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Abstract

Computing properties of molecular systems rely on estimating expectations of the
(unnormalized) Boltzmann distribution. Molecular dynamics (MD) is a broadly
adopted technique to approximate such quantities. However, stable simulations
rely on very small integration time-steps (10�15 s), whereas convergence of some
moments, e.g. binding free energy or rates, might rely on sampling processes on
time-scales as long as 10�1 s, and these simulations must be repeated for every
molecular system independently. Here, we present Implicit Transfer Operator (ITO)
Learning, a framework to learn surrogates of the simulation process with multiple
time-resolutions. We implement ITO with denoising diffusion probabilistic models
with a new SE(3) equivariant architecture and show the resulting models can
generate self-consistent stochastic dynamics across multiple time-scales, even
when the system is only partially observed. Finally, we present a coarse-grained
CG-SE3-ITO model which can quantitatively model all-atom molecular dynamics
using only coarse molecular representations. As such, ITO provides an important
step towards multiple time- and space-resolution acceleration of MD. Code is
available at https://github.com/olsson-group/ito.

1 Introduction
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Figure 1: Implicit Transfer Opera-
tor: A multiple time-scale surrogate
of stochastic molecular dynamics.

Numerical simulation of stochastic differential equations
(SDE) is critical in the sciences, including statistics, physics,
chemistry, and biology applications [1]. Molecular dynamics
(MD) simulations are an important example of such simu-
lations [2]. These simulations prescribe a set of mechanis-
tic rules governing the time evolution of a molecular system
through numerical integration of, for example, the Langevin
equation [3]. MD grants mechanistic insights into experi-
mental observables. These observables are expectations, in-
cluding time-correlations, of observable functions (e.g., pair-
wise distances or angles) computed for the Boltzmann dis-
tribution µ̂(x) / exp[��U(x)] corresponding to the po-
tential U(·) : ⌦ ! R of a M -particle molecular system,
x 2 ⌦ ⇢ R3M kept at the inverse temperature � = 1/kT .
However, stable numerical integration relies on time steps, ⌧ ,
which are strictly smaller than the fastest characteristic time-
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scales of the molecular system (10�15 s, e.g., bond vibrations), yet many molecular systems are
characterized by processes on much longer time-scales (10�3

� 10�1 s, e.g. protein-folding, protein-
ligand unbinding, regulation). Consequently, we need infeasibly long simulations to characterize
many important processes quantitatively due to the slow mixing in ⌦.

In this work, we present the implicit Transfer Operator (ITO, Fig. 1) as an effective way to learn
multiple time-step surrogate models of the stochastic generating distribution of MD. To our knowledge,
this is the first surrogate modeling approach that allows for the simultaneous generation of stochastic
dynamics at multiple different time resolutions. By adopting an SE(3)-equivariant generative model,
we further demonstrate stable long-time-scale dynamics in increasingly difficult settings where an
increasing number of degrees of freedom are marginalized. Our approach can be several orders of
magnitude more efficient than direct MD simulations and can be made asymptotically unbiased if the
generative model permits exact likelihood evaluation. Our current results do not generalize across
different thermodynamic ensembles or across chemical space, but show strong generalization across
different time-scales.

Our main contributions are

1. the Implicit Transfer Operator (ITO) framework for learning generative models for
multiple time resolution molecular dynamics simulations,

2. implementation of ITO using a denoising diffusion probabilistic model (DDPM) [4] with
strong empirical results across resolutions: SE(3)-equivariant ITO model (SE3-ITO) gives
stable long time-scale simulations and self-consistent dynamics across multiple time-scales
for molecular benchmarks and Coarse-grained SE3-ITO model (CG-SE3-ITO) trained on
large-scale protein folding data sets shows quantitative agreement with major dynamic and
stationary observables of interest.

2 Background and Preliminaries

Notation Throughout this work, diffusion time, related to Diffusion Models (see Sec. 2), and
physical time are represented using superscripts and subscripts, respectively.

