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ABSTRACT

A crucial aspect of badminton is accurately predicting the shuttlecock’s landing
point. As a fast-paced sport, badminton demands agility and rapid strategic de-
cision making, making quick and precise predictions essential. Existing meth-
ods are primarily dependent on post-stroke trajectories, neglecting the underly-
ing player and shuttlecock dynamics that fundamentally determine the landing
point. Here, we propose a novel multimodal predictive framework, Conditional
Gate-Based Cross-Fusion Network (ConFu). ConFu integrates four key informa-
tion streams–three-dimensional (3D) shuttlecock trajectory reconstruction from
monocular video, player dynamic localization, keypoint-based arm gesture, and
stroke types–into proposed conditional gate LSTM and spatio-temporal trans-
former modules. Our model achieves a prediction accuracy of 92.6% with
a mean absolute error of 0.20 meters, significantly outperforming existing
methods by 7.8-10.5% in accuracy. Experimental validation on a real-world
badminton dataset comprising 13,582 strokes demonstrates that ConFu provides
immediate tactical feedback, saving 85% decision time compared to trajectory-
based approaches. This time advantage is particularly valuable for practical appli-
cations such as enabling badminton robots to compute interception strategies.
Our work establishes a foundation for intention-aware prediction, with broader
implications for robotics, autonomous systems, and human-AI interaction. Code
will be released for reproducibility (https://anonymous.4open.science/r/AI-
Sport18-BFE9/README.md (needed you to paste it into browser by yourself)
and supplementary material by now).

1 INTRODUCTION

The sports analytics market is projected to grow at a compound annual rate of 21.3% from 2021
to 2028 Research (2021), driven by the convergence of artificial intelligence and sports science.
This paradigm shift enables data-driven insights into athletic performance, strategy formulation, and
training optimization Davis et al. (2024). While traditional systems like Hawk-Eye provide high-
precision tracking using multi-camera setups Uzor et al. (2023); Singh Bal & Dureja (2012), their
deployment cost and infrastructure requirements limit scalability. In contrast, monocular vision-
based deep learning methods offer a low-cost, accessible alternative, capable of extracting rich
spatio-temporal signals for predictive modeling.

Among racket sports, badminton presents a particularly challenging domain for real-time antici-
pation due to its rapid rally dynamics—players often have less than 500ms between consecutive
strokes Wolf Gawin & Seidler (2015). Prior work has focused on match outcome prediction Sharma
et al. (2021) or post-hoc statistical analysis of stroke sequences Torres-Luque et al. (2020; 2019),
which offer limited utility for in-the-moment decision-making. More recent efforts analyze player
positioning Galeano et al. (2021) and stroke patterns via Markov models Galeano et al. (2022),
highlighting the importance of fine-grained movement understanding. However, these approaches
typically operate after stroke execution, failing to support proactive responses.

To enable truly anticipatory systems, we advocate for pre-stroke prediction: forecasting where
a shuttlecock will land using only observations available before or at the instant of impact. This
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requires fusing multiple modalities—such as the evolving 3D trajectory of the shuttlecock, player
body pose, arm gestures, and inferred stroke intent—into a coherent, time-critical prediction. The
core challenge lies in dynamically integrating a primary sensory stream (e.g., shuttlecock motion)
with contextual cues (e.g., player gesture) that modulate its interpretation. Naı̈ve fusion strategies
struggle to capture these conditional dependencies, especially under the tight temporal constraints
of elite play.

To address this, we propose ConFu (Conditional Gated Cross-Fusion Network), a novel architecture
for multimodal pre-stroke anticipation in badminton. ConFu unifies four key information streams
from monocular video: (1) reconstructed 3D shuttlecock trajectories, (2) player dynamic localiza-
tion, (3) keypoint-based arm gestures, and (4) predicted stroke types. By leveraging conditional
gating and hierarchical cross-fusion, our model generates accurate predictions of the shuttlecock’s
landing location precisely at the moment of opponent contact. We evaluate ConFu on real-world
datasets TrackNetV2 Sun et al. (2020) and ShuttleSet22 Wang et al. (2024b), demonstrating sig-
nificant improvements over baseline methods. The primary contributions of this research are as
follows:

1. Real-time Prediction Capability: ConFu achieves drop point prediction within 0.224 sec-
onds after stroke initiation, enabling 85% time saving compared to post-stroke trajectory
methods;

2. Comprehensive Multimodal Integration: We systematically combine four information
modalities (3D trajectory, player positioning, arm gestures, and stroke types) extracted
from monocular video, achieving 92.6% prediction accuracy;

3. Novel Gating Mechanisms: We design two specialized conditional gating mecha-
nisms—dynamic spatio-temporal fusion and stroke-conditioned gesture filtering—that im-
prove prediction accuracy by 3.3-10.5% over baseline fusion strategies;

4. Hierarchical Cross-Fusion Architecture: The proposed cross-fusion approach integrates
features across multiple processing stages, preserving original information while enabling
deep feature interaction.

