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Abstract

With open-source projects growing in size and001
complexity, manual compilation becomes te-002
dious and error-prone, highlighting the need003
for automation to improve efficiency and accu-004
racy. However, the complexity of compilation005
instruction search and error resolution makes006
automatic compilation challenging. Inspired007
by the success of LLM-based agents in vari-008
ous fields, we propose CompileAgent, the first009
LLM-based agent framework dedicated to repo-010
level compilation. CompileAgent integrates011
five tools and a flow-based agent strategy, en-012
abling interaction with software artifacts for013
compilation instruction search and error res-014
olution. To measure the effectiveness of our015
method, we design a public repo-level bench-016
mark CompileAgentBench, and we also design017
two baselines for comparison by combining018
two compilation-friendly schemes. The per-019
formance on this benchmark shows that our020
method significantly improves the compilation021
success rate, ranging from 10% to 71%. Mean-022
while, we evaluate the performance of Com-023
pileAgent under different agent strategies and024
verify the effectiveness of the flow-based strat-025
egy. Additionally, we emphasize the scalability026
of CompileAgent, further expanding its appli-027
cation prospects.028

1 Introduction029

Compilation is the process of converting source030

code into executable files or libraries. Currently,031

many open-source tool libraries and application032

software projects can be used directly after com-033

piling into executable files or libraries. Not only034

that, these files or libraries can also be used for sub-035

sequent work, including building diverse datasets036

(Ye et al., 2023), conducting performance testing037

and optimization (Tan et al., 2020), security and038

vulnerability analysis (Jiang et al., 2024), etc.039

For single-file compilation, the compiler only040

needs to process a single source code file and041

generate the corresponding target code. However, 042

compiling an open-source code repository shared 043

by others is a far more complex, time-consuming 044

(Wang et al., 2024b) and demanding task in actual 045

software engineering. This process goes beyond 046

handling the source code itself and requires ad- 047

dressing intricate challenges such as environment 048

adaptation, dependency management, and build 049

configuration. As a result, developers tend to spend 050

most of their time troubleshooting challenges dur- 051

ing the compilation process. 052

To date, no research has specifically focused on 053

how to achieve automated compilation at the repos- 054

itory level. Drawing from developers’ experience 055

in compiling code repositories, we identify two 056

core challenges in this task. The first is the discov- 057

ery and accurate extraction of compilation instruc- 058

tions from repositories, which often involve varied 059

build systems, scripts, and configurations. The 060

second challenge is resolving compilation errors 061

encountered during the process, which is required 062

to address issues such as dependency conflicts, en- 063

vironment mismatches, and code compatibility. 064

Recently, the application of LLM-based agents 065

for automating complex tasks has gained signifi- 066

cant attention across various fields. They have been 067

successfully employed in areas such as code gener- 068

ation (Huang et al., 2023; Zhang et al., 2024a), bug 069

fixing (Liu et al., 2024b; Bouzenia et al., 2024), 070

and penetration testing (Deng et al., 2024; Shen 071

et al., 2024; Bianou and Batogna, 2024), where 072

they autonomously perform tasks that traditionally 073

require human intervention. Inspired by the suc- 074

cess of these applications, we propose leveraging 075

agents for the automation of repository-level compi- 076

lation tasks. By doing so, we aim to streamline the 077

compilation process, reduce manual intervention, 078

and address the challenges inherent in compiling 079

open-source repositories. 080

In this paper, we propose CompileAgent, the first 081

novel approach that leverages LLM-based agents 082

1



for automated repo-level compilation. To address083

the two key challenges identified earlier, we have084

designed five specialized tools and a flow-based085

agent strategy. CompileAgent can effectively com-086

plete the compilation of code repositories by in-087

teracting with external tools. To evaluate the ef-088

fectiveness of our approach, we manually con-089

structed CompileAgentBench, a benchmark de-090

signed for repository compilation. This benchmark091

consists of 100 repositories in C and C++, sourced092

from Github. We further conducted comprehen-093

sive experiments to evaluate the performance of094

CompileAgent by applying it to seven well-known095

LLMs, with parameter sizes ranging from 32B to096

236B, to demonstrate its broad applicability. When097

compared to the existing baselines, CompileAgent098

achieved a notable increase in compilation success099

rates across all LLMs, with improvements reach-100

ing up to 71%. Additionally, the total compila-101

tion time can be reduced by up to 121.9 hours,102

while maintaining a low cost of only $0.22 per103

project. We compared the flow-based strategy with104

several other strategies suitable for the compilation105

task, further validating its effectiveness. Moreover,106

we conducted ablation experiments to validate the107

necessity of each component within the system.108

These experiments provide strong evidence that109

