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Abstract
This paper aims to better understand and accelerate the training dynamics of deep networks that lead
to delayed generalisation and emergent robustness to input perturbations, known as grokking. Prior
work has associated phenomena like delayed generalisation with the transition in a deep network
from a linear to a feature learning regime, and emergent robustness with changes to the network’s
functional geometry, in particular the arrangement of the so-called linear regions in deep networks
employing continuous piecewise affine nonlinearities. Here, we explain how grokking is realised
in the Jacobian of a deep network and demonstrate that aligning a network’s Jacobians with the
training data (in the sense of cosine similarity) ensures grokking under a low-rank Jacobian as-
sumption. Our results provide a strong theoretical motivation for the use of Jacobian regularisation
in optimizing deep networks, which we show empirically to induce grokking much sooner than
more conventional regularizers like weight decay. Moreover, we introduce centroid alignment as a
tractable and interpretable simplification of Jacobian alignment that effectively identifies and tracks
the stages of deep network training dynamics.

The extended version is GrokAlign: Geometric Characterisation and Acceleration of Grokking.

Data Points Centroids at Memorisation Centroids at Generalisation

Figure 1: For deep networks to grok, their Jacobians should align such that the sum of their rows are cosine-
similar to the point at which they were computed; we dub this condition centroid aligned. We train a ReLU
network on the MNIST dataset [20] using Jacobian regularisation. We take three training data points, left,
and observe the linear regions (using SplineCam [13]) of the deep network along with the centroids [3] of
the three data points when it has memorized the training data, centre, and when it has generalised, right. We
colour the linear regions according to the norm of the linear operator acting upon them.
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1. Introduction

Deep networks are known to have emergent properties during prolonged training that are essential to
understand to facilitate their reliable and effective training. Delayed generalisation involves the test
accuracy increasing long after train accuracy has increased, in a process initially termed grokking
[28]. It is a phenomenon that spans multiple deep architectures and domains, including transform-
ers on algorithmic tasks [28] and natural language processing [37], and fully connected networks
performing image-classification [23]. Subsequently, the grokking concept has been expanded to
include delayed robustness [14], which involves prolonged training inducing a robustification of the
deep network to input perturbations. Ideally we would accelerate the onset of both generalisation
and robustness in deep networks, though in practice there has been an observed tension between
them [34, 42].

Despite a high-level understanding of these phenomena, there exists no foundational explana-
tion for why grokking occurs nor a practical and interpretable framework for accelerating a deep
network’s training dynamics to reach the grokked state more efficiently.

Prior work in this space attributes delayed generalisation to the transition of a deep network
from a linear to a feature learning regime [18, 25, 30]. Studies have explored this dynamic from the
perspective of the neural tangent kernel [15, 18], the adaptive kernel [30, 31], and mechanistic inter-
pretability [27, 35]. On the one hand, these works have arrived at an array of sufficient conditions for
inducing generalisation, including weight-norm at initialisation [23], weight-decay [25, 27], dataset
size [35], and output or label scaling [18]. On the other hand, delayed generalisation and robust-
ness has been attributed to the evolution of the functional geometry of the network [14], which is
a reference to the arrangement of the so-called linear regions of a continuous piecewise affine net-
work. The Jacobian matrices of a deep network have also been identified as intimately related to
their robustness [4, 7, 10, 11, 16, 29]. In this paper, we prove theoretically and demonstrate empir-
ically that Jacobian norm constraints induces grokking in deep networks. Moreover, we develop a
tractable and interpretable approach for monitoring and accelerating grokking in practice based
on an efficient summarization of the Jacobian.

This paper makes three main contributions. First, we demonstrate that deep networks that have
optimized their loss function have aligned Jacobians at the training data points, in the sense that
the rows of the Jacobians at the training points are simply scalar multiples of those points. Deep
networks with aligned Jacobians have been empirically demonstrated to be robust [4, 7], and we
prove rigorously that they are optimally robust amongst all rank-one Jacobians. Since deep network
training dynamics tend to bias the Jacobian towards a low-rank matrix [8, 12, 19, 33, 41], we con-
clude that the cause of grokking is the alignment of the network’s Jacobian matrices. Through this
theory we motivate the use of Jacobian regularisation to ensure and accelerate grokking.

Second, since working with Jacobian matrices in practice is computationally expensive and
current strategies to align the Jacobians are cumbersome [4], we propose to summarize the Jacobian
matrices via the sum of their rows. This vector can be efficiently computed through Jacobian vector
products [2], and it has a strong geometrical interpretation in the spline theory of deep learning [1],
where it corresponds to the centroid of the linear region containing the data point of interest.

Third, we demonstrate that the linear region centroids provide an insightful and more tractable
summary of the dynamics of deep network training as compared to Jacobian alignment. Theoreti-
cally, the centroids are connected to the neural tangent kernel, and empirically they offer efficiently
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computable metrics for monitoring and detecting the emergence of grokking and understanding
when additional training could be beneficial.

2. Jacobian Regularisation Explains Grokking

Let f : Rd → RC be a deep network. Here we focus on the classification setting so that the
prediction of the deep network at a point x is taken to be argmax(f(x)). In this setting, the deep
networks are trained on a data set {(xp, yp)}mp=1 – where xp ∈ Rd and yp ∈ R is its corresponding
class – under some loss function L = 1

m

∑m
p=1 ℓ (f (xp) , yp). Let Jx(f) be the Jacobian of f at x.

Definition 1 A deep network is Jacobian-aligned at x ∈ Rd if Jx(f) = cx⊤ for some vector
c ∈ Rd.

A deep network is said to have generalised when it learns to extrapolate beyond the training
set and perform well on unseen inputs, and it is said to be robust when applying perturbations to
inputs does not change the behaviour of the network drastically. The emergence of generalisation is
typically formalised under the feature learning regime of training [18, 25, 30], whilst the robustness
of deep networks has been connected to its Jacobians [4, 7]. The delayed onset of both these
properties is encapsulated in the grokking phenomenon [14, 28].

