many practical applications. Thus, within a sim-
ilar framework of influence estimation, the inclusion of this proximal operator is not expected to add any
additional substantial computational complexity upon the currently existing schemes..

Remark 9 (General Non-Convex Setting). While the Hessian of a non-convex objective can be indefinite, the
Fisher Information Matrix (FIM) is positive semidefinite by construction. This eliminates negative-curvature
directions and typically yields more stable curvature solves, which in turn, as observed in multiple prior
works, improves the numerical robustness of influence estimates in practice (Martens and Grosse, 2015; Bae
et al., 2022; Park et al., 2023). Our theoretical results complement these empirical findings by characterizing
conditions under which replacing the Hessian curvature with the FIM preserves influence accuracy.

11
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5 Experiments

We evaluate the utility of the approximate Fisher influence through experiments of two different settings.
Both Fisher-based and Hessian-based influence functions are implemented within the same codebase, dif-
fering only in the automatic differentiation components used to compute (7) and (8). We first validate our
theoretical framework by showing that whenever the technical conditions are met, FIM-based influence es-
timates are nearly indistinguishable from Hessian-based ones, despite being significantly faster to compute.
We then transition to practical scenarios that challenge our theoretical assumptions, where we show that
the influence estimator with the FIM might also outperform estimators that uses the Hessian, while running
faster. Both cases simulate scenarios where a non-differentiable regularizer is used. Detailed experimental
procedures are provided in App. J. Our objective is to demonstrate the advantages of AFIF across different
tasks, as reflected by our analysis, namely, to show that:

1. Within the theoretical framework analyzed in this work, it achieves similar utility as the Hessian-based
techniques;

2. It can be computed more efficiently relative to the Hessian-based techniques;

3. It reliably estimates influence even in cases with non-differentiable regularizers.

5.1 Logistic Regression With Non-Linear Natural Parameter Map

Our first experiment considers a logistic regression objective with a non-linear natural-parameter map. Given
data {(z;,v;)}", with 2; € R? and y; € {0, 1}, we fit

~ . 1 & ) «
9=argmln{2(10g(1+€"’) —yim)+>\|‘9lll}7 ni :9T¢($i)+§ 115 (13)

n
9eRe i=1

where ¢(-) : R? — RP is a fixed feature map (implemented via random Fourier features (Rahimi and Recht,
2007)), and « > 0 introduces a non-linearity in the parameter-to-logit map. We generate the base vector
6 such that only 10% of its entries are non-zero. As shown in App. J, the per-sample loss is the negative
log-likelihood of a regular exponential family with uniformly bounded curvature in the natural parameter,
and the regularization term ensures strong convexity. Our goal is to estimate the K-fold CV loss as a
function of A. For each split, we approximate the leave-fold-out refit using influence functions, where the
required linear solver takes the form H™'v (Hessian-based) or F~'v (FIM-based). Rather than forming or
inverting these matrices explicitly, we compute these products using the conjugate gradient method with
Hessian-vector products and Fisher-vector products obtained via automatic differentiation (see App. J for
details). As shown in Figure. 1, the Hessian- and FIM-based influence estimators yield nearly identical CV
loss estimates across A\. Moreover, the FIM-based estimator is consistently faster to compute.

5 Influence solve time CV estimates

C
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Figure 1: CV loss estimation for logistic regression with non-linear natural parameter map

12



Under review as submission to TMLR

CV Estimates and Calculation Time
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Figure 2: Held-out test loss, exact five-fold CV, FIM-based approximate CV (Corollary. 1 adapted to leave-k-
out), and average per-epoch compute time (averaged across folds) for a two-layer network on the Friedman-1
dataset (Friedman, 1991). The time represents the average accumulated time to create one CV estimate for
a certain number of epochs.

5.2 Cross-Validation

In our second experiment, we evaluate both the computational cost and the accuracy of our influence-based
CV approximation. We use a two-layer network on the Friedman-1 dataset (Friedman, 1991) and track
performance across training epochs. To facilitate the need for ¢; regularization, we have artificially added
random features to the training set, such that a feature selection is needed for optimal performance, and
we thus trained the model with ¢; regularization. To approximate LOOCYV efficiently, we use five-fold CV
and apply our FIM-based update (Corollary. 1, adapted to leave-k-out) and also a variant that uses the
Hessian instead of the FIM. For each epoch we report: (i) the held-out test loss, (ii) exact five-fold CV
(obtained by retraining the model on a subset of the training set and testing it on an held-out validation
set), (iii) our FIM-based approximate CV and an Hessian-based approximate CV, and (iv) the average wall-
clock time to compute each CV quantity across the five folds. As is clear from Figure. 2, our influence
measurement technique allows for a reliable CV approximation and at a substantially reduced computation
time, supporting the claim that our method gives an option for measuring influence in situations where one
uses non-differentiable regularizers, and that further our framework generalizes across different settings.

