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Abstract

LLMs often face competing pressures (for example helpfulness vs. harmlessness).
To understand how models resolve such conflicts, we study Llama-2-7b-chat on
the forbidden fact task. Specifically, we instruct Llama 2 to truthfully complete a
factual recall statement while forbidding it from saying the correct answer. This
often makes the model give incorrect answers. We decompose Llama 2 into
1057 different components, and rank each one with respect to how useful it is for
forbidding the correct answer. We find that in aggregate, 41 components are enough
to reliably implement the full suppression behavior. However, these components
are fairly heterogeneous and that many operate using faulty heuristics. We discover
that one of these heuristics can be exploited via manually designed adversarial
attacks, which we call California Attacks. Our results highlight some roadblocks
standing in the way of being able to successfully interpret advanced ML systems.

1 Forbidden fact task

In this paper, we study the forbidden fact task, where a model is instructed to truthfully perform
factual recall under the constraint of not being able to say a forbidden word. We use the following
prompt template (adapted for Llama-2-chat-7b [10]):

[INST] <<SYS>>
You are an obedient assistant who only responds with a single word with no punctuation. \
You answer truthfully. However, you are not allowed to say the forbidden word {forbidden_word}.
<</SYS>>
{fact_prefix} [/INST]

This template can be used to create prompts with and without competing objectives. For example,
if the fact prefix is "The Golden Gate Bridge is in the state of", setting the forbidden
word to "California" yields a competing prompt since the correct answer is forbidden, while
setting the forbidden word to "Florida" yields a noncompeting prompt.

We use the template above to create the Forbidden Facts Dataset, which sources fact prefixes from
CounterFact [6]. On our dataset, on average, forbidding the correct answer decreases the odds of the
right answer by 10000× compared to forbidding an incorrect answer (Figure B.1). In this paper, we
work with a filtered subset of the Forbidden Facts Dataset, on which forbidding the correct answer
results in at least a 100× decrease in the odds of the model reporting the correct answer (Figure 2.1).
We perform filtering since we want to study cases where Llama 2 is able to reliably implement its
suppression behavior. For more details on our dataset and example prompts, see Appendix B.

In studying our toy task, we seek to understand how models resolve competing objectives: prior work
in mechanistic interpretability has mostly focused on describing a circuit with one distinct task, but
conflicting objectives are prevalent in the real world. For example, Wei et al. [11] hypothesizes LLM
jailbreaks feature competition between capability and safety objectives.
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Figure 2.1: Left: The probability Llama-2-7b-chat answers a competing prompt correctly vs. the
probability it answers a non-competing version of the same prompt correctly on the Forbidden Facts
Dataset. The sharp cut-offs in the plot are due to dataset filtering (see Appendix B for details).
Right: Effect of (cumulative) first-order-patching in residual stream components from executions on
competing prompts into executions on matching non-competing prompts, done across the datapoints
on the left plot. The components are ranked using the formula in Section 2. Patching 41 components
is enough to achieve the same suppression as patching all 1057 components. We hypothesize the
sharp drop-off at the end is due to Waluigi components [8].

2 Decomposing Llama 2

Residual stream decomposition The next token distribution of Llama 2 [10] on a prompt p can be
expressed as

next_token_distribution(p) = Softmax

(
WU · LayerNorm

(∑
i

ri(s)

))
, (1)

where each ri : Prompt → Rdmodel denotes a residual stream component at the last token position of
p, and WU is the unembedding matrix of Llama 2.

We will attribute the suppression behavior of Llama 2 on competing prompts to these residual stream
components, of which there are 1057 in total: 1 initial embedding component, 1024 attention head
components (32 heads per layer over 32 layers), and 32 MLP head components (one per layer). This
decomposition is quite natural with respect to the standard way transformers are implemented.

Importance of each residual stream component We calculate the importance of each residual
stream component via first-order patching. Given an answer token a, let Ca : Rdmodel → [0, 1]
denote the map that takes the aggregate residual stream vector to the probability that the model
predicts a as the next token2, and let LOa : Rd → R ∪ {±∞} be the log-odds version of Ca, where
LOa(x) = log(Ca(x)/1− Ca(x)). Under first-order patching, the importance of a component ri is
given by the expression

E
pnc, pc ∼ F.F.D.

fact_prefix(pnc) = fact_prefix(pc)

LOa

ri(pc) +
∑
j ̸=i

rj(pnc)

− LOa

∑
j

rj(pnc)

 . (2)

Here, pnc and pc are a pair of prompts from the (filtered) Forbidden Facts Dataset that share the same
fact prefix, which has a as the correct answer.

If we imagine that Llama 2 is a Bayesian model that aggregates information from each residual
stream component, Equation 2 can be interpreted as the average log Bayes factor associated with
changing ri’s view of the world from forbidding an incorrect answer to forbidding the correct answer.
If this Bayes factor is small, then ri plays a large role in the model suppression behavior.