Let us suppose that f is a continuous piecewise affine deep network – which includes a broad
class of architectures, including ReLU feedforward and recurrent networks, convolutional neu-
ral networks, and residual networks [1]. Such a deep network has a representation of the form
f(x) = Aωxx + Bωx where Aωx ∈ RC×d and Bωx ∈ RC . More specifically, Aωx and Bωx are
the parameters for the affine transformation operating on the linear region ωx encompassing x. The
functional geometry of this deep network is the disjoint union of these linear regions, which is a
finite-partition of the input space into a collection of convex polytopes [3]. Note that in this setting
Jx(f) = Aωx .

Theorem 2 Let L be the cross-entropy or mean-squared error loss function. Then the continuous
piecewise affine deep network f minimising L under the constraints that

∥∥Jxp(f)
∥∥2
F

≤ α and
Bωxp

= 0 for every p = 1, . . . ,m, is Jacobian-aligned.

Theorem 2 demonstrates that Jacobian-aligned deep networks are optimal in the sense of opti-
mising the training objective. Combined with prior works [4, 7], we also have that Jacobian aligned
deep networks are robust.1 We support this with the following.

Theorem 3 If Aωx is a rank-one matrix and Bωx = 0, then the local mapping on the linear region
ωx is optimally robust with respect to ℓ2 perturbations when Aωx = cx⊤, where the maximum entry
of c is at the index of the class of x.

In practice, the dynamics of deep network training biases toward low rank weight matrices [8,
12, 19, 33, 41], and thus low rank Jacobians (see Figure 9). Hence, from Theorem 3, we determine
that delayed robustness ought to necessarily involve the Jacobian alignment of deep networks.

1. Although, in these prior works, the notion of alignment considers only the row of the Jacobian matrix corresponding
to the class of the input.
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By performing Jacobian regularisation we can enforce the Jacobian norm constraint of Theorem
2 and thus guarantee that optimising the training objective will lead to a grokked network. More
specifically, Jacobian regularisation involves appending the average Frobenius norm of the Jacobian
matrices at the training data to the loss function with some coefficient, λJac. Weight-decay may also
be a viable strategy of enforcing the constraint of Theorem 2; however, it is less direct. Indeed, in
some cases weight-decay has proven effective for inducing grokking [22, 27, 28, 35], while in other
cases it has shown to be insufficient for grokking [18].

3. The Centroid Alignment Perspective

Centroids. Recall that the functional geometry of a continuous piecewise affine deep network
refers to the arrangement of its linear regions. That is, the disjoint union of {ωx}x∈Rd/∼ where
∼ denotes the equivalence class x1 ∼ x2 if and only if x2 ∈ ωx1 and vice-versa. Of impor-
tance is the fact that this functional geometry can be parametrised with a collection of parameters
{(µx, τx)}x∈Rd/∼ ⊆ Rd × R, termed the centroids and radii, according to a power diagram subdi-
vision [3].

Theorem 4 For a continuous piecewise affine deep network, µx = (Jx(f))
⊤ 1.

Using Theorem 4, centroids provide a mechanism through which to summarise a Jacobian ma-
trix of any deep network in way that has an elegant geometrical interpretation when the network is
continuous piecewise affine. Importantly, the centroid can be computed through a Jacobian vector
product, which is much more computationally efficient than computing the Jacobian [2].

Definition 5 A deep network is centroid-aligned at x ∈ Rd if µx = cx for some constant c ∈ R.

The geometrical consequences of centroid alignment can be visualised vividly in Figure 1. An
aligned centroid can be linked to the region migration phenomenon observed in Humayun et al. [14],
which was used as an explanation for delayed robustness. Since a Jacobian-aligned deep network
is centroid-aligned (see Proposition 9), it follows that we can consider centroid alignment as an
alternative to Jacobian alignment. Although centroid alignment is a weaker property than Jacobian
alignment, we will demonstrate that it has explicit connections to feature learning which we will
highlight through the neural tangent kernel.

Neural Tangent Kernel. Suppose our network has parameters θ. Then we take the neural tan-
gent kernel [15] between x,x′ ∈ Rd to be Θ(x,x′) = ∇θfθ(x) (∇θfθ (x

′))⊤. The linear and
feature learning regimes of deep network training are characterised by having relatively constant or
dynamic neural tangent kernels respectively [5, 26, 38]. The former identifying when the network
approximates a linear function, whereas in the latter the network utilises its nonlinearity. 2

The Dynamics of Centroids. For simplicity we will explore the centroid dynamics of a two-layer
network of the form fθ(x) = W (2)

(
σ
(
W (1)x

))
, where W (2) ∈ Rd(2)×d(1) , W (1) ∈ Rd(1)×d, and

σ is a piecewise affine nonlinearity. We will suppose it is being trained using full-batch gradient
descent with a learning rate of η. To make the connection to feature learning explicit, we will
consider the deep network to have a scalar-output. We provide a treatment of vector-output networks

2. Lazy and rich are also commonly used terms to refer to these different regimes.
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in Appendix F where we make an analogous connection between centroids dynamics and feature
learning. In this scalar-output setting we suppose the network is being trained with the cross-entropy
loss function.

Theorem 6 In the setting described above, we have ∂t (⟨x, µx⟩) = η
m

∑m
p=1Θ(x,xp)mxp , where

mxp = yp − 1
1+exp(−fθ(xp))

.