CompileAgent effectively addresses the challenges110

of code repository compilation.111

Our contributions can be summarized as follows:112

• We make the first attempt to explore repo-level113

compilation by LLM-based agent, offering valu-114

able insights into the practical application of115

agents in real-world scenarios.116

• We propose CompileAgent, a LLM-based agent117

framework tailored for the repo-level compi-118

lation task. By incorporating five specialized119

tools and a flow-based agent strategy, the frame-120

work enables LLMs to autonomously and effec-121

tively complete the compilation of repositories.122

• We construct CompileAgentBench, a bench-123

mark for compiling code repositories that in-124

cludes high-quality repositories with compila-125

tion instructions of varying difficulty and cover-126

ing a wide range of topics.127

• Experimental results on seven LLMs demon-128

strate the effectiveness of CompileAgent in129

compiling code repositories, highlighting the130

potential of agent-based approaches for tack-131

ling complex software engineering challenges.132

2 Background 133

2.1 LLMs and Agents 134

LLMs have demonstrated remarkable performance 135

across a wide range of Natural Language Process- 136

ing (NLP) tasks, such as text generation, summa- 137

rization, translation, and question-answering. Their 138

ability to understand and generate human-like text 139

makes them a powerful tool for various applica- 140

tions. However, LLMs are limited to NLP tasks 141

and struggle with tasks that involve direct interac- 142

tion with the external environment. 143

Recent advancements in LLMs have signifi- 144

cantly expanded their capabilities, with many mod- 145

els now supporting function calls as part of their 146

core functionalities. This enhancement allows 147

LLMs to dynamically interact with external sys- 148

tems and tools, playing a key role in the develop- 149

ment of the AI agents (Qian et al., 2024b; Islam 150

et al., 2024; Huang et al., 2024; Qian et al., 2024a; 151

Chen et al., 2023; Xie et al., 2023). Nowadays, 152

with the popularity of agent-based frameworks, re- 153

searchers have begun to develop agent-based meth- 154

ods to solve complex tasks, such as OpenHands 155

(Wang et al., 2024e), AutoCodeRover (Zhang et al., 156

2024b), and SWE-Agent (Yang et al., 2024). 157

2.2 Automatic Compilation 158

In modern software development, there are a large 159

number of open-source code repositories, but due 160

to differences in project management and document 161

writing among developers, the quality and standard- 162

ization of compilation guides vary. Many projects 163

lack detailed compilation instructions, which may 164

cause users to encounter problems such as incon- 165

sistent environment configuration or lack of nec- 166

essary dependencies when trying to compile. In 167

addition, some open-source projects store compi- 168

lation guides in external documents or websites 169

without clearly marking them in the codebase, re- 170

sulting in the compilation process that relies on 171

manual steps, which is both error-prone and time- 172

consuming. These problems make it more chal- 173

lenging to automate the compilation of open-source 174

projects, and also highlight the importance of au- 175

tomated compilation tools in improving the main- 176

tainability and scalability of open-source projects. 177

Oss-Fuzz-Gen(Liu et al., 2024a) is an open- 178

source tool designed to fuzz real-world projects, 179

including a part for building projects. This part 180

works by analyzing the structure of the code 181

repository and searching for specific files. Based 182
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root@65c6382231:/work/openssl# ./Configure && make –j32

…

collect2: error: ld returned 1 exit status

make[1]: *** [Makefile:30535: test/sha_test] Error 1

make[1]: Leaving directory '/work/openssl’

make: *** [Makefile:3715: build_sw] Error 2

Interactive Environment

-[ Overview ]-
OpenSSL is a robust, commercial-grade, full-featured Open Source Toolkit for the TLS (formerly 

SSL), DTLS and QUIC (currently client side only) protocols...

Project Introduction

-[ Options ]-
--debug  Build OpenSSL with debugging symbols and zero optimization level.

--release Build OpenSSL without debugging symbols. This is the default.

Configuration Options

-[ Build ]-
Build OpenSSL by running:

$ make  #Unix    $ mms  # !(or mmk) OpenVMS    $ nmake  #Windows

This will build the OpenSSL libraries (libcrypto.a and libssl.a on Unix, corresponding on other 

platforms) and the OpenSSL binary (openssl). 

Compilation Guidance

-[ Test ]-
After a successful build, and before installing, the libraries 

should be tested. Run:

$ make test #Unix $ mms test #OpenVMS  $ nmake test  #Windows

Warning: you MUST run the tests from an unprivileged account (or disable your privileges 

temporarily if your platform allows it).

Test Instructions

-[ Demo ]-
Note: Makefiles are provided in the demo subfolders to demonstrate how to build them, but are 

not frequently used. Configure openssl with enable-demos to build them automatically through 

the perl based build system

Bio:Demonstration of a simple TLS client and server…

Demostrations

Input Documentation

README.md

apps

crypto

demos

doc

…

config

…

OpenSSL

bio

Makefile

Input Repository Structure

.so

Target Files

Automated Compilation System

Figure 1: An illustrative example of the automated repo-level compilation. The task input contains code repository
documentation and structure, and the automated compilation system can interact with the interactive environment.