Molecular dynamics and observables Molecular dynamics (MD) is a wide-spread simulation
strategy in computational chemistry and physics. In this approach, the time-evolution of N particles
configuration in Euclidean space x 2 ⌦ ⇢ R3M , is modeled via a stochastic differential equation
(SDE) with a drift term based on a potential energy model U(x) : ⌦ ! R. An important aim of MD
is to compute:

1. Stationary observables: Of = Eµ[f(x)]

2. Dynamic observables: Of(t)h(t+�t) = Ext⇠µ[Ext+�t⇠p⌧ (xt+�t|xt)[f(xt)h(xt+�t)]]

where µ is the normalized Gibbs measure, and p⌧ (xt+�t | xt) is a conditional probability density
function encoding the time-discrete evolution of the molecular system x, with time-step �t = N⌧

as prescribed by a dynamic model, e.g. Langevin dynamics [3], integrated with time-step, ⌧ . N

is typically a large integer. The functions f, h : ⌦ ! R are observable functions or ‘forward
models’ describing the microscopic observation process, e.g. computing a distance or an angle.
The observables, Of(t), and Of(t)h(t+�t), include binding affinities and binding rates of a drug to a
protein, respectively. Conventionally, these observables are estimated from simulation trajectories
using naive Monte Carlo estimators.

For illustrative purposes, we assume the temporal behavior of a state, x, follows the Brownian
dynamics SDE (Itô form)

dxt = �rU(xt)�
�1 dt+

p

2DdW, (1)
where D = �

�1
�
�1 is a diffusion constant, with friction � and inverse-temperature �, and dW is a

Wiener process. Using the Euler–Maruyama time-discretization, with time-step ⌧ , simulating the
SDE corresponds to simulating a Markov chain with the transition probability density

p(xt+⌧ | xt, ⌧) = N (xt+⌧ |xt � ⌧rU(xt)�
�1

, ⌧

p

2DI3M ) (2)
where N specifies the multi-variate Normal distribution, and I3M is the 3M -dimensional identity
matrix. If ⌧ is sufficiently small to allow stable simulation, the invariant measure, of the Markov chain
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(eq. 2), is the Boltzmann distribution (normalized Gibbs measure) corresponding to the potential
energy model U(x) at �. Consequently, by simulating a large number of steps we can draw samples
from µ to compute stationary observables and compute dynamic observables by simulating �t = N⌧

steps enough times with initial states distributed according to µ. Explicit simulation make such
computations extremely costly, and consequently, there’s much interest in speeding up the calculations
of these quantities.

Transfer Operators Let ⇢ specify an initial condition, a probability density function on ⌦. We can
define a Markov operator T⌦ : L1(⌦) ! L

1(⌦) using a transition density (e.g., 2):

[T⌦ � ⇢] (xt+⌧ ) ,
1

µ(xt+⌧ )

Z

xt

µ(xt)⇢(xt)p(xt+⌧ | xt)dxt (3)

which then describes the µ-weighed evolution of absolutely convergent probability density functions
on ⌦ according to eq. 1, with time-step, ⌧ . Such an operator is called the (Ruelle) Transfer Operator
[5, 6]. We can express the operator using a spectral form

T⌦(⌧) =
1X

i=0

�i(⌧)| iih�i| (4)

where only eigenvalues �i(⌧) = exp(�⌧i) depend on the time-step, ⌧ . i are characteristic
‘relaxation’ rates associated the left and right eigenfunction pair, �i and  i [7]. We can compute the
operator with time-lag N⌧ via the Chapman-Kolmogorov equation (see Sec. A.1, for details)

T⌦(N⌧) =
1X

i=0

�i(⌧)
N
| iih�i|. (5)

Equivariant Message Passing Neural Networks In this work, we are concerned with MD, where
the time-evolution of a molecule is governed by a force field F(·) , �rU(·) derived from a central
potential U(·). While U(·) is invariant to group-actions of the Euclidean group in three dimensions
(E(3)), its corresponding force field is E(3)-equivariant. We call a function, f ‘invariant’ under a
group-action g iif f(x) = f(Sgx) and ‘equivariant’ iff Tgf(x) = f(Sgx), where Sg and Tg are
linear representations of the group element g [8].