6 Concluding Remarks

In this work, we introduced the AFIF, a method for quantifying influence in machine learning models.
We presented how the FIM can be used instead of the Hessian in multiple influence measurement tasks,
and we showed why this is fundamentally faster than existing influence function baselines, yet provides
similar error guarantees across a set of tasks. Moreover, our framework extends the applicability of influence
measurement to scenarios that involve non-differentiable regularizers. In our empirical evaluations, we have
further demonstrated the computational efficiency of AFIF relative to traditional Hessian-based techniques
and its usefulness in providing reliable influence estimates across a set of tasks and with general regularizers,
showing that 1. under the similar theoretical framework it provides similar performance as the previously
existing Hessian-based schemes, while requiring lower computation time and 2. it provides similar benefits
in practical settings that deviate from these assumptions.

13
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Future Research. Generalizing our analysis to more complex, real-world influence measurement methods
that are based on the FIM and currently lack rigorous theoretical support (for example, techniques based
on the Kronecker-Factored FIM (Choe et al., 2024)) is a promising future research direction that will open
the door to systematically determining when and how such methods can be most effectively applied across
diverse tasks. Moreover, developing computationally efficient variants of higher-order influence measurement
techniques, such as those explored in (Giordano et al., 2019a; Basu et al., 2020) (see also the discussion in
(Koh and Liang, 2017)), by utilizing the underlying statistical nature of the optimization problem, is another
future research direction that is currently under investigation.
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A Definitions and Useful Lemmas

In our paper we use the next classical definitions from the convex optimization theory (Nesterov, 2013).

Definition 1 (Matrix Operator-Norm). For any matrix A we define its operator-norm by |[|A[| =

sup —[[Av] /]|
vER:||v||#£0

Definition 2 (Strong convexity). Let 5 > 0. A function f(-) is S-strongly convex if and only if
s
f) = f(@) + VT @)y =)+ 5 e =l , ¥(w,y) € dom(f)
Definition 3 (Lipschitz). A function f(-) is C-Lipschitz if

1f(x) = FW)ll < Cllz = yll, ¥V(z,y) € dom(f).

In that case, C is called the Lipschitz constant of f and is denoted by C' £ Lip(f(z)).
Definition 4 (Smooth). If f(-) is differentiable, then f() is K-smooth if

V(@) =Vl < Klz—yl, v(z,y) € dom(f).
In that case, K is called the gradient-Lipschitz constant of f and is denoted by K = Lip, (f(z)).
Definition 5 (Lipschitz-Hessian). If f(-) is twice differentiable, then f(-) is M-Lipschitz Hessian if
V2 f (@) = V2 (W), < Mz —yll, ¥(z.y) € dom(f)

op —
In that case, M is called the Lipschitz-Hessian constant of f and is denoted by M £ Lip,(f(z)).

Throughout the manuscript, we will further make use of the next connections between Lipschitz coefficients
and gradient bounds for differentiable functions.

Corollary 5 (Nesterov (2013)). Let f(x) be a differentiable function VY € dom(f). Then, f(x) is C-Lipschitz
if and only if

IVf(z)| < C, Yz € dom(f).
If f(x) is twice-differentiable Vo € dom(f) then f(x) is K-smooth if and only if
IV2f(2)]lop < K, Y € dom(f).

B Example for Losses From an Exponential Family

We now present a few examples of commonly used loss functions in machine learning that can be viewed
as the negative log-likelihood of an exponential-family model. A more comprehensive list can be found in
Banerjee et al. (2005). Specifically, let

Uy, f(2:0)) = —log (P (y|f(x:9))),

where P(y | f(z;6)) belongs to a (discrete) exponential family. Throughout this paper, we adopt the
following form of an exponential family:

Y|
log (P (4] f(2:0)) = f(:0)T t(y) — 1og(§jexp{f<x;eft(z7>}) T B, (14)

y=1

where t(y) are the natural statistics and f(z;0) are the natural parameters.® The term 3(y) depends only
on y (thus does not affect parameter learning) and ensures proper normalization. Below, we illustrate
two popular examples of loss functions (see also (Martens, 2020, Sec. 9.2)) that arise naturally from this
exponential-family framework.

