
Evaluating Structured Output Robustness of Small Language Models for
Open Attribute-Value Extraction from Clinical Notes

Nikita Neveditsin1, Pawan Lingras1, Vijay Mago2

1Saint Mary’s University, Halifax, Canada
2York University, Toronto, Canada

Abstract

We present a comparative analysis of the
parseability of structured outputs generated by
small language models for open attribute-value
extraction from clinical notes. We evaluate
three widely used serialization formats: JSON,
YAML, and XML, and find that JSON consis-
tently yields the highest parseability. Structural
robustness improves with targeted prompting
and larger models, but declines for longer docu-
ments and certain note types. Our error analysis
identifies recurring format-specific failure pat-
terns. These findings offer practical guidance
for selecting serialization formats and design-
ing prompts when deploying language models
in privacy-sensitive clinical settings.

1 Introduction

Structured information extracted from clinical nar-
ratives supports decision support systems, auto-
mated reporting, and research databases. Small lan-
guage models (SLMs) (Schick and Schütze, 2021)
can be deployed on local hardware and therefore
meet privacy requirements, but their utility depends
on producing outputs that downstream software can
parse automatically.

This work examines open attribute-value ex-
traction, a task in which an SLM identifies clin-
ically relevant attribute-value pairs without a pre-
defined schema and serializes them in a standard
format (Etzioni et al., 2008; Zheng et al., 2018;
Li et al., 2023; Brinkmann et al., 2025). We com-
pare three commonly used formats: JSON, YAML,
and XML, and assess robustness via parseability,
defined as the proportion of outputs that can be
successfully validated by a standard parser without
manual correction. We further analyze how docu-
ment length, note type, model size, and extraction
scope (open vs. targeted for medications, symp-
toms, and demographics) affect parseability, and
report on common structural failure modes and key
interactions among these factors.

Our contributions are as follows: (i) to the best
of our knowledge, we provide the first comparative
analysis of structured output parseability across
three widely used serialization formats (JSON,
YAML, XML) in the context of open attribute-
value extraction from clinical notes; (ii) we demon-
strate how model size, prompt specificity, and clin-
ical document characteristics systematically influ-
ence structural robustness; (iii) we identify and
categorize recurrent structural failure modes, offer-
ing practical insights into common format-specific
vulnerabilities in SLM-generated outputs.

2 Related Work

Prior work on structured information extraction
with transformer-based language models has high-
lighted both their semantic potential and their syn-
tactic fragility. Research in this area can be broadly
categorized by its primary evaluation focus: stud-
ies that prioritize the semantic accuracy of the ex-
tracted content, and those that more directly engage
with the technical challenge of ensuring syntactic
validity.

In high-stakes domains such as clinical medicine,
the evaluation emphasis is typically on semantic ac-
curacy. For example, Balasubramanian et al. (2025)
evaluated the extraction of 51 features from breast
cancer pathology reports by comparing model out-
puts against expert-annotated gold standards. Sim-
ilarly, Kadhim et al. (2025) measured the correct-
ness of extracted findings in inflammatory bowel
disease reports using F1 scores. In both cases,
models like LLaMA-3.3 were assessed primarily
on their ability to extract correct clinical content.
Syntactic validity, such as whether outputs con-
formed to a given format, was assumed rather than
explicitly evaluated. Other studies, such as El-
nashar et al. (2025), explored prompt design and
efficiency trade-offs across JSON, YAML, and hy-
brid CSV formats using GPT-4o. While they vali-

dated attribute-level correctness, structural robust-
ness was not a primary focus.

This focus on semantics often coexists with an
implicit acknowledgment of the syntactic fragility
of unconstrained model outputs. Work in scientific
and technical domains has more directly quanti-
fied this issue. Dagdelen et al. (2024), in the con-
text of materials science extraction, noted parse
failures under token limits. Schilling-Wilhelmi
et al. (2024) advocates constrained decoding to
restrict the model’s vocabulary during generation
to enforce structural compliance. While this tech-
nique improves parseability, Tam et al. (2024) have
shown that tighter constraints may also reduce rea-
soning flexibility, underscoring a trade-off between
structural validity and expressiveness.

