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Abstract

We consider 1-dimensional location estimation, where we estimate a parameter
� from n samples � + ⌘i, with each ⌘i drawn i.i.d. from a known distribution f .
For fixed f the maximum-likelihood estimate (MLE) is well-known to be optimal
in the limit as n ! 1: it is asymptotically normal with variance matching the
Cramér-Rao lower bound of 1

nI , where I is the Fisher information of f . However,
this bound does not hold for finite n, or when f varies with n. We show for arbitrary
f and n that one can recover a similar theory based on the Fisher information of a
smoothed version of f , where the smoothing radius decays with n.

1 Introduction

We revisit a fundamental problem in statistics: consider a translation-invariant parametric model
{f✓}✓2R of distributions, where f

✓(x) = f(x� ✓). Suppose there is an arbitrarily chosen unknown
true parameter �, and we get i.i.d. samples from f

�. The task is to accurately estimate � from the
samples. This problem is known as location parameter estimation in the statistics literature.

Location estimation is a well-studied and general model, including as a special case the important
setting of Gaussian mean estimation. In contrast to general mean estimation (where we want to
estimate the mean of a distribution given minimal assumptions such as moment conditions), in
location estimation we are given the shape of the distribution up to shift. This advantage lets us
handle some distributions where mean estimation is impossible (e.g., the mean may not exist), and
lets us aim for higher accuracy than is possible without knowing the distribution.

The classic theory of location estimation is asymptotic, see [vdV00] for a detailed background. On
the algorithmic side, it is well-known that the maximum likelihood estimator (MLE) is asymptotically
normal. Specifically, as the number of samples n tends to infinity, the distribution of the MLE
converges to a Gaussian centered at the true parameter with variance 1/(nI), where I is the Fisher
information of the distribution f :

I :=

Z
(f 0(x))2

f(x)
dx = E

x⇠f

"✓
@

@x
log f(x)

◆2
#
. (1)

Conversely, the celebrated Cramér-Rao bound states that the variance of any unbiased estimator must
be at least 1/(nI), meaning that the MLE has mean-squared error that is asymptotically at least as
good as any unbiased estimator.

In the last few decades, motivated by an increasing dependence on data for high-stakes applications,
the statistics and computer science communities have shifted focus towards finite-sample and high
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probability theories: 1) asymptotic theories assume access to an infinite amount of data, and can in
certain cases fail to predict the performance of an algorithm with only a finite number of samples—see
the next section for bad examples for the MLE— 2) in high-stakes applications where failure can
be catastrophic, it is crucial for predictions to hold except with exponentially small probability. Yet,
classic results bounding the variance or mean-squared error of estimators, such as the Cramér-Rao
bound, do not readily translate to (tight) high probability bounds.

The goal of this paper is to establish a finite-sample and high probability theory for the location estima-
tion problem, in both the algorithmic bound and the estimation lower bound. Our algorithmic theory
includes a simple yet crucial modification of perturbing samples by Gaussian noise—corresponding
to drawing samples from a Gaussian-smoothed version of the underlying distribution—before per-
forming MLE. We show that this smoothed MLE has finite-n high-probability performance analogous
to the Gaussian tail in the classic asymptotic theory, but replacing the usual Fisher information with a
smoothed Fisher information. The amount of smoothing required decreases with n.

Complementing our upper bound result, we prove a high probability version of the Cramér-Rao bound
for Gaussian-smoothed distributions, showing that for these instances our sub-Gaussian accuracy
bound, with variance determined by the Fisher information, is optimal to within a 1 + o(1) factor.

1.1 Obstacles to a Finite Sample Theory

Before discussing our results in detail, we examine two simple distributions where the asymptotic
theory predictions for the MLE do not hold in finite samples. The first example highlights an
information-theoretic barrier, that no algorithm can attain the performance predicted by the Gaussian
with variance 1/I. The second example, on the other hand, demonstrates how the MLE can be
“tricked" by the distribution, and how an algorithmic remedy is needed to improve its accuracy.

Gaussian with sawtooth noise Our first example takes a standard Gaussian, and adds a fine-
grained sawtooth perturbation to it over a bounded region at the center of the Gaussian, as shown in
Figure 1a. The fine-grained sawtooth has slope either +� or ��, alternating over “teeth” of width
w, for �� 1 and w ⌧ 1/�. This sawtooth perturbation barely changes the pdf, but significantly
changes its derivatives, so the Fisher information

R
(f 0)2/f grows from 1 to ⇥(�2).