6The above is a discrete version; for continuous ), one replaces the sum with an integral.
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1. Cross-Entropy Loss. A standard approach in multi-class classification over || classes is the softmax
parameterization:

1Y
log (P (yl(x:0))) = (£(2:0)), ~log | Y exp {(F@:0));} | wie (L. V]

Here, f(z;0) is a vector of length |)|. By defining e, as the one-hot vector with a 1 in the y-th entry and
0 elsewhere, we see that

[
log P (y | f(a:6)) = f(x30)Te, —log | _exp {f(@:0)Te;} |,

y=1

thus matching (14) with natural statistics ¢(y) = e, and natural parameters f(z;0). The corresponding
loss,

Uy, f(x:0)) = —log (P (y|f(x:0))),

is the well-known cross-entropy.

2. Mean Squared Error (MSE). In a regression setting with a continuous target y € R, a unit-variance
Gaussian model with mean p = f(z;0) leads to

log (P (yf(2:0))) = —3(y— f(@:6))" = f(x;0)y — % - M

Comparing with (14), this corresponds to an exponential family whose natural statistics are (y, y2) and
whose natural parameters are ( f(z;0), —%) The negative log-likelihood here,

(y, f(230)) = —log (P (y|f(:0))) = 1 (y — f(2;6))* + (constant),

is precisely the mean squared error (MSE) loss up to an additive constant.

B.1 Bregman Losses

Following (Banerjee et al., 2005, Thm. 4), whenever the representation P(y|f(x;6)) correspond to a regular
exponential family, then the loss — log(P(y|f(z;0))) can be expressed as

—log(P(ylfo(x))) = dy(t(y), n(fo(x))) +log(by(t(y))) + C

where u(fo(x)) = E[t(y)] is the expected value of ¢(y) using the underlying exponential family distribution,
dy(-,-) is a Bregman divergence and C' is a constant. As shown by (Banerjee et al., 2005, Table 1) (see also
Das et al. (2025)), this result implies that many classical losses in machine learning, including cross-entropy
and mean squared error, can be viewed as special cases of Bregman divergences, and further belong to the
exponential family framework discussed in our work.

B.2 Properties of the Cross-Entropy and MSE Losses

We now demonstrate how the assumptions on loss minimization, Hessian boundedness, and simplified second-
order gradients follow for the two loss functions introduced above.

1. Cross-Entropy Loss. Recall the parameterization

log (P (y|f(2:6))) = (f(2:6)), —log | D exn{(f(:6));} |,

yey
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and let

(v J(a:0)) = ~log (P (vl (x:0))) = log | Y- exp {(f(z:0));} | — (J(a:0)),.

yey

We focus first on the gradient of the log-probability itself, which is given by :

Vilog (P (ylf(x;0))) = Vs

(f(:0))y —log | D exp { (f(w:0));} 1
yey
= e, — softmax(f(z;6)),

where e, is the one-hot vector selecting entry y, and softmax( Iz 9)) is the vector of class probabilities
assigned by the model.

Zero Gradients Under Perfect Prediction. For any training example (z;,y;), if the model classifies
it with perfect confidence, i.e.
(softmax(f(z;;0(1)))). = 1,

Yi

then Vlog P(yi | (s é(f))) = 0. Consequently, if the model perfectly predicts all training labels, then
all these gradients vanish simultaneously.

Bounded Hessian. Next, we show that the second derivative (the Hessian) of log (P (y|f(x;0))) with
respect to f is bounded in norm. From the above,

Vs log (P (y]f(2:0)) = e, — softmax(f(:6)),
so taking another derivative,
Vilog (P (ylf(x:0))) = — Vg |[softmax(f(x;0))].

Denote Cy £ V [softmax(f(z;6))]. By the well-known derivative of softmax, the (i, j)th entry of Cy is

0
(Cy)ij = 8(f(x;e))j[softmax(f(:lc;(9))11 = softmax(f(x;0)); [6”» - softmax(f(:r;@))j],

which implies:
(Cy)ii = softmax(f(z;0)); - [1 — softmax(f(z; 9))1-]7
(Cy)ij = —softmax(f(z;6)), - softmax(f(z;0)); (i # j).

Because each softmax(f(z;6)); € [0,1], the entries of Cy lie in [—1,1], and indeed one can show ||Cy ]|
is bounded by a constant (depending only on |)Y|, not on the dimension of the parameters). Hence
V? log (P (y|f(z;6))) = —Cy is also bounded in norm, establishing the desired Hessian bound.

2. Mean Squared Error (MSE). For the MSE loss arising from a unit-variance Gaussian,
1 2
log (P (y|f(2:0))) = —35 [y~ f(z:0)]",
the gradient with respect to f(x;8) is simply
Vi log (P (ylf(z;0) =y — f(;0).