The force field F(·) is equivariant under E(3) group-actions. However, in practice, classical molecular
dynamics simulations do not change parity during simulation, and consequently, our data distribution
only contains a single mirror image of molecules.

We extended the PaiNN architecture [9], an E(3)-equivariant message passing neural network
(MPNN), making it SE(3) equivariant by breaking its symmetry with respect to parity. We in-
troduced this minor modification as we experienced sporadic parity changes when sampling with
a model trained using the PaiNN architecture, and introducing this modification resolved the issue.
Briefly, PaiNN embeds a graph G = (V,E), where nodes, V , exchange equivariant messages through
edges within a local neighborhood defined as N (i) = {j | krijk  rcuto↵}, where rij is the distance
between nodes denoted i and j, and rcuto↵ is the maximal distance at which nodes are allowed to
exchange messages. Messages are pooled and subsequently used to update node features, thereby
enabling exchange of equivariant information. We achieve parity symmetry-breaking by constructing
the equivariant messages in a manner that depends on cross-products between equivariant node
features and direction vectors between interacting nodes. The cross-product is an axial vector (i.e.,
does not change sign under parity). We combine these vectors with polar vectors (change sign under
parity). We refer to this modified PaiNN architecture as ChiroPaiNN (CPaiNN). Further details are in
the Appendix D.

Diffusion Models The diffusion model (DM) formalism is a powerful generative modeling frame-
work that learns distributions by modeling a gradual denoising process [4, 10, 11]. In DMs, we pre-
specify a forward diffusion process (noising process), which gradually transforms the data distribution
p(x0) to a simple prior distribution p(xT ), e.g., a standard Gaussian, through a time-inhomogenous
Markov process, described by the following SDE (Itô form)

dxt = f(xt
, t) dt+ g(t) dW. (6)
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where 0 < t < T is the diffusion time, f and g are chosen functions, and dW is a Wiener process.
We can generate samples from the data distribution p(x0) by sampling from p(xT ) and solving the
backward diffusion process (denoising process)

dxt =
⇥
f(xt

, t)� g
2(t)rxt log p(xt

| t)
⇤
dt+ g(t) dW (7)

by approximating the score field rxt log p(xt
| t) — or equivalently a time-dependent Nor-

mal transition kernel [4] — with a deep neural network surrogate rxt log p̂(xt
| t,✓). We

can use the learned score field to define a neural ordinary differential equation (ODE) [12,
13], or probability flow ODE [14] — eq. 7 less the term g(t) dW and scaling g

2(t) by
1/2 — which we can leverage for efficient sampling and sample likelihood evaluation.

ChiroPaiNN
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Figure 2: ITO ✏̂ networks (A) SE3-ITO used for molec-
ular application (B) MB-ITO, used for experiments with
the Müller-Brown potential. ⇤pos and ⇤nom are positional
and nominal embedding respectively, Concat is a concate-
nation, and MLP is a multi-layer perceptron. Arrows are
annotated with input and output shapes.

Here, we are concerned with building
equivariant probability density functions
under SE(3) group actions. Conse-
quently, we parameterize the DM us-
ing a learned Normal transition kernel
of a time-inhomogenous diffusion pro-
cess. By restricting the transition ker-
nels p(xt+1

| xt) to be equivariant un-
der SE(3) group-actions, the marginal of
xt+1 is always invariant [15]. Combin-
ing the equivariant transition kernel with
an invariant prior density [16] ensures
the whole Markov process is invariant to
SE(3) group actions. Consequently, com-
bining an isotropic mean-free Gaussian
as prior with ChiroPaiNN-parameterized
transition kernels, we can construct an
SE(3) equivariant diffusion model.

3 Implicit Transfer Operator

Molecular simulations are Markovian
with transition density (e.g. eq. 2) and
Normal, however, the latter only for very
small physical time-steps ⌧ . Here, we
aim to approximate the long-time step
transition probability pN⌧ (xN⌧ | x0) to
allow for one-step sampling of long-time-scale dynamics.