on the presence of these files, a set of prede-183

fined compilation instructions is then executed184

to build the project. For example, if the reposi-185

tory contains bootstrap.sh and Makefile.am,186

Oss-Fuzz-Gen will execute the “./bootstrap.sh;187

./configure; make” commands in sequence to188

build the project. However, Oss-Fuzz-Gen may not189

be sufficient for projects where the specified files190

are absent. Additionally, the tool lacks adaptability191

to changing environments, making it less flexible192

in dynamic or evolving software projects.193

To be closer to realistic compilation scenarios,194

we formalize repo-level compilation tasks and pro-195

pose CompileAgent to help LLMs complete this196

complex task. We also built a repo-level compi-197

lation benchmark CompileAgentBench to evalu-198

ate our approach and provide details of the bench-199

mark in Appendix A. Compared with Oss-Fuzz-200

Gen, CompileAgent is more suitable for handling201

real-world compilation tasks.202

3 Repo-Level Compilation Task203

To bridge the gap between current compilation204

tasks and real-world software building scenarios,205

we formalized the repo-level compilation task. Un-206

like simple file-level compilation, code repositories207

often entail complex build configurations and inter-208

dependencies across multiple files. Consequently,209

an automated compile system as shown in Figure210

1, which is an integrated tool or a comprehensive211

framework designed to facilitate the entire compi-212

lation process, must comprehend the entire reposi-213

tory, its dependencies, and the interactions between214

its components to ensure successful compilation215

at the repo-level. The repo-level compilation task216

focuses on managing the compilation process by217

considering all relevant software artifacts within 218

the repository, including documentation, repository 219

structure, and interactive environment. 220

Documentation. It provides essential insights into 221

the project, including project introduction, con- 222

figuration options, compilation guidelines, testing 223

frameworks, and Demonstrations. Automated com- 224

pile system can leverage it to extract and inter- 225

pret information necessary for accurately configur- 226

ing and executing the compilation process. More- 227

over, documentation often contains nuanced details 228

about platform-specific dependencies or build set- 229

tings that are critical for success. 230

Repository Structure. The structure of a repos- 231

itory reflects the organization and relationships 232

among its files and modules. Effective repo-level 233

compilation depends on a deep understanding these 234

relationships, including dependency hierarchies be- 235

tween files or modules, and adhering to build se- 236

quence constraints(e.g., resolving “cmake” config- 237

urations before invoking “make”). Furthermore, 238

addressing external library dependencies, such as 239

linking with libraries like OpenSSL or Boost, is 240

crucial for ensuring both compatibility and correct- 241

ness. Efficiently navigating this structure is pivotal 242

for repositories with intricate interdependencies. 243

Interactive Environment. The interactive environ- 244

ment is integral to successful repo-level compila- 245

tion, as it provides essential support throughout the 246

process. It can provide detailed error messages and 247

diagnostic information to the automated compile 248

system during the compilation process, allowing 249

it to identify and resolve issues in real time. This 250

dynamic feedback loop allows the automated com- 251

pile system to adjust the compilation process as 252

needed, ensuring greater accuracy and efficiency. 253
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Install.txt

https://**.com

README

Instrcution Extractor

spider

I feel the compilation instructions 

might be in the following files:

1. README

2. …

I think the instructions might 

be in the following files:

1. install.md

2. …

SearchAgent-Ⅰ

root$ tree . –L 2

…

 apps/

     ciphers.c

     client.pem

     …

 include/

     crypto/

     openssl/

        buffererr.h

 …

SummarizeAgent

MasterAgent

I will use the SHELL tool to 

execute these commands

CompileNavigator Module

File Navigator

Discuss
SearchAgent-Ⅱ

SearchAgent-Ⅱ

SearchAgent-Ⅱ

MasterAgent

Project Codebase

Stage1: Initial Solutions Generation

Compilation Errors

.obj/quickjs.o: in function 

`js_atomics_wait’:

/work/quickjs.c:55805: undefined 

reference to 

`__pthread_cond_timedwait64’

collect2: error: ld returned 1 exit 

status

collect2: error: ld returned 1 exit 

status

Website Search

Final Solutions:

The following com-

mand can solve the 

compilation errors:
```

1.CFLAGS=‘-lpthread’

2. ./configure

3. make
 ```

…

ErrorSolver Module

MasterAgent

I can’t solve, I 

will use … tool

⑩C
o
m

p
ila

tio
n

 E
r
r
o
r

The solution is 

valid and com-

piled success-

fully

Multi-Agent Discussion 

MasterAgent

Target Files

.so

⑨ Compilation Success

Input

Shell

Stage2: Multi-Round Discussion

Same Solutions

Grouping

Diff …

Prompt

The compilation error: …

Most agent think the solution: …

Their reasoning process: …

But one agent think the 

solution: …

Its reasoning process: …

Reasoning: The error … 

Solution: configure with pth-

read support:‘./config –prefix…’

Reasoning: The error … 

Solution: configure like this: 

‘C-FLAGS=‘-pthread’ ./config.’

I revise my previous opinion, and the compil-

ation instructions might be in the following files:

1. README

2. …

Now, I will use the Insturction_Extractor tool to 

extract the instructions.

The compilation instructions 

are as follows:

1. ./configure

2. …

Reasoning: The error … 

Solution: update the openssl to 

the lastest version, then add …

Reasoning: The error …

Solution: using the –pthread 

flag: ./config –pthread …

Reasoning: The error … 

Solution: use `CFLAGS=fPIC` 

make OR add –fPIC…

Reasoning: The error … 

Solution: adding ‘-lpthread’ to 

the linker flags.

① ②

③

④

⑤

⑥

⑦

⑧

⑪

⑫

⑬

⑭

⑮

⑯

Figure 2: The overview of CompileAgent. By providing the repository of a given project, the automated compilation
process can be seamlessly completed using the designed modules and agent strategy. Agents not explicitly specified
are driven by DeepSeek-v2.5.

