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Abstract
Both mean opinion score (MOS) evaluations and preference

tests in text-to-speech are often associated with high rating vari-
ance. In this paper we investigate two important factors that
affect that variance. One factor is that the variance is coming
from how raters are picked for a specific test, and another is the
dynamic behavior of individual raters across time.

This paper increases the awareness of these issues when de-
signing an evaluation experiment, since the standard confidence
interval on the test level cannot incorporate the variance asso-
ciated with these two factors. We show the impact of the two
sources of variance and how they can be mitigated. We demon-
strate that simple improvements in experiment design such as
using a smaller number of rating tasks per rater can significantly
improve the experiment confidence intervals / reproducibility
with no extra cost.
Index Terms: Text-to-Speech, subjective evaluations, MOS,
preference tests, comparative tests, test reproducibility

1. Introduction
Both mean opinion score (MOS) evaluations and preference
tests in text-to-speech (TTS) often use a standard confidence
interval. It is perceived as a sufficient safeguard for the rating
variance, while, as we show in this paper, it lacks the ability to
address a few major factors contributing to this variance.

We investigate two important factors that affect the vari-
ance. One factor is that the variance is coming from how we
pick the raters for a specific test. Namely, besides the objective
audio sample quality, each rater has their own preferences, so if
the rater pool is large enough (e.g., in crowdsourcing projects),
and the actual number of raters chosen for a specific test is too
small, then test reproducibility will become a challenge since
averaging over the scoring tasks will not remove the bias asso-
ciated with raters’ personal preference.

MOS evaluations require scoring an individual audio sam-
ple, this is a less constrained task than a two-sided comparison
in preference tests, so intuitively raters variance can be more
affected here. Note that this kind of variance is something that
cannot be seen from the test scores alone, so it is not directly
reflected in the confidence intervals. More elaborate techniques
such as intra-class correlation analysis can help to get better
estimations, but they also require a sufficient number of data
points, as well as a proper experiment design to be used effec-
tively.

An additional variance factor is the order-dependence of se-
quences of ratings. If a rater rates multiple samples sequentially,
then their rating for a given item technically depends on its po-
sition in the sequence and is not independent of their other rat-
ings. We do not know how a particular rater will behave a pri-

ori – this may be a result of some inherent calibration process
(learning curve) of each rater, or fatigue for a large number of
rating tasks. In any case, this phenomenon can definitely affect
the ratings both in MOS and in preference tests.

In this paper we demonstrate the impact of these two
sources of variance. The rater-induced variance impact is eval-
uated by bootstrap analysis [1], and the impact of the order-
dependent ratings is analyzed by showing non-random trends in
the score behavior. Intuitively, the first issue may be mitigated
by introducing more raters for a specific test, and the second
factor by limiting the number of audio samples per rater, and
we show this is indeed the case. Using 60 audio samples per
rater instead of 10 may double the variance even if the number
of rating tasks remains the same. While it is a natural decision,
it is not always taken into account in the design of this type of
the experiments.

2. Related work
The issue of score variation arising from rater sampling has
been studied previously. In [2], the authors show that per-
participant MOS values vary considerably within the same test,
and in an analysis of the 2013 Blizzard Challenge results [3],
the authors found the number of raters to be a key factor in test
reliability and sensitivity. However, neither study attempts to
characterize the variance of the sampling distribution directly
as is done in the present work.

The influence of the number of ratings completed by a sin-
gle rater has, to the best of our knowledge, not been studied in
the context of subjective evaluations of TTS systems. The issue
has received attention in the context of crowdsourced evalua-
tions of degraded speech, however (e.g. those observed in tele-
phony). In [4], a study was conducted in which crowdsourced
workers completed an MOS evaluation of degraded speech sam-
ples from [5], with three groups rating 10, 20, and 40 samples
respectively. They found that while the groups that rated 10 and
20 samples performed similarly, the group that rated 40 sam-
ples reported much higher levels of fatigue, and had lower par-
ticipant retention. For the 40-sample group, they also found
rater performance (as measured by correlation with laboratory
results) to increase throughout the first half of the samples and
decrease in the second half. Contrarily, in a study of crowd-
sourced spoken word recognition, authors of [6] found rater
performance to improve in the second half of the task, which
they attribute to increased familiarity with the task. It seems
there may be competing factors at play: as the number of rat-
ing tasks increases, performance improves, but so does fatigue.
Word recognition, however, is presumably less subjective than
TTS evaluations.

