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Abstract. Efficient abdominal organ segmentation has important clin-
ical significance,but the challenges in label complexity and label profes-
sional is extremely limiting this task. Semi-supervised learning (SSL) has
impressively improved the label efficiency on medical image segmenta-
tion tasks with numerous unlabeled images, but in multi-center situation,
its extremely few labeled data enlarges the instability of these methods.
In this paper, we designed a new network structure to address multi-
organ segmentation from abdominal multi-center and multi-disease CT
examinations. To deal with clinical requirements and obtain a low GPU
memory but still efficient deep learning model, we use UNeXt which
is a Convolutional multilayer perceptron (MLP) based network for im-
age segmentation to achieve abdominal multi-organ segmentation. The
network uses tokenized MLPs in latent space reduces the number of pa-
rameters and computational complexity while being able to result in a
better representation to help segmentation. To ensure the stability of
semi-supervised learning in multi-center data, we use an advanced self-
training framework(namely ST++). The framework selective retraining
via prioritizes reliable unlabeled images based on holistic prediction-level
stability. The network structure we use combined with advanced self-
training strategy can solve the problem of multi-center data instability
in semi-supervised learning and achieve good segmentation effect at the
same time. Our experiments show that our method gives strong results
on the Dice similarity coefficient, especially for liver and kidney segmen-
tation, and does not require an excessively long inference time.
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1 Introduction

In recent years, segmentation has become a crucial task in abdominal image anal-
ysis with many applications such as computer-assisted diagnosis, surgery plan-
ning. In particular, the precise delineation from Computed Tomography (CT)
images of abdominal solid visceral organs including liver, kidneys, spleen and
pancreas for localization, volume assessment or follow-up purposes has critical
importance. However, the analysis of abdominal imaging datasets is challeng-
ing for clinicians since the abdomen is a complex body space. Building a large
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labeled abdominal data set requires the expertise of a physician and is time con-
suming. Therefore, when only few labels are available, the generalization ability
of deep learning models are extremely limited.

In this area, semi-supervised learning (SSL) has impressively improved the
label efficiency on medical image segmentation tasks with numerous unlabeled
images, but in multi-center situation, its extremely few labeled enlarges the
instability of these method. Some pseudo-label based methods generate pseudo-
labels on unlabeled data sets and improve the quality of pseudo-label genera-
tion through deep learning model. However, in multi-center situation, the deep
learning model generates unreliable pseudo-labels, which in turn misleads the
deep learning model to generate even more unreliable pseudo-labels, resulting
in the collapse of learning. Therefore, training a robust computational model
with a small amount of labeled data and multi-center unlabeled data is under-
investigated.

Few challenges including 2022 FLARE Challenge: Fast and Low-resource
semi-supervised Abdominal organ segmentation challenge has been proposed to
drive further research on abdominal image segmentation. There are two main
objectives in this challenge: the first is to develop a semi-supervised segmentation
algorithm that can segment thirteen abdominal organs (liver, spleen, pancreas,
right kidney, left kidney, stomach, gallbladder, esophagus, aorta, inferior vena
cava, right adrenal gland, left adrenal gland, and duodenum) simultaneously
using large amounts of multi-center unlabeled data. The second objective for the
participant is to develop an algorithm that not only can perform a high accuracy
segmentation but also has high efficiency, meaning it requires low GPU memory
and takes reasonable time to run prediction.

Participating in this challenge, we designed an efficient abdominal organ
segmentation network to achieve accurate and rapid segmentation of multi-
ple abdominal organs, and we adopt advanced self-training framework(namely
ST-++ [7]) to solve the instability problem of semi-supervised learning in multi-
center data. The network can deduce accurate segmentation results in a reason-
able time and consume less resources. In addition, the self-training framework
is able to perform selective retraining appropriately to address the stability re-
quirements of this challenging multicenter dataset in semi-supervised learning.
The main contributions of this paper are summarized as follows:(1) we are the
first combination of UNeXt [6] and ST++ [7] in medical image segmentation,
and a stable and accurate segmentation network model is trained using a large
number of unlabeled multi-center data;(2) we successfully improve the perfor-
mance on medical image segmentation tasks while having less parameters, high
inference speed, and low computational complexity.