Beyond immediate drop point forecasting, our approach lays the foundation for intelligent train-
ing systems, wearable feedback interfaces, and autonomous badminton-playing robots capable of
human-level reactivity. By bridging multimodal perception with anticipatory reasoning, ConFu rep-
resents a step toward real-time, intention-driven sports intelligence.

2 RELATED WORK

2.1 3D TRAJECTORY PREDICTION IN BALL SPORTS

Predicting 3D trajectories in badminton and other ball sports has become increasingly important
for performance analysis and training. Early methods relied on physics-based models to estimate
motion under aerodynamic forces. For instance, Yi et al. Yi et al. (2004) designed an algorithm
for extracting motion trajectories in compressed video using physical and statistical methods; Chen
et al. Chen et al. (2009) developed a shuttlecock motion model that incorporates gravity and air
resistance; and Zhang et al. Zhang et al. (2010) proposed a stereovision system utilizing two smart
cameras to reconstruct the trajectory of table tennis. However, these physical model-based methods
often require precise calibration, which can be challenging to implement in practice due to time and
resource constraints.

Recent advancements have leveraged high-precision equipment and deep learning to overcome these
limitations. For example, event cameras Sato et al. (2024) and sequence-based models Chao et al.
(2024) enhance tracking in high-speed scenarios by addressing motion blur and short-term occlu-
sions. TrackNet Huang et al. (2019) employs VGG-16 Simonyan & Zisserman (2015) and Decon-
vNet Noh et al. (2015) architectures for 2D tennis ball tracking in sports videos. Its subsequent
versions, TrackNetV2 Sun et al. (2020) and TrackNetV3 Chen & Wang (2024), improve efficiency
and accuracy through optimized network architectures and trajectory correction modules. Simi-
larly, MonoTrack Liu & Wang (2022) is an end-to-end system designed to extract and segment 3D
shuttlecock trajectories from monocular video. The trajectory reconstruction based on monocular
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videos Liu & Wang (2022); Hsieh (2024); Ertner et al. (2024) offers greater convenience and cost-
effectiveness compared to multi-camera systems (e.g., Yamane et al. Yamane et al. (2024)). These
approaches highlight the growing integration of ML/DL and data analytics in understanding the
complex dynamics of ball trajectories.

2.2 MULTIMODAL DATA FUSION FOR PREDICTIVE ANALYTICS IN COMPETITIVE BALL
SPORTS

Competitive ball sports involve complex spatio-temporal interactions that offer valuable insights into
player performance and strategy. Predicting future actions is critical for enabling timely strategic
adjustments. Existing studies have employed 2D laser scanners Waghmare et al. (2016) and previous
trajectory points Vrajesh et al. (2020) to predict shuttlecock drop points, and used spatial domain
information Wu et al. (2019) and player posture Wu et al. (2019); Wu & Koike (2020) to forecast
table tennis drop points. However, the utilization of multimodal data remains relatively limited. In
contrast, Shimizu et al. Shimizu et al. (2019) combined player position and posture information,
predicting tennis shot direction, achieving superior results compared to unimodal data. Chang et
al. Chang et al. (2023) presented DyMF, a dynamic graph model that captures spatio-temporal
interactions to predict badminton players’ actions and stroke types. These developments indicate that
multimodal data holds promising potential for enhancing prediction and decision-making support in
competitive ball sports.

Early fusion Barnum et al. (2020) merges raw or low-level features across modalities prior to further
processing. Late fusion Snoek et al. (2005) processes each modality independently and combines
their outputs at the decision level. Although this approach allows modality-specific modeling, it
may overlook cross-modal dependencies. Middle fusion Wang et al. (2024a) offers a compromise
by enabling interaction among modality-specific features at intermediate stages, balancing joint rep-
resentation and modularity. Cross-fusion combines information from multiple stages. Unlike simple
concatenation or early fusion, it allows for selective and hierarchical interaction between modalities,
enhancing the model’s ability to capture complex dependencies. This approach improves represen-
tational richness and prevents loss of critical raw information during deep fusion processes.