Additionally, the interactive environment should254

isolate the compilation process to safeguard the255

physical machine and provide independent build256

environments for each project.257

In this paper, we consider LLM-based agent as258

an automated compilation system. Our objective is259

to rigorously evaluate its effectiveness in automat-260

ing the repo-level compilation, ensuring that it can261

accurately identify the correct compilation instruc-262

tions and efficiently resolve any issues that arise263

during the compilation process.264

4 Method265

In this section, we present the design of the LLM-266

based agent framework, CompileAgent, aimed at267

automating repo-level compilation. To effectively268

address the two key challenges mentioned in Sec-269

tion 1, we design two core modules, CompileNavi-270

gator and ErrorSolver, which together include five271

supporting tools, all integrated into a flow-based272

agent strategy, as shown in Figure 2.273

4.1 Designed Module274

When searching for compilation instructions in the275

given code repository, users typically rely on the276

repository’s structure to identify potential files con-277

taining the necessary instructions. Moreover, when278

encountering difficulties during the compilation279

process that are hard to resolve, they often seek280

solutions through online resources, LLMs or other281

methods. To locate compilation instructions and282

resolve compilation errors, we model the process 283

of solving the challenges and design the following 284

two modules. 285

4.1.1 CompileNavigator 286

The CompileNavigator module is designed to 287

tackle the challenge of finding the correct com- 288

pilation instructions within a code repository. Typi- 289

cally, the necessary instructions are scattered across 290

different documentation types, such as README, 291

doc.html, install.txt, etc. making it difficult 292

to locate them quickly. To address this challenge, 293

the module employs three key tools: Shell, File 294

Navigator, and Instruction Extractor. 295

Shell. To ensure the security of physical machine 296

during the compilation process, we isolate the en- 297

tire compilation workflow from the host system by 298

creating a container using Docker. The downloaded 299

project is mounted into this container, and an SSH 300

connection is established to access the terminal 301

shell. The Docker container is built on the Ubuntu 302

22.04 operating system image. Through this tool, 303

LLMs can interact with the interactive environment 304

and execute any necessary commands. 305

File Navigator. To accurately locate the file con- 306

taining the compilation instructions, we design two 307

agents, SearchAgent I and SearchAgent II. The 308

repository’s structural information is provided as 309

input, and the two agents engage in a collabora- 310

tive discussion to determine the most likely file 311
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containing the compilation instructions.312