2 Method

2.1 Preprocessing

To address the challenge of speed and memory, we employed a 2D segmenta-
tion model. The input which is in the format of CT image will be splitted into
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many slices along its 3D dimension. The segmentation results of these slices will
be stacked to form the output. Intensity normalization and random 90 degree
reversal is used as pre-processing step. In addition, a z-score normalization is
applied based on the mean and standard deviation of the intensity values among
the whole training dataset.

2.2 Proposed Method

UNeXt [6] is a Convolutional multilayer perceptron (MLP) based network for
image segmentation.It in an effective way with an early convolutional stage and
a MLP stage in the latent stage.The network is an encoder-decoder architecture
with two stages:1) Convolutional stage, and a 2) Tokenized MLP stage.

Each convolution block consists of one convolution layer, batch normalization
layer, and ReLLU activation. We use kernel size 3 x 3, step size 1, and padding of
1. The conv blocks in the encoder use a max-pooling layer with pool window 2
x 2 while the ones in the decoder consist of a bilinear interpolation layer to up-
sample the feature maps. We use the replace transpose convolution with bilinear
interpolation basically learnable upsample and contribute to more learnable pa-
rameters. In the tokenized MLP block, we move features first and project them
into the token. For tokenization, we first use kernel sizes of 3 and change the
number of channels to E, where E is the embedding dimension and is a hyperpa-
rameter. We then pass these tokens to the MLP, where the hidden dimension of
the MLP is the hyperparameter H. Next, features are transmitted through the
deep wise convolution layer. We then pass the features through another MLP
that converts the dimension from H to O. We use the residual connection here
and add the original token as the residuals. We then apply layer normalization
and pass the output features to the next block.

The input image is passed through an encoder where the first 3 blocks are
convolutionan and the next are 2 Tokenized MLP blocks. The decoder has 2
Tokenized MLP blocks followed by 3 convolutional blocks. Then the features of
the three convolution layers are combined into a feature to output the prediction
results. Each encoder block reduces the feature resolution by 2, each decoder
block increases the feature resolution by 2, and also includes skip connections
between the encoder and decoder. The number of channels across each block is
a hyperparameter denoted as C1 to C5. For the experiments using UNeXt [0]
architecture, we follow C1=32, C2=64, C3 =128, C4=160, and C=256. Figure 1
illustrates the applied UNext [6].

ST+ is an advanced self-training framework, it ensure the stability of semi-
supervised learning in multi-center data. From reliable pseudo-label sign-in to
unreliable pseudo-label, the label free image is gradually used. And different from
the general practice of selecting pixels with high confidence, we select reliable
images according to the stability of false labels in the first stage of training.
Given labeled dataset D' and unlabeled dataset D%, first select the most reliable
unlabeled image and its pseudo label from D% to D“!', and then retrain on
D% and D™ to obtain a student model S. At this point we have used the
tagged image and some of the more reliable images and false labels. Then, in
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Fig. 1. Network architecture

order to make better use of the remaining unreliable images and their pseudo-
labels,D%*2=D%*-D%! we re-label D*? with the learned S.Ultimately retraining on
the D!, D' and D*? results in a final student model for the testing process.

The following describes our selection strategy for reliable tagged images. We
observed in the experiment that relatively simple images achieved relatively high
accuracy in the early training period, and the pseudo-label change was very small
in the late training period. On the contrary, for difficult images, the pseudo-
labels predicted by the model in different epochs of training are often quite
different. Based on this observation, we propose to determine the reliability of
tag-free images and their tagging by measuring the stability of pseudo-labels in
different Epochs. To make this measurement strategy more stable, we calculated
the meanlOU between pseudo-labels of the whole graph with different epochs.
We use the former k£ — 1 checkpoint prediction of the & checkpoints and the
prediction result of the k checkpoint to calculate meanlOU . The larger the
meanlOU is, the more stable the false tag is during training. The quality is
also more reliable.We use a combination of binary cross entropy (BCE) and dice
loss to train UNeXt [6]. The loss L between the prediction § and the target y is
formulated as:

L =0.5BCE(y,y) + Dice(y,y)