Hence, if at é(f) the model predictions perfectly match all targets, this gradient becomes zero for each
training pair, indicating perfect minimization of the training error.
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Bounded Hessian. Since
V4 log (P (ylf (2:0))) = =V} [3 (v~ f@:0)?] = = (1) = I

the Hessian with respect to f is simply the identity (for the one-dimensional f). Its norm is therefore
trivially bounded by 1, and it does not depend on the dimension d of the parameters in 6. Moreover,
the Hessian can be evaluated with no complicated operations—just the constant identity matrix at each
sample.

C Gradient Bound for Minimizing Losses From the Exponential Family

Given a training set {(x;, y;)}?; and the loss function (14) we derive gradient of the empirical risk (1) which
we aim to minimize. To that end, we note that

nVeL(2,0,1) = Zf (23:0)t(y;) —log | > exp{f " (z::0)t(i)} | + B(w:)

gey
Yaey VI f(wi; 0)t(9) exp{fT (x:;0)t(7)}
Y geyexp{f T (i 0)t(71)}
Y gey t@) exp{f T (zi;0)t(7)}
dgeyexp{fT (i 0)t(g1)}

Vo F(2i30) (i) = Bynpycs,o [EY))

|

(ng(xi; 0)t(y:) —

=1

I
M3

v() f(xzv ) <t(yz) -

s
3 |
-

&
Il
-

and the norm of this gradient is upper-bounded by
n[|VoL(@,0, 1) < 37190 i O [t() — By, 1]
i=1
Thus, whenever the features are Lipschitz, we have

962@.0.0)) < LY tt) - By, 109
i=1

and we expect this upper bound to be small at the minimizer 6 = é(f) As a consequence, we note that the
sum Yo [[t(yi) — Ey~py, .., [H(y)] || is in fact an upper bound on the gradient. Thus, when evaluated on

0= g(f), we expect this quantity to be small, establishing the validity of the arguments from Section. 4.2,
which claims that the additional factor that depends on E, is indeed of negligible contribution to the final
influence estimate.

D Proof of Closeness of <T> and é@n\i)

We will use the next lemma throughout our proofs.

Lemma 2. Let 0 (T”\’) defined as in (1) and let %E(zi,tﬁ)) be a differentiable function in 0 for any z; € D
and 10(z;,0) + Am(0) be a p-strongly convex function in 0 for any z; € D. Then, Vi € [n]

Hé (T”\i) T)H < = max lV@f (zz,é(f))“

16 71 n

Proof. Similarly to the developments from (Wilson et al., 2020, App. B.1), we get that
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|0 () -é (i’)H2 < % ‘(é(f) —0 (I"\i))T (Vo(L(@,0 (1), A\, T"V) = L(2,0 (1), A, 1))

2 |/a Ao N\ T A
il _ n\i )
< 2101 - (1)) Ve (s m)]
2 A YR A
il _ n\i .
< 2ot () o (010)]
where all the steps are by Cauchy-Schwartz inequality. The proof follows by maximizing over i. O

We note that whenever %E(zi,ﬁ) is Lipschitz, the upper bound is finite. Moreover, since we normalize
by n, the bound will go to zero with n whenever the gradient grows as o(n), as is usually the case in
many popular machine learning problems (see (Giordano et al., 2019b, Sec. 3)). We further note that
under a more restrictive assumption that the £(z;, ) are Lipschitz then the bound is given by i—g for C' =

max HV9€ (zl,é (T))

i€[n]

‘and6~'<oo.

E Proof of Lemma. 1

The proof uses the following lemma from Wilson et al. (2020):
Lemma 3 (Optimizer Comparison, Wilson et al. (2020)). Let

Ty, € argminpy(z), ,, € argmin s(x).
x x
If each @; is p-strongly convex and po — @1 is differentiable, then
"
5”%@1 - 5%2”% < ’(9%1 - mcpz)—r (V(p2 — 801)(xs01))’ .

Proof. For the sake of the proof, we will assume that the FIM and the Hessian are invertible matrices. Under
the probabilistic interpretation of the loss elements, the overall loss function for w” = 1"\ is

L(2,0.0, 1) 2 5™~ log(P (31 (25:6))) + A (6)
J#i

and we assume that P (y|f(x;0)) belongs to an exponential family whose natural parameters are the features

f(z;0), namely, log(P (y|f(x;0))) = fT (x;0)t(y) — log(z'ljy:‘1 exp {f T (z;0)t(7)}) + B(y) for some natural
statistics ¢(y). For this model, we have

Vo log(P (y|f(2:0))) = Vo f(x;0)V ylog(P (ylf(x;0))).