Instruction Extractor. After identifying the files313

that likely contain the compilation instructions, the314

next task is to extract the instructions from them.315

In order to complete this, we design the Summa-316

rizeAgent, which reads the content of a specified317

file and searches for URLs related to compilation318

instructions within the file. If such URLs are found,319

requests are sent to retrieve the web page content.320

Finally, SummarizeAgent summarizes and outputs321

the relevant compilation instructions.322

4.1.2 ErrorSolver323

The ErrorSolver module is designed to address324

compilation errors during the project build process,325

which can stem from various issues such as syntax326

problems, missing dependencies, or configuration327

conflicts. To resolve these errors, we develop two328

key tools in this module: Website Search and Multi-329

Agent Discussion.330

Website Search. Developers frequently publish331

solutions to compilation problems on websites,332

which search engines treat as valuable knowledge333

databases. When faced with similar problems,334

users can submit queries to search engines to find335

relevant solutions. Inspired by this, we encapsulate336

Google Search1 engine into a tool. However, since337

search results may include irrelevant content, we in-338

struct the agents using the tool to prioritize reliable,339

open-source websites, like Github2 and StackOver-340

flow3, and then aggregate the relevant information341

to provide a solution to the user’s query.342

Multi-Agent Discussion. Although there are vari-343

ous single-agent approaches exist for solving rea-344

soning tasks, such as self-polishing (Xi et al.,345

2023b), self-reflection (Yan et al., 2024), self-346

consistency (Wang et al., 2024a) and selection-347

inference (Creswell et al., 2022), we think these348

complex reasoning approaches are unnecessary for349

solving compilation errors. Compilation errors typ-350

ically come with clear error messages, such as path351

or environment configuration issues and compati-352

bility problems. These errors can generally be re-353

solved through straightforward analysis, consulting354

documentation, and making reasonable inferences,355

without the need of advanced reasoning processes.356

Inspired by Wang et al. (Wang et al., 2024d) and357

reconcile (Chen et al., 2024), we propose a Multi-358

Agent Discussion approach specifically designed to359

1https://www.google.com/
2https://github.com/
3https://stackoverflow.com/

address compilation errors. In this method, multi- 360

agents first analyze the complex compilation er- 361

ror and generate an initial solution. The agents 362

then enter a multi-round discussion phase, where 363

each can revise its analysis and response based on 364

the inputs from the other agents in the previous 365

round. The discussion continues until a consensus 366

is reached or for up to R rounds. At the end of each 367

round, the solutions, consisting of command lines, 368

are segmented, and repeated terms are counted. If 369

the number of repeated terms exceeds a specified 370

threshold, the solutions are considered equivalent, 371

and a final team response is generated. In this pa- 372

per, we set up three agents for the discussion, with 373

a maximum of 3 Rounds. 374

4.2 Agent Strategy 375

When compiling a given project, users typically be- 376

gin by consulting the project’s compilation guide, 377

and then execute the relevant compilation com- 378

mands based on their environment. If issues arise 379

during the process, they often resort to online 380

searches or query tools like ChatGPT to trou- 381

bleshoot until the compilation succeeds. Inspired 382

by this workflow, to enable LLMs to effectively 383

leverage our designed tools, we propose a flow- 384

based agent strategy tailored for the automated 385

compilation task. 386

The strategy defines the sequence in which tools 387

are used and connects them seamlessly through 388

prompts. MasterAgent is responsible for invoking 389

the tools. The process is as follows: 390

1 MasterAgent begins by downloading the tar- 391

get code repository to the local system and mount- 392

ing it into the container using the Shell tool; 393

2 Next, MasterAgent uses the Shell tool to run 394

commands like “tree” within the container to re- 395

trieve the repository structure; 396

3 Then, MasterAgent invokes the FileNavigator 397

tool to identify files that may contain the necessary 398

compilation instructions; 399

4 Subsequently, MasterAgent uses the Instruc- 400

tionExtractor tool to extract the compilation instruc- 401

tions and execute them via the Shell tool; 402

5 If the Shell tool returns a successful compi- 403

lation result, the compilation process is complete. 404

If a compilation error occurs, MasterAgent first 405

attempts to resolve the issue independently. If the 406

issue persists after attempts, the ErrorSolver mod- 407

ule is activated for several rounds of collaborative 408

discussion. Finally, the compilation status is deter- 409

mined based on the Shell tool’s outcome. 410
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5 Experiment411

We conduct extensive experiments to answer three412

research questions: (1) How much does Com-413

pileAgent improve the project compilation success414

rate compared to existing methods? (2) How effec-415

tive is the flow-based strategy we designed when416

compared to existing agent strategies? (3) To what417

extent do the tools integrated within CompileAgent418

contribute to successful repo-level compilation?419

5.1 Experimental Setup420

Benchmark. To the best of our knowledge, there421

is no existing work that specifically evaluates repo-422

level compilation. Therefore, we manually con-423

struct a new benchmark for repo-level compilation424

to evaluate the effectiveness of our approach in this425

domain. We select 100 projects from many C/C++426

projects on Github and carefully consider multi-427

ple factors during the project selection to ensure428

the authority and diversity of CompileAgentBench.429

First, we screen the projects based on the number430

of stars to ensure that the selected projects have431

high representativeness and practical value in the432

community. Moreover, we also consider the topics433

involved in the projects and finally select projects434

covering 14 different fields, including areas such435

as crypto, audio, and neural networks. On this ba-436

sis, we also pay special attention to whether each437

project provided a clear compilation guide. Mean-438

while, we arrange for three participants with 3 to439

4 years of project development experience to man-440

ually compile these 100 projects to further verify441

the compilability of the selected projects and the442

accuracy of the evaluation. We finally obtain the443

target files of these 100 projects, and the entire com-444

pilation process took about 46 man-hours. More445

details refer to Appendix A.446

Baselines. As the first work dedicated to automat-447

ing repo-level compilation, there is no related work448

for us to compare except Oss-Fuzz-Gen. However,449

there are some projects or technologies that are450

helpful for automated compilation tasks, such as451

the Readme-AI4 project and Retrival-Augumented452

Generation (RAG) techniques.453

Readme-AI is a developer tool that can gener-454

ate well-structured and detailed documentation for455

a code repository based solely on its URL or file456

path. For cost-effectiveness, we utilize GPT-4o457

mini for documentation generation and specify in458

the requirements that the “How to compile/build459

4https://github.com/eli64s/readme-ai

from source code” section should be included. A 460

detailed example of this process is provided in Ap- 461

pendix B. RAG refers to a technique that enhances 462

the output of LLMs by allowing them to reference 463

external knowledge sources during response gener- 464

ation. In the compilation task, we leverage RAG as 465

a tool. Specifically, we traverse the possible com- 466

pilation files in the code repository, and then cut 467

these file contents into chunks and generate vector 468

embeddings. Each time the compilation instruc- 469

tions are searched for, LLMs generate instructions 470

by retrieving the vector database. For a specific 471

example, please refer to Appendix C. 472

We also compare the flow-based agent strategy 473

designed in this paper with existing agent strategies. 474

According to the research of Wang et al. (Wang 475

et al., 2024c) and Xi et al. (Xi et al., 2023a), we 476

select two common agent strategies that are suit- 477

able for the automated compilation task, including 478

ReAct (Yao et al., 2022), Plan-and-Execute (Wang 479

et al., 2023). In addition, we also consider the 480

comparison with OpenAIFunc (OpenAI, 2023). 481

Base LLMs. We apply CompileAgent to seven ad- 482

vanced LLMs, including three closed-source LLMs, 483

i.e., GPT-4o (GPT-4o, 2024), Claude-3-5-sonnet 484

(Claude, 2024), Gemini-1.5-flash (Gemini, 2024), 485

as well as four open-source LLMs, i.e., Qwen2.5- 486

32B-Instruct (Team, 2024), Mixtral-8×7B-Instruct 487

(MistralAI, 2023), LLama3.1-70B-Instruct (Meta- 488

LLaMa, 2024), DeepSeek-v2.5 (DeepSeek-AI, 489

2024). Additional descriptions are provided as a 490

part of Table 1. 491

Metrics. In order to comprehensively evaluate the 492

effectiveness of automated compilation tasks, we 493

select three key indicators: compilation success 494

rate, time cost, and expenses. Among these, the 495

compilation success is determined when the target 496

files in the precompiled projects completely match 497

those generated by CompileAgent. 498

5.2 Repo-Level Compilation Performance 499

In this experiment, we use the specially designed 500

repo-level benchmark, CompileAgentBench, to 501

evaluate the performance of CompileAgent and 502

three baselines in compiling code repositories 503

across seven well-known LLMs. The results are 504

presented in Table 1. 505

It turns out that our proposed CompileAgent- 506

Bench is more challenging when not using LLMs 507

methods, as evidenced by the lower compilation 508

success rate of Oss-Fuzz-Gen. Compared with 509

existing baselines, CompileAgent has significant 510
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Table 1: The results of different baselines on CompileAgentBench.