Essentially, the sawtooth perturbation makes the distribution easier to align within a tooth, but
not across teeth. The asymptotic analysis reflects that: for n � 1/w2 where we can align the
teeth correctly, the MLE is much more accurate on the perturbed distribution. But for n ⌧ 1/w2,
no algorithm can do better on the perturbed distribution than on a regular Gaussian.1 Thus, the
normalized estimation accuracy depends on n: for large enough n, it has variance ⇥(1)

�2n
, but for

smaller n it has variance 1

n
. Our finite sample theory should reflect this.

A formal statement of the above reasoning is as follows, with a proof sketch in Appendix A.
Proposition 1.1. The Gaussian+sawtooth model, with “teeth” of width w and slope �, has Fisher
information �2 � 1 but no location estimator can have error o(1/

p
n) with constant probability

over n samples, unless n > 0.01/w2.

This holds for arbitrarily large � and small w. By contrast, the asymptotic theory predicts error
O(1/(�

p
n)), which only holds for n & 1/w2.

Gaussian with a Dirac � spike Our next example adds an even simpler noise to the standard
Gaussian: a Dirac � spike with minimal mass ", placed sufficiently far away from the Gaussian mean
0 (Figure 1b). This distribution has infinite Fisher information, reflecting that for n� 1/", we will
probably see the spike multiple times, identify it, and get zero estimation error. But for n < 1/", we
probably will not see the spike, so our error bound will not reflect the overall Fisher information.

Moreover, the MLE performs remarkably badly when n ⌧ 1/". Most likely the Dirac � is not
sampled, yet the Dirac � has infinite density, and so the MLE will match a Gaussian sample to the
spike to get a maximium likelihood solution. As the spike is placed far from the true mean, this leads
to much higher error than (say) the empirical mean.

The reasoning in the above two paragraphs can be formally summarized as follows.
1This can be shown by the KL divergence from shifting an integer number of teeth of distance about 1/

p
n.
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Figure 1: Bad examples for MLE

Proposition 1.2. Consider the spiked Gaussian example (1� ⌧)N (0, 1) + ⌧�T where �T is a Dirac
� at location x = T . The Fisher information is infinite, but for n < 1/(100⌧), every estimation
algorithm has median error at least 0.6/

p
n. Moreover, with 98% probability the MLE has error at

least T �O(
p
log n), which can be arbitrarily large.

We also note that, while we present the hardness result in terms of mixing a Gaussian with a Dirac �

spike for conceptual simplicity, a milder but similar effect occurs even when the spike is narrow but
not infinite.

Fortunately, there is a simple modification to the MLE that solves this issue almost completely: we
add a small amount of Gaussian noise to the distribution. This means we convolve the PDF with a
small Gaussian, and add independent Gaussian noise to each individual sample to effectively draw
from the convolved PDF. The crucial effect of this Gaussian smoothing is that the density of the Dirac
� will be reduced from infinity down to some constant, and hence MLE will no longer “fit it at any
cost”. On the other hand, the smoothing increases the variance of the distribution and decreases the
Fisher information. This raises the question of determining the best amount of smoothing, which we
address in this paper.

1.2 Our Results and Approach

Based on the discussion of the spiked Gaussian model in the previous section, we propose a finite
sample theory for MLE that uses Gaussian smoothing. As we described, the algorithmic approach is
simple: we perturb all the samples by independent Gaussian noise of variance r

2, and convolve the
known model f by the same Gaussian to yield the model fr, before performing MLE.

We state below the basic MLE algorithm (Algorithm 1) in this paper, which adopts the above approach.
Algorithm 1 is a local algorithm, in that it assumes as input an initial uncertainty region guaranteed
to contain the true parameter �, and performs MLE only over this domain. Furthermore, Algorithm 1
attempts only to find a local optimum in the likelihood: it computes the derivative of the log likelihood
function, also known as the score function, and returns any root of the score function.

Algorithm 1 Local MLE for known parametric model

Input Parameters: Description of distribution f , smoothing parameter r, samples x1, . . . , xn

i.i.d.⇠
f
�, uncertainty region [`, u] containing the unknown �

1. Let sr(�̂) be the score function of fr, the r-smoothed version of f .
2. For each sample xi, compute a perturbed sample x0

i
= xi+N (0, r2) where all the Gaussian

noise are drawn independently across all the samples.

