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Abstract

Self-supervised vision transformer models trained on large histopathology datasets are
increasingly used as feature encoders for downstream tasks. However, their final layer might
not be optimal for all tasks due to the mismatch between the pre-training and downstream
objectives. We investigate the influence of the layer selection in five public, transformer-
based histopathology encoders on downstream task performance both on patch- and slide-
level. Our results demonstrate that choosing a different layer for feature encoding can lead
to performance improvements up to eleven percent depending on the task and the model.
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1. Introduction

The field of computational pathology has seen a rise in self-supervised pre-training of foun-
dational models. These models leverage vast collections of unlabeled whole slide images
(WSIs) to learn a rich and generic representation of histopathological features, indepen-
dent of specific downstream tasks. These models have been successfully applied to various
downstream tasks across several tissue and cancer types (Lai et al., 2023).

However, a key question remains: are the learned representations from the final layer
of these pre-trained encoders truly optimal for all downstream tasks? The self-supervised
objective might not be perfectly aligned with the specific requirements of a particular task,
potentially neglecting organ-specific features relevant for downstream prediction. This work
investigates the impact of the layer selection within transformer-based foundational models
on downstream task performance.

We evaluate five publicly available transformer-based histopathology encoders on three
patch-level and three slide-level downstream tasks encompassing both tissue-subtyping and
gene status prediction. By exploring different layers within the encoder architecture, we
demonstrate that treating layer selection as a tunable hyperparameter can improve perfor-
mance on downstream tasks in computational pathology.
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2. Data and Methods

Patch-level evaluation: We selected three tissue classification tasks: PatchCamelyon
(Veeling et al., 2018), NCT-CRC (Kather et al., 2018) and BreakHis (Spanhol et al., 2015).
We additionally increased the task difficulty by reducing the number of images in Patch-
Camelyon to 10,000 (half used for training) and NCT-CRC to 16,943 (8,943 used for train-
ing; also ignoring the background class). From BreakHis we used the original 1693 images
at 400x magnitude (1148 used for training). All images were rescaled to 224x224px.

Slide-level evaluation: We used three cohorts: Camelyon16 (Bejnordi et al., 2017) with
399 slides (129 used for testing) and two cohorts from the The Cancer Genome Atlas
(TCGA, Network et al. (2012)): COAD with 1216 slides to predict microsatellite instability
(MSI) and BRCA with 965 slides to predict HER2 status. We trained on the TCGA slides
and evaluated the MSI prediction on the CRC cohort from the Clinical Proteomic Tumor
Analysis Consortium (CPTAC, Edwards et al. (2015)) with 221 slides and HER2 prediction
on the Yale Pathology electronic database cohort (HER2-Yale, Farahmand et al. (2022))
with 191 slides.

Encoders: We evaluated five recent transformer-based histopathological vision models:
CTransPath (Wang et al., 2022), Phikon (Filiot et al., 2023), two encoders from Lunit
Inc. (Lunit-Dino-8 and Lunit-Dino-16, Kang et al. (2023)) and an encoder finetuned on
colorectal slides from TCGA (Dino2s-CRC, Roth et al. (2024)). The ImageNet pre-trained
ViT-S model with DINOv2 (Dino2s, Oquab et al. (2023)) served as our baseline. Counting
the normalization layers, CTransPath has 29 layers, whereas the other encoders have 25.
Due to computational restrictions, we focused on feature extraction from the final four layers
for the slide-wise tasks. We used Attention-Based Multiple Instance Learning (ABMIL, Ilse
et al. (2018)) with a dropout rate of 25% and early stopping when the validation ROC-AUC
(area under the receiver operating characteristic curve) did not improve after 25 epochs.
To account for potential variability, we ran ten experiments with different initializations
for each layer and averaged the ROC-AUC on the test sets. For the patch-wise tasks, we
evaluated the final 20 encoder layers. The encoded features were directly fed into a logistic
regression classifier with the macro-F1 score as performance measure.