These findings indicate a gap in evaluating the
syntactic reliability of structured outputs. Our
study addresses this by focusing specifically on
parseability as the primary evaluation criterion, us-
ing small instruction-tuned models.

3 Methodology

3.1 Models

To assess the impact of output format on small
language models, we evaluate seven open-weight
instruction-tuned models (Table 1).

Model Vendor Params
(B)

Ctx.
Window

Phi-4 (Abdin et al., 2024b) Microsoft 14 16K
Phi-3.5-mini (Abdin et al., 2024a) Microsoft 3.8 128K
Llama-3.2-3B (Grattafiori et al., 2024) Meta 3 128K
Llama-3.1-8B (Grattafiori et al., 2024) Meta 8 128K
Ministral-8B (Jiang et al., 2023) Mistral AI 8 128K
Qwen3-4B (Qwen Team, 2024) Alibaba 4 32K
Qwen3-14B (Qwen Team, 2024) Alibaba 14 128K

Table 1: SLMs evaluated in this study.

We selected 7 models from 4 vendors (Microsoft,
Meta, Mistral, Alibaba), some of which contributed
more than one model. This allowed us to reduce
provider-specific bias while also covering a range
of model sizes (3–14B parameters) and context
window capacities (ranging from 16K to 128K to-
kens, as shown in Table 1). All models are openly
available, support local deployment, and are widely
used in the open-source community, ensuring rele-
vance, reproducibility, and suitability for privacy-
sensitive clinical use.

3.2 Data

We use the EHRCon (Kwon et al., 2025) dataset,
a standardized, open, and ethically compliant sub-

set of MIMIC-III (Johnson et al., 2016) that sup-
ports reproducible research. It includes 105 ran-
domly selected, de-identified clinical notes with
4,101 annotated entities mapped to 13 structured
EHR tables. Derived from a large critical care
database, EHRCon captures the complexity of real-
world clinical documentation. Its public availability
and prior ethical clearance make it suitable for sec-
ondary analysis without requiring additional ethical
review. EHRCon is well-suited for evaluating struc-
tural parseability, and its detailed attribute-level
annotations offer opportunities for future research
on semantic validity, though we do not pursue that
direction in this work.

The dataset includes three note types: discharge
summaries, nursing notes, and physician notes,
each with distinct content and length characteris-
tics (Table 2). Discharge summaries, the longest
(avg. 1300 words, 2700 tokens), provide a com-
prehensive account of the hospital stay. Physician
notes, of moderate length, focus on assessments
and treatment plans. Nursing notes, the shortest,
document vitals, patient behavior, and routine care.

Type # Documents Avg. Words Avg. Tokens

Discharge 38 1306.47 2764.46
Nursing 36 490.33 1153.63
Physician 33 669.91 1914.93

Table 2: Descriptive statistics of clinical note types.

Token counts are computed by applying each
model’s tokenizer to every document and averaging
across models from Table 1.

3.3 Experimental Setup
We assess SLMs in two extraction scenarios. The
open format scenario prompts the model to recover
any medical information it can infer from a note
without a predefined schema, reflecting exploratory
or retrospective use cases where schema cover-
age is limited. The targeted scenario narrows the
prompt to a specific category: medications, symp-
toms, or demographics. These categories are com-
monly prioritized in clinical information extraction
for their central role in decision support and down-
stream clinical tasks (Sohn et al., 2013; Wang et al.,
2018). Focusing on them enables us to test whether
more constrained prompting improves structural
consistency for high-impact clinical attributes.

Figure 1 illustrates the overall workflow. A clini-
cal note is processed under one of the two prompt-
ing conditions, passed to an SLM, and rendered in

JSON, YAML, or XML. The output is then evalu-
ated for parseability using a standard parser.

Figure 1: Workflow for evaluating structured output
generation

In both scenarios, we focus on parseability; we
do not evaluate content accuracy. Formally, for a
given model, prompt type, and a set of documents
D, we define the parseability rate as

ρ(D) =
nv

|D|
,

where nv denotes the number of documents in D
whose outputs were successfully parsed by a stan-
dard parser under that model and prompt type. To
support our findings, we apply appropriate statisti-
cal tests. Appendix A provides additional details
on the experimental setup.