As data we consider simulation trajectories. The trajectories are generated by explicit simu-
lation which corresponds to sampling ancestrally from the small time-step transition density:
X = {x⌧ , . . . ,xN⌧} ⇠ p(xn⌧ | x(n�1)⌧ ), with n = {1, . . . , N}. In general, the state variable
x, contains both position and velocity information of the particles, along with other details such as
box dimensions, depending on the simulation scheme and target ensemble. Throughout this study,
we only consider the position information.

We build a surrogate of the conditional transition probability distribution — pN⌧ (xN⌧ | x0) — from
MD data. In practice, we learn a generative model xt+N⌧ ⇠ p✓(xt+N⌧ | xt, N) with a conditional
denoising diffusion probabilistic model (cDDPM) of the form

p(x0
t+N⌧ | xt, N) ,

Z
p(x0:T

t+N⌧ | xt, N) dx1:T (8)

where x1:T are latent variables of the same dimension as our output, and follow a joint density
describing the backward diffusion process (eq. 7) and xT

⇠ N (0, I). We define a conditional sample
likelihood as

`(I; ✓) ,
Y

i2I

p✓(x
0
ti+Ni⌧ | xti , Ni) (9)

where I is a list of generated indices i specifying a time ti and a time-lag (⌧ ) integer multiple
Ni, associating two time-points in the trajectory, X. Following Ho et al., we train the cDDPM by
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optimizing a simplified form of the variational bound of the log-likelihood [4],
L(✓) = Ei⇠I,✏⇠N (0,I),tdiff⇠U(0,T )

⇥
k✏� ✏̂✓(extdiff

ti+Ni⌧
,xti , Ni, tdi↵)k2

⇤
, (10)

where extdiff
t ,

p
↵̄tdiffxt +

p
1� ↵̄tdiff ✏, with ↵̄tdiff =

Qtdiff
i (1� �i) and �i is the variance of the

forward diffusion process at diffusion time, i. ✏̂✓(·) is one of the two ITO neural network model
architectures shown in Fig. 2, and is directly related to the score [4].

If the data used to train the conditional transition density is generated by MD simulation with
time-invariant potential energy (drift), we can express the generating transition probability as a
decomposition of time-variant and -invariant parts (Proof, see Sec. A.2)

p(xN⌧ | x0) =
1X

i=1

�
N
i (⌧)| {z }

time-variant

↵i(xN⌧ )�i(x0)| {z }
time-invariant

(11)

where ↵i and �i are time-invariant projection coefficients of the state variables on-to the left and right
eigenfunctions �i and  i, of the Transfer operator T⌦(⌧) [5] and |�i(⌧)|  1 is its i’th eigenvalue.
Consequently, we call our surrogate modeling approach implicit transfer operator learning.

As outlined in Algorithm 1, we generate the indices i, e.g. the tuples (xti , xti+Ni⌧ , Ni), in a manner
such that the model is exposed to multiple time-lags, sampled uniformly across orders of magnitude,
used for gradient-based optimization with Adam [17]. As a result, as illustrated in eq. 11, the model
will be exposed to multiple different linear combinations of the eigenfunctions of T⌦(⌧) in each batch
during training. We conjecture that this data augmentation procedure will enable better learning of
implicit representations of these eigenfunctions and, consequently, better generalization across time
scales and yield more stable sampling.

3.1 ITO Architectures

We present two architectures for learning cDDPMs encoding ITO models, one for molecular applica-
tions SE3-ITO and one for the Müller-Brown benchmark system (Fig. 2). The SE3-ITO architecture
uses our new SE(3) equivariant MPNN (ChiroPaiNN, described in sec. 2) to encode xt, N , and
atom-types, z, to invariant features, s, and equivariant features, v. We concatenate s with an encoding
of the diffusion-time tdi↵ and process them through a MLP (multi-layer perceptron). The output from
the MLP are passed along with v and extdiff

t as input to a second ChiroPaiNN module which predicts
✏̂. More details on the architecture and hyperparameters are available in Appendices D and E.