Models Size Oss-Fuzz-Gen1 Readme-AI RAG CompileAgent

Csr2 Time3Exp4 Csr T ime Exp Csr T ime Exp Csr T ime Exp

Closed-source LLMs

25% 53.01 -
GPT-4o (GPT-4o, 2024) - 72% 128.80 42.94 67% 11.12 45.78 89% 8.38 16.53
Claude-3-5-sonnet (Claude, 2024) - 79% 127.33 55.26 78% 8.30 54.44 96% 5.37 22.02
Gemini-1.5-flash (Gemini, 2024) - 41% 123.68 32.37 46% 9.28 35.72 65% 3.55 2.39

Open-source LLMs

25% 53.01 -
Qwen2.5-32B-Instruct (Team, 2024) 32B 70% 127.82 33.18 62% 10.55 36.73 80% 5.25 3.16
Mixtral-8×7B-Instruct (MistralAI, 2023) 42B 38% 124.60 33.12 45% 10.82 36.49 55% 4.88 4.32
LLama3.1-70B (Meta-LLaMa, 2024) 70B 61% 125.03 33.57 61% 10.98 36.87 79% 7.38 2.71
DeepSeek-v2.5 (DeepSeek-AI, 2024) 236B 71% 125.43 33.70 72% 11.30 36.08 91% 11.38 3.31

1 The Oss-Fuzz-Gen project operates without relying on LLMs.
2 The proportion of successfully compiled projects to all projects.
3 The total duration required to complete the compilation process, measured in hours.
4 The total expense incurred during the compilation process, measured in US dollars.

Table 2: The results of different agent strategies on CompileAgentBench.

Models Size OpenAIFunc1 PlanAndExecute ReAct Flow-based

Csr T ime Exp Csr T ime Exp Csr T ime Exp Csr T ime Exp

Closed-source LLMs
GPT-4o (GPT-4o, 2024) - 80% 6.75 22.51 40% 5.18 10.02 72% 6.58 23.63 89% 8.38 16.53
Claude-3-5-sonnet (Claude, 2024) - - - - 72% 5.02 13.77 81% 8.40 25.26 96% 5.37 22.02

Open-source LLMs
LLama3.1-70B (Meta-LLaMa, 2024) 70B - - - 26% 4.77 2.14 49% 10.48 6.52 79% 7.38 2.71
DeepSeek-v2.5 (DeepSeek-AI, 2024) 236B - - - 70% 6.72 1.42 78% 11.32 3.88 91% 11.38 3.31

1 The openaifunc refers to OpenAI’s LLMs equipped with the capability to invoke functions.

performance improvements on LLMs with vari-511

ous sizes. Specifically, CompileAgent achieves512

the highest performance on the Claude-3-5-sonnet513

model, improving by 71%, 17%, and 18% over514

all baselines, respectively; in terms of time cost, it515

saves 47.64 hours, 121.96 hours, and 2.93 hours;516

in terms of expenses, the average cost per project is517

only $0.22. Excluding Oss-Fuzz-Gen, the total cost518

is reduced by $33.24 and $32.42, respectively. The519

performance improvement on other LLMs ranges520

from 30% to 71%, 10% to 24%, and 10% to 22%,521

which clearly demonstrates the effectiveness of our522

method. This indicates that the integrated tools523

in CompileAgent can effectively assist LLMs in524

completing the compilation process, meeting the525

real-world needs of repo-level compilation.526

In addition, we also find that the more advanced527

LLMs tend to show better performance with Com-528

pileAgent. However, for the poor performance of529

Mixtral-8×7B-Instruct, we speculate that may be530

related to its model architecture design.531

5.3 Strategy Performance532

We also evaluate the impact of different agent strate-533

gies on CompileAgent, and make slight modifica-534

tions to other strategies, enabling them to call the535

tool we designed. Additionally, we strategically536

select a set of representative LLMs for evaluation, 537

considering the constraints of available resources 538

and computing power. Table 2 summarizes the 539

experimental results of the evaluation. 540

Our flow-based agent strategy achieves the high- 541

est compilation success rate on Claude-3-5-sonnet, 542

but it also brings a lot of costs. It is worth noting 543

that the success rate of each compilation strategy 544

generally decreases when using LLMs with fewer 545

parameters. Despite this, our designed strategy can 546

still achieve a 30%-53% higher success rate than 547

other agent strategies while maintaining low time 548

and cost. These findings emphasize that the flow- 549

based agent strategy we designed can also maintain 550

a high compilation success rate even under LLMs 551

with different parameter specifications, showing 552

stronger robustness than other agent strategies. 553

Additionally, combined with the results of the 554

first experiment, we find that the ReAct and Flow- 555

based strategies are more suitable for the compila- 556

tion task, and the PlanAndExecute strategy appears 557

less suited for the task. 558

5.4 Ablation Study 559

In order to evaluate the impact of our designed 560

tools on CompileAgent, we conduct an ablation 561

study. In this experiment, we select GPT-4o with 562
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Table 3: Average tool usage number and ablation result
on CompileAgentBench for CompileAgent which is
based on GPT-4o.