4 Results

Table 3 presents parseability rates across JSON,
YAML, and XML for all models listed in Table 1,
evaluated on the full clinical document set. Each
model appears in two rows, corresponding to the
open-ended and targeted extraction settings (the
Setting column). Green and red shading highlight
the highest and lowest parseability rates within
each row.

Parseability tends to improve with model size.
To assess this effect, we grouped models by pa-
rameter count into three categories: Small (3-4B),
Medium (8B), and Large (14B). A Chi-squared test
of independence confirmed a significant association
between model size and parseability (χ2 = 106.72,
p ≪ 0.05). Average parseability rates rose with
size: Large models achieved 90.3%, followed by
Medium (82.6%) and Small (80.9%). The effect
size, measured by Cramér’s V = 0.11, suggests a
small but meaningful association between model
size and parseability.

Prompt specificity also played a major role. Tar-
geted prompts substantially boosted parseability
across all formats, especially for YAML, which
performs poorly in the open setting. A Chi-squared

test confirmed a strong association between prompt
type and parseability (χ2 = 1579.41, p ≪ 0.05).
Cramér’s V = 0.42, indicates a medium-to-large
impact of prompt type on structural validity.

Model Setting JSON XML YAML

Llama-3.1-8B Open 59.8 54.2 23.4
Llama-3.1-8B Targeted 97.8 96.9 92.2
Llama-3.2-3B Open 73.8 41.1 29.9
Llama-3.2-3B Targeted 94.4 81.6 75.1
Ministral-8B Open 81.3 57.9 47.7
Ministral-8B Targeted 96.0 89.1 80.4
Phi-3.5-mini Open 83.2 43.0 52.3
Phi-3.5-mini Targeted 99.4 94.7 83.5
Phi-4 Open 100.0 61.7 44.9
Phi-4 Targeted 100.0 98.4 97.8
Qwen3-14B Open 98.1 43.0 47.7
Qwen3-14B Targeted 99.4 97.2 97.5
Qwen3-4B Open 95.3 39.3 29.0
Qwen3-4B Targeted 97.2 94.4 86.3

Table 3: Table 3: Parseability rates (%) by model and
output format across the full document set. Each model
appears twice, corresponding to open-ended and tar-
geted extraction settings. Green shading indicates the
highest parseability per row (model × setting); red shad-
ing indicates the lowest.

To test for the statistical significance of differ-
ences in parseability across output formats, we con-
ducted paired McNemar’s tests and report the re-
sults in Table 4.

Comparison χ2 p-value
JSON vs YAML 167.607 ≪ 0.05
JSON vs XML 69.351 ≪ 0.05
YAML vs XML 32.411 ≪ 0.05

Table 4: Paired McNemar’s test results comparing
parseability outcomes across formats

All comparisons yield statistically significant re-
sults, with JSON significantly outperforming both
YAML and XML (p ≪ 0.05 in both cases). The
difference between YAML and XML is also signif-
icant (p ≪ 0.05), though comparatively smaller in
effect size.

Figure 2 illustrates the relationship between doc-
ument length (in words) and parseability, separately
for the open and targeted extraction scenarios. In
both scenarios, documents that failed to parse tend
to be longer, with noticeably higher medians and
more dispersed distributions compared to parseable
documents.

To quantify the relationship between document
length and parseability, we computed the point-
biserial correlation. Across all documents, the

Figure 2: Boxplot showing the distribution of document
lengths (in words) for parseable and non-parseable out-
puts.

correlation was weak but statistically significant
(r = −0.081, p ≪ 0.05). When analyzed by sce-
nario, the negative correlation was slightly stronger
in the open setting (r = −0.118, p ≪ 0.05) com-
pared to the targeted setting (r = −0.077, p ≪
0.5). These results suggest that longer documents
are consistently less likely to be parsed success-
fully, especially in open-ended generation scenar-
ios. However, despite statistical significance, the
small effect size and substantial overlap in length
distributions between parseable and non-parseable
documents (Figure 2) indicate that length alone
does not strongly determine parseability. This sug-
gests the presence of potential confounding factors
such as note type, which we examine further.

