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ABSTRACT

Cross-device federated learning (FL) is a technique that trains a model on data
distributed across typically millions of edge devices without data leaving the
devices. SGD is the standard client optimizer for on device training in cross-device
FL, favored for its memory and computational efficiency. However, in centralized
training of neural language models, adaptive optimizers are preferred as they offer
improved stability and performance. In light of this, we ask if language models can
be modified such that they can be efficiently trained with SGD client optimizers
and answer this affirmatively.

We propose a scale-invariant Coupled Input Forget Gate (SI CIFG) recurrent
network by modifying the sigmoid and tanh activations in the recurrent cell and
show that this new model converges faster and achieves better utility than the
standard CIFG recurrent model in cross-device FL in large scale experiments. We
further show that the proposed scale invariant modification also helps in federated
learning of larger transformer models. Finally, we demonstrate the scale invariant
modification is also compatible with other non-adaptive algorithms. Particularly,
our results suggest an improved privacy utility trade-off in federated learning with
differential privacy.

1 INTRODUCTION

Federated learning (FL) is a technique that trains a model on data distributed across devices without
data leaving the device (Konecny et al., 2016; McMahan et al.,|2017a). FL has been applied in a
variety of diverse settings, including language-based applications (Hard et al., 2018b; (Chen et al.,
2019} [Kairouz et al.| [2019; |Li et al.} 2020a; |Shah et al.l 2020). Specifically, we examine cross-device
FL (Kairouz et al., 2021b), where local clients are edge devices with limited resources and computing
power, which can number in the millions. Previous works on language modeling in cross-device FL
often use small recurrent-based models of less than 10M parameters (Hard et al., 2018bj; [Reddi et al.|
2020; Xu et al., [2023)), while more recent works leverage a variety of efficient techniques for training
larger Transformer-based models (Hilmkil et al., 2021} |Ro et al.,2022). In this work, we investigate
modular strategies applicable to various model architectures for improving training of both small and
large models in cross-device FL.

Existing works on improving FL usually focus on developing better optimizers FedAvg, FedProx,
Mime, FedDyn etc (Li et al.,2020b; Reddi et al., 2021} [Karimireddy et al.l 2021} |Acar et al.,|2021).
While advanced optimizers are typically used in the server, (e.g., in the optimizer FedAdam, Adam
optimizer is used in the server), in practice, the preferred client optimizer is often SGD for its memory
efficiency. Note that using an adaptive optimizer like Adam in clients requires storing first and
second moments of gradients, which improves the memory requirement considerably. However,
neural language models such as recurrent LSTMs (Yu et al., 2019) or Transformers (Vaswani et al.,
2017), typically require more memory intensive adaptive optimizers, such as Adagrad or Adam that
store both the first and second moment of gradients, and suffer in performance when trained with
SGD (Zhang et al.| [2020)). Hence we ask the question: Can we achieve the best of both worlds and
effectively train expressive architectures with memory efficient optimizers for language modeling in
FL?
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Li et al.| (2022)) studied this question in the context of training centralized Transformer encoder
models, such as BERT, and proposed using Scale Invariant Transformers for improved optimization
of Transformers using SGD. Using Scale Invariant Transformers, they were able to use SGD to obtain
a similar performance to that of standard Transformers using the Adam optimizer. Naturally, this
raises the question if there exists scale invariant version of other neural architectures, e.g. LSTMs
that can be optimized well with simple SGD.

Federated learning can also be combined with other privacy techniques to provide strong privacy
protection to various threat models (Zhang et al.,|2023; Bonawitz et al., [2022)). Differential privacy
(DP) (Dwork et al.l[2006) is a statistical framework that provides rigorous guarantees for privacy
protection and is adopted in federated learning to prevent models from memorizing individual
information (McMahan et al.,|2017b; [Ramaswamy et al.| [2020; [EI Ouadrhiri & Abdelhadi, 2022} We1
et al., 2020; |Girgis et al.,[2021). More recently, by applying the family of DP-Follow The Regularized
Leader (DP-FTRL) algorithms (Kairouz et al.,|2021a}; |Choquette-Choo et al.,[2023) that have strong
privacy-utility trade-offs without relying on sampling assumptions, meaningful formal differential
privacy guarantees have been achieved for production language models in practical cross-device
systems (Xu et al., 2023)).