3. Results

Patch-level tasks As shown in Figure 1, performance on patch-wise classification tasks
generally increased with deeper encoder layers. This trend was most pronounced for NCT-
CRC, where peak performance was reached in one of the final four layers. Similar, though
less pronounced trends were observed for the other tasks, except for BreakHis with the
ImageNet pre-trained Dino2s encoder. Interestingly, the pen-ultimate layer of the Lunit-
Dino-16 encoder consistently underperformed across all tasks. Otherwise, the performance
variations within the final layers were modest.

Slide-level tasks Performance on slide-wise classification tasks varied based on the cho-
sen encoder layer and task (Table 1). Compared to the final layer, selecting an earlier one
yielded improvements of up to 1.5% for Camelyon16, 11.3% for HER2 and 1.4% for MSI.
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Figure 1: Patch-wise test results for the latest 20 layers ordered from early (-20) to the last (-1)
with logistic regression applied directly to the layer encodings.

4. Discussion and Conclusion

This study investigated the impact of layer selection within transformer-based histopathol-
ogy foundation models. Our findings showed marked performance differences between lay-
ers, indicating that significant gains can be achieved by selecting a task-specific layer rather
than relying solely on the final one. Future work will include the evaluation of more encoders
and combining encoder fine-tuning with layer selection.

Layer -4 -3 -2 -1
Encoder Task
CTransPath Camelyon16 0.819 ± 0.037 0.837 ± 0.024 0.866 ± 0.023 0.907 ± 0.019
Dino2s Camelyon16 0.717 ± 0.032 0.698 ± 0.021 0.702 ± 0.049 0.706 ± 0.060
Lunit-Dino-16 Camelyon16 0.960 ± 0.008 0.963 ± 0.012 0.859 ± 0.018 0.966 ± 0.012
Lunit-Dino-8 Camelyon16 0.956 ± 0.028 0.959 ± 0.010 0.960 ± 0.022 0.948 ± 0.022
Phikon Camelyon16 0.956 ± 0.031 0.977 ± 0.007 0.976 ± 0.013 0.962 ± 0.025
CTransPath HER2-Yale 0.711 ± 0.056 0.738 ± 0.038 0.708 ± 0.064 0.625 ± 0.042
Dino2s HER2-Yale 0.580 ± 0.053 0.557 ± 0.020 0.541 ± 0.050 0.553 ± 0.061
Lunit-Dino-16 HER2-Yale 0.713 ± 0.052 0.740 ± 0.048 0.737 ± 0.055 0.714 ± 0.039
Lunit-Dino-8 HER2-Yale 0.726 ± 0.063 0.716 ± 0.053 0.757 ± 0.047 0.704 ± 0.063
Phikon HER2-Yale 0.675 ± 0.037 0.699 ± 0.036 0.680 ± 0.038 0.676 ± 0.045
CTransPath MSI-CPTAC 0.898 ± 0.029 0.902 ± 0.018 0.905 ± 0.024 0.921 ± 0.013
Dino2-CRC MSI-CPTAC 0.935 ± 0.018 0.925 ± 0.017 0.940 ± 0.011 0.939 ± 0.011
Dino2s MSI-CPTAC 0.761 ± 0.038 0.716 ± 0.040 0.755 ± 0.041 0.765 ± 0.030
Lunit-Dino-16 MSI-CPTAC 0.891 ± 0.013 0.922 ± 0.016 0.887 ± 0.005 0.917 ± 0.020
Lunit-Dino-8 MSI-CPTAC 0.916 ± 0.010 0.902 ± 0.017 0.886 ± 0.011 0.902 ± 0.017
Phikon MSI-CPTAC 0.921 ± 0.016 0.929 ± 0.016 0.928 ± 0.011 0.933 ± 0.010

Table 1: Slide-wise test results for the final four layers (last one is -1), with the best layer indicated
in bold. Metric: Average ROC-AUC over 10 experiments with standard deviation.
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