Figure 3 shows parseability rates across the
three clinical document types, separated by ex-
traction scenario. Targeted prompting consistently
improves parseability for all types, with the most
pronounced gain observed in physician notes. Nurs-
ing notes achieve the highest parseability overall,
while physician notes lag behind in the open set-
ting. These differences likely reflect variations in
document complexity and length, as shown in Ta-
ble 2, where physician notes are among the longest
on average. To assess whether document type is
significantly associated with parseability, we con-
ducted a chi-squared test of independence, yield-
ing χ2 = 23.93, p ≪ 0.05. This confirms that
the observed differences across note types are un-
likely to be due to chance, though the correspond-
ing Cramér’s V = 0.05 indicates a small effect
size.

To isolate the effects of document type and
length on parseability, we fit a logistic regres-
sion with parseability as the binary outcome. Re-
sults show that discharge notes, though longer on
average, are more parseable than nursing notes

Figure 3: Parseability rates by document type for open
and targeted extraction settings. Bars show the percent-
age of successfully parsed documents within each type.

(β = 0.550, p < 0.05), while physician notes are
less parseable (β = −0.204, p < 0.05). Length it-
self negatively impacts parseability (β = −0.0008,
p < 0.05). These findings suggest that document
type affects parseability independently of length,
likely due to semantic and structural differences.

5 Error Analysis

We categorize parse errors into two broad groups.
First, extraction-related errors (see Figure 4,
“Extraction-related” portion) occur when a stan-
dard regular expression fails to extract a structured
object from the model output. Notably, our analy-
sis revealed that the majority of extraction-related
errors stemmed from infinite repetitions (Holtzman
et al., 2020) in the generated text.

Figure 4: Breakdown of parse errors across JSON,
XML, and YAML formats. Bars show the number of
extraction-related and malformed output errors per for-
mat.

Second, malformed output errors, which arise
when the output is syntactically invalid and can-
not be parsed after successful extraction. Figure 4
shows the distribution of these error types across
formats. A more detailed breakdown is provided in
Appendix B.

To quantify the association between model size
and types of parse errors, we grouped failed gener-
ations by model size. Among these, Large (14B)
models produced only 2.4% extraction-related er-
rors, compared to 21.0% and 19.0% for Medium

(8B) and Small (3-4B) models, respectively. A
Chi-squared test confirmed a statistically signif-
icant association between model size and error
type (χ2 = 45.52, p ≪ 0.05), with a Cramér’s
V = 0.18 indicating a small to moderate effect
size. These findings suggest that extraction errors
are more typical in smaller models, though they are
not exclusive to them.

We also examined whether the type of parse error
varied with prompt type. Open prompts resulted
in extraction-related errors only 2.4% of the time,
while targeted prompts produced extraction errors
in 45.5% of failures. A Chi-squared test revealed a
statistically significant association between prompt
type and error type (χ2 = 420.62, p ≪ 0.05), and
Cramér’s V = 0.54 indicated a large effect size.
This suggests that extraction errors are a dominant
failure mode under targeted prompting conditions.

Conclusion

We conducted a systematic evaluation of the struc-
tural robustness of SLM-generated outputs for
open attribute-value extraction from clinical notes.
Across three common formats, JSON significantly
outperformed YAML and XML in parseability.
Parseability improved with model size and prompt
specificity, and targeted prompting yielded espe-
cially large gains for YAML. However, perfor-
mance declined on longer documents, and physi-
cian notes were particularly error-prone. Error anal-
ysis revealed two dominant failure modes: infinite
repetition and syntactic malformations, particularly
missing quotation marks around numerals embed-
ded in non-numeric fields (e.g., blood pressure val-
ues like “128/68”), unescaped special characters,
and malformed list structures. These issues were
most frequent in smaller models and underscore the
need for decoding strategies that promote format-
conformant output.

Our findings underscore the importance of align-
ing prompt and format design with generation
strategies that ensure structural reliability, particu-
larly in resource-constrained or privacy-sensitive
clinical NLP settings. Future work should explore
automatic post-processing techniques to detect and
correct structural errors, extend parsers to better
handle common irregularities in LLM-generated
outputs, conduct more extensive evaluations on di-
verse clinical corpora, and support joint analysis of
syntactic and semantic validity to better assess the
clinical utility of structured outputs.