2 OUR CONTRIBUTIONS

Improving LSTM architectures for FL. Long Short-Term Memory (LSTM) (Hochreiter & Schmid
huber], |1997b) language models are often used in large scale FL studies due to their small size
(McMahan et al.,2017a; Hard et al., [2018azb; |[Kairouz et al., [2021aj Xu et al.l2023). In particular,
Hard et al.| (2018b)) proposed to use Coupled Input Forget Gate (CIFG) LSTMs for federated learning
for mobile keyboard predictions for its improved parameter and computational efficiency over the
vanilla LSTM. Motivated by this, we develop a novel scale-invariant CIFG model (SI CIFG) with
modified activation functions for FL.

Application to FL. In cross-device FL, each client typically runs multiple steps of local SGD on
their local data to produce model parameter updates. These updates are then typically combined
at the server with a federated optimizer such as FedAdam (Reddi et al.l [2021). This raises an
important question: does our SI CIFG offer any advantages in this setting where one of the optimizers
is SGD and the other is an adaptive optimizer like Adam? We show that this is indeed the case
and that both our proposed SI CIFG as well as the already existing scale-invariant Transformer (L1
et al.| [2022) (SI Transformer), using scale-invariant attentions, perform significantly better than their
standard counterparts on a variety of experiments by improving convergence speeds in large scale FL.
experiments, while remaining robust to higher learning rates and heterogeneous networks.

Training with differential privacy. FL models are trained with differential privacy using the DP-
FTRL algorithm (Kairouz et al.,|2021a). In this scenario, while the local steps are still carried out via
SGD, the model updates from clients are additionally clipped and aggregated with noise at the server.
We show that scale invariant models also outperform their standard counterparts on experiments in a
large-scale FL system with differential privacy.

3 SCALE INVARIANT ARCHITECTURES

3.1 PREVIOUS SCALE INVARIANT ARCHITECTURES

In this section, we briefly review Scale Invariant Transformers (Li et al.,|2022)). Recall that a function
f is scale invariant if f(ax) = f(x) for any scalar @ > 0. Let n be the input sequence length and
d be the hidden dimension of the Transformer model. Recall that for a given input X € R4*", a
Transformer computes self attention as follows:

Attn(X) = SoftMax (WoX) " Wk X). (1)

Here W3 and Wi are the Query and Key projections, respectively. This operation is not scale
invariant, as scaling the weights (Wg, W) changes the output attention probabilities. |Li et al.
(2022) proposed the following alternative attention computation:
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SI-Attn(X) = N (ReLU (W X) " Wi X)) . 2

Here, N is the row-wise normalization operator - N(A);; = ﬁ. In particular, |Li et al.[(2022)
3 “rid

replaced the softmax in attention computation, with the ReLU activation followed by row-wise
normalization. This modifies the attention computation to be scale invariant. They further modify
the Transformer to be a Pre-LN activation model and use ReLU activation instead of GeLU in the
feedforward layers. We use the same architecture in our experiments.

However, |Li et al.| (2022) tested their method only on centralized encoder models (BERT). In this
paper, we will extend the results to decoder-only Transformers trained using a language modeling
objective in cross-device FL.

3.2 NEW SCALE INVARIANT ARCHITECTURES

Inspired by the Scale Invariant Transformer, we now design a novel Scale Invariant version of
the CIFG architecture we call SI CIFG. We note that the same changes from the Scale Invariant
Transformer do not apply to the CIFG as due to architecture differences, scale sensitivity arises from
different functions for CIFG models.

We focus on CIFG networks for their improved parameter and computational efficiency over the
vanilla LSTMs. The CIFG network uses a single gate to control self-connections in both input and
recurrent cells, which reduces the number of parameters per cell by 25% (Hochreiter & Schmidhuber
1997a; |Cho et al.l 2014} |Greff et al.,|2017). The shared gates increase efficiency, with little to no
impact on quality, which is critical in the typically resource constrained edge device environment of
cross-device FL. Moreover, we expect that our proposed changes can also be directly applied to the
LSTM model.