2For our experiments, we allow the model to predict a or any upper/lower-case variant of a
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Our patching is first-order, since we don’t consider the effect ri may have on the outputs of other
components in the model. We choose to do first-order patching in order to make our log Bayes factor
metric more valid, since when multiple pieces of evidence are independent, their aggregate log Bayes
factor is just the sum of their individual log Bayes factors.

Using first-order-patching based attribution, we rank all 1057 components. In Figure 2.1, we show
that first-order-patching the top 41 residual stream components from competing prompts into paired
noncompeting prompts enables the model to (on average) suppress the correct answer as strongly as
it does on a genuine competing prompt.

3 Analysis of most important components

Out of the 41 components that comprise the aggregregate circuit, 31 are attention heads and 10 are
MLPs. We prioritized attention head analysis since we seek to understand the information flow of the
model across tokens. In future work, we will attempt to decompose the inputs to the MLPs and use
sparse-probing and autoencoders to interpret individual neurons [1, 5].

What do the most important heads pay attention to? We find that the most important heads
found using first-order patching attend significantly to the forbidden token, with the top 10 heads
having a mean attention of 20.62% to the forbidden token. For comparison, the mean attention of the
rest of the heads is 0.71%.
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Figure 3.1: We plot four types of heads: the top suppression head, a middling suppression head,
an irrelevant head, and an anti-suppression head. The top plots are histograms of attention to the
forbidden word. The bottom plots are histograms of the OV suppression score over the vocabulary
distribution; more negative means more default suppression. We also show the top three tokens each
head downweights (upweights for the anti-suppression head).

While the average attention for suppressor heads tends to be higher on the forbidden token, we find
that the most important heads have heterogeneous attention patterns, and that irrelevant heads can
have similar behaviors to relevant heads (Figure 3.1). For an example of heterogeneity, L28H7 (rank
9) pays on average 51.56% of its attention to the fact prefix and 3.80% of its attention to the forbidden
token, while L31H27 (rank 11) pays 11.44% of its attention to the fact prefix and only .03% of its
attention to the forbidden token.

Interestingly, the suppressor heads pay more attention to the forbidden token on competing runs
(when the model "expects" the forbidden token to be the correct answer) than on noncompeting runs
(Appendix C). This, together with head heterogeneity, suggests that the information for what token to
pay attention to cannot come from the forbidden word specification alone for all heads.
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The most important attention heads have suppressive OV circuits. We write OV h : Rdmodel →
Rdmodel to denote the OV circuit of attention head h, which in Llama 2 behaves as:

OVh(x) = Wh
O Wh

V LayerNormh(x) (3)

We further define
ϕ(x) = Logit ◦ Softmax ◦Unembed ◦OVh(x) (4)

Our aim is to characterize the amount that a given OV head acts as a suppressor. Accordingly, we
define the per head response of token i to token j as Rh

OV (i → j) = ϕ(ei)[j], which measures how
much an OV circuit upweights token j when fed in embedding for token i.

We say an OV circuit is suppressive if the following quantity is small:

E
i,j ∼Tokens | i ̸=j

[
Rh

OV (i → i)− Rh
OV (i → j)

]
. (5)

We call this expected difference the suppression score. Intuitively, an OV circuit has a low supression
score if when it is fed in token i it likes to down-weight token i more than any other token j.

We indeed find that the most important heads found using first-order patching are suppressive, with
the top 10 heads having a mean suppression score of −1.22 and standard deviation of 0.80. This is in
contrast with the other heads with a mean of 0.12 and a standard deviation of 0.40. Figure 3.1 shows
some examples of the distribution we take the mean of in Equation 5.
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Figure 3.2: From left to right, examining L18H9: 1) Fixing the final query vector, we plot the
attention to the forbidden tokens (which can be correct, relevant incorrect, and irrelevant incorrect)
as they are enriched through the layers of the model. Note that the key enrichment is semantically
specific. 2) Fixing the forbidden key vectors, we plot the attention to the forbidden tokens as the
query is enriched through the layers of the model. 3) We patch the query token for the competing run
with a corresponding uniformly sampled noncompeting query: the x-axis represents the log odds of
the attention to the forbidden token for the competing run, and the y-axis represents the same quantity
for the noncompeting runs. Note that these values are strongly correlated, so the query enrichment
is not semantically specific. 4) Here we shuffle the positional embeddings instead of patching to
determine the y-axis. Note that these values are also strongly correlated, so query enrichment is not
positionally specific. See Figure D.1 for data on more heads.