2.3 BADMINTON MATCH DATASET

Several high-quality badminton datasets have recently been introduced, offering valuable resources
for performance analysis and strategy optimization. BadmintonDB Ban et al. (2022) provides de-
tailed annotations of rallies, strokes, and outcomes across nine real matches. ShuttleSet Wang et al.
(2023) and ShuttleSet22 Wang et al. (2024b) offer human-annotated, stroke-level tabular data suit-
able for fine-grained performance evaluation. The TrackNet series (TrackNet, TrackNetV2, and
TrackNetV3) contributes extensive video data from singles matches, capturing dynamic gameplay
in realistic settings. These datasets support the development and evaluation of predictive models for
player behavior and tactical decision-making. In this study, we utilize data from TrackNetV2 and
ShuttleSet22 to conduct our experiments.

3 METHODOLOGY

3.1 ARCHITECTURE OVERVIEW

ConFu is designed to address the dependency on post-stroke trajectories of badminton drop point
prediction, enabling accurate and instantaneous predictions at the moment of stroke. As illustrated
in Figure 1, the system integrates four input modalities: (1) 3D shuttlecock trajectory reconstructed
from monocular video, (2) spatio-temporal player coordinates, (3) gesture features from arm key-
points, and (4) stroke types. We propose a unified framework that combines a conditional gating
mechanism with a cross-fusion architecture to effectively integrate multimodal features for shuttle-
cock drop point prediction. The conditional gate dynamically models inter-modality interactions by
computing gating values via a sigmoid function, allowing the model to adaptively modulate auxil-
iary information. Meanwhile, the cross-fusion architecture systematically integrates features across
multiple processing stages, preserving the original characteristics of each modality while enabling
comprehensive information fusion.

3
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Figure 1: Illustration of the ConFu architecture. The model includes four inputs: the 3D trajectory
of shuttlecock before stroke (X1), two players’ positions (X2), the gesture feature (X3) and stroke
type (X4), with conditional gates put on X1 and X3 to enable dynamic feature recalibration, and
outputs the shuttlecock drop point prediction.

3.2 CROSS-FUSION MECHANISM

To enable deep interaction while preserving original modality representations, we design a hierar-
chical cross-fusion module that operates across two stages.

Let F (1) = [H1, H2, H3, H4] denote the modality-specific features from Stage 1, and F (2) =
[H ′

1, H
′
2, H

′
3, H

′
4] from Stage 2. The cross-fusion is defined as:

Ffused = Concat
(
F (1),CrossAttn(F (1), F (2))

)
(1)

where CrossAttn(Q,K, V ) = Softmax
(

QKT

√
d

)
V , with Q = F (1)WQ, K = F (2)WK , V =

F (2)WV . This allows Stage 2 features to modulate Stage 1 representations via attention, preserving
early features while enabling late-stage refinement.

3.3 SPATIO-TEMPORAL TRAJECTORY ENCODER

The 3D trajectory of the shuttlecock is reconstructed via MonoTrack Liu & Wang (2022) from
monocular video of badminton match. To capture the non-linear dynamics of shuttlecock motion,
we employ a dual-branch transformer architecture that separately models temporal dependencies
and spatial relationships. The input X1 ∈ R3×T (3D coordinates over T = 21 frames) is processed
as follows:

Spatio-Temporal Transformation The temporal branch uses a two-layer transformer encoder with
multi-head self-attention (short name: MHA, we use 2 heads in our experiment) to model long-range
dependencies across frames, while the spatial branch applies local windowed attention (window
size=3) to capture instantaneous velocity/acceleration patterns:

H
(t)
1 = TemporalTransformer(W1X1 +B1), (2)

H
(s)
1 = SpatialTransformer(W1X1 +B1), (3)

where the weight matrix W1 ∈ Rd×3 and the bias matrix B1 ∈ Rd×T perform affine transformations
to map coordinates into a d-dimensional hidden space.