First, we review the basic CIFG before our proposed architecture changes. Recall that for a given
time step ¢ and input 2; € R?, the CIFG forward pass can be written as follows:

fi=0Wyx, +Ushi—1 + by) forget gate
it=1—f; coupled input forget gate
o = o(Woxy + Ushi—1 + by) output gate
= [t ©cio1 + i © tanh(Wexy + Uchi—1 + be) cell state

hy = o¢ ® tanh(c;)

where d and h are the input and hidden dimensions, respectively, and W € R**4 U7 € R"*" and
b € R" are the cell’s trainable weight and bias parameters. Here o and tanh are Sigmoid and Tanh
activation functions, respectively. This architecture is sensitive to input scale, mainly because of the
non-linearities in the o and tanh activations. We first propose modifying the activation functions
to be scale invariant by replacing o with Relu and tanh with linear activation. However, this no
longer guarantees that intermediate outputs of different gates are normalized. To further ensure that
the intermediate features are normalized we propose using a Max-Normalization - MAXN, which
normalizes each entry of the feature vector using its max absolute value along the hidden dimension.
Formally,

MAXN(z); = ——— . (3)
max;eq) ;]
Based on this, we propose the following scale invariant replacement for o activation.
Relu(z);
SI-o(x); = MAXN(Relu(z)); = . (@)
(z) ( () maxe|q) (Relu(z);)
Similarly, we also propose a scale invariant version of tanh.
SL-tanh(z); = MAXN(z); = i 5)

max;eq (|2;])
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It is straightforward to see that both SI-o and SI- tanh are scale invariant functions and we provide a
short proof for completeness.

Proposition 3.1. Both SI-o and SI- tanh are scale invariant functions.

Proof. Leta > 0. Then for any i € d, Relu(az); = aRelu(z); and hence,
Relu(ax); B aRelu(x); B Relu(z);
maxe|q) (Relu(az);) a max;e|q) (Relu(z);)  max;e [d] (Relu(z);)

Sl-o(az); = = SI-o(z);.

The calculations for SI- tanh are are similar and omitted. O

4 EXPERIMENTS WITH FEDERATED LEARNING

We report results for experiments using scale invariant architectures in large scale FL in both
simulation and live production experiments. For simulations, we train a language model on the English
Stack Overflow federated dataset, containing questions and answers from the forum grouped by
username, provided from TensorFlow Federated (TFF) (TFFE, |2018)). For live production experiments,
we train an English language model on millions of virtual keyboard user devices and follow the same
settings and FL requirements for client participation as Hard et al.| (2018b). All experiments were
implemented using the open-source FedJAX (Ro et al.l 2021b) and TFF libraries.

4.1 FEDERATED EXPERIMENTS ON PUBLIC DATASETS
For experiments on the Stack Overflow federated dataset, we compare the following models:

e CIFG 19M: Coupled Input Forget Gate variant of LSTM with 19M trainable parameters
with 1 layer of size 2048, embedding size 1024, and tied input and output embeddings (Press
& Wolfl, [2017).

e SI CIFG 19M: Modified CIFG 19M using SI-o and SI- tanh activations.

e Transformer 21M: Transformer with 21M trainable parameters with 6 layers, 8 attention
heads, MLP size 2048, embedding size 512, and tied input and output embeddings.

o SI Transformer 21M: Modified Transformer 21M using SI-Attn.

We use WordPiece (Wu et al., 2016) for subword tokenization with a vocabulary size of 4K to avoid
potential bottlenecks in embeddings for larger vocabularies. For FL training, we use FedAdam (Reddi
et al.| [2021)) which uses Adam (Kingma & Ba, [2014) for the server optimizer and SGD for the client
optimizer with the same settings used by Reddi et al.|(2021)), with the exception of learning rates. We
then sweep over learning rates for each model with 5 different random seeds for client sampling with
500 clients per round for 3K communication rounds and maximum sequence length of 20. Details
on speicifc hyperparameter settings and sweeps can be seen in Appendix
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Figure 1: Perplexity and accuracy on the Stack Overflow test dataset with shading indicating standard
deviation over 5 random seeds.

We report perplexity and accuracy, discounting end-of-sequence tokens, on the Stack Overflow test
dataset over 3K communication rounds in Figure[I| with final values in Table 2] (Appendix [A). We
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observe that applying Scale Invariance significantly increases the rate of convergence for both the
Transformer and CIFG, surpassing their respective base counterparts within 100 communication
rounds. Our proposed SI CIFG yields the best final quality and has the fastest convergence speed by
far. We next continue to live production experiments, where the network of clients is much larger and
more heterogeneous than simulation.

4.2 LIVE PRODUCTION EXPERIMENTS

For live production experiments for cross-device FL. on English virtual keyboard client devices,
similar to Hard et al.|(2018b)), we compare the following models:

e CIFG 9M: CIFG with 9M trainable parameters with 1 layer of size 2048, embedding size
512, and tied input and output embeddings.

e SI CIFG 9M: Modified CIFG 9M using SI-o and SI- tanh activations.

e Transformer 11M: Transformer with 11M trainable parameters with 3 layers, 8 attention
heads, MLP size 2048, embedding size 512, and tied input and output embeddings.

o SI Transformer 11M: Modified Transformer 11M using SI-Attn.