3. Compute �̂ that is a root of the empirical score function ŝ(�̂) = 1

n

P
n

i=1
sr(x0i � �̂) inside

the domain [`, u]. A root should exist and picking any root is sufficient.

4. Return �̂.

Theorem 1.3 states our guarantees on Algorithm 1. Locally around the true parameter—that is, within
r/2 for the r-smoothed distribution—any root of the score function (i.e., local optimum of likelihood)
must be very close to the true parameter � with high probability over the n samples. In particular, the
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estimation error is within a 1 + o(1) factor of the Gaussian deviation with variance 1

nIr

and failure
probability �, where Ir is the Fisher information of fr.
Theorem 1.3 (Local Convergence). Suppose we have a known model fr that is the result of r-
smoothing, with Fisher information Ir, and a given width parameter "max and failure probability
�. Further suppose that r satisfies r � 2"max and there is a parameter �, where � is larger than
some universal constant, such that 1) r2

p
Ir � �"max, 2) (log 1

�
)/n  1

�2 and 3) log 1/(r
p
Ir) 

1

�
log 1

�
/log log 1

�
.

Then, with probability at least 1� �, for all " 2
✓
(1 +O( 1

�
))
q

2 log
1
�

nIr

, "max

�
, ŝ(�� ") is strictly

negative and ŝ(�+ ") is strictly positive.

In the scenario where we do have an initial uncertainty region for the true parameter �, we would use
Theorem 1.3 to compute the minimal smoothing amount r satisfying the assumptions in the theorem,
then use Algorithm 1 with this parameter r, to obtain an accurate estimate of �.

In general, however, we may not have an initial uncertainty region for �. In Section 5, we present
Algorithm 2, a global two-stage MLE algorithm, which first infers an initial uncertainty region by
using quantile information from the distribution f before invoking Algorithm 1, the local MLE
algorithm. The guarantees of Algorithm 2 are summarized here.
Theorem 1.4 (Global MLE guarantees, informal version of Theorem 5.1). Given a model f , let the
r-smoothed Fisher information of a distribution f be Ir, and let IQR be the interquartile range of f .
When n � log 1

�
� 1, there exists an r

⇤ = o(IQR) such that, with probability at least 1 � �, the
output �̂ of Algorithm 2 satisfies

|�̂� �| (1 + o(1))

s
2 log 1

�

nIr⇤

In addition to the theoretical framework, Section 7 gives experimental evidence demonstrating that
r-smoothed Fisher information does capture the empirical performance of (smoothed) MLE.

We also prove new estimation lower bounds for the location estimation problem for r-smoothed
distributions. The lower bound statement below (Theorem 1.5) shows that the estimation error

(1 + o(1))
q

2 log
1
�

nIr
is optimal to within a 1 + o(1) factor.

Theorem 1.5. Suppose fr is an r-smoothed distribution with Fisher information Ir. Given failure
probability � and sample size n, no algorithm can distinguish fr and f

2"
r

with probability 1 � �,

where " = (1 � o(1))
q
2 log 1

�
/(nIr). Here, the o(1) term tends to 0 as � ! 0 and log 1

�
/n ! 0,

for a fixed r
2Ir.

This lower bound is the standard “two-point" statement that, with n samples, it is statistically
impossible to distinguish between the distributions f and f shifted by a small error (in the x-axis)
with probability 1� �. Even though there are known standard inequalities on distribution distances
and divergences for proving lower bounds of this form, the technical challenge is that they generally
yield estimation lower bounds that are only tight to within constant factors, instead of the 1 + o(1)
tightness we desire. This paper presents new analysis to derive a 1 + o(1)-tight lower bound, which
may be of independent interest.

1.3 Notations

We denote the shift-invariant model we consider by the distribution f , and the distribution with
parameter � by f

�(x) = f(x� �). Denote by Zr the Gaussian with mean 0 and variance r
2. The

r-smoothed model for f is denoted by fr (and similarly, for parameter �, f�
r

) which is distributed as
Y = Zr +X where X  f independently from the Gaussian perturbation Zr.