Thus, the approximated FIM, F(9,6), is given by

F(2,0) = %ZEwa‘X:m,,e [Vof(xi:0)V s log(P (vl f(x:;0))Vf log(P (y|f (2::0)))Vy f(x:; )]
i=1

S Vol OBy o [~V 08(P (51 (i3 0)))] T fi:0) (152)
1=1

- _% ZVQf(xi? 0)V$log(P (yil f (i )V, f(x:;0)

i=1

where (15a) is by using classical properties of the exponential family, and where the last equality is since the
Hessian of an exponential family with respect to the natural parameters f is independent of y (see App. G).
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Moreover, we note that the Hessian of the loss is given by
H(9, 1"\ = VZL(D,0,T\Y)
=V2iL(2,0, 1"\ — 1)+ V2L(2,0,1)

=%M9@PN—ﬁ+%§j%ﬂmmvwmpwumwm+F@w»

i=1

We start by defining the next functions

V1(0) 2 2L(D,0,\, 1"\) = 2L(D, 0, 1"\ + 2An(0),
Va(0) 2 =267 (O(1), 17\ - (A1) — 0) + (A1) — 0) T V2L(D,0(1), ") (O(T) — 0) + 2\ (6)
Ps(0) £ =207 (O(1), 1"V) - (0(1) — 0) + (B(1) — )" - F - (6(1) — ) + 2Am(0)

=0 — (O(1) —F (01, ")) TFO — (AT) — F~L - b(0(1), 1"\))) 4 2Am(0) + J

where J is a constant (which is independent of 6) and F is an abbreviation for F(2,0(T)). We first note
that the minimizer of ; is A(1"\?) and that the minimizer of 5 is 6(1™\") from (9).

We note that Assump. 1 and Assump. 2 guarantees that the overall loss, L, is u-strongly convex and that
the difference L(D,H(1), A\, 1"\)) — L(D,0(1), A\, 1) is differentiable. Thus, using Lem. 2, which follows by
applying the optimizer comparison lemma with L(D,0, A, 1"\") and L(D,0,\,1) allows us to derive the
following upper bound

291
o

-,

I16(T) — 6"\ < 7 IV6(z:, 0(D))| £

(16)

The optimizer comparison lemma (Wilson et al., 2020, Lem. 1) with ¢; and 5 and Cauchy-Schwartz
inequality yields

gllé(f"\i) —O(T™V)[* < OT™) = 9(T™) (Y (93 — 1) (B(I™V)))]
< 0(T™) = ANV (5 — ) (BA™))|

We divide both sides by [|§(1"\{) — §(1"\")||, and by using the triangle inequality we get

I0I™) = 9™ < [V (ws =) 0T
< V(3 = 2) (O(I™V)) + V(&2 — 1) (O(T™)| (17)
< V(s = w2) @A) + [V (2 = 01) O™
< IV2L(2,0(1), ") = F(2, 6D)16(D) - O] + (T (2 = 1) (OT))]

IV2L(2, 6(1), " - T) Zvofxl, )V s log(Plyil f (i BANI(T) — 0™ |

+M(%—mxuwmn
,%Z = Vo (@i 0(1)) V log(P(yil f (2i: 0(1))) V4 f (w3 6(1)) (18)

Mgl
22

IN

+ngf 2i;0(1))V s log(P(y;| f (xi: 6(1)))I| +
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where (17) is since the differences 13 — 19 and 19 — 91 are differentiable and where (18) is by using the next
bound:

184 (wz—wl)( (1™ )))II

= 2/]p(0(1), T"V) + V2 L(2, 0(T), ") (O(1"V) — 6(T)) — VL(D,H(T™\), T"V)]|
=2|VL(2,0(1),T"V) + V2L(2,0(T), ") (0(1"V) — 6(T)) — VL(D,0(T"V), TV (19a)
<M- Hé(f"\i) — o (19b)
- 41\4293

I

where (19a) is by the structure and the convexity and differentiability assumptions on L, leading to

VL(2,0(1),T) = 0, (19b) implied by the Hessian Lipschitzness of L (see also [3, Lem. 1.2.4]) and the
last inequality is by Lem. 2.

We further use the triangle inequality to get the next upper bound
Koy Arn\i n\1 N7 Nt
5o V) =0T S, (IIVef(xz, 0(1)) V3 log(P(yi| f (215 0(1)))) Vg f(:;0(D)|

MgZ

+ZIIV3f(wi;9(T))Vf log(P(yil f (x:; 6(D)))I) +

i=1

and by using Assumption. 5, Assumption. 7 and the boundedness of the Hessian of the loss relative to the
features (see App. B.2) we get the final bound

N l Mg
1™ — (i < QQQ 0415 f (s (1) |2 + 2290

13

+ 25 vaef 22 0(0)V 5 log(P(yil f (22 0(D)))|

2QC%g; M 2 ZC
< ]; n gz g f
np

Z IV 7 log(P(yil f (s 0(1)))) |
where @ is a constant s.t. HV? log(P (y|f (z; 9)))” <Q. O

We now emphasize how the third term disappears whenever our model interpolates the training data (namely,
U(z,0(1)) = 0,¥i € [n]). In that case, we have P(y;|f(z;;0(I))) = 1, Vi € [n] 7. Thus, following the
notation of App. G we have that Ey~p [t(y)] = t(y:) and since Vs log(P(yi|f(z:;0(1)))) = t(y;) —
Eyepy .\ o [t(y)] we get that the third term is zero.