Theorem 6 says that the inner-product between some point in the input space, x, and its corre-
sponding centroid, µx, is a weighted sum of the neural tangent kernel of the point with the points
in the training data. In particular, a changing inner-product involves a dynamic neural tangent ker-
nel, which identifies the feature learning regime of training. More specifically, if the inner-product
⟨x, µx⟩ changes by δ, then the alignment will change by δ

∥x∥∥µx∥ . When we are optimizing a deep
network with Jacobian regularisation, we would expect the centroid norm to be low due to Theo-
rem 4, and thus the feature learning regime will be identified by centroid alignment. Consequently,
since Jacobian-aligned deep networks are centroid-aligned and centroid alignment is an indicator of
feature learning, we have determined that we can use centroid alignment as a metric for effectively
monitoring deep network dynamics.

4. Experiments

To compute the centroid alignment of a deep network, we compute the centroid for an input data
point using Theorem 4 and then compute the cosine similarity between this and the input. Likewise,
we can obtain the centroid inner-product. To perform Jacobian regularisation we utilise the method
outlined in Hoffman et al. [11].

Using this we demonstrate that centroid alignment can identify the feature learning regime of
deep network training (see Appendix A) and the onset of robustness (see Appendix B). Moreover,
we show that Jacobian regularisation can effectively control the training dynamics of deep networks
(see Appendix C). For example, we induce delayed robustness, inhibit grokking as well as accelerate
grokking. In some cases, we accelerate grokking by up to seven times (see Table 1). Similarly, in
Appendix G we demonstrate that this perspective can be effectively applied to transformer models
[36] learning modular addition [28] to control the type of solution they learn.

5. Discussion

We have identified that Jacobian alignment is the cause for grokking, by understanding that Jacobian-
aligned deep networks optimise the loss function under a Jacobian norm constraint and are optimally
robust under the low rank bias of training dynamics. Consequently, we identified Jacobian regular-
isation as an effective strategy for controlling the dynamics of deep networks. In particular, we
showed that we can induce robustness as well as inhibit or accelerate grokking using Jacobian regu-
larisation. Since Jacobian matrices are difficult to interpret and costly to work with in practice, we
constructed the centroid alignment perspective as an alternative strategy to monitor the dynamics of
deep networks. This perspective is interpretable due to its relationship with the functional geometry
of a deep network and is theoretically meaningful due to its connection to the neural tangent kernel.
Using this perspective we were able to identify the onset of the generalisation and robustness during
deep network training, as well as reason about when prolonging network training would improve
these important properties.
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Appendix A. Centroid Alignment Identifies the Feature Learning Regime

First, we verify Theorem 6 and our conclusions from it in an MNIST [20] two-class classification
setting. Figure 2 demonstrates that the inner-product between a point and its linear region’s centroid
changes in accordance with the neural tangent kernel, meaning that it can identify this important
regime of learning.

Figure 2: Theorem 6 holds in practice: we observe that a changing inner-product indeed corresponds
to a feature learning regime. Here we train a two-layer scalar-output ReLU network using the binary-
cross-entropy loss function to distinguish between the zero and one class of the MNIST dataset [20].
We train the model using full-batch gradient descent for 4000 steps at a learning rate of 0.01. At the
beginning of training we fix a point from the training set and compute the average value of the neural
tangent kernel between itself and the other points from the training set, left. We then compute the
centroid of the points using Theorem 4 to then obtain the inner-product, centre, and its alignment,
right. We also record the norm of the centroid and encode it in the colours of the markers depicting
centroid alignment. In the left and centre plots we identify the feature learning regime using a green
shaded area, this determines where the neural tangent kernel value is changing.

Due to the fact that the norms of the centroids increase during training, eventually the feature
learning regime no longer contributes to centroid alignment. This supports the observation that
standard training techniques do not maintain a bounded Jacobian norm [40]. Highlighting the ne-
cessity of using Jacobian regularisation to ensure the realisation of a Jacobian-aligned deep network
in practice.

Without regularisation during training, the initialisation of the network significantly influences
its subsequent dynamics. In Appendix D we use alignment to explore this.

Appendix B. Centroid Alignment Identifies Delayed Robustness

Having demonstrated that centroid alignment identifies the feature learning regime, we now deter-
mine that it can be used to identify the onset of robustness.

We adopt a set-up similar to that of Xu et al. [39] entailing a scalar-output two-layer fully
connected network grokking on XOR cluster data. Note that this network trivially has rank-one
Jacobians at every point in the input space. The XOR cluster data contains 40000-dimensional
vectors of the form x =

(
x1, x2, x̃

⊤)⊤ ∈ R40000, where x1, x2 ∈ {±1} and x̃ ∈ R39998. The 400
samples used to train the network are constructed by sampling entries x1, x2 uniformly from {±1}
and entries of x̃ uniformly from {±ϵ}, here we take ϵ = 0.05. The corresponding label of such a
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sample is x1x2 ∈ {±1}. A similar sample is generated as a test set. Therefore, by construction
our training data has only signal in the first two components, whereas the other components contain
noise. Hence, generalisation would require recognising the pattern of how the first two components
lead to the corresponding label, whilst robustness would require the network to not condition its
pattern recognition on the last 39998 components.

Figure 3: Centroid alignment of a point from the training set identifies the generalisation and robust-
ness of a deep network. We study a two-layer network of width 2048 learning the XOR classification
task described in Section B. In the top row we train the network using full-batch gradient-descent
with a learning rate of 0.1, weight-decay of 0.1 and under the mean-squared error loss function for
1000 steps. We monitor the alignment of a training point to its centroid, as well as the robustness
of the network. To measure robustness, we take the entries from the test set and apply Gaussian
perturbations of varying standard deviations to the last 39998 components. In the bottom row we
additionally apply Jacobian regularisation with λJac equal to 0.001. The limits for the axes of each
column are the same. In the left plots we are illustrating the centroid norms as colours for the marker
indicating centroid alignment.

Throughout training we track the centroid alignment of a point in the training set to obtain Figure
3. We observe that as the network memorises, the centroid alignment does not increase significantly.
However, during generalisation, the centroid alignment increases. After a slight plateau in centroid
alignment, a further increase correlates with the onset of robustness. In this instance, the rank of the
Jacobian of the network at the point under consideration is one, and thus from Theorem 3 robustness
can only be achieved through alignment.