The log-likelihood function of f is denoted by l = log f . The score function is the derivative of l,
denoted by s = l

0 = f
0
/f . We use the notation sr to denote the score function of fr. The Fisher Infor-

mation of f is denoted by I = Ex f [s2(x)]. Similarly, the Fisher Information of fr is denoted by Ir.
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2 Related Work

Location estimation and MLE in general has been extensively studied under the lens of asymp-
totic statistics. See [vdV00] for an in-depth treatment. The MLE has also been studied under
the finite-sample setting [Spo11, Pin17, VdG00, Mia10], but these prior works impose restrictive
regularity conditions and also loses (at least) multiplicative constants in the estimation accuracy.
Specifically, [Spo11] assumes that the parametric family f

✓ satisfies DKL(f✓ k f✓
0
) � ⌦(I|✓� ✓

0|2)
for every pair of parameters ✓, ✓0, where I is the Fisher information of the parametric family. This is a
global distance property that does not always hold in our general setting, for example in the Gaussian
with sawtooth example in Section 1.1, where I can be arbitrarily large yet the density is arbitrarily
close to the standard Gaussian. Our work handles the lack of global distance property by instead
proposing a two-stage final algorithm (Algorithm 2 in Section 5). [Pin17] also assumes a global
distance property, similar to [Spo11], but in Hellinger distance instead of KL divergence. [VdG00]
again assumes a somewhat similar global distance property, and further characterizes convergence of
the recovered distribution in Hellinger distance to the true distribution, instead of directly bounding
estimation error in the parameter space. [Mia10] on the other hand requires Lipschitzness in the
score, whereas for Gaussian-smoothed distributions we only have 1-sided Lipschitzness (Lemma B.2).
Moreover, the [Mia10] results quantify the error not in terms of the Fisher information (the variance
of the score), but in terms of the maximum magnitude of the score.

In contrast to these prior works, our work modifies the MLE to include smoothing. Without smoothing,
these prior works do not apply even in simple cases like a standard Laplace distribution: [Spo11]
because the KL divergence between shifted versions of the Laplace distribution is not locally quadratic
in the shift-parameter space, and [Pin17] because of this reason and their further assumption that
the score function is smooth, which is not true at the origin for the Laplace distribution. On the
other hand, by introducing smoothing to the MLE, we can take an arbitrary distribution and extract a
meaningful finite-sample guarantee, which is tight to within 1 + o(1) factors conditioned on such
smoothing.

There has also been a flurry of recent interest in the related mean estimation problem, in the finite-
sample and high-probability setting. Recall that mean estimation does not assume knowledge of the
shape of the distribution, but instead imposes mild moment conditions, for example the finiteness of
the variance. Catoni [Cat12] initiated a line of work studying the statistical limits of univariate mean
estimation to within a 1+o(1) factor, ending recently with the work of Lee and Valiant [LV22], which
proposed and analyzed an estimator with accuracy optimal to within a 1 + o(1) factor for all distri-
butions with finite variance. See also the recent work of Minsker [Min22] for an alternative solution.

Beyond the differences in assumptions, the main distinction between location and mean estimation
lies in their statistical limits. In mean estimation, the optimal accuracy is captured by the variance
of the underlying distribution, scaling linearly with the standard deviation. On the other hand, the
classic asymptotic theory suggests that the Fisher information captures the optimal accuracy for
location estimation, scaling with the reciprocal of the square root of the Fisher information. It is
a well-known fact that the Fisher information is always lower bounded by the reciprocal of the
variance [SV11], which shows that location estimation is always easier than mean estimation in the
infinite-sample regime. In this work, we refine this understanding, showing that in finite samples, the
optimal accuracy for location estimation is instead given by the r-smoothed Fisher information in
place of the unsmoothed Fisher information.

3 Tails and boundedness of r-smoothed score and Fisher information

Recall that given a distribution f , its r-smoothed version fr is distributed as Y = X + Zr where
X ⇠ f and Zr ⇠ N (0, r2) and X,Zr are independent.

Both our algorithmic and lower bound theories are centered around r-smoothed distributions. There-
fore, we state here basic concentration and boundedness properties of r-smoothed score function and
Fisher information, which we use in the rest of the paper. We prove all these lemmas in Appendix B.