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [5], KiTS [2,3], AbdomenCT-1K [4], and
TCIA [1]. The training set includes 50 labelled CT scans with pancreas disease
and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas diseases.
The validation set includes 50 CT scans with liver, kidney, spleen, or pancreas
diseases. The input which is in the format of CT image will be splitted into



An Efficient Multi-center Abdominal Organ Segmentation Network 5

many slices along its 3D dimension.The resolution of all our training images is
512x512.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC), and running effi-ciency measures: running time, area under
GPU memory-time curve.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 18.04.5 LTS

CPU Intel(R) Xeon (R) CPU E5-2680 @2.40GHz
RAM 16x4GB; 2.67TMT/s

GPU (number and type) 1 NVIDIA 3060 12G

CUDA version 11.0

Programming language Python 3.9

Deep learning framework Pytorch (Torch 1.7.0, torchvision 0.8.1)

Specific dependencies https://github.com/jeya-maria-jose/UNeXt-pytorch
(Optional) Link to code https://github.com/code-Porunacabeza/flare2022

Training protocols The training protocols of the baseline method is shown in
Table 2. Instead of processing data in a 3D way using 3D patches, our model inde-
pendently processes 2D axial slices. Image size taken for axial slices is 512x512.

Table 2. Training protocols.

Network initialization “he" normal initialization

Batch size 16
Patch size 512x512
Total epochs 100
Optimizer Adam
Initial learning rate (Ir) 0.0001
Training time 28 hours

Loss function BCEDiceLoss
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4 Results and discussion

4.1 Quantitative results on validation set

As show in Table 3. It can be seen that the use of unlabeled data can improve the
segmentation effect.It is worth pointing out that for liver segmentation, the DSC
scores has improved 45.25% , indicating great segmentation performance in terms
of region overlap between the ground truth and the segmented results. The DSC
scores of Gallbladder are 22.00% demonstrating that the small organs and blood
vessels contain more segmentation errors, which need further improvement.

Table 3. Quantitative results on validation set.

Organ DSC(no-unlabeled) DSC(unlabeled)
Liver 0.1425 0.5950
Right Kidney 0.0015 0.2654
Spleen 0.0237 0.0893
Aorta 0.0003 0.3967
Gallbladder 0.2200 0.2200
Left Kidney 0.0109 0.3196

The GPU usage show in Figure 2.As can be seen from the figure, because we
adopted the network model UNeXt [(] with few parameters ,the GPU utilization
rate of our proposed model can be controlled below 2GB in inference, and the
average inference time is 53 seconds.

1200

1000

Fig. 2. GPU usage
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4.2 Qualitative results on validation set

Some challenging examples show in Figure 3. It can be found that the method can
not segment the small organs well. Some predicted result in the real validation
set,(al) and (a2) are the bad predict performance of our proposed method, (b1)
and (b2) are the good predicted results by our proposed method.The method
segment the spleen (blue),the right kidney(green) and the liver (red) in this case.
As show in Figure 4, the model gets a big boost using unlabeled data.

Fig. 3. Challenging examples.(al) and (a2) are the bad predict performance of our
proposed method, (b1) and (b2) are the good predicted results by our proposed method.

5 Conclusion

The proposed method can work well on cases which is in the same data center
as the training set. Besides, the DSC scores of liver segmentation is higher than
the other organs, indicating liver maybe a comparable easier task as a result
of its bigger size and consistent shape. Disappointing performance is obtained
for small organs and blood vessels segmentation as a result of the inter-patient
anatomical variability of volume and shape.

The processing of multi-center data is very important. We have tried to use
multi-center data to train network in our work. However, the effect achieved is
not very obvious, and further analysis is needed. Besides, obtaining an accurate
boundary segmentation need further investigate.

Acknowledgements The authors of this paper declare that the segmentation
method they implemented for participation in the FLARE 2022 challenge has not
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Fig. 4. Use unlabeled data and unused labeled data examples.(al) is the original im-
age,and (a2) is the prediction results for unlabeled images are not used, (a3) is the
prediction results for unlabeled images.

used any pre-trained models nor additional datasets other than those provided
by the organizers. The proposed solution is fully automatic without any manual
intervention.
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