We use smaller sizes here compared to our previous simulation experiments due to stricter resource
constraints on client devices (Hard et al.l 2018b; Ro et al., 2021a)). Additionally, we also apply
stochastic 8-bit uniform quantization (Alistarh et al., |2017; |Suresh et al., 2017} on the upload of
model updates from client to server due to tighter communication bottlenecks on mobile devices. We
use Fast WordPiece (Song et al., [2021)) for subword tokenization with a vocabulary size of 4K as it
has been shown to be faster than WordPiece, allowing for more steps of training within the maximum
time limit allocated for client devices. Again, we use the FedAdam algorithm with 500 clients per
round for 3K communication rounds with maximum sequence length of 20. For more details on
hyperparameters, refer to Appendix
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Figure 2: Perplexity and accuracy from live experiments on English virtual keyboard devices training
from randomly initialized model weights.

We report perplexity and accuracy for training the models from randomly initialized parameters
on the population of English virtual keyboard client devices over 3K communication rounds in
Figure 2] with final values in Table [3] (Appendix [B]). The scale invariant architectures surpass their
base counterparts within 100 communication rounds and converge to significantly higher qualities.
While the base CIFG diverges in training at 2/ rounds, which could be attributed to a number of
potential issues (Pascanu et al.l 2013 when training recurrent models with SGD on client devices,
our proposed SI CIFG trains smoothly, significantly outperforms the other models within 200 rounds,
and converges to the best final quality. This improved training stability could be due to robustness to
out-sized client updates in the SI-o and SI- tanh activations.

5 EXPERIMENTS WITH DIFFERENTIALLY PRIVATE FEDERATED LEARNING

In this section, we apply our proposed scale invariant architectures to differentially private (DP) FL.
Specifically, we apply the DP variant of Follow-The-Regularized-Leader (DP-FTRL) Online TreeAgg
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proposed by [Kairouz et al.|(20214a). For live production experiments, we train an English language
model on millions of virtual keyboard user devices and mostly follow the same setup as |Xu et al.
(2023) for DP FL and compare the following models:

e CIFG 6M: CIFG with 6M trainable parameters with 1 layer of size 670, embedding size 96,
and vocabulary size of 30K.

e SI CIFG 6M: Modified CIFG 6M using SI-o and SI- tanh activations.

For training, we use 6500 clients per round and the same noise multiplier of 7.0 for 3K communication
rounds with maximum sequence length of 10 with word tokenization using a vocabulary size of
30K. The client optimizer is SGD with learning rate of 0.5 and the server optimizer is SGD with
momentum with learning rate 1.0 and momentum 0.9. We set the noise multiplier in the DP-FTRL
algorithm to obtain a z-CDP privacy of 1.05. We refer readers to [Bun & Steinke| (2016) for the
definition of z-CDP and [Kairouz et al.| (2021a) for the privacy guarantee calculations. For more
details and hyperparameter configurations, refer to Appendix [C| Before applying DP FL training, we
first pre-train the models on the public English Colossal Clean Crawled Corpus (C4) (Raffel et al.|
2019) dataset for 370K steps and start DP FL training from the pre-trained checkpoint. We report
perplexity and in-vocab-accuracy, discounting out-of-vocabulary and end-of-sequence tokens, for DP
FL training on the population of English virtual keyboard client devices over 3K communication
rounds in Figure 3] with final values in Table 4] (Appendix [C).
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Figure 3: Smoothed perplexity and in-vocab-accuracy from DP live experiments on English virtual
keyboard devices.

In the DP FL setting, our proposed SI CIFG consistently outperforms the base CIFG and under the
same privacy budget, achieves better utility, measured by perplexity and accuracy.

6 CONCLUSION

We applied scale invariance to a variety of neural architectures and proposed a novel CIFG-LSTM
architecture (SI CIFG) and evaluated their performance on a variety of cross-device and differentially
private large scale FL experiments. We demonstrated that using scale invariant architectures in
federated language modeling can significantly accelerate and improve model convergence, with our
proposed SI CIFG consistently achieving the best performance and convergence speed. We hope
that this study will motivate further studies into training larger models privately and effectively with
federated learning.
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A FEDERATED EXPERIMENTS ON PUBLIC DATASETS DETAILS

For all models and experiments with the Stack Overflow federated dataset, we used the followed
fixed hyperparameters

e Number of clients per round = 500: Number of clients sampled per communication round
of FL training.