First, we show that the r-smoothed Fisher information Ir is upper bounded by 1/r2 and can be lower
bounded using the interquartile range of f .
Lemma 3.1. Let Ir be the Fisher information of an r-smoothed distribution fr. Then, Ir  1/r2.
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Lemma 3.2. Let Ir be the Fisher information for fr, the r-smoothed version of distribution f . Let
IQR be the interquartile range of f . Then, Ir & 1/(IQR + r)2. Here, the hidden constant is a
universal one independent of the distribution f and independent of r.

Next, we show that, fixing a point close to the true parameter �, the empirical score function evaluated
at that point will concentrate around its expectation for smoothed distributions.

Corollary 3.3. Let f be an arbitrary distribution and let fr be the r-smoothed version of f . That is,

fr(x) = Ey f [
1p
2⇡r2

e
� (x�y)2

2r2 ]. Consider the parametric family of distributions f�
r
(x) = fr(x��).

Suppose we take n i.i.d. samples y1, . . . , yn  f
�
r

, and consider the empirical score function ŝ

mapping a candidate parameter �̂ to 1

n

P
i
sr(yi � �̂), where sr is the score function of fr.

Then, for any |"| r/2,

Pr
yi

i.i.d.⇠ f�
r

0

@|ŝ(�+ ")� E
x fr

[s(x� ")]|�

s
2max(Ex[s2r(x� ")], Ir) log 2

�

n
+

15 log 2

�

nr

1

A  �

4 A Finite Sample Analysis of r-smoothed Local MLE

In this section, we analyze Algorithm 1, which is our version of local MLE with r-smoothing applied.
Algorithm 1 takes an initial uncertainty region that the true parameter is guaranteed to lie in, and uses
the model and the initial interval to refine the estimate to high accuracy. We first present a simpler
and easier-to-interpret version of our result, Theorem 1.3, which we stated in Section 1.2.

Recall that Algorithm 1 computes the empirical score function, and returns any of its roots. The
theorem thus states that, with high probability, for any point �+ " with |"| too large, the empirical
score function must be non-zero and thus � + " will not returned as the estimate. More precisely,
given an initial interval of length "max as well as the failure probability �, the theorem assumes that
the smoothing parameter r is sufficiently large (conditions 1 and 3 in the theorem) and that the sample
size n is sufficiently large, and guarantees an estimation error that is within a 1 + o(1) factor of the
error predicted by the Gaussian with variance 1/Ir, where Ir is the Fisher information of fr.

Theorem 1.3 (Local Convergence). Suppose we have a known model fr that is the result of r-
smoothing, with Fisher information Ir, and a given width parameter "max and failure probability
�. Further suppose that r satisfies r � 2"max and there is a parameter �, where � is larger than
some universal constant, such that 1) r2

p
Ir � �"max, 2) (log 1

�
)/n  1

�2 and 3) log 1/(r
p
Ir) 

1

�
log 1

�
/log log 1

�
.

Then, with probability at least 1� �, for all " 2
✓
(1 +O( 1

�
))
q

2 log
1
�

nIr

, "max

�
, ŝ(�� ") is strictly

negative and ŝ(�+ ") is strictly positive.

Theorem 1.3 follows from Theorem 4.1 below, which makes the “o(1)" term (the O(1/�) term)
in the theorem explicit. Assumptions 2 and 3 in the theorem statement essentially bounds various
multiplicative terms in the estimation error and makes sure that they are “1 + o(1)" terms. In
Appendix C, we give the formal proof of Theorem 1.3 using Theorem 4.1.

Theorem 4.1. Suppose we have a known model fr that is the result of r-smoothing, and a given
parameter "max. Let � and ⌘ be the hidden multiplicative constants in Lemmas C.2 and C.3. Further
suppose that r satisfies r � 2"max and r

2
p
Ir � �"max for some parameter � � �.

Now define the notation ⇢r by

1 + ⇢r =

s

1 +
⌘
p
"

�
+

15

2
p
�

0

B@
2 log

4 log
1
�

r2Ir(1� �

�
)�

n

1

CA

1
4
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Then, for sufficiently small � > 0, with probability at least 1 � �, for all " 20

B@(1 + 1

log
1
�

) 1+⇢r

1� �

�

s

1 +
log

4 log 1
�

r2Ir(1� �

�
)

log
1
�

q
2 log

1
�

nIr

, "max

3

75, ŝ(�� ") < 0 and ŝ(�+ ") > 0.

To prove Theorem 4.1, it suffices to show the following lemma. The theorem follows directly by
reparameterizing � and choosing ⇠ to be 1/log 1

�
.