Dynamic Fusion A learnable gating mechanism adaptively balances temporal and spatial features:

g1 = σ(Wg1 [H
(t)
1 ⊕H

(s)
1 ] + bg1), (4)

H1 = µ(g1 ⊙H
(t)
1 + (1− g1)⊙H

(s)
1 ), (5)
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where σ(·) and µ(·) denote the Sigmoid function and temporal averaging over the sequence, respec-
tively, and Wg1 ∈ Rd×2d generates fusion weights. The final trajectory feature H1 is obtained by
averaging the fused sequence over time.

3.4 CONDITIONAL GATE LSTM

To model stroke preparation dynamics, we extract T frames of 2D pixel coordinates of six key points
on the player’s arms before the stroke, followed by first-order differencing to obtain the gesture
feature X3 ∈ R12×(T−1). Then the feature is analyzed using a LSTM conditioned on stroke type
X4:

h = LSTM(W3X3 + b3), W3 ∈ Rd×12, (6)

where h = (h1,h2, . . . ,hT−1)
′ ∈ R(T−1)×d includes the d-dimensional hidden states of totally

T − 1 timesteps. A stroke-conditional gate filters irrelevant motion patterns:

g3 = σ(Wg3 [hT−1 ⊕H4] + bg3), (7)
H3 = h⊙ g3, (8)

where Wg3 ∈ Rd×2d and H4 = Embed(X4) ∈ Rd is the stroke type embedding. This mechanism
suppresses noise from non-stroke-related movements (e.g., footwork adjustments). The integration
of explicit stroke labels (X4) enables the model to learn discriminative gesture features for different
shot types (smash, drive, etc.)

Although Transformer architectures have demonstrated advantages in modeling long-range temporal
dependencies and enabling parallel computation, their performance heavily relies on large training
data and they are prone to overfitting in low-data regimes. The gesture modeling task in this work
operates on short pre-stroke sequences (T − 1 ≤ 20 frames), where long-range context is less
critical and the training samples, while substantial, do not reach the scale typically required for op-
timal Transformer performance. In contrast, LSTMs offer a compact, efficient, and well understood
mechanism for capturing short term temporal dynamics with stable training behavior. Their lower
parameter count also facilitates integration with conditional gating mechanisms and improves over-
all model interpretability. Therefore, we adopt LSTM as the backbone for gesture feature encoding
in this module.

Formalization as Contextual Modulation. We formalize the conditional gating mechanism as a
contextual feature modulation operation. Let H1 ∈ Rd be the trajectory feature vector and H3 ∈ Rd

be the gesture feature vector. The gating network G(·) maps H3 to a scale γ and shift β vector:

(γ, β) = G(H3) = (σ(WγH3 + bγ), WβH3 + bβ) (9)

The modulated feature H̃1 is then:
H̃1 = γ ⊙H1 + β (10)

This is analogous to Conditional Batch Normalization, where the gesture H3 provides the condition-
ing context. This formulation allows the model to not only scale but also shift the trajectory features
based on intention, enabling richer interaction.

Interpretability via Gate Weights. The gating weight wg = σ(MLP(H3)) can be interpreted
as an intention-driven attention map. In Figure 3, we visualize wg for different stroke types. We
observe that for a smash, the gate assigns higher weights to the latter part of the trajectory (near
the stroke), as the player’s intention dominates. For a clear, the gate assigns more uniform weights,
indicating reliance on the full trajectory. This provides insight into the model’s decision-making
process.

The ground-truth labels for the shuttlecock’s landing point (y ∈ R2) are generated by integrating
the 3D trajectory reconstructed by MonoTrack with a calibrated aerodynamic model. This process
is crucial for supervised learning and is therefore detailed here to ensure reproducibility and address
potential concerns regarding label quality and feature-label coupling.

During our implementation, we identified that the default aerodynamic damping parameters in the
public MonoTrack codebase often produced physically implausible trajectories, likely due to a mis-
calibration. This manifested as trajectories that were excessively shortened, failing to align with the
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visual evidence in the video frames. Furthermore, its method of approximating the landing point by
simply interpolating frames where the shuttlecock’s height (z-coordinate) changes sign introduces
significant error. To ensure the highest label fidelity for training and evaluation, we meticulously
re-calibrated the physical model and implemented a more precise landing point calculation.

The motion of a shuttlecock in flight is governed by gravity and aerodynamic drag. Its dynamics
can be modeled by the following equation of motion:

m
d2r⃗

dt2
= mg⃗ − 1

2
CdρA∥v⃗∥v⃗ (11)

where r⃗ is the position vector, m is the mass of the shuttlecock, g⃗ is the gravitational acceleration
vector, Cd is the drag coefficient, ρ is the air density, A is the cross-sectional area, and v⃗ is the
velocity vector.