Limitations

While our study offers detailed insights into the
structural robustness of SLM outputs, it has sev-
eral limitations. First, the evaluation is based on
the EHRCon dataset, which, although diverse in
note types, contains only 105 documents and may
not capture the full variability of clinical narratives.
Second, all experiments were conducted using a
single decoding configuration (greedy decoding
without sampling), which may not generalize to
alternative generation settings. Third, we evaluated
a limited set of open-weight models. Future work
should include domain-specific clinical language
models and additional parameter sizes to capture
broader trends. Finally, our analysis focused exclu-
sively on syntactic parseability, without assessing
the semantic accuracy or clinical correctness of
the extracted information, which is an important
direction for future research.

Ethics Statement

This study uses the EHRCon dataset, which is de-
rived from the publicly available and de-identified
MIMIC-III database. As no personally identifi-
able information is included in the data, and no
new data collection was conducted, the study does
not require approval from an institutional ethics
board. We do not publish any content that could
potentially identify individuals. To promote trans-
parency and reproducibility, we rely exclusively
on open-source models and datasets, and provide
detailed descriptions of our experimental setup and
evaluation methodology.

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed

Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck,
Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav
Chaudhary, Dong Chen, Dongdong Chen, and 110
others. 2024a. Phi-3 technical report: A highly capa-
ble language model locally on your phone. Preprint,
arXiv:2404.14219.

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero
Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi
Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen,
Eric Price, Gustavo de Rosa, Olli Saarikivi, and 8
others. 2024b. Phi-4 technical report. Preprint,
arXiv:2412.08905.

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2412.08905

Jeya Balaji Balasubramanian, Daniel Adams, Ioannis
Roxanis, Amy Berrington de Gonzalez, Penny Coul-
son, Jonas S Almeida, and Montserrat García-Closas.
2025. Leveraging large language models for struc-
tured information extraction from pathology reports.
arXiv preprint arXiv:2502.12183.

Alexander Brinkmann, Roee Shraga, and Christian
Bizer. 2025. Extractgpt: Exploring the potential of
large language models for product attribute value ex-
traction. In Information Integration and Web Intelli-
gence, pages 38–52, Cham. Springer Nature Switzer-
land.

John Dagdelen, Alexander Dunn, Sanghoon Lee,
Nicholas Walker, Andrew S. Rosen, Gerbrand Ceder,
Kristin A. Persson, and Anubhav Jain. 2024. Struc-
tured information extraction from scientific text with
large language models. Nature Communications,
15(1):1418.

Ashraf Elnashar, Jules White, and Douglas C Schmidt.
2025. Enhancing structured data generation with gpt-
4o evaluating prompt efficiency across prompt styles.
Frontiers in Artificial Intelligence, 8:1558938.

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S. Weld. 2008. Open information extraction
from the web. Commun. ACM, 51(12):68–74.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations (ICLR).

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-
wei H. Lehman, Mengling Feng, Mohammad Ghas-
semi, Benjamin Moody, Peter Szolovits, Leo An-
thony Celi, and Roger G. Mark. 2016. Mimic-iii,
a freely accessible critical care database. Scientific
Data, 3(1):160035.

Alex Z Kadhim, Zachary Green, Iman Nazari, Jonathan
Baker, Michael George, Ashley Heinson, Matt Stam-
mers, Christopher M Kipps, R Mark Beattie, James J
Ashton, and 1 others. 2025. Application of generative
artificial intelligence to utilise unstructured clinical
data for acceleration of inflammatory bowel disease
research. medRxiv, pages 2025–03.

Yeonsu Kwon, Jiho Kim, Gyubok Lee, Seongsu Bae,
Daeun Kyung, Wonchul Cha, Tom Pollard, Alistair
Johnson, and Edward Choi. 2025. Ehrcon: Dataset
for checking consistency between unstructured notes
and structured tables in electronic health records.
PhysioNet.