Lemma 4.2. Suppose we have a known model fr that is the result of r-smoothing with Fisher
information Ir, and a given parameter "max. Let � and ⌘ be the hidden multiplicative constants in
Lemmas C.2 and C.3. Further suppose that r satisfies r � 2"max and r

2
p
Ir � �"max for some

parameter � � �. Also define the notation ⇢̃ (a “o(1)" term) by

1 + ⇢̃ =

s

1 +
⌘
p
"

�
+

15

2
p
�

✓
2 log 1

�

n

◆ 1
4

Then, for every ⇠ ⌧ 1, with probability at least 1 � � · 2

⇠r2Ir(1� �

�
)(1��) , for all " 2

✓
(1 + ⇠) 1+⇢̃

1� �

�

q
2 log

1
�

nIr

, "max

�
, ŝ(�� ") is strictly negative and ŝ(�+ ") is strictly positive.

We prove Lemma 4.2 in Appendix C, and here we give a proof sketch.

Proof sketch for Lemma 4.2. First, recall that Corollary 3.3 from Section 3 shows that fixing a
candidate input value � + " for some small ", the value of the empirical score function at � + "

is well-concentrated around its expectation. In Lemmas C.2 and C.3, we calculate and bound the
expectation and second moment of the empirical score function at �+ " for all sufficiently small ".
This allows us to derive tail bounds for the empirical score function at each point �+ ", to show that
it is bounded away from 0. Next, we need to show that with high probability, the empirical score
function is simultaneously bounded away from 0 for all " with magnitude greater than the desired
estimation accuracy. We achieve this via a straightforward net argument, crucially utilizing the fact
that the expectation of the empirical score function is bounded away from 0 by an essentially linear
function in ", and that the variance is essentially constant in ". This means that the probability for
the empirical score function at � + " to hit 0 is decreasing exponentially in ", which allows us to
complete the net argument.

5 Global Two-Stage MLE Algorithm

Algorithm 1, which we stated in the introduction and analyzed in Section 4, is a local algorithm that
assumes we have knowledge of a non-trivially small uncertainty region containing the true parameter
�. The smoothing parameter r can then be computed from the assumptions of Theorems 4.1 or 1.3,
and we run Algorithm 1 to obtain an accurate estimate of the true parameter �, with accuracy predicted
by the r-smoothed Fisher information Ir.

However, in general, we might not have a-priori knowledge of where the true parameter � lies. In
this section, we propose a global maximum likelihood algorithm (Algorithm 2) which first estimates
a preliminary interval containing �, before choosing the smoothing parameter r⇤ using an easily
calculable expression that is o(1) times smaller than the interquartile range of the distribution, and
finally applies the local MLE algorithm (Algorithm 1) to obtain a final estimate. Theorem 5.1 states
that the accuracy of Algorithm 2 is always within a 1 + o(1) times the accuracy predicted by the
r
⇤-smoothed Fisher information Ir⇤ .

Theorem 5.1 (Global MLE Theorem). Given a model f , let the r-smoothed Fisher information of a
distribution f be Ir, and let IQR be the interquartile range of f . Fix the failure probability be �.

Choose r⇤ = ⌦(max((
log

1
�

n
)1/8, 2�O(

p
log

1
�
)))IQR. Then, with probability at least 1��, the output

�̂ of Algorithm 2 satisfies

|�̂� �|

0

@1 +O

✓
log 1

�

n

◆ 1
4

+O

0

@ 1q
log 1

�

1

A

1

A

s
2 log 1

�

nIr⇤
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Algorithm 2 Global MLE for known parametric model

Input Parameters: Failure probability �, description of distribution f , n i.i.d. samples drawn from
f
� for some unknown �

1. Compute an ↵ 2 [
q
2 log 4

�
/n, 1 �

q
2 log 4

�
/n] such that the interval defined by the

↵�
q
2 log 4

�
/n and ↵+

q
2 log 4

�
/n quantiles of f is the smallest.

2. By standard Chernoff bounds, with probability at least 1 � �

2
, the sample ↵-quantile x↵

will be such that x↵ � � is within the ↵�
q
2 log 4

�
/n and ↵+

q
2 log 4

�
/n quantiles of f .

Based on this, compute an initial confidence interval [`, u] for �.