Tools Usage Ablation Result

Csr T ime Exp

CompileAgent - 89% 8.38 16.53

Shell1 - - - -
File Navigator 1.21 81% 6.93 17.32
Instruction Extractor2 1.63 77% 7.18 18.26
Website Search 0.61 84% 7.25 16.53
Multi-Agent Discussion 1.87 71% 8.77 18.89

1 The Shell tool is essential for executing compilation instruc-
tions and is a necessary condition for compilation tasks.

2 We retain the core functionality of the Instruction Extractor
while removing the web content crawling feature.

Flow-based as the ablation subject and record the563

usage frequency of each tool during the compila-564

tion process. We then perform the ablation of these565

tools, and the results are presented in Table 3.566

Our experimental results indicate that the Multi-567

Agent Discussion tool is the most frequently called568

in the compilation task. Ablating this tool leads569

to a significant drop in the compilation success570

rate, reaching 18%, while the time and cost over-571

head required for compilation also increase. This572

suggests that CompileAgent relies heavily on the573

tool when tackling complex problems, as it plays574

a crucial role in enhancing both accuracy and effi-575

ciency. Moreover, the ablation results of the other576

tools demonstrate their positive contributions to the577

performance of CompileAgent to varying degrees.578

Overall, the ablation experiment results confirm579

the effectiveness and practicality of the tools we580

designed for real-world compilation tasks.581

6 Discussion582

6.1 Failure Analysis583

In the previous experiments, CompileAgent en-584

counters several compilation failures. After analy-585

sis, we summarize the most common three errors586

in the compilation process: I) Complex Build De-587

pendencies. Some projects rely on intricate de-588

pendency chains involving specific versions of li-589

braries, and missing or incompatible dependencies590

lead to building failures. II) Toolchain Mismatch.591

Some projects require specific versions of compil-592

ers, interpreters, or build tools that are not avail-593

able or configured properly in the CompileAgent594

environment, resulting in compilation errors. III)595

Configuration Complexity. The complex configura-596

tion settings in some projects, such as unmatched597

environmental variables and improperly defined598

parameters, resulting in the failure of compilation. 599

6.2 Multi-Language and Multi-Architecture 600

Compilation 601

Although the CompileAgent in this article is mainly 602

designed for C/C++ projects, it can also support 603

multi-language and multi-architecture compilation 604

due to its scalability and flexibility, and can be 605

expanded to realize the automated compilation pro- 606

cess in different environments. 607

For multi-language compilation, we can first in- 608

stall the interactive environment of each language 609

in Docker and dynamically adjust the toolchain 610

by detecting the programming language used by 611

the project. This includes selecting the appropriate 612

compiler and configuring language-specific build 613

tools, such as javac for Java or npm for JavaScript. 614

For multi-architecture compilation, we can use 615

the system emulation tools provided by QEMU5 616

to enable CompileAgent to interact with environ- 617

ments of different processor architectures such as 618

ARM, MIPS, and X86 to achieve cross-platform 619

compilation. 620

6.3 Large-Scale Code Analysis 621

By integrating with multiple code analysis tools, 622

CompileAgent can evaluate the security of repos- 623

itories during the compilation process, further en- 624

suring the reliability of compilation results, espe- 625

cially for some potentially malicious code reposito- 626

ries. Specifically, we can encapsulate tools such as 627

Coverity Scan6 and the Scan-Build7 and call them 628

to perform security analysis when CompileAgent 629

performs compilation, identifying critical vulnera- 630

bilities, including buffer overflows or unsafe prac- 631

tices. 632

7 Conclusion 633

In this paper, we propose CompileAgent, the first 634

LLM-based agent framework designed for repo- 635

level compilation, which integrates five tools and 636

a flow-based agent strategy to enable LLMs to in- 637

teract with software artifacts. To assess its perfor- 638

mance, we construct a public repo-level compila- 639

tion benchmark CompileAgentBench, and estab- 640

lish two compilation-friendly schemes as baselines. 641

Experimental results on multiple LLMs demon- 642

strate the effectiveness of CompileAgent. Finally, 643

We also highlight the scalability of CompileAgent 644

and expand its application prospects. 645

5https://www.qemu.org/
6https://scan.coverity.com/
7https://github.com/llvm/llvm-project
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Limitations646

Our work is the first attempt to use LLM-based647

agents to handle the repo-level compilation task,648

and verify the effectiveness of CompileAgent649

through comprehensive experiments. However,650

there are still some limitations that need to be fur-651

ther addressed in the future:652

Firstly, CompileAgent relies on the understand-653

ing capability of LLMs. During compilation, the654

agents may misinterpret prompts or instructions,655

leading to repeated or incorrect actions, which im-656

pacts its efficiency in resolving compilation issues.657

Future work will explore fine-tuning models to im-658

prove their in interpreting instructions.659

Secondly, the tools incorporated into Com-660

pileAgent are relatively basic, leaving unexplored661

potential for leveraging more advanced program-662

ming and debugging tools. Later we can expand663

the toolset to improve the performance of agents664

in tackling intricate compilation tasks and error665

resolution.666

Finally, since CompileAgent is highly dependent667

on the quality of prompt engineering, optimizing668

the prompts used in the agent system is crucial669

for its performance. In the future work, we will670

explore more effective agent strategies to improve671

overall system performance.672

Ethics Consideration673

We promise that CompileAgent is inspired by real-674

world needs for code repositories compilation, with675

CompileAgentBench constructed from real-world676

code repositories to ensure practical relevance. Dur-677

ing our experiments, all projects were manually re-678

viewed to verify the absence of private information679

or offensive content. Additionally, we manually680

compiled each project to validate the reliability of681

CompileAgentBench.682
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A Benchmark Details899