Algorithm 1 Training. DisExp is defined in Ap-
pendix E

Input: n MD-trajectories; X =
{xj

0, . . . ,x
j
tj}

n
j=0, ITO score-model; ✏̂✓,

max lag; Nmax

X
0 = Concatenate({xj

0, . . . ,x
j
tj�Nmax

}
n
j=0)

while not converged do
xt ⇠ Choice(X 0)
N ⇠ DisExp(Nmax)
tdi↵ ⇠ Uniform(0, T )
Take gradient step on:
r✓

⇥
k✏� ✏̂✓(extdiff

t+N⌧ ,xt, N, tdi↵)k2
⇤

end while
return ✏̂✓

Algorithm 2 Ancestral sampling. Sampling
from p✓ is defined in Appendix E, Algorithm 4

Input: initial condition x0, lag N , ancestral
steps n.
Allocate T 2 R(n+1)⇥dim(x0)

T [0] = x0

for i = 1 . . . n do
xi ⇠ p̂✓(T [i� 1], N)
T [i] = xi

end for
return T

4 Long time-step stochastic dynamics with Implicit Transfer Operators

4.1 Datasets and test-systems

To evaluate how robustly ITO models can model long time-scale dynamics, we conducted three
classes of experiments, ranging from fully observed, high time-resolution, to sparsely observed and
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Table 1: VAMP2 score-gaps. Difference in VAMP2-scores of ancestral sampling from ITO models
with fixed lag and stochastic lags, compared to baseline Langevin simulations. Perfect match is 0,
negative and negative values correspond to under and over estimation of meta-stability, respectively.
Standard deviations on last decimal place are given in parentheses.

system � lag 10 100
Müller-Brown (fixed) -0.0351 (5) -0.1189 (2)
Müller-Brown (stochastic) -0.0312 (4) -0.0970 (5)

low time resolution. Details on training and computational resources are available in Appendices E
and F, respectively.

Müller-Brown is a 2D potential commonly used for benchmarking molecular dynamics sampling
methods. We generate a training data-set by integrating eq. 1 with the Müller-Brown potential energy
as U(x) (For details, see Appendix B.1). This dataset corresponds to a fully observed case.

Alanine dipeptide We use publicly available data from MDshare [18]. Simulation is performed
with 2 fs integration time-steps and data is saved at 1 ps intervals. The simulations are performed
in explicit solvation, but we only model the 22 atoms of the solute, without considering velocities.
Consequently, this dataset is only partially observed.

Fast-folding proteins We use molecular dynamics data previously reported by Lindorff-Larsen
et al. on the fast-folding proteins Chignolin, Trp-Cage, BBA, and Villin [19]. The data is proprietary
but available upon request for research purposes. The simulations were performed in explicit solvent
with a 2.5 fs time-step and the positions was saved at 200 ps intervals. We coarse-grain the simulation
by representing each amino-acid by the Euclidean coordinate of their C↵ atom as done previously
[20], leading to 10, 20, 28, and 35 particles in each system respectively. Consequently, these data
correspond to a mostly unobserved case.

4.2 Stochastic lag improves meta-stability prediction

In sec. 2, we conjecture that exposing an ITO model to multiple lag times during training leads to better
and more robust models. To test this, we trained a set of models on the Müller-Brown dataset with
fixed constant lags N = {10, 100, 1000} (fixed lag) and a single model with N ⇠ DisExp(1000)
(stochastic lag) using the MB-ITO model (Fig. 2).

We find that the model trained with a stochastic lag systematically outperforms models trained with
fixed lag (Table 1). We gauge the agreement by comparing Variational Approach to Markov Processes
(VAMP)-2 scores [21] (for details, see Appendix G), between model samples and training data
and find that both models tend to underestimate meta-stability compared to training data slightly.
However, the model trained with stochastic lag is marginally closer to the reference values. We note
that the difference in the ability of fixed and stochastic lag ITO models to capture long-time-scale
dynamics is also reflected in the learned transition densities (Fig. 5). Together, these results suggest
that lag-time augmentation during training leads to better implicit learning of the Transfer operator’s
eigenfunctions than training with a fixed lag.

To test whether this phenomena extends in cases where we do not have full observability and to
molecular systems we followed the VAMP2-gaps of alanine di-peptide as a function of epoch for
models trained with a fixed lag and a stochastic lag (Fig. 6). We find that the VAMP-2 gaps for
stochastic lag and fixed lag in this case are statistically indistinguishable across all epochs. These
results suggest that we can without compromising on accuracy build multiple time-scale surrogates
by training with stochastic lag-times.