3. Let r⇤ = ⌦(max((
log

1
�

n
)1/8, 2�O(

p
log

1
�
)))IQR.

4. Run Algorithm 1 on the interval [`, u], using r
⇤-smoothing and failure probability �/2,

returning the final estimate �̂.

Proof. The total failure probability of the steps is at most �. Thus, in this proof we condition on the
success of Algorithm 2 in all probabilistic steps.

By the minimality condition in the definition of ↵, the length "max of the interval [`, u] from Step 2 is

at most O(
q
log 1

�
/n)IQR.

Further, recall by Lemma 3.2 that Ir � ⌦(1/(IQR + r)2). Picking r
⇤ =

⌦(max((
log

1
�

n
)1/8, 2�O(

p
log

1
�
)))IQR and �1 = O( n

log
1
�

)1/4 and �2 = O(
q
log 1

�
), we check

that the following conditions are satisfied:

1. (r⇤)2
p
Ir⇤ � (r⇤)2/(IQR + r

⇤) � ⌦(
log

1
�

n
)1/4IQR = �1"max.

2. log 1

�
/n  O(

q
log 1

�
/n)  1/�2

1
.

3. log 1/(r⇤
p
Ir⇤)  O(log 2O(

p
log

1
�
)) = O( 1

�2
log 1

�
).

Further note that log log 1

�
/log 1

�
 1/

q
log 1

�
= O(1/�2).

Thus, using Theorem 1.3, Step 4 returns an estimate �̂ satisfying

|�̂� �|
✓
1 +O

✓
1

�1

◆
+O

✓
1

�2

◆◆s
2 log 1

�

nIr⇤

which is equivalent to the theorem statement.

6 High Probability Cramér-Rao Bound

Complementing our algorithmic results, we also give new results on lower bounding the estimation
error in the location parameter model. The celebrated Cramér-Rao bound lower bounds the variance
of estimators, which does not readily translate to (tight) lower bounds on the distribution tail of
the estimation error. In this section, we show that it is possible to derive a high probability version
of the Cramér-Rao lower bound for r-smoothed distributions, where, given a failure probability
�, we lower bound the estimation error to within a 1 + o(1)-factor of the error predicted by the
asymptotic normality of the standard maximum likelihood algorithm, namely the Gaussian with the
true parameter as the mean, and variance 1/(nIr) for estimation using n samples.
Theorem 1.5. Suppose fr is an r-smoothed distribution with Fisher information Ir. Given failure
probability � and sample size n, no algorithm can distinguish fr and f

2"
r

with probability 1 � �,

8



where " = (1 � o(1))
q
2 log 1

�
/(nIr). Here, the o(1) term tends to 0 as � ! 0 and log 1

�
/n ! 0,

for a fixed r
2Ir.

We prove Theorem 1.5 in Appendix D. The high-level technique we use is a standard one, showing
that, it is statistically impossible to distinguish two slightly shifted copies of fr with probability 1� �,
using n samples. The shift corresponds to (twice) the estimation accuracy lower bound. The difficulty
lies in getting the right constant.

Standard inequalities for showing indistinguishability results rely on calculating either the squared
Hellinger distance [BY02] or the KL-divergence [BH79] between the two distributions. While
these inequalities are straightforward to apply, given the calculated bounds on these statistical
distances/divergences, the inequalities only yield constant-factor tightness in the estimation accuracy
lower bound. On the other hand, in this work, we aim to give accuracy upper and lower bounds that
are matching strongly, to within 1+ o(1) factors. As such, our proof of Theorem 1.5 involves delicate
and non-standard bounding techniques which may be of independent interest. The proof techniques
are currently slightly ad-hoc, and for future work, we hope to improve on these techniques to make
them more general and more usable.

7 Experimental Results

In this section, we give experimental evidence supporting our proposed algorithmic theory. Our goals
are to demonstrate that 1) r-smoothing is a beneficial pre-processing to the MLE, that r-smoothed
Fisher information does capture the algorithmic performance in location estimation and 2) r-smoothed
MLE can outperform the standard MLE, as well as standard mean estimation algorithms which do
not leverage information about the distribution shape.

The version of smoothed MLE we use for experimentation is even simpler than Algorithm 1: use
Gaussian smoothing before performing actual maximum likelihood finding over the entire real line,
instead of returning a root of the empirical score function. This is closest to what statisticians would
do in practice, and further does not require any initial uncertainty region on the true parameter �.