Yanzeng Li, Bingcong Xue, Ruoyu Zhang, and Lei
Zou. 2023. Attgen: Attribute tree generation for
real-world attribute joint extraction. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2139–2152.

Alibaba Cloud Qwen Team. 2024. Qwen3 language
model. https://huggingface.co/Qwen. Ac-
cessed 2024-05-12.

Timo Schick and Hinrich Schütze. 2021. It‘s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339–2352, Online. Association
for Computational Linguistics.

Mara Schilling-Wilhelmi, Martiño Ríos-García, Sher-
jeel Shabih, María Victoria Gil, Santiago Miret,
Christoph T Koch, José A Márquez, and Kevin Maik
Jablonka. 2024. From text to insight: large language
models for materials science data extraction. arXiv
preprint arXiv:2407.16867.

Sunghwan Sohn, Kavishwar B Wagholikar, Dingcheng
Li, Siddhartha R Jonnalagadda, Cui Tao, Raviku-
mar Komandur Elayavilli, and Hongfang Liu. 2013.
Comprehensive temporal information detection from
clinical text: medical events, time, and tlink identifi-
cation. Journal of the American Medical Informatics
Association, 20(5):836–842.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-
Yen Lin, Hung-yi Lee, and Yun-Nung Chen. 2024.
Let me speak freely? a study on the impact of format
restrictions on large language model performance. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: Industry
Track, pages 1218–1236, Miami, Florida, US. Asso-
ciation for Computational Linguistics.

Yanshan Wang, Liwei Wang, Majid Rastegar-Mojarad,
Sungrim Moon, Feichen Shen, Naveed Afzal, Sijia
Liu, Yuqun Zeng, Saeed Mehrabi, Sunghwan Sohn,
and 1 others. 2018. Clinical information extraction
applications: a literature review. Journal of biomedi-
cal informatics, 77:34–49.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna
Dong, and Feifei Li. 2018. Opentag: Open attribute
value extraction from product profiles. In Proceed-
ings of the 24th ACM SIGKDD international confer-
ence on knowledge discovery and data mining, pages
1049–1058.

https://doi.org/10.1038/s41467-024-45563-x
https://doi.org/10.1038/s41467-024-45563-x
https://doi.org/10.1038/s41467-024-45563-x
https://doi.org/10.1145/1409360.1409378
https://doi.org/10.1145/1409360.1409378
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/2310.06825
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
https://physionet.org/content/ehrcon-consistency-of-notes/1.0.0/
https://physionet.org/content/ehrcon-consistency-of-notes/1.0.0/
https://physionet.org/content/ehrcon-consistency-of-notes/1.0.0/
https://huggingface.co/Qwen
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2024.emnlp-industry.91
https://doi.org/10.18653/v1/2024.emnlp-industry.91

A Additional Details on Experimental
Setup

Software Versions
Experiments were conducted using Python 3.10.12
(main, Nov 20 2023, 15:14:05) compiled with GCC
11.4.0. Table 5 lists the versions of key libraries
used in our experiments.

Library Version

transformers 4.51.3
PyYAML 6.0.1
statsmodels 0.14.2
scipy 1.13.1
numpy 1.26.4
json Standard Library (Python 3.10)
xml Standard Library (Python 3.10)

Table 5: Versions of software and libraries used in the
experiments.

Model Configuration
All models were queried using the HuggingFace
pipeline interface with parameters listed in Table 6.
Generation was deterministic and capped at 8192
tokens. For consistency across models, the “think-
ing” mode was disabled for Qwen models.

Parameter Value

max_new_tokens 8192
do_sample False
top_p None
temperature None

Table 6: Model generation parameters used in all decod-
ing runs.

Regular Expressions
If initial parsing failed, we attempted to extract
structured content from fenced code blocks using
regular expressions. Table 7 summarizes the pat-
terns used for each format.

Prompts
For open-ended attribute-value extraction, we used
format-specific prompts that instructed the model
to generate structured data in either JSON, YAML,
or XML. Each prompt asked the model to produce a
valid, well-structured output using the appropriate
syntax and meaningful field names. Additionally,
models were explicitly instructed to use proper seri-
alization fences to support regex-based extraction.