Critically, in the top row of Figure 3, we observe the indirectness of weight-decay at imposing
the Jacobian norm constraint of Theorem 2. Early on in training the norms of the centroids increase
and eventually inhibit centroid alignment. Since alignment is an optimum of the training objective,
it is only at this stage that under weight-decay the network is incentivised to reduce the norms of
the Jacobian resulting in the onset of robustness. Indeed, by applying Jacobian regularisation we
directly mitigate this delay and achieve robustness much sooner.
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Appendix C. Jacobian Regularisation Effectively Controls Training Dynamics

Thus far we have shown that centroid alignment provides a valuable perspective on the training
dynamics of a deep network, as it identifies its points of generalisation, Figure 2, and robustification,
Figure 3. We have also shown that standard deep network training, including weight-decay, cannot
maintain a Jacobian norm constraint and thus is limited in its ability to Jacobian-align the network.

The most direct approach for enforcing the Jacobian norm constraint is through Jacobian reg-
ularisation, and here we will explore how this can used to control a network’s training dynamics.
More specifically, we use an approximate form of Jacobian regularisation that is efficient to employ
in practice, whilst maintaining the same effect [11].

Inducing Delayed Robustness. We train convolutional neural networks on the CIFAR10 dataset
[17]. We observe that by using Jacobian regularisation we can induce alignment, as evidenced by the
increasing centroid alignment. This capitalises on the diminishing ranks of the Jacobian matrices to
increase the robustness of the model. With only weight-decay we do not see the onset of robustness.

Figure 4: Jacobian regularisation enables us to capitalise on the low rank implicit bias of deep
network training to induce robustness. Here we train a convolutional neural network with five
convolutional layers and two linear layers, with no bias terms, on a 1024 subset of the CIFAR10
dataset [17] under the mean-squared error loss function. We use the AdamW optimizer [24] at a
learning of 0.001, and a batch size of 256 to train the network across 36000 steps. In one instance
we apply weight-decay at 0.001, and in another instance we apply Jacobian regularisation with λJac
equal to 0.001. In the left plot we compute the average explained variance of the first principal
component of the Jacobians as in Figure 9, and in the centre plot we record the average centroid
alignment on the training set. In the right column we record the test accuracy of the model and
the accuracy of the model when ℓ∞ perturbations of amplitude 4

255 are applied to the test set using
Autoattack [6].

Crucially, we can conclude that prolonging the training is unlikely to improve the properties of
the Jacobian regularised model significantly, since the effective rank of the Jacobians is close to one
and the centroid alignments are relatively high and have started plateauing.

Inhibiting Delayed Generalisation. Using our reasoning, we would expect that if we were to
maintain the Jacobian norms at a high-level, then we ought to prevent alignment and thus generali-
sation. Therefore, we consider a fully connected network and scale up its weights at initialisation to

12
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Figure 5: By maintaining the Frobenius norms of the Jacobian at the training data relatively high we
can keep the norms of the centroids relatively high which prevents grokking. We take the MNIST
grokking set up of Liu et al. [23]. In the minimising case we impose Jacobian regularisation with
λJac equal to 0.001 during training to minimise the Frobenius norm of the Jacobians at the training
data. In the constrained case we apply regularisation to maintain the Frobenius norm of the Jacobian
computed at the training data at a relatively high level. More specifically, using a regularisation
coefficient of 0.001, we append the difference between five and the average Frobenius norm of the
training to the loss function. In the left plot we visualise the train and test accuracy with solid
and dashed lines respectively. In the centre plot we visualise the average norm of the centroids
computed at the training data. In the right plot we visualise the average centroid alignment, which
is just the cosine similarity of the training point with its corresponding centroid.

increase the Jacobian norms, much like Liu et al. [23], and apply Jacobian regularisation in different
ways.

We observe in Figure 5 that our prediction is correct, namely minimising the Frobenius norms
of the Jacobians leads to generalisation, whilst keeping their value relatively high prevents it. We
are able to monitor this through tracking the norms of the centroids, which demonstrates how the
centroids provide an effective mechanism to monitor network dynamics.

Accelerating Grokking. Just as we used Jacobian regularisation to inhibit grokking, we can use
it to accelerate grokking. For this we consider the standard MNIST grokking set up of Liu et al. [23]
which involves applying weight-decay to a deep network initialised with a large initial weight-norm.
From our perspective this results in Jacobians with large norm, inhibiting their alignment.

We can quantify the improvement that Jacobian regularisation provides by repeating the exper-
iment over different initialisations and comparing it to other known methods of inducing grokking.
For example, we compare it to Grokfast [22], which works to improve the rate of grokking by ma-
nipulating the gradients during training to amplify certain signals. Furthermore, we compare it to
a method of adversarial training motivated in Tan and Huang [32], which established a connection
between robustness and generalisation. The method of adversarial training involves perturbing the
inputs during training with noise proportional to the training accuracy of the deep network. In all
of our implementations, we will not manipulate the weight-decay of the training procedure, we will
keep this parameter constant across all our experiments.

We observe that Jacobian regularisation is extremely effective at inducing the grokked state of
the network in this setting, it arrives at the grokked state in 7.56 times fewer steps and 6.31 times

13
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Table 1: Jacobian regularisation significantly speeds up the rate of grokking. In the top table we
assume the MNIST set up of Liu et al. [23] with the cross-entropy loss function, and in the bottom
table we assume it with mean-squared error loss function. We repeat the training across ten different
random initialisations, where for the cross-entropy loss function we apply Jacobian regularisation
with λJac equal to 0.001 and with λJac equal to 0.0001 for the mean-squared error models. For
each run we measure the number of steps and the absolute time, in seconds, taken for the networks
to reach 85% test accuracy. In the case of the mean-squared error loss function, we additionally
measure the time, in seconds, for the models to go from 20% to 85% test accuracy. We provide
the average acceleration (or deceleration) of each method compared to the baseline along with the
corresponding standard deviation. All values are to two decimal places.