Table 1: Parameters for the aerodynamic model used in
label generation.

Parameter Symbol Value
Mass m 5.2 g
Gravitational acceleration g 9.81 m/s2
Drag coefficient Cd 0.60
Air density ρ 1.204 kg/m3

Cross-sectional area A 2.83×10−3 m2

Initialization window – 5 frames

The parameters used in our simulation
are summarized in Table 1. The drag
coefficient Cd was the key parameter
optimized. We determined its value by
minimizing the reprojection error be-
tween the simulated trajectory and the
actual shuttlecock pixels across a held-
out set of rallies, ensuring the simula-
tion conformed to both physical laws
and visual evidence.

The initial state (position r⃗0 and velocity v⃗0) required to solve Equation 11 is derived from the first
5 frames (approximately 0.2 seconds) of the MonoTrack-reconstructed 3D trajectory immediately
after the stroke moment. This window is short enough to be largely unaffected by significant aerody-
namic deformation yet long enough to provide a stable and accurate estimate of the initial post-shot
velocity vector, which is critical for an accurate simulation. The equation is then solved numerically
using a 4th-order Runge-Kutta method. Crucially, instead of relying on coarse interpolation, we
precisely solve for the landing point by finding the time tland where the shuttlecock’s height z(t)
equals zero using the bisection method on the integrated trajectory. This yields a more accurate final
landing point (x, y).

To validate our calibrated model, we performed qualitative checks by visually inspecting the align-
ment of the simulated trajectory with the shuttlecock’s position in subsequent video frames. We
paid particular attention to the final shot of a rally, where the shuttlecock lands on the ground, using
its visible impact point as an indirect verification of our simulation’s accuracy. This manual veri-
fication confirms that our generated labels are physically realistic and reliable, mitigating concerns
about learning from erroneous data.

Finally, we emphasize the procedural decoupling in our pipeline: the features used for training (the
pre-shot trajectory from MonoTrack, X1) and the labels (generated by an independent physical sim-
ulation triggered by the post-shot trajectory) are distinct. MonoTrack acts solely as a pre-processing
tool to provide the initial conditions; it does not directly generate the labels, thus mitigating the risk
of feature-label leakage.

3.5 FUSION LAYER

Multimodal features from all branches are integrated by the fusion module consisting of a single
aggregation step followed by a prediction layer. The combined features from the different modalities
are integrated by

hF = ReLU(WF [H1 ⊕H2 ⊕H3 ⊕H4] + bF ), (12)
and the final prediction is computed by the prediction layer as

ŷ = WouthF + bout, (13)
where WF ∈ RdF×4d and Wout ∈ R2×dF . This hierarchical fusion approach effectively synthesizes
the multimodal information for improved predictive performance. Finally, the loss function is:

L =
1

N

N∑
i=1

|ŷi − yi| (14)

6
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4 EXPERIMENTAL STUDY

4.1 DATA DESCRIPTION

We collected badminton match videos from two public datasets, TrackNetV2 Sun et al. (2020) and
ShuttleSet22 Wang et al. (2024b) datasets, including 6,538 rallies and 13,582 valid strokes in total.
We employed the MonoTrack pipeline to extract features, including the reconstructed 3D trajecto-
ries, player position, and arm keypoint gesture. The stroke type annotations were obtained directly
from the original datasets and will be described in more detail later. The true labels are generated
by the integrating MonoTrack and physical model Chan & Rossmann (2012). In detail, we have
13,582 samples with four features: T (T=21) frames 3D coordinates of the shuttlecock before stroke
(X1 ∈ R3×T ), 2D coordinates of two players’ dynamic positions (X2 ∈ R4×T ), differential arm
keypoint gesture (X3 ∈ R12×(T−1)) and stoke type (X4 ∈ {0, 1, 2, 3}), and the label of drop point
coordinates y ∈ R2. We divided the dataset into training, validation, and test sets by a ratio of 8:1:1.
Specifically, the feature X2 includes both players’ positions instead of only the one who strikes the
shuttlecock because this player will adjust the stroke strategy according to the position of the op-
ponent. After analyzing stroke type from multiple datasets (ShuttleSet22’s 10 types and BadOL’s
7 types[2]), we consolidated to 4 general stroke types for cross-dataset compatibility, guaranteeing
that all datasets contain these four fundamental types.