The general prompt template is shown below,
where <FORMAT> is replaced with the target format
(JSON, YAML, or XML):

Format Regex Pattern Description

JSON “‘(?:json)?\s *\n (.*?)“‘ Matches a fenced code
block optionally labeled as
json. Extracts everything
between the triple back-
ticks.

YAML “‘(?:yaml|yml)?\s *\n (.*?)“‘ Matches a fenced code
block optionally labeled as
yaml or yml. Captures the
inner content.

XML “‘(?:xml)?\s *\n (.*?)“‘ Matches a fenced code
block optionally labeled as
xml. Content inside is cap-
tured for parsing.

Table 7: Regular expressions used to extract structured
content from fenced code blocks.

Open Extraction Prompt

Given the following document: \n <docu-
ment text>. Extract all data in <FORMAT>
format. Make sure that the <FORMAT> doc-
ument is valid, provide reasonably detailed
names for fields.
Make a proper fence for <FORMAT> so that
it can be extracted from the response with a
regular expression.

For targeted extraction scenario, we used
prompts that explicitly instructed the model to ex-
tract specific categories: demographics, medica-
tions, or symptoms, in a specified structured format.
Prompts were adjusted dynamically based on both
the target concept and the desired output format
(JSON, YAML, or XML). If no relevant informa-
tion was found, the model was instructed to return
an empty object.

The generalized prompt template is shown be-
low, where <CONCEPT> refers to the target category
(e.g., “patient demographics” or “medications”)
and <FORMAT> specifies the output format.

Targeted Extraction Prompt

Given the following document: \n <doc-
ument text>. Extract all mentioned
<CONCEPT> from the text below in valid
<FORMAT> format. If no <CONCEPT> are
found, return an empty <FORMAT> object.
Make sure that the <FORMAT> document is
valid, provide reasonably detailed names for
fields.
Make a proper fence for <FORMAT> so that
it can be extracted from the response with a
regular expression.

B Additional Details on Error Analysis

B.1 Extraction-Related Errors
Extraction-related errors arise when neither direct
parsing nor regular expression matching succeeds
in recovering a structured object from the model
output. Initially, we attempt to parse the output as-
is, assuming the model produces a complete struc-
tured object without serialization fences; if that
fails, we apply format-specific regular expressions
to extract fenced content (Appendix A). These er-
rors predominantly stem from infinite repetitions
in the generated text. Table 8 summarizes the
extraction-related failures across all formats. No-
tably, Phi-4 was the only model that consistently
avoided these failures.

Format Total Cases Infinite Repetitions
Broken Fence

(Non-repetitive)

JSON 31 31 0
XML 78 78 0
YAML 112 109 3

Table 8: Summary of extraction-related failures due to
regular expression mismatches.

The repetition block length varied, ranging from
short fragments such as:

"Hepatic dysfunction",
"Hepatic dysfunction",
"Hepatic dysfunction",
"Hepatic dysfunction",
"Hepatic dysfunction"

to much longer blocks like:

"shortness of breath or respiratory distress (not explicitly
stated but implied by SpO2: 100%)",
"chest pain or discomfort (not explicitly stated but implied
by clear lungs on CXR)",
"fever or chills (not explicitly stated but implied by WBC:
12.4 and 13.8)",
"abdominal pain or discomfort (epigastric region)",
"nausea or vomiting (not explicitly stated but implied by
NPO status)",
"abdominal distension (nondistended)",
"abdominal tenderness (TTP in all quadrants)",
"abdominal guarding (voluntary guarding)",
"abdominal masses or organomegaly (not explicitly stated
but implied by TTP in all quadrants)",
"shortness of breath or respiratory distress (not explicitly
stated but implied by SpO2: 100%)",
"chest pain or discomfort

B.2 Malformed Output Errors
Malformed output errors occur when the internal
content of a model’s generation is structurally in-
valid, resulting in failed parsing despite the suc-
cessful extraction of the object.

Because these issues are tightly coupled to the
specific requirements of each format, we analyze
them separately for JSON, XML, and YAML.

Table 9 summarizes the most common sources
of malformed JSON, including unquoted values,
missing delimiters, improperly structured lists, and
misnested objects. Many of these errors stem from
the model emitting raw numerical data, units, or
complex expressions without enclosing them in
quotes.