Regularisation Number of Steps Absolute Time (s)

Baseline - -
Jacobian Regularisation ↓ 7.56× (±0.82) ↓ 6.41× (±0.69)
Grokfast ↑ 1.01× (±0.04) ↑ 1.03× (±0.04)
Adversarial Training ↓ 1.32× (±0.18) ↑ 1.92× (±0.29)

Regularisation Number of Steps Absolute Time (s) Grokking Phase Time (s)

Baseline - - -
Jacobian Regularisation ↓ 1.69× (±0.31) ↓ 1.46× (±0.30) ↓ 1.77× (±0.53)
Grokfast ↓ 1.08× (±0.17) ↓ 1.05× (±0.23) ↓ 1.05× (±0.27)
Adversarial Training ↓ 1.23× (±0.26) ↑ 1.92× (±0.29) ↑ 2.02× (±0.37)

faster than the baseline in the case of the cross-entropy loss function. In contrast, Grokfast provides
a relatively lower improvement in the mean-squared error case and is ineffective in the cross-entropy
case. Furthermore, adversarial training does not improve the rate of grokking over the baseline. In
particular, adversarial training does not improve the robustness of the model by way of aligning the
Jacobian, unlike Jacobian regularisation (see Appendix E).

Controlling the Behaviour of Deep Networks. The use of Jacobian regularisation was motivated
in the setting of classification. Nanda et al. [27] observed that a single layer transformer [36] learn-
ing modular addition [28] grokked by learning how to implement an algorithm. An equally viable
solution to this problem would be through classification.

Since our new tools extend to transformer models, in Appendix G we explore the application
of Jacobian regularisation for controlling their learning dynamics and centroid alignment for moni-
toring them. We demonstrate that we can bias the network to learn the classification style solution
through Jacobian regularisation.

Appendix D. Initialising for Centroid Alignment

Increasing the rate of change of inner-product can be done by increasing the neural tangent kernel,
say through scaling the weights or output of the network. However, these will also increase the
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norm of the centroid. Moreover, such scaling is known to increase the propensity of the network
maintaining a linear learning regime [5], along with increasing the width of the neural network [21]
and label rescaling [9]. We explore this trade-off by repeating the experiment of Figure 2, but with
various scaling of the weights or output of the network.

Figure 6: When no regularisation is used, minimising the centroid norm at initialisation is essential
for ensuring the alignment of the centroid during training, and output scaling ensures this more
effectively than scaling the weights at initialisation. Here we repeat the experiment of Figure 2, but
with varying scaling of the weights and output of the network. On the left we plot the correlation
between the initial rate of change of inner-product, as computed by Theorem 6, and the average
reciprocal of the norm of the centroids of the training points. We additionally colour the scatter
points according to the maximum alignment of the centroid observed during training. On the right
we observe how the maximum alignment of the centroid observed during training correlates with
the different scaling mechanisms.

In Figure 6, we observe that controlling the norm of the centroid is a more effective strategy
for translating the feature learning of the neural network into centroid alignment. However, a priori,
knowing how to initialise the deep network for favourable alignment dynamics is challenging, hence,
in practice some sort of regularisation is necessary.

Appendix E. Alignment Induced by Adversarial Training

Although both Jacobian regularisation and adversarial training are motivated to induce grokking by
improving the model’s robustness, the former does this though aligning the functional geometry
of the model, whereas the latter does not. We determine this by measuring the cosine similarity
between training points and the rows of the Jacobian of the model at those points, Table 2.
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Table 2: Here we compare adversarial training to the baseline and Jacobian regularisation grokking
set ups of Table 1 in terms of inducing the alignment of the Jacobian at the training data. All values
are to three significant figures.

Regularisation Test Accuracy Jacobian Row Alignment (max/min)

Baseline 88.9% −0.254/0.283

Jacobian Regularisation 91.8% −0.509/0.478

Adversarial Training 88.0% −0.253/0.274

Regularisation Test Accuracy Jacobian Row Alignment (max/min)

Baseline 86.8% −0.170/0.272

Jacobian Regularisation 88.2% −0.638/0.709

Adversarial Training 87.8% −0.263/0.376

Appendix F. Centroid Dynamics of Vector-Output Deep Networks

Consider the case of a general vector output, namely d(2) ≥ 2, with L being the cross-entropy loss
function or the mean-squared error loss function. Namely, we consider

ℓ (f (xp) , yp) = − log

 exp
(
[f (xp)]yp

)
∑d(2)

c=1 exp
(
[f (xp)]c

)


for the cross-entropy loss function, or

ℓ (f (xp) , yp) =
∥∥eyp − f (xp)

∥∥2
2

for the mean-squared error loss function.

Proposition 7 In the setting described above, we have

∂t (⟨x, µx)⟩ =
η

m

m∑
p=1

((
m⊤xp

W (2)QxpQx

(
W (2)

)⊤
1

)
⟨x,xp⟩

+ x⊤
(
W (1)

)⊤
Qxσ

(
W (1)xp

)
m⊤xp

1

)
where

mxp = ey −
exp

(
[fθ (xp)]yp

)
∑C

c=1 exp
(
[fθ (xp)]c

)
in the case of the cross-entropy loss function and

mxp = 2 (ey − fθ (xp)) .
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Corollary 8 In the setting of Proposition 7, under the cross entropy loss function, we have

∂t (⟨x, µx)⟩ =
η

m

m∑
p=1

(
m⊤xp

W (2)QxpQx

(
W (2)