4.1.1 EVALUATION METRICS

To evaluate the accuracy of drop point prediction, we employed three metrics: Mean Absolute Error
(MAE), Mean Squared Error (MSE), and Distance-Based Accuracy (Accuracy). Let yi ∈ R2 and
ŷi ∈ R2 denote the ground-truth and predicted 2D coordinates for the i-th sample, respectively. The
metrics are defined as follows:

Accuracy =
1

n

n∑
i=1

I {∥yi − ŷi∥2 < d} , (15)

where DBA indicates the proportion of predicted drop points with less than d meters away from the
true labels, ∥ · ∥1 and ∥ · ∥2 denote the ℓ1 and ℓ2 norms, respectively, I{·} is the indicator function,
and d is a predefined distance threshold (0.3 meters for this study).

4.1.2 BASELINE METHODS

We selected four existing models were as baseline method for comparison. MonoTrack Liu &
Wang (2022) models the shuttlecock’s trajectory while incorporating gravity to estimate the drop
point. DyMF Chang et al. (2023) employs a dynamic graph model to predict 2D positions in the
court. FCST Wang (2024) estimates drop points by coordinate transformation strategy. SeqBase-
line: A Transformer encoder over X1 followed by MLP regression. ShuttleNet-adapted : We adapt
ShuttleNet Wang et al. (2021) to predict drop point using player positions and stroke type, trained
on the same splits. RallyTemPose Ibh et al. (2024): A skeleton-based transformer for motion recog-
nition; we use its gesture encoder as a feature extractor.

4.1.3 DROP POINT PREDICTION ACCURACY OF CONFU

To visually demonstrate the drop point prediction performance, we show Figure 2 with quantitative
results. Specifically, in Figure 2, we randomly sampled 500 data points and plotted the difference
vectors between the predicted drop points and the ground truth as prediction error. The results clearly
show that our method achieves significantly lower prediction errors compared to other competitors.

Table 2: Performance comparison.

Model Acc MSE MAE

DyMF 83.2% 0.28 0.30
RallyTemPose84.8% 0.21 0.24
FCST 82.1% 0.29 0.32
ConFu 92.6% 0.18 0.20

In summary, the evaluation metrics of the shuttlecock drop
point prediction are shown in Table 2. ConFu achieves the
smallest MSE (0.18) and MAE (0.20), as well as the highest
accuracy (92.6%) with d = 0.3m. Statistical significance
testing using paired t-tests confirms that ConFu’s im-
provements over all baselines are significant (p < 0.001).
Comparative analysis with RallyTemPose, DyMF and Phys-
ical (Table 1) shows that while these methods demonstrate
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varying performance at different reference points, ConFu con-
sistently achieves the highest scores across all evaluation metrics. ConFu achieves the smallest MSE
(0.18) and MAE (0.20), as well as the highest accuracy (92.6%) with d as 0.3m in equation 18. Com-
parative analysis with RallyTemPose, DyMF and Physical (Table 1) shows that while these meth-
ods demonstrate varying performance at different reference points, ConFu consistently achieves the
highest scores in accuracy. To thoroughly evaluate prediction precision, we tested our model across
multiple distance thresholds (0.15m to 0.8m). The results demonstrate consistent performance scal-
ability, with accuracy improving from 90.09% at 0.15m to 98.01% at 0.8m.

(a) (b) (c)

(d) (e) (f)

Figure 2: (a-e) Two-dimensional error distributions with KDE contours (red) and 0.3m threshold
(green dashed). (f) 2D-dimensional error distributions with KD Overlaid probability density his-
tograms (α = 0.08) demonstrating comparative error distributions. Note ConFu’s superior concen-
tration near the origin.
Table 3: Reconstruction performance and ablation study. Left: Performance across different frame
counts (5, 10, 15, 20), with our method showing consistent prediction quality. Right: Ablation study
verifying the contribution of each component on real cases dataset(”Lin-Li Battle” at the 2016 Rio
Olympics” ).