Table 10 highlights XML-specific issues such as
invalid tag names, unescaped reserved characters
(e.g., &, <), and improper tag nesting. Additional
problems arise when tags encode entire phrases or
when outputs terminate prematurely, leaving the
structure incomplete.

Table 11 details YAML parsing failures, which
are frequently caused by incorrect use of aliases,
inconsistent indentation, missing colons, or un-
escaped colons within long strings. YAML is par-
ticularly sensitive to formatting errors, making mi-
nor deviations from proper structure likely to result
in failure.

Category Description Example

Unquoted numeric val-
ues

Common vitals (e.g., 128/68, 96%) were emitted without
quotes, causing syntax errors.

"blood_pressure": 128/68,

Unquoted units or
ranges

Values with units (300mg, 20-60cc/hr) appeared as raw
text.

"dose": 300mg,

Improper list or array
formatting

Lists with non-JSON-safe elements (e.g., slashed values)
were incorrectly serialized.

"BP": [121/63, 75],

String concatenation or
unescaped expressions

Attempted concatenation or strings with internal quotes
broke JSON structure.

"Range": "10 - 20" + " insp/min",

Missing delimiters Adjacent fields were emitted without commas. "hematocrit": 37.3 "platelets": 126 K,
Standalone strings Free text like "Levofloxacin" appeared without a key,

resembling list items.
"medications": {

"Levofloxacin"
}

Multiple top-level ob-
jects

More than one top-level JSON object or extraneous con-
tent after the main object.

{
"History": "..."

}
{

"PMH": {...}
}

Unescaped control char-
acters

Strings included invalid characters or unmatched quotes. "date": "s/p lobectomy '[**33**]'

Table 9: Summary of prevalent JSON formatting errors in model outputs.

Category Description Example

Invalid tag
names

Tags contain digits, punctuation,
or special characters, violating
XML naming rules.

<123_BP>120/80</123_BP>

Unescaped char-
acters

Raw XML-reserved characters
(<, >, &) appear unescaped in
text content.

<symptom>nausea & vomiting</symptom>

Mismatched or
misnested tags

Opening and closing tags
are misaligned or improperly
nested.

<heart><rate>88</heart></rate>

Improper struc-
tural nesting

Structural templates are reused
in invalid contexts or nested in-
consistently.

<24_hour_events><note>...</24_hour_events></note>

Free-text as tag
name

Sentence-length strings or clin-
ical statements are incorrectly
placed as tag names.

<Patient is alert and oriented>yes</Patient is alert and oriented>

Table 10: Summary of prevalent XML formatting errors in model outputs.

Category Description Example

Alias misinterpretation Placeholders in [**...**] for-
mat are misinterpreted as YAML
aliases, which require alphanu-
meric characters.

attending_md: [**Doctor Last Name**] [**Doctor First Name**] C.

Invalid nested mappings Multiple colons in a single line
without proper quoting create
ambiguous mappings.

- Cardiovascular: (S1: Normal), (S2: Normal)

Improper scalar values Misuse of block scalars (e.g., >)
or unescaped strings leads to for-
mat violations.

- SpO2: >95\%

Unclosed or broken
blocks

Incomplete sequences or map-
pings with missing indentation
or block terminators.

- Fentanyl: "2192-9-17" 08:10 AM

Malformed collections Lists with poor indentation or
unexpected formatting cannot
be resolved by the parser.

- "not feeling well" (1 day prior to admission)

Improper question mark
usage

Use of ? outside mapping syn-
tax breaks YAML interpretation.

?look into the suprapubic area.

Unescaped strings with
colons

Long unquoted strings contain-
ing multiple colons (e.g., copied
EHR text) are misparsed.

title: Chief Complaint: respiratory failure, PEA arrest

Table 11: Summary of prevalent YAML formatting errors in model-generated outputs.

	Introduction
	Related Work
	Methodology
	Models
	Data
	Experimental Setup

	Results
	Error Analysis
	Additional Details on Experimental Setup
	Additional Details on Error Analysis
	Extraction-Related Errors
	Malformed Output Errors