e Client batch size = 10: Batch size used during local steps of training on client data.
e Number of client epochs = 1: Number of epochs of training on client data.

o Number of client batches = 120: Maximum number of client batches to train on until number
of client epochs is reached.

e Maximum sequence length = 20: Maximum allowed sequence length. Shorter sequences
are padded and longer sequences are truncated to this.

o Client optimizer = SGD

e Server optimizer = Adam with ; at 0.9, 55 at 0.999, and epsilon at le~8.
Table [T] details the hyperparameter configurations swept over per model, where the selected hyperpa-
rameters were chosen based on the lowest loss on the heldout split of the Stack Overflow federated

dataset after 3K rounds of training averaged over 5 random seeds. Table 2]reports the final evaluation
results using these selected hyperparameters on the Stack Overflow test dataset.

B LIVE PRODUCTION EXPERIMENT DETAILS

For all models and experiments with the live English virtual keyboard user population, we used the
followed fixed hyperparameters. We note that due to the nature of live production experiments and
longer feedback times, we were not able to run any extensive hyperparameter sweeps and re-used
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Table 1: Selected hyperparameters for each model. The values in [ ] are the possible hyperparameter
values searched over.
Client learning rate ~ Server learning rate

Model [0.1,0.5,1.0,2.0] [0.001,0.01]
CIFG 19M 0.1 0.001
SI CIFG 19M 0.1 0.001
Transformer 21M 0.5 0.001
SI Transformer 21M 2.0 0.01

Table 2: Perplexity and accuracy on the Stack Overflow test dataset after 3K communication rounds.

Model Perplexity ~ Accuracy%

CIFG 19M 35.5+£0.2 33.1+£0.1

SI CIFG 19M 33.6 0.2 33.6+0.1
Transformer 21M 34.6 £ 0.1 33.4+0.0
SI Transformer 21M  33.7 0.1 33.5+0.0

many common settings used in previous experiments. Table [3|reports the final evaluation results
using these hyperparameters averaged over the final 100 of 3/ communication rounds to account for
daytime variability (Eichner et al.||[2019).

e Number of clients per round = 500: Number of clients sampled per communication round
of FL training.

o Client batch size = 10: Batch size used during local steps of training on client data.
e Number of client epochs = 1: Number of epochs of training on client data.

o Number of client batches = 120: Maximum number of client batches to train on until number
of client epochs is reached.

e Maximum sequence length = 20: Maximum allowed sequence length.
e Client optimizer = SGD with learning rate 0.7.

e Server optimizer = Adam with learning rate 0.02, 81 at 0.9, 85 at 0.999, and epsilon at
le 8.

Table 3: Perplexity and accuracy from live experiments on English virtual keyboard devices averaged
with standard deviations over the final 100 communication rounds. *For base CIFG, we use the last
100 rounds before divergence.

Model Perplexity ~ Accuracy%
*CIFG 9M 475+£1.1 21.8+0.2
SI CIFG 9M 422+0.2 23.4+0.1

Transformer 11M 63.6 £ 0.9 18.2+0.1
SI Transformer 1M 44.34+0.7 23.24+0.2

C EXPERIMENTS WITH DIFFERENTIALLY PRIVATE FEDERATED LEARNING
DETAILS

For all models and DP experiments with the live English virtual keyboard user population, we used
the followed fixed hyperparameters. Again, due to the nature of live production experiments and
longer feedback times, we were not able to run any extensive hyperparameter sweeps and re-used
many common settings used in previous experiments. Table ] reports the final evaluation results
using these hyperparameters averaged over the final 100 of 3/ communication rounds to account for
daytime variability.
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e Number of clients per round = 6500: Number of clients sampled per communication round
of FL training.

o Client batch size = 10: Batch size used during local steps of training on client data.
e Clipping norm = 5.0: Fixed L2 norm that client updates are clipped up to.

e Maximum sequence length = 10: Maximum allowed sequence length. Decreased here since
word tokenization is used instead of the typically longer subword tokenization.

o Client optimizer = SGD with learning rate 0.5.

e Server optimizer = SGD with momentum with learning rate 1.0 and momentum 0.9.

Table 4: Perplexity and in-vocab-accuracy from DP live experiments on English virtual keyboard
devices averaged with standard deviations over the final 100 communication rounds.

Model Perplexity  Accuracy%
CIFG 6M 88.0+0.8 17.3+0.1
SICIFG6M 86.1+0.7 17.5+0.1
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