4.3 Efficient and accurate self-consistent long time-scale dynamics

We evaluate the ITO models trained with stochastic lags to capture long time-scale dynamics in a
self-consistent manner, in the Chapman-Kolmogorov sense, i.e., p(x�t | x0) , p(xN⌧ | x0) =QN

i=1 p(xi⌧ | x(i�1)⌧ ), or if samples generated by direct sampling with time-step �t = N⌧ are
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distributed similarly to samples generated by performing ancestral sampling N times, each with time-
step ⌧ . In direct sampling, we draw samples for a desired time-step �t = N⌧ from p̂✓(x0, N) and
in ancestral sampling we draw n samples with time-step �t = N⌧ from p̂✓(x0, N) in an ancestral
manner, e.g. xi+1 ⇠ p̂✓(xi, N), where i = {0, . . . n� 1}.

For the fully-observed Müller-Brown case, we find that the ITO model is self-consistent by the
strong overlap in transition densities sampled in a direct and ancestral manner (Algorithm 2). These
results generalize to molecular systems and partially observed systems. Sampling an SE3-ITO
model (Fig. 2) trained with alanine dipeptide data, we find strong agreement between the ancestrally
and directly sampled transition densities (Fig. 3) and we again have a strong consistency with
corresponding transition densities computed from molecular dynamics simulations. Note here,
that the time-step of the ITO-sampled transition densities varies from 104 to 106 times the MD
integration time-step. The transition densities for alanine di-peptide (Fig. 3) are calculated using
15’000 trajectories. For direct sampling, this means that we draw 15’000 samples in total. In the
case of ancestral sampling, we sample 4, 64, or 512 steps for 15’000 trajectories, to match �t.

��

Figure 3: Transition probability densities of alanine dipep-
tide dynamics with SE3-ITO model; Rows of increasing
time-lag (from top to bottom). Contours are samples from
SE3-ITO model, and 2D histograms show estimates from
MD data. The first column shows conditional transition den-
sities projected onto the torsion angles � and  (inset). The
black cross indicates the initial condition. The second and
third columns show marginal distributions of � and  , respec-
tively, with direct sampling in orange, ancestral sampling in
blue, and MD data in black.

Next, we consider four fast-folding
proteins [19] where we coarse-grain
the proteins by representing them only
with their C↵ atoms. In this sparsely
observed case (CG-SE3-ITO), we
find strong model self-consistency, as
shown by the comparison between
conditional densities from the folded
and unfolded states (Fig. 4) projected
onto a linear subspace determined us-
ing time-lagged independent compo-
nent analysis (time-lagged indepen-
dent components, tIC) [22] (see Ap-
pendix B.3). Further, the long time-
scale transition density gradually con-
verges to the data distribution as ex-
pected.

Finally, by ancestral sampling (Algo-
rithm 2), we perform a simulation of
Chignolin with the same length as
the training trajectory (106µs), us-
ing a CG-SE3-ITO model, and com-
pare with MD. The CG-SE3-ITO sim-
ulation is 2120 steps with �t =
5ns. Running in parallel, on a sin-
gle Titan X GPU we can simulate
the CG-SE3-ITO model at a rate
of 363 ns/(swM2) where sw denotes
seconds wall-time (Appendix C.1).
Remarkably, these trajectories are vir-
tually indistinguishable in the slowly
relaxing TICA coordinates, illustrating stability of ITO. These conclusions extend to the proteins
Villin, BBA, and Trp-Cage (See Appendix, Figs. 8,9 and 10)