Table 4 presents the composition of CompileAgent-900

Bench, which includes 100 popular projects across901

14 topics. To align with the distribution of compi-902

lation guides in real-world code repositories, Com-903

pileAgentBench maintains a ratio of compilation904

guides in repo to those not in repo, as well as those905

without guides, at 7:2:1.906

B Readme-AI Details907

Figure 3 shows the Readme-AI how to be used in908

our compilation task. Its workflow is that GPT-909

4o mini first traverses all project files, generate910

a Readme.md file based on specific requirements,911

and finally MasterAgent can find the compilation912

instructions by reading the Readme.md.913

MasterAgent

Readme.mdgpt-4o mini

aes.h

Step1: Generate the Readme

I found the instructions 

and will use the Shell 

tool to execute them.

Project Codebase

Step2: Search Compilation Instructions

I will read the Read-

me.md and find the 

compilation instructions. 

MasterAgent

helper.py

…

Figure 3: The details of Readme-AI.

C RAG Details 914

Figure 4 illustrates how the RAG technology is 915

applied in our compilation task. We first specify 916

some files that may contain compilation instruc- 917

tions, such as README, INSTALL, etc., and then 918

split the contents of the files into chunks and gener- 919

ate embeddings and store them in the embedding 920

database. Finally, MasterAgent retrives the em- 921

bedding database to obtain the compilation instruc- 922

tions. The embedding model we use in this article 923

is text-embedding-3-large (OpenAI, 2024). 924

Embedding

Model

Install

Step1: Generate the Database

I have known the instr-

uctions and will use the 

Shell tool to execute them.

Project Codebase

Step2: Retrive Compilation Instructions

How to compile/build 

the project from source 

code?

Embedding

Database

MasterAgent

Readme

…

MasterAgent

①

①Retrive

②Return

③Execute

②

③

Retrive the relevant chunks 

Embedding

Database

Figure 4: The details of RAG.
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Table 4: The composition of CompileAgentBench.

Project Topic Existing Guide No Guide Project Topic Existing Guide No Guide
InRepo NotInRepo InRepo NotInRepo

FFmpeg Audio ✓ libvips Image ✓
aubio Audio ✓ mozjpeg Image ✓
cava Audio ✓ clib Linux ✓
Julius Audio ✓ activate-linux Linux ✓
zstd Compression ✓ libbpf Linux ✓
7z Compression ✓ util-linux Linux ✓
zlib Compression ✓ ttygif Linux ✓
lz4 Compression ✓ box64 Linux ✓
libarchive Compression ✓ fsearch Linux ✓
mbedtls Crypto ✓ uftrace Linux ✓
libsodium Crypto ✓ libtree Linux ✓
wolfssl Crypto ✓ toybox Linux ✓
nettle Crypto ✓ tinyvm Linux ✓
libtomcrypt Crypto ✓ libpcap Linux ✓
libbcrypt Crypto ✓ curl Networking ✓
tiny-AES-c Crypto ✓ masscan Networking ✓
boringssl Crypto ✓ Mongoose Networking ✓
tea-c Crypto ✓ libhv Networking ✓
cryptopp Crypto ✓ wrk Networking ✓
botan Crypto ✓ dsvpn Networking ✓
openssl Crypto ✓ streem Networking ✓
Tongsuo Crypto ✓ vlmcsd Networking ✓
GmSSL Crypto ✓ acl Networking ✓
libgcrypt Crypto ✓ odyssey Networking ✓
redis Database ✓ massdns Networking ✓
libbson Database ✓ h2o Networking ✓

beanstalkd Database ✓
ios-webkit-
debug-proxy Networking ✓

wiredtiger Database ✓ whisper.cpp NN2 ✓
sqlite Database ✓ llama2.c NN ✓
ultrajson DataProcessing ✓ pocketsphinx NN ✓
webdis DataProcessing ✓ lvgl Programming ✓
jansson DataProcessing ✓ libui Programming ✓
json-c DataProcessing ✓ quickjs Programming ✓
libexpat DataProcessing ✓ flex Programming ✓
libelf DataProcessing ✓ libmodbus Security ✓
libusb Embedded ✓ msquic Security ✓
wasm3 Embedded ✓ dount Security ✓
rtl_433 Embedded ✓ redsocks Security ✓
can-utils Embedded ✓ pwnat Security ✓
cc65 Embedded ✓ suricata Security ✓
libffi Embedded ✓ tini Security ✓
uhubctl Embedded ✓ tmux Terminal ✓
open62541 Embedded ✓ sc-im Terminal ✓
snapraid Embedded ✓ pspg Terminal ✓
cglm HPC1 ✓ smenu Terminal ✓
blis HPC ✓ no-more-secrets Terminal ✓
zlog HPC ✓ linenoise Terminal ✓
ompi HPC ✓ shc Terminal ✓
coz HPC ✓ hstr Terminal ✓
ImageMagick Image ✓ goaccess Terminal ✓

1 HPC stands for High Performance Computing.
2 NN stands for Neural Network.
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