)⊤
1

)
⟨x,xp⟩

:=
η

m

m∑
p=1

ιx,p
∥xp∥2

⟨x,xp⟩

That is, in the context of the cross-entropy loss function, centroids are aligned in a manner
that is proportional to the alignment of their encompassing points with the training data. More
specifically, with the intuition that the role of W (2) in fθ is to be a collection of filters facilitating the
classification of each class, the quantity W (2)Qxp

(
W (2)Qν

)⊤
1 can be thought of understanding

how each feature of xp correlates with the features of the region ων . Since m [xp] is positive on the
correct class and negative for the incorrect classes, the term ιx′,p is largest when ωx′ has identified
features that correlate with the features of xp that indicate the class it belongs too. In such a case,
the centroid µx′ is moved in the direction of xp to further maximize this correlation. Showing how
regions ωx′ are being optimized to capture the features of classes that help it distinguish it from the
other classes. Therefore, we can see neural network training more as a process of allocating linear
regions to different features that best distinguishes themselves from the other classes. This would
suggest that when we observe the centroids of a layer of a neural network aligning with the data it
encompasses, the neural network is performing feature extraction. In particular, the centroid of a
training point is most incentivised to positively align with itself.

Appendix G. Controlling and Monitoring Transformer Training Dynamics

The computations of centroids is valid without the continuous piecewise affine assumption, it is only
their interpretation as characterising a functional geometry that requires the assumption. Therefore,
we can examine the alignment of a transformer model [36] being trained on modular addition, and
the effect of introducing Jacobian regularisation into the training.

In the top row of Figure 7, we again observe that the alignment of the centroids with the train-
ing data changes in accordance with the test accuracy. Although, we find that applying Jacobian
regularisation does not accelerate the rate of grokking.

A key aspect that facilitated the transformer in implementing its algorithmic solution was the
ability to manipulate the embedding and unembedding matrices [27]. Therefore, if we fix the em-
bedding matrix during training, we a priori bias the the model in learning the classification style
solution. Under this set up, bottom row of Figure 7, we observe that the transformer groks earlier
with Jacobian regularisation than with weight-decay.

We support this by tracking the Gini coefficients of the embedding and unembedding matrices
[27] in the case of learning embeddings trained with and without Jacobian regularisation. Clearly,
we see that under Jacobian regularisation the Gini coefficients do not increase, indicating that the
model is not implementing the identified algorithmic solution, Figure 8.

Appendix H. Supporting Results

Proposition 9 A Jacobian-aligned deep network is centroid-aligned.
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Figure 7: Here we obtain the alignment statistics for a single layer transformer trained on modular
addition [28] as in [27] In the top row we train the model with learnable embeddings, whilst in the
bottom row we train the model with fixed embeddings. The shaded region in the right columns
represents the maximum and minimum values of centroid alignment on the train set with the solid
line representing the mean.

Figure 8: For a single layer transformer trained on modular addition [28] we track the Gini coeffi-
cients of the embedding and unembedding matrices for training with and without Jacobian regulari-
sation.

Note that for a continuous piecewise affine network f =
(
f (L) ◦ · · · ◦ f (1)

)
, each f (l) and sub-

component f (1←l) =
(
f (l) ◦ · · · ◦ f (1)

)
are also continuous piecewise affine networks. Let A(l)

ω
(l)
x

,

B
(l)

ω
(l)
x

, ω(l)
x , µ(ℓ)

ω
(l)
x

and A
(1←l)

ω
(1←l)
x

, B(1←l)

ω
(1←l)
x

, ω(1←l)
x , µ(1←l)

ω
(1←ℓ)
x

be analogous notation for the layer and sub-

component networks to that of the continuous piecewise affine networks we introduced in Section
2.

Theorem 10 (Balestriero et al. 3) The lth layer of a deep network partitions its input space ac-
cording to a power diagram with centroids

µ
(ℓ)

ω
(l)
x

=
(
A(l)

ω
x(l)

)⊤
1.
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Lemma 11 In the setting of Section 3, we have µx =
(
W (2)QxW

(1)
)⊤

1, where Qx := diag
(
σ′
(
W (1)x

))
.

Lemma 12 In the setting of Section 3, with d(2) = 1, the neural tangent kernel of fθ between
x,x′ ∈ Rd is given by

Θ
(
x,x′

)
= σ

(
W (1)x

)⊤
σ
(
W (1)x′

)
+
(
x⊤x′

)(
W (2)QxQx′

(
W (2)

)⊤)
.

Theorem 13 (Balestriero et al. 3) The continuous piecewise operation of a deep network from the
input to the output of the lth layer partitions its input space according to a power diagram with
centroids

µ
(1←l)

ω
(1←ℓ)
x

=
(
A

(l−1)
ω
(l−1)
x

· · ·A(1)

ω
(1)
x

)⊤
µ
(l)

ω
(l)
x

=:
(
A

(1←l−1)
ω
(1←l−1)
x

)⊤
µ
(l)

ω
(l)
x

.

Appendix I. Proofs

Theorem 2. Proof

1. In the instance of the cross-entropy loss function,

ℓp := ℓ (f (xp) , yp) = − log

 exp
(
[f (xp)]yp

)
∑C

c=1 exp
(
[f (xp)]c

)
 .