In this paper we show that the same calibration and/or fa-



tigue phenomena present in TTS subjective evaluations as well,
and that it causes a clear monotonic trend both in MOS and
in preference test outcomes. Unlike [4], where the benchmarks
were either self-reported fatigue scores and correlation with lab-
oratory results, our results demonstrate the influence of number
of ratings intrinsically.

Reliability of judgments is a known problem, and some
methods, including using intra-class correlation coefficient,
may help in the analysis (see, for example, [7, 8]), but these
methods require a specific experimental design. An applica-
tion of cluster-based methods to text-to-speech tasks was done
in [9], that used them for evaluating both MOS and preference
tests. In particular, it was observed that the number of listen-
ers has a strong impact on the confidence intervals (a fact that
is often ignored if using out-of-the-box methods for confidence
interval estimation), and that MOS tests are more sensitive to
the number of listeners than preference tests.

3. Evaluating rater distribution impact
We have two independent methods for evaluating the variance
associated with these human-related factors. First, we use a
bootstrap-like methodology to estimate the impact of the rater
distribution. Second, we perform a special time-based analysis
to investigate dynamic rater behavior.

3.1. Formal setup

We start with the rater distribution evaluation. To evaluate the
impact of rater distributions, we investigate the reproducibility
of the test scores at the test level.

Let us define an MOS experiment setup1 M as a mapping
from a set of audio samples S and rater pool R to the MOS. We
may assume that such a mapping depends on the rater distribu-
tion, on the instructions presented to the raters, and on the way
the samples are assigned to the raters. So, we can assume an
existence of some distribution of MOS scores, PS,R(M) that
describes applying a setup M for the same set of audio samples
S and the same rater pool R.

We may measure the variance of the rater-associated factors
by measuring the deviation of the distribution above given the
rest of the factors, such as the instructions and specific samples
to be tested, which are not affected. Note that directly mea-
suring of the variance by rerunning the same test many times is
very resource-consuming, due to the distribution of the standard
deviation. Instead, we use an approach which is a variation of
bootstrapping.

More specifically, we created a large test with N audio sam-
ples, and required each sample to be evaluated by L different
raters. After that, we are able to randomly sample one rating per
item under certain constraints (such as a fixed number of sam-
ples per rater), thus creating a simulated test2. This simulated
test can then may be used to estimate the per-test score distribu-
tion under these constraints, without running a large number of
real experiments.

Formally, if the real test T contains ratings Rij , where i is
the audio sample number and j is the rating index of this item,
a simulated test Tn is a subset of Rij′ of Rij , where each i ap-
pears exactly once, and j′ is a single rating among the available
ones. The average score (MOS score) of such a simulated test is

1This set of definitions is for the MOS tests, but it can be applied to
the preference tests as well.

2We experimented with multiple ratings per sample with similar re-
sults, so we use this setup for simplicity.

Sn = Mean(Rij′), and the standard deviation among Sn can
be used a reliable estimation of the test-level deviation for the
test using exactly one rating per item.

Note that in order to simulate a test with up to K samples
per rater and 1 rating per sample, we need a special sampling
procedure. Ideally, 1000 samples with one rating per sample
and the limit of up to 60 stimuli per rater should require 17
raters (e.g., 16 raters with 60 stimuli each, and one rater with 40
stimuli). If sampling for bootstrapping purposes is performed
in a random order, however, such dense packing will probably
not be achieved since the same stimuli are rated by a number of
raters, which may create scheduling conflicts. A naive sampling
could result, for example, in associating 33 raters with 30 stim-
uli each, and one rater with 10 stimuli. In order to simulate a
dense schedule, we implemented a greedy scheduler that mini-
mizes the number of raters given constraints. In practice, even a
greedy scheduler cannot obtain the optimal dense packing since
the data available for bootstrapping is limited, and there still
will be slightly more raters participating in each simulated test
than we could theoretically get in real life.

3.2. Experimentation setup

We created two large tests of 990 audio samples. The samples, a
few seconds each, were generated by a TTS system using a 24K
sample rate. The tests were crowdsourced, with 10 ratings per
sample, where the samples were given to the raters in batches
of 10 samples. In one test each rater was allowed to evaluate up
to 60 samples, while in another test each rater was only allowed
to evaluate 10 samples. A histogram of the actual number of
samples per rater in the first test is shown in Figure 1. Note that
not all raters completed rating 60 samples. The second test