Together these results suggest that ITO models accurately and self-consistently capture the slow
dynamics of molecular systems and are robust to situations where the system is only partially
observed. In general, we expect robustness to sparsely observed representations as long as the input
representations are sufficient to span the eigenfunctions of T⌦ [23, 24]. Approximation errors will
translate into systematic under-estimation of relaxation time-scales [7], consistent with our slight
under-estimation of VAMP-2 scores (Table 1). In future work, combining the learning of SE3-ITO
models with a systematic scheme for coarse-graining [25, 26], could be an avenue for scaling to
large-scale molecular systems at a low computational cost.
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Figure 4: Reversible protein folding-unfolding of Chignolin with CG-SE3-ITO Conditional
probability densities (orange contours) starting from unfolded (upper panels) and folded (lower
panels) protein states, at increasing time-lag (left to right), shown on top of data distribution. Below:
time-traces of 106 microsecond MD simulations and ITO simulations on tICs 1 and 2. The two
dashed lines correspond to the folded state value in tIC 1 (lower line) and tIC 2 (higher line). Contour
lines are based on 10’000 trajectories, generated with ancestral sampling with the length, �t and
time-step 200 ps. For �t = 200 ns this corresponds to 1000 ancestral samples.

5 Prediction of dynamic and stationary observables of using CG-SE3-ITO

As outlined in section 2, an important aim of MD simulations is to compute stationary and dynamic
observables, which involves intractable integrals typically approximated via Monte Carlo estimators.
Using the trained ITO models we can efficiently sample i.i.d. from the transition density needed for
computing dynamic observables, and by choosing a time-step which is sufficiently large we can also
sample i.i.d from the Boltzmann distribution µ, the latter akin to Boltzmann generators [27] (See
Appendix A.1). We note that, the ITO models are surrogates and as such without reweighing we
cannot expect unbiased samples from the Boltzmann and dynamic transition densities. Nevertheless,
we gauge how accurately ITO models we can compute these observables of interest in the context of
protein folding without reweighing:

• Free Energy of Folding, �G = � log
h

pf

1�pf

i

• Mean first passage time, folding, h⌧f i =
R
x02¬f

R1
0 �(xt 2 f)p(xt | x0, t)t dt dx0

• Mean first passage time, unfolding,h⌧ui =
R
x02f

R1
0 �(xt 2 ¬f)p(xt | x0, t)t dt dx0

where {f,¬f} ⇢ ⌦ are disjoint subsets corresponding to the folded and unfolded states of a protein,
pf =

R
x2f µ(x) dx, is the folded state probability and �(·) is the Dirac delta.

We compute these observables using the reference molecular simulation data [19] and sample statistics
from the CG-SE3-ITO models of each of the four fast-folding proteins (details in Appendix B.6).
Strikingly, the observables computed using CG-SE3-ITO models agree well with those computed
from long all-atom MD simulations (Table 2).

Finally, we analyzed the robustness, convergence, and consistency of these observables (Fig. 7). For
Chignolin, we trained five models independently and analyzed model checkpoints when the training
loss had stabilized. For each checkpoint and each model, we computed the observables. The values
predicted are statistically indistinguishable, suggesting consistency, robustness, and convergence. The
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Table 2: Molecular observables Standard deviations on last decimal place are given in parentheses.
Stationary and dynamic observables are denoted s and d, respectively.

�Gfold/kT (s) h⌧f i/µs (d) h⌧ui/µs (d)
Chignolin (MD/ITO) -1.28(1)/-0.64(33) 0.565(4)/1.02(24) 2.01(2)/2.12(34)
Trp-Cage (MD/ITO) 1.47(6)/2.84(6) 13.6(4)/37(2) 3.4(2)/2.85(9)
BBA (MD/ITO) 0.97(3)/1.52(3) 11.7(2)/8.6(2) 5.1(1)/1.75(4)
Villin (MD/ITO) 1.21(2)/2.22(3) 2.41(3)/3.27(7) 0.68(1)/0.354(5)

average predictions closely match the reference values. Nevertheless, we note that the fluctuations in
these values are noticeable.

We implemented all experiments using PyTorch [28], PyTorch Lightning [29], JAX [30], and used
DPM-Solver [31] for probability flow ODE Sampling.