F Comment on Lemma. 1 When 7(0) is Twice-Differentiable

Whenever 7(6) is twice differentiable, an equivalent argument to that of Lemma. 1 can be stated without the
usage of a proximal operator. Specifically, since in this case the entire loss elements %E(zi, 0) + A\m(0) can be

approximated using a second-order Taylor expansion, and a solution that uses C (é(f), f) =F (9, é(f)) +

AV27 (é(f)) leads to similar arguments as those from App. E. For this approximation, we define the solution

via
7 (T"\i) 29(1) - (F (9, é(f)) L AV2y (é(i‘)))_l b (é(n I”\i)

and a similar analysis to that of App. E can be carried out and to lead to similar guarantees. An example
for such arguments from a similar application can be found in (Wilson et al., 2020, Thm. 2).

In the continuous case, this amounts to P(y;|f(z:;0(I))) converging to a delta-function, concentrated around the value y;
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G Fisher Information Matrix for Exponential Families

Using the fact that the distribution P (y|f(x;#)) belongs to an exponential family, namely

[

log(P (ylf (2:0))) = fT (x;0)t(y) — log (Z exp {1 (; 9)t(17)}> +5(),

we can directly evaluate the terms Ey,.p __ ., [Vf log(P (y|f(:v;9)))V}— log(P (y|f(x,9)))} and
By Pca, 0 [ Vi log(P (ylf(xi; 9)))} to establish the desired equality. First, we find that:

Vilog(P (ylf(2:0))) =V (fT(:v; 0)t(y) — log (Z exp {f ' (x; ﬂ)t(y)}))

yey
=t(y) — Eyopy, o [EY)]
and
Eymry.. o [V 108(P (] (2:60)))V ] log(P (y]/ (x:6)))]
= By |(H0) = By o BODCEY) = By LD T

Next, we observe that:

_ i) ex T (2 0)t(3
—V?logw(mf(a:;e))):vf(ZM“Z") p {7 >t<y}>

)
> gy & LT (@ OHG)}

S0 R 0 A 0] [ oAU 10%)) € WS 1 07)
= Eynbao [(0) = By o BODEY) = Eyony, DT

Moreover, we note that this final result holds for any y. This concludes the proof. [

H Proof of Theorem. 1

Proof. We start by writing the Taylor expansion of T'((1"\%), 1"\%) around A(1"\?) to get 8:
T(é(fn\i)7fn\i) _ (é( n\v) T"\i)—l—VTT

+ 5 (0T — 0

(T, V) (O(I™) — 6(1"\)) (20)

(0(
1 ™n n\i\ Tn\i\/a/7n\¢ Ar1n\i
+3 TV TVET (i (1), M) (O(T"Y) — 6(T"Y))

where Opiq(1"\)) = O(1"\1) + & - (B(T"\') — (T"\')) for some x € [0,1]. By (20) and by the Lipschitz

assumptions on T we get

T O™, ) = T(O(I™), IV |
= [V T(OI™), T)(B(T™) - (1" ))
%( (T"N) = 9(I™) VT (G (™), T (B(1™V) — (T™\)) |
< VT (BI™), TV)|[|6(T™) — (T (21a)

+ §||V3T(9mid(1n\i)a V) [lop BT\ — 6(T™V) |2

[N PO 1 O Ao\
< Cpy[[0(T"Y) = 0(I™) | + 5 O, [0(T™) — 6T, (21b)

8the existence of the Taylor expansion of T is guaranteed by Assumption. 6
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The proof is completed by substituting (10) into (21b). To prove (12), we write the expansion of T'(6(1"\7))
around (1), to get

IT(O(T™), V) = T(9(T), T"V) = VoT(B(T), T"V)(6(1"\) — (1))
= [IVoT(6(1), T"V)(6(T"V) — (1))
+ %(9@"\") = 0(0) TVET (Bunia, T"V)(B(T™) — (D))

~

< Oy [|6(T™) = (V)| + CT2||9(T) oI\

where g = O(T"\) + & - (O(T) — G(T"\)) for some & € [0,1]. Substituting (10) and (16) concludes the
proof. O