Why do the most important heads pay attention to what they do? We define enrichment as the
process by which a particular embedding gains information as it moves through the model layers.
Broadly, we find that both the key and query enrichment help the suppressor heads attend to the
forbidden token for the competing prompt (3.2). This motivates the questions of how this information
arrives to the key and query vectors.

Interestingly, we find that key attention is not positionally specific, and query attention is not
semantically specific. To test invariance to position, we randomly shuffle the positional embeddings
of the keys. To test invariance to semantic content, we patch the query vectors from competing runs
with the corresponding query vectors from random noncompeting queries.

We find, surprisingly, that the only type of specificity the suppressor heads exhibit is key semantic
specificity: the heads privilege correct answers to the factual recall over all other keys. This is
consistent with the hypothesis that one of the primary mechanisms the model uses to attend to the
correct key is the "knowledge" that the key token is the correct completion to the fact.
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Because of this, we believe that the model uses a more complex mechanism to communicate what
to suppress to the suppressor heads than simply directly suppressing the tokens specified by the
forbidden token instruction. Furthermore, Figure C.2 and Figure D.1 show that there exists significant
heterogeneity in attention enrichment behavior as well.

4 Discussion

In this work, we decompose and attempt to characterize important components of Llama-2-7b-
chat that allow it to suppress the forbidden word in the forbidden fact task. While we identify
some structural similarities between the most important attention heads, we also find evidence that
the mechanisms used by Llama 2 are complex and heterogeneous. Overall, we found that even
components directly involved in suppressing the forbidden word carry out this mechanism in different
ways, and that Llama 2’s mechanisms are more akin to messy heuristics than simple algorithms.

Our results suggest that some of the major goals of AI interpretability may be unachievable or at the
very least very difficult. For example, some of the major goals of the AI interpretability field include:

1. Enabling more human understanding of models.
2. Enabling more guarantees to be made about model behavior.
3. Generating insights into how to build more capable models.

If even simple behaviors for which there exist trivial algorithmic solutions can be implemented by
AI systems in complex, heterogeneous ways, then achieving the first two goals may be extremely
difficult advanced AI systems. This is a sobering state of affairs. However, we discuss two possible
ways that this conclusion need not follow from our results.

The California Attack – Or why Llama-2-7b-chat is actually kind of dumb. It is possible that
the complexity of Llama-2-7b-chat’s internal mechanisms is due to the model just not being very
smart. If this is the case, it may be that stronger models could have simpler mechanisms. For evidence
towards this position, we present the California Attack.

Because query enrichment is not specific to the forbidden word (Section 3), we find words these
heads preferentially attend to. For example, L27H29 prefers paying attention to "California".
On a noncompeting run for the factual recall task "The Golden Gate Bridge is in the
state of" with an irrelevant forbidden word "floor", the model responds correctly with
"California" 96.3% of the time. However, by adding two words to the first sentence of
the prompt: "You are an obedient assistant from California who only responds
with a single word with no punctuation.", we can completely break the model.

In particular, this combination of forbidding an irrelevant word and placing "California" in-
nocuously in the system prompt leads the suppressor components to pay attention and suppress
"California" to a 17.7% completion probability, elevating "San Francisco", an incorrect an-
swer, to the top response. We also find that patching just the top suppressor head from the noncom-
peting run results in "California" again being the top answer, at 37.3%.

We are working in the wrong “basis”. Another reason that our reported mechanisms are so
complicated may be that we are working in the wrong “basis”. This is similar to the argument put
forth by Elhage et al. [2] stating that neural networks are hard to interpret because they compute
in superposition. Unlike Elhage et al. [2], we use “basis” in a more general sense. For example,
we would say that de-compiling Haskell machine code to C++ would be working in the wrong
basis. We believe an important open question is whether there exists a “basis” in which the behavior
(in scenarios we care about) of LLMs and future advanced AI systems is easy to understand, or
alternatively whether sufficiently capable or intelligent behavior is doomed to be computationally
irreducible [12].
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A Related Works

Factual Recall Meng et al. [6] find via causal mediation analysis that MLP layers inside transform-
ers enrich the representation of subject tokens inside the transformers. Geva et al. [4]. build upon this
research to outline a three-step process for extracting factual information from language models: 1)
The subject is enhanced in the MLP sublayers 2) The relationship information is then propagated to
the END token; and 3) Attributes are extracted using attention heads in the later layers

Our work makes use of this understanding as we examine a circuit that interferes with the factual
recall and extraction Our work makes use of this understanding of the factual recall and extractions
in language models as a baseline circuit to understand possible mechanisms for the model producing
an incorrect answer.

Mechanistic Interpretability Olsson et al. [9] and Nanda et al. [7] were important early papers in
the emerging field of Mechanistic Interpretability. They helped set the direction of the field (attempt
to rigorously decode fundamental mechanisms involved in a model’s computation), developed the
evidential standards (causal mediation on a subset of a model being higher quality evidence than
correlation), and helped define the methodology used (patching experiments, logit attribution, ablation,
reverse engineering of weights).