6 Related Work

Molecular sampling Sampling molecular configurations is a broad field and can broadly be divided
into two main areas: physically motivated sampling of the Boltzmann distribution and conformer
generation. The first area includes algorithmic approaches to sample the Boltzmann distribution
including Molecular Dynamics simulations [2], Markov Chain Monte Carlo, extended ensemble
methods [32, 33, 34, 35], including analysis methods involving deep generative nets [36], and
surrogate models which directly approximate the Boltzmann distribution and allow for recovery
of unbiased statistics, including Boltzmann generators [37, 16, 38, 39]. Conformer generation
concerns generating physically plausible conformers without explicitly trying to follow the Boltzmann
distribution. The latter approaches can be split into ML [15, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]
and chemoinformatic [50, 51] approaches. Finally, speeding up molecular simulations by reducing
the effective number of particles to simulate through coarse-graining with special purpose forcefield
models [52] including machine learned variants [53, 54, 20, 55] and learned coarse-graining maps
[25, 26] is an orthogonal approach to sample conformation space. Further, several methods to recover
all-atom models from coarse-grained representations through ML [56, 57] and rule-based approaches
[58] are available.

Transfer Operator surrogates Building transfer operator surrogates is commonly used in molecu-
lar modeling including (Deep Generative) Markov state models (MSM) [59, 7, 60, 61], also including
experimental data [62, 63] dynamic graphical models, [64] VAMPnets [65, 21], observable operator
models[66], however, primarily for analysis of molecular dynamics data. Markov state models are
time-space discrete approximations of the transfer operator and Deep Generative MSM [67] and
VAMPnets [65] are deep learning infused versions, where state discretization is learned by deep
nets. Dynamic graphical models reparameterize MSMs as kinetic Markov random fields allowing
for scaling to larger systems [64]. Klein et al. recently introduced timewarp which is a flow-based
generative model to simulate molecular systems with a large (up to 0.5 ns), fixed, time-lag, [68]
providing asymptotically unbiased equilibrium samples through a Metropolis-Hastings correction
[69]. While timewarp generates conformers with realistic local structure, it has limitations in captur-
ing long time-scale dynamics, which is reflected in the predicted transition probability densities. In
contrast, our approach captures long time-scale dynamics efficiently allowing for accurate prediction
of dynamic observables. However, currently, neither the code nor the data from timewarp is publicly
available percluding direct comparisons on the benchmark tasks established in their paper.

7 Limitations

Surrogate model Implicit Transfer Operators are surrogate models of stochastic dynamics’ con-
ditional transition probability densities. We cannot guarantee unbiased sampling of dynamics and
the stationary distribution due to aleatoric (e.g., finite data) and epistemic (e.g., model misspecifica-
tion) uncertainty. We can overcome the latter by reweighing against a Markov Chain Monte Carlo
acceptance criterion as proposed previously [68], to ensure unbiased dynamics path-reweighing is
necessary, which in turn requires closed-form expressions for the target path probabilities [70].
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Transferability and scalability Currently, ITO does not generalize across chemical space and
thermodynamic variables. In future work, we anticipate that generalization across chemical space
limitations can be overcome by appropriate data set curation and parameter-sharing schemes [71].
Generalization across thermodynamic variables such as temperature and pressure would require using
a surrogate model which is steerable under these changes, e.g., temperature steerable flows [72] or
thermodynamic maps [73]. Currently, we assume a fully connected graph that scales O(M2) in
system size, which limits what systems are practically accessible. Devising new surrogate models
which use mean-field approximation approaches from e.g., computational physics [74] or chemistry
to truncate the graphs and treat long-range as an additive term [75] could yield more favorable scaling
[76].

8 Conclusions

This paper introduces Implicit Transfer Operators (ITO), an approach to building multiple time-scale
surrogate models of stochastic molecular dynamics. We implement ITO models with a conditional
DDPM using a new time-augmentation scheme and show how ITO models capture fast and slow
dynamics on benchmarks and molecular systems. We show ITO models are self-consistent over
multiple time scales and highly robust to the marginalization of degrees of freedom in the system,
which are unimportant to capture the long-time-scale dynamics. Combined with a SE(3) variant of
the PaiNN architecture [9] (ChiroPaiNN), we further show strong empirical evidence of scaling to
molecular applications, such as the folding of coarse-grained proteins. As such, we are confident that
ITO is a stepping-stone toward general-purpose surrogates of molecular dynamics.
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