Under the assumptions, the output of the neural network at xp is Aωxp
xp. The cross entropy

loss of the deep network on D is

LCE =
1

m

m∑
p=1

ℓp

where

ℓp = − log

 exp

([
Aωxp

xp

]
yp,·

)
∑C

c=1 exp

([
Aωxp

xp

]
c,·

)


= −
〈[

Aωxp

]
yp,·

,xp

〉
+ log

(
C∑
c=1

exp

(〈[
Aωxp

]
c,·
,xp

〉))
,

which is convex on a convex set. Thus we can consider the sufficient Karush-Kuhn-Tucker
conditions with Lagrange multiplier,

L = LCE + λ

(
C∑
c=1

∥∥∥∥[Aωxp

]
c,·

∥∥∥∥2
2

− α

)
.
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In particular, the Karush-Kuhn-Tucker conditions have the form

∂L

∂
[
Aωxp

]
c,·

= −1{yp=c}xp +

xp exp

(〈[
Aωxp

]
c,·
,xp

〉)
∑C

c′=1 exp

(〈[
Aωxp

]
c′,·

,xp

〉) − 2λ
[
Aωxp

]
c,·

= 0, (1)

for c = 1, . . . , C and
∂L
∂λ

= α−
C∑
c=1

∥∥∥∥[Aωxp

]
c,·

∥∥∥∥2
2

= 0. (2)

From (1), we have

0 =

C∑
c=1

〈[
Aωxp

]
c,·
,

∂L

∂
[
Aωxp

]
c,·

〉

= −
〈[

Aωxp

]
yp,·

,xp

〉
+

C∑
c=1

〈[
Aωxp

]
c,·
,xp

〉
exp

(〈[
Aωxp

]
c,·
,xp

〉)
∑C

c′=1 exp

(〈[
Aωxp

]
c′,·

,xp

〉) − 2λ

C∑
c=1

∥∥∥∥[Aωxp

]
c,·

∥∥∥∥2
2

.

Let ϱc =
exp

(⟨[
Aωxp

]
c,·

,xp

⟩)
∑C

c′=1 exp

(⟨[
Aωxp

]
c′,·

,xp

⟩) . Then, in conjunction with (2), it follows that

λ =
1

2α

C∑
c=1

〈[
Aωxp

]
c,·
,xp

〉
ϱc −

〈[
Aωxp

]
yp,·

,xp

〉
.
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Using this back in (1) we get,

∂L

∂
[
Aωxp

]
c,·

=− 1{yp=c}xp + xpϱc +
1

α

〈[
Aωxp

]
yp,·

,xp

〉[
Aωxp

]
c,·

− 1

α

C∑
c′=1

ϱc′

〈[
Aωxp

]
c′,·

,xp

〉[
Aωxp

]
c,·

=
(
−1{yp=c} + ϱc

)
xp +

〈[
Aωxp

]
yp,·

,xp

〉[
Aωxp

]
c,·

α

(
1− ϱyp

)
− 1

α

∑
c′ ̸=yp

〈[
Aωxp

]
c′,·

,xp

〉[
Aωxp

]
c,·
ϱc′

=
(
−1{yp=c} + ϱc

)
xp +

〈[
Aωxp

]
yp,·

,xp

〉[
Aωxp

]
c,·

α

(
1− ϱyp

)
− 1

α

〈[
Aωxp

]
i,·
,xp

〉[
Aωxp

]
c,·

(
1− ϱyp

)
=
(
−1{yp=c} + ϱc

)
xp +

(
1− ϱyp

) [
Aωxp

]
c,·

α

(〈[
Aωxp

]
yp,·

,xp

〉
−
〈[

Aωxp

]
i,·
,xp

〉)
,

where i is just some incorrect class for xp, namely i ̸= yp. When c = yp this reduces to

∂L

∂
[
Aωxp

]
c,·

=
(
1− ϱyp

)(
−xp +

1

α

〈[
Aωxp

]
yp,·

−
[
Aωxp

]
i,·
,xp

〉[
Aωxp

]
yp,·

)
,

and when c ̸= yp it reduces to

∂L

∂
[
Aωxp

]
c,·

=
(
1− ϱyp

)( 1

C − 1
xp +

1

α

〈[
Aωxp

]
yp,·

−
[
Aωxp

]
i,·
,xp

〉[
Aωxp

]
c,·

)

To obtain the optimal A, it suffices to find Aωxp
satisfying these conditions. To do so we

consider the ansatz [
Aωxp

]
c,·

=

{
axp c = yp

bxp c ̸= yp.

Substituting this into our conditions we obtain the equations
−1 + 1

α(a− b)a ∥xp∥22 = 0
1

C−1 + 1
α(a− b)b ∥xp∥22 = 0(

a2 + (C − 1)b2
)
∥xp∥22 = α.

Solving these systems of equations we arrive ata = 1
∥xp∥2

√
α(C−1)

C

b = − 1
∥xp∥2

√
α

C(C−1) .
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2. In the instance of the mean-squared error,

ℓp := ℓ (f (xp) , yp) =
∥∥f (xp)− eyp

∥∥2
2
,

where we use ei ∈ Rd to denote the ith standard basis vector. Under the assumptions, the
output of the neural network at xp is Aωxp

xp. The mean squared error loss of the deep
network on D is

LMSE =
1

m

m∑
p=1

ℓp

where

ℓp =
〈
Aωxp

xp − eyp , Aωxp
xp − eyp

〉
=

C∑
c=1

(〈[
Aωxp

]
c,·
,xp

〉
− 1{yp=c}

)2

,

which is convex on a convex set. Thus we can consider the sufficient Karush-Kuhn-Tucker
conditions with Langrange multiplier,

L = LMSE − λ

(
C∑
c=1

∥∥∥∥[Aωxp

]
c,·

∥∥∥∥2
2

− α

)
.

In particular, the Karush-Kuhn-Tucker conditions have the form

∂L

∂
[
Aωxp

]
c,·

= 2

(〈[
Aωxp

]
c,·
,xp

〉
− 1{yp=c}

)
xp − 2λ

[
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]
c,·
. (3)

for c = 1, . . . , C and
∂L
∂λ

=
C∑
c=1

∥∥∥∥[Aωxp

]
c,·

∥∥∥∥2
2

− α = 0. (4)

From (3), we have
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C∑
c=1
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]
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∂
[
Aωxp

]
c,·

〉

= −2

〈[
Aωxp

]
yp,·

,xp

〉
+ 2

C∑
c=1

〈[
Aωxp

]
c,·
,xp

〉2

− 2λ
C∑
c=1

∥∥∥∥[Aωxp

]
c,·

∥∥∥∥2
2

.