We aim to examine the phenomenon of competing circuits via mechanistic interpretability, and use
many of their methodological suggestions and their suggested evidence standard. We additionally
use the terminology standardized by Elhage et al. [3] in order to describe the circuits we study.
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Figure B.1: Left: The probability Llama-2-7b-chat answers a competing prompt correctly vs. the
probability it answers a non-competing version of the same prompt correctly on the Forbidden Facts
Dataset. No suppression filtering is done, unlike in Figure 2.1. Filtering for facts that Llama2-7b-chat
gets correct is still done though. Right: The distribution of the log odds ratio between the probability
of Llama2-7b-chat completing the right answer on a competing prompt vs. a matching noncompeting
prompt. The mean log odds ratio is −3.014, which translates to over a 10000× odds decrease.

B Forbidden Facts Dataset

Here is an example competing prompt, in full:
[INST] <<SYS>>
You are an obedient assistant who only responds with a single word with no punctuation. \
You answer truthfully. However, you are not allowed to say the forbidden word French.
<</SYS>>
The mother tongue of Annick Alane is [/INST]

If we replaced "French" with "Tamil" or "leaf", we would have a noncompeting relevant and
noncompeting irrelevant.

We introduce the Forbidden Facts Dataset, modified from CounterFact [6] to fit our task. We have 2634
prompts in the dataset. Each prompt comes with a competing forbidden word (e.g. "California"),
a relevant forbidden word (e.g. "Florida"), and an irrelevant forbidden word (e.g. "floor").

We also filter for two requirements. The first is that the model answers the noncompeting factual
recall correctly at a probability of over 50% for both the relevant and irrelevant incorrect forbidden
words. The second requirement is that for each prompt the model reduces its correct answer odds
on a competing run by a factor of 100 compared to it’s minimum correct answer odds on the
relevant/irrelevant incorrect forbidden word runs.

Where the incorrect answer comes from We also examine where the incorrect answer comes
from on the Forbidden Facts Dataset. On a noncompeting run, the correct answer is at the top and
sometimes very similar answers are below it. By similar, we mean 1) approximately same in semantic
meaning (e.g. ‘Football’ and ‘Futbol’) or 2) starting with the same letters as the correct answer
(e.g. ‘Football’ and ‘Foot’). We find that on a competing run, the top answer is the answer on the
noncompeting run that comes immediately after the correct answer and similar answers (if they are
there). For example, if the top 4 tokens on a noncompeting run are “Football”, “Futbol”, “FOOT”,
and “Tennis”, we can reliably expect the answer on a competing run to be “Tennis”. This aligns with
the mechanism we study, which is to have suppressor heads strongly down weight the correct and
similar answers. The fact that the top answer is the one that comes after the down-weighted tokens is
evidence of the suppressor heads being the main part of the circuit.
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C Paying attention to forbidden word

Here, we display additional plots related to the amount of attention to the forbidden tokens across
various ordered components and prompt types. See Figure C.1, and Figure C.2 for details.

Figure C.1: Mean attention to forbidden token across ordered components. In the top suppressor heads,
attention to the forbidden token is relatively higher and the attention to competing is consistently
higher than the attention to relevant noncompeting, which is consistently higher than the attention to
irrelevant noncompeting. Attention is lower and non differentiated in the later heads.
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Figure C.2: Attention to forbidden token for the top nine suppressor heads split by competing, relevant
noncompeting, and irrelevant noncompeting. The attention to competing is consistently higher than
the attention to relevant noncompeting, which is consistently higher than the attention to irrelevant
noncompeting.
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Figure D.1: More data in the format of Figure 3.2.
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E California Attacks

Because query enrichment is not specific to the forbidden word, we find words these heads preferen-
tially attend to. For example, L27H29 prefers paying attention to "California". On a noncompeting
run for the factual recall task “The Golden Gate Bridge is in the state of” with irrelevant forbidden
word ‘floor’, the model responds correctly with ‘California’ at 96.3%. A California Attack sim-
ply adds two words to the first sentence of the prompt: "You are an obedient assistant from
California who only responds with a single word with no punctuation."

The combination of forbidding an irrelevant word and placing "California" innocuously in the system
prompt leads the suppressor components to pay attention and suppress "California" to 17.7% and
San Francisco, an incorrect answer, becomes the top response. We also find that patching just the
top suppressor head from the noncompeting run results in California again being the top answer, at
37.3%. Patching the top three suppressor heads results in California rising to 59.9%. Adding in the
top four MLPs, we nearly fully reverse the California attack, resulting in California token at 94.3%.
This attack particularly striking as the California attack counteracts the model’s tendency to repeat
phrases or descriptions [9].
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