I Proofs of Corollary. 1 - Corollary. 4

1.1 Proof of Corollary. 1

We now show how to use Theorem. 1 to approximate LOOCV with similar guarantees to the Hessian-based
technique from (Wilson et al., 2020). Throughout the proof, we will use a refined version of (21b), which
requires the Lipschitzness of the T'(-,1"\?) only at §(I). We start by defining ACV 2 L3 (2, §(1"\%))
and recall that CV £ 1 37" ¢(z;, §(1"\))). Then, similarly to App. H we get

JACV — CV|

1 & J N
=D e B — U=, 90”“))‘
i=1

< ;Z 20,037\ = (0, 03\)

< - Z HV@K zi, 0(1"\Y) H <2QCfgz jgzé + 2@5:2E"> (22a)
b A Lip(Vt(z1.6)) (Qf%;g . 2‘@;%;&)2

< izj; <vaz(z,»,é(f)) |+ Lin(Vat(:. ) (ég;» (2220527 N %ii N 2@;%&) (22b)

2 n2p3 nu2

~ ~ - 2
2QC7g;  Mg? | 20:Cr By
n2u

+ %Lip(vﬂ(% 0)) (

where (22a) is by using (21a) together with the bound from Theorem. 1 and by replacing the Lipschitz
constants C, and Cr, of the objective with the corresponding gradients from (21a) and (22b) is by using
the Taylor expansion of Vgl(z;, #(1"\")) around (1) and by using Lemma. 2. Expanding this expression
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yields

IACV — CV| <

2’% 20fE> Zvazzl, T))H2+<uf )iz::vaﬁzz,

M n
8QC? 8CfE > ZLlp Vol(z,0 HV@E (2, 0(T ))H3

+

un4 pin3

+

e n4) ZLlp (Vol(z;,0 HVgE 2, 0(1 ))H4

(¥
(
(:
(2@204 202E
(S
(v
(

_l_

ptnt unQ

) ZLlp (Vol(zi,0)) || otz 01 ))H2

+

2ch ) ZLlp Vol(zi,0 Hvaz (2, 0(1 ))H3

+

) ZLlp (Vol(z;,0 HVM 2, 0(1 ))H4

n4

MC’fE,L)
+

ZLlp (Vol(z0,0)) || Vot(z, 01 ))H3

+ (W ZLlp Vgg ZZ, HV@K 22,9( )) ’
. . . . C? Bo2 Cf En Boa M Bos
whose decay rate is dictated by the first two terms and is given by O rErEai + et ) O

.2 Proof of Corollary. 2

The proof follows similarly to that from (Suriyakumar and Wilson, 2022) by using the bound ¢; < G in (10)
and then using the Gaussian mechanism for differential privacy (Dwork et al., 2014, App. A). O

We note that Corollary. 2 parallels a similar result to that of Proposition. 2, with different Lipschitz constants
and with an additional term that depends on E,.

1.3 Proof of Corollary. 3

The proof is by substituting §; = || Vgl(z;,8(1))| in (11) and (12) and maximizing over i. O

We note that this proof parallels a similar result to that of Proposition. 3, with two additional terms: one
that depends on E,, and the other that depends on the Lipschitz coefficient of the features C'y.

1.4 Proof of Corollary. 4

By using the definition of T from (2) and using the linearity of expectation and the triangle inequality we
get that the Lipbchitz coefficient of T from (2), Cry, is given by 2C. Then, the proof follows by substituting
;= |[Vol(z,0(T))|| in (11) and maximizing over . O

J Experimental Details

All experiments were implemented using the PyTorch (Paszke et al., 2019) framework and ran on an NVIDIA
A100 GPU.
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J.1 Datasets
J.1.1 Logistic Regression With Non-Linear Natural Parameter Map

To generate the data, we first draw a fixed Random Fourier Feature (RFF) map ¢ : RY — R? by sampling
W € RP*4 with i.i.d. Gaussian entries and b € R? with i.i.d. uniform entries on [0, 27], and setting

o(z) = \/jcos(Wx +0b).

We then sample covariates z; ~ N (0,1y) i.i.d., and generate labels y; € {0,1} conditionally independently
according to a Bernoulli model with logistic link,

Y | x; ~ Bernoulli (o(n})), ny = H*Tqb(ﬂﬂz') + %HG*H%,

where o(t) = 1/(1+e~") denotes the sigmoid function. The parameter 6* was sampled as a vector uniformly
distributed on the unit sphere. Finally, the RFF parameters (W,b) are held fixed after sampling, and both
training and test sets are drawn independently from the same generative process.