We use the Gaussian-spiked Laplace model for experiments, with a Laplace distribution of density
proportional to e

�|x|, and a Gaussian of mass 0.001 and width roughly 0.002 (the discretization
granularity) added at x = 4. The reason we choose the Laplace over the Gaussian as the “body"
of the distribution is because, fixing the variance of the distribution, the Laplace has twice the Fisher
information as the Gaussian. Given that standard mean estimation algorithms only aim to achieve
sub-Gaussian concentration, choosing the Laplace as the core distribution lets us demonstrate that the
smoothed MLE can outperform mean estimation algorithms even in finite samples. We also note that
this example is crucially different from the Dirac �-spiked example in Section 1.1. The Dirac � spike
has infinity density, whereas the narrow Gaussian spike only has somewhat large, but finite density.
Given the finite and not too large density in the spike, in our experiments, the basic MLE algorithm
will not “fit it at any cost", and instead has a smoother error distribution whenever we do not observe
samples from the Gaussian spike. Nonetheless, even in this milder setting, we demonstrate that our
smoothed MLE algorithm performs better than the original MLE.

Figure 2a is a heat map of the mean squared error of the smoothed MLE. The x-axis varies the
number of samples n from 50 to 5000, and the y-axis varies the smoothing parameter r from 0.001 to
1 in log scale. Lighter color indicates a smaller mean squared error. The line overlaid on the heat map
indicates, for each value of n, the value of r with the smallest mean squared error. As n increases,
the optimal value of r decreases, as predicted by our theory.

For small values of n—below about 1000—the mean squared error first decreases then increases
again as we increase the smoothing parameter r. This confirms the theory in the paper: for small
n, it is unlikely that we see any samples from the spike, in which case too small values for r cause
MLE to overfit. On the other hand, too large values of r simply add too much noise, and also yields a
sub-optimal mean squared error. The optimal value of r is thus somewhere in between.

The situation changes when n� 1000, which is 1 over the mass of the spike. In this case, we expect
to typically see samples from the spike, which allows us to estimate the mean highly accurately. Any
smoothing just adds noise, and hence the optimal value of r is close to 0.
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(a) Heat map of mean squared er-
ror (b) Estimation error distribution,

n = 500
(c) Estimation error distribution,
n = 3000

Figure 2: Experimental results - Spiked Laplace model

Figure 2b picks n = 500 and compares the distribution of estimation errors across different algorithms:
unsmoothed MLE (blue), 0.05-smoothed MLE (orange), empirical mean (yellow), Lee-Valiant (LV)
estimator (purple) using � = e

�5. With only 500 samples, the unsmoothed MLE occasionally sees a
sample from the spike, and attains high accuracy, but otherwise has large variance in error, compared
with the empirical and LV estimators (which have essentially identical performance, so yellow is
overlapped by purple on the plot). With just 0.05-smoothing, MLE outperforms all other estimators.

Figure 2c picks n = 3000 and compares the same algorithms. The unsmoothed MLE sees samples
from the spike most of the time, and attains high accuracy, vastly outperforming the empirical and LV
estimators (again, yellow is overlapped by purple). The 0.05-smoothed MLE performs worse than the
unsmoothed MLE in the typical case, but has better tail behavior. This plot suggests that the optimal
smoothing parameter r in the high probability regime depends on the desired failure probability �.

8 Future Directions

One natural goal is to extend these techniques to estimate the mean of unknown distributions by
means of a kernel density estimate (KDE), with accuracy dependent on the true distribution’s Fisher
information. In general this cannot work, a bias independent of the Fisher information is unavoidable,
but for symmetric distributions the bias is zero and one can hope for good results. An asymptotic
version of this was shown by Stone [Sto75], and we believe our techniques could get a finite-sample
guarantee here.

A second direction is to investigate ways to generalize and simplify our lower bound analysis
techniques. Recall that, while standard “indistinguishability" bounds based on squared Hellinger
distance and KL-divergence are relatively straightforward to apply, they generally lose constant
factors. Our analysis is tight to within a 1 + o(1)-factor, but it requires analyzing several different
parameters of the distribution. One can hope to extend and generalize these techniques to yield a
new easy-to-apply bound, similar to those based on Hellinger distance and KL-divergence, that gives
1 + o(1)-factor tightness.
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