Method Metric 5 10 15 20

Monotrack Time (s) 0.935 0.726 0.394 0.164
Overtime (%) 8.8 23.8 29.5 68.0
Accuracy (%) 29.38 40.83 45.57 73.45

ShuttleNet Time (s) 1.063 0.746 0.374 0.105
Overtime (%) 7.8 24.2 28.0 65.0
Accuracy (%) 28.46 39.82 42.97 68.43

Ours Time (s) 1.264 (constant)
Overtime (%) 6.2 (constant)
Accuracy (%) 92.60 (constant)

Model Variant Acc ∆ Acc

Full ConFu (Ours) 89.7 -
w/o Conditional Gate 82.4 -7.3
w/o Cross-Fusion 85.3 -4.4
w/o Gesture Input (X3) 86.1 -3.6
w/o Player Position (X2) 84.9 -4.8
SeqBaseline 87.9 -1.8
ShuttleNet-adapted 83.5 -6.2

4.1.4 INFERENCE TIME OF CONFU

A shorter inference time would save more time for making a decision, which is useful for a robot.
We benchmarked ConFu against MonoTrack Liu & Wang (2022) and ShuttleNet Wang et al. (2021),
recording the time each method took to generate predictions. We set the moment of each stroke as
the absolute time 0s and recorded the start and completion times for prediction generation across all
three methods. The experiments were carried out on the test set (1,358 rallies), and the average time
cost are summarized in left part in Table 3.
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ConFu begins its prediction at 0s, and it takes 0.127s on average to extract the features. It completes
its prediction taking 0.097s. Given the average time duration between two consecutive strokes is
1.470s, ConFu saves 1.254s (85%) compared to MonoTrack and 0.524s (36%) compared to Shut-
tleNet.

The higher time consumption of MonoTrack and ShuttleNet is primarily due to their reliance on
reconstructing the shuttlecock’s 3D trajectory after the stroke. By default, MonoTrack uses all
frames up to the next stroke, while ShuttleNet operates on a fixed 15-frame window (approximately
0.65 seconds). We experimented with varying the number of frames for MonoTrack and ShuttleNet,
and we observed that prediction accuracy improves as more frames are used. Overall, as the left
part of Table 3 shows, ConFu achieves the highest accuracy while requiring the least prediction time
across all frame settings.

To evaluate how conditional gate works. We did two experiments to show it. The first one shown in
right part of Table 3 where we can see that conditional gate has biggest impact on model performance
without whom the prediction accuracy drop by 7.3%. The second one shown in Figure 3 illustrates
a rough pattern that differnet stroke types assigns different imporance to the Uniform weight before
the stroke.

Figure 3: Visualization of Gating Weights. The conditional gate assigns different importance to
the trajectory features based on the stroke type. (a) Smash: High weight on late trajectory. (b) Clear:
Uniform weight. (c) Drop: High weight on early trajectory. (d) Drive: shows a rhythmic pattern
with periodic variation, consistent with the repetitive nature of drive rallies. Minor fluctuations sug-
gest adaptive feature modulation across frames. This shows the model learns human-like attention
patterns.

5 CONCLUSION

We presented ConFu, a novel architecture for conditional multi-modal fusion that addresses the
problem of pre-intervention anticipation. Our key innovation is a dynamic gating mechanism that
allows contextual information to modulate primary feature processing, enabling more nuanced and
accurate predictions than standard fusion techniques. Through extensive evaluation on a new chal-
lenging benchmark, we demonstrated that ConFu achieves state-of-the-art performance.

The principles behind ConFu—contextual modulation and hierarchical fusion—are general and ex-
tend beyond badminton. Future work will explore applications in robotics for human-robot collab-
oration, where predicting human intention is key, and in other sequential prediction tasks requiring
the integration of heterogeneous context.
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A APPENDIX

Choice of Model Parameter To balance model capacity and computational efficiency, the dimen-
sions of hidden space and final prediction layer are set to d = 128 and dF = 256, respectively.
And the auxiliary loss weight mentioned above is λ = 0.3. We chose 21 frames before the stroke
to make predictions based on prediction accuracy. While using only 10 frames already yields a high
accuracy of 91.4%, extending to 21 frames improves performance to 92.6%. Further increasing
the frame count offers diminishing returns (e.g., 20 frames: 92.5%, 30 frames: 91.8%, 40 frames:
90.2%).

LLM ASSISTANCE

We used LLM to refine paper sections for clarity and grammar. We maintained full responsibility
for reviewing and validating all LLM-assisted content, ensuring accuracy and scientific standards.
LLM was not involved in core research, experimental design, data collection, or primary analysis.
All scientific content, conclusions, and errors remain solely the our responsibility.
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