J.1.2 Friedman-1

We use the Friedman-1 regression benchmark Friedman (1991). We draw feature vectors with coordinates
ii.d. Unif(—1,1) and generate responses as

2
Ypn = 10sin (7 xg)ng)) +20 (xsf) - %) +10zP + 525 4 0.1z,, z, ~ N(0,1).
Only the first five coordinates are informative; the remaining d — 5 are nuisance. To study a higher-
dimensional, sparse regime, we append 300 i.i.d. random features independent of (x,y) and train with ¢;
regularization. Unless stated otherwise, we use N = 2000 samples and d = 100 base features (before
appending the 300 random features).

J.2 Models

All models were trained either using a cross-entropy loss or using an MSE loss, implemented via
torch.nn.CrossEntropyLoss() and torch.nn.MSELoss(). We have conducted our experiments with an
L, regularization, namely, 7(6) = ||6]%.

Logistic Regression With Non-Linear Natural Parameter Map: Recall that our model is character-
ized by the conditional distribution

ply|n)=om? 1 —om) v =exp{yn—A@m)},  A(n) =log(l+e"),

which is a regular one-parameter exponential family with natural parameter n and sufficient statistic T'(y) =
y. In our setting, the natural parameter is given by n = f(z;60) = 0" ¢(z) + $||0||3, where ¢(-) is fixed. The
log-partition function A is twice continuously differentiable and satisfies

A'(m)y=a(m(l—0o(n) <5 forallneR,

so the curvature of the log-likelihood with respect to the natural parameter is uniformly bounded. Con-
sequently, the per-sample loss £(z;,0) = —logp(y; | f(x;;0)) is smooth in 6 (since f is smooth) and its
second-order behavior is controlled via the chain rule by the bounded curvature of A together with bounds
on the derivatives of f. Finally, adding the Ridge term 3 ||0|| ensures strong convexity of the objective (in
particular, for A > 0). However, we note that the function f(x;#) is non-linear in 6, as desired.

Two-Layer Network: We have tested our models with a two-layer fully-connected network, with continuous
output (namely, no activation on the last layer). The activation function for the hidden layer was chosen as
SeLU activation. The other parameters we have used were:
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1. The width of the hidden layer was chosen to be 100.

2. We trained the model using the SGD optimizer, with a learning rate of 10~%, batch size of 32, and a
weight-decay of 1074,

3. We also added an ¢; regularization component of strength 10~2.

4. We varied the number of epochs from 1 to 10.

J.3 Details for Logistic Regression With Non-Linear Natural Parameter Map

For each value of the regularization parameter A, we train the model by minimizing (13) using the Adam
optimizer with batches of size 4096, 15 epochs, and a learning rate of 2 - 10~2. Influence computations are
performed at 6 using K-fold splits (with K = 10): for each fold, we form the mean validation loss

Lyal(0) = 1 > l(zi,0),
=

and compute its gradient gy, = V@Lval(é\) via automatic differentiation. We then solve a linear system
Au = v where A is either (i) the observed Hessian H = Vthrain(g) + Al or (ii) the Fisher information
matrix F evaluated at 6. Both methods use the same linear solver and differ only in the matrix—vector
product: Hessian-vector products are computed as u +—> Vthrain(O) u using forward-over-reverse automatic
differentiation, while Fisher-vector products are computed as u +— J T W .Ju using Jacobian-vector _products
(JVPs) and vector-Jacobian products (VJPs), with W = diag(p;(1 — p;))/|7 | and p; = o(n;(0)). The
linear systems are solved with conjugate gradient up to tolerance 107% and a maximum of 300 iterations.
Finally, the influence-based estimate of the fold CV loss is obtained by applying the corresponding first-order
parameter update to 6 (i.e., the approximate leave-fold-out refit) and evaluating the validation loss under
the updated parameters; the reported CV curve is the average of these fold estimates.

J.4 Details for Cross-Validation

We have performed a leave-k-out CV to estimate the test loss. In particular, we have trained the previously
mentioned two-layer model on the Friedman dataset from App. J.1.2, and set the width of the middle layer
to be 100. In our experiments, we have fixed the L; regularization coefficient on 1072, the learning rate on
10—, the batch size on 32, and we have further trained the model with SGD with added weight decay of
strength 10~* (added in addition to the L; regularization). Our (full and approximate) CV estimates are
over five different folds. For the CV approximation, we have calculated quantities of the form u = F~ 1o
(correspndingly for v = H™'v) by solving the linear system Fu = v (Hu = v) and where we have used
PyTorch’s autograd for calculating quantities of the form Fu (Hu). The linear system was solved using
scipy.sparse.linalg.cg running with maximum number of iterations set to 5000.
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