Then, in conjunction with (4), it follows that

λ = − 1

α
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]
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〉
+
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Using this back in (3) we get,
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∂
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To obtain the optimal A, it suffices to find Aωxp
satisfying these conditions. To do so we

consider the ansatz [
Aωxp

]
c,·

=

{
axp c = yp

bxp c ̸= yp.

Substituting this into our conditions it follows that b = 0 and a =
√
α

∥xp∥2
.

Theorem 3. Proof Without loss of generality, we can assume Aωx to be of the form cv⊤ for
some v ∈ Rd. In particular, we assume that the vector v is of the same norm as x. Then, locally in
ωx, we have

fθ(x+ ϵ) = cv⊤ (x+ ϵ) .

Therefore, x will only be misclassified by the neural network when v⊤ (x+ ϵ) < 0. From the
Cauchy-Schwartz inequality we have that

−∥v∥2∥ϵ∥2 ≤ v⊤ϵ < −v⊤x.

Hence,

∥ϵ∥2 >
v⊤x

∥v∥2
,

the right-hand side of which is maximized when v is x.

Theorem 4. Proof Using Theorem 10 and Theorem 13 it follows that

µ
(1←l)

ω
(1←l)
x

=
(
A

(l−1)
ω
(l−1)
x

· · ·A(1)

ω
(1)
x

)⊤
µ
(l)

ω
(l)
x

=
(
A

(l−1)
ω
(l−1)
x

· · ·A(1)

ω
(1)
x

)⊤ (
A

(l)

ω
(l)
x

)⊤
1

=
(
A

(l)

ω
(l)
x

· · ·A(1)

ω
(1)
x

)⊤
1

=
(
A

(1←l)

ω
(1←l)
x

)⊤
1.

Extending this to the Lth yields the desired result.

Proposition 9. Proof Using Theorem 4, the centroid of an aligned Jacobian is µx = xc⊤1 = cx
where c = c⊤1.

Lemma 11. Proof This follows immediately from the application of Theorem 4.
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Lemma 12. Proof Observe that in this setting we have

Θ
(
x,x′

)
=
〈
∇W (2)fθ(x),∇W (2)fθ

(
x′
)〉

+
〈
∇W (1)fθ(x),∇W (1)fθ

(
x′
)〉

.

Therefore, noting that
∇W (2)fθ(x) = σ

(
W (1)x

)
and

∇W (1)fθ(x) = W (2)Q[x]x⊤,

the result follows.

Theorem 6. Proof In a similar way to Proposition 7, one can show that

∂tµx =
η

m

m∑
p=1

((
m [xp]

⊤W (2)Q [xp]Q[x]
(
W (2)

)⊤
1

)
xp

+
(
W (1)

)⊤
Q[x]σ

(
W (1)xp

)
m [xp]

⊤ 1

)
.

Using Lemma 12 this simplifies to

∂t
(〈
x′, µν

〉)
=

η

m

m∑
p=1

Θ
(
x′,xp

)
m [xp] .

Proposition 7. Proof Form Lemma 11, observe that

∂tµx =
(
∂t

(
W (2)

)
Q[x]W (1) +W (2)Q[x]∂t

(
W (1)

))⊤
1,

where
∂t

(
W (i)

)
= −η∇W (i)L

for i = 1, 2. One can show that

∇W (1)L = − 1

m

m∑
p=1

(
W (2)Q [xp]

)⊤
m [xp]x

⊤
p

and

∇W (2)L = − 1

m

m∑
p=1

m [xp]σ
(
W (1)xp

)⊤
.

Therefore,

∂tµx =
η

m

m∑
p=1

((
m [xp]

⊤W (2)Q [xp]Q[x]
(
W (2)

)⊤
1

)
xp

+
(
W (1)

)⊤
Q[x]σ

(
W (1)xp

)
m [xp]

⊤ 1

)
.

24



JACOBIAN ALIGNMENT EXPLAINS GROKKING AND CENTROID ALIGNMENT IDENTIFIES IT

In particular,

m [xp]
⊤ 1 = 1−

∑C
c=1 exp

(
[fθ (xp)]c

)∑C
c′=1 exp

(
[fθ (xp)]c′

) = 0,

meaning

∂tµx =
η

m

m∑
p=1

(
m [xp]

⊤W (2)Q [xp]Q[x]
(
W (2)

)⊤
1

)
xp.

Therefore, the result follows since ∂t ⟨x, µx⟩ = ⟨x, ∂t (µx)⟩.

Appendix J. Compute Resources

Our experiments were computed on a range of NVIDIA GPUs including GTX TITAN Xs, RTX
2080Tis, and RTX 8000s. Below we indicate roughly how long each of our main experiments took
to run.

Table 3: The computational resources utilised to perform the experiments of this work.

Experiment Hardware Time

Figure 9 GTX TITAN X 4 hours

Figure 2 GTX TITAN X Less than 1 hour

Figure 3 GTX TITAN X Less than 1 hour

Figure 4 GTX 1080 Ti 6 hours

Figure 5 GTX TITAN X 4 hours

Figure 6 GTX TITAN X 1 day

Table 1 GTX 1080 Ti, RTX 8000 5 days

Appendix K. Supporting Figures
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Figure 9: Under weight-decay and Jacobian regularisation, the effective rank of the Jacobian matri-
ces evaluated at the training data tends towards rank one. Here we trained ReLU networks on the
MNIST classification task [20] under the mean-squared error and cross-entropy loss functions using
the AdamW optimizer [24]. Throughout training, we recorded the average explained variance of
the first principal component of the Jacobians evaluated at the training data (PC1), namely σ2

1∑r
i=1 σ

2
i

,
where σ are the singular values of the Jacobian. When this normalized value equals one, the Jaco-
bian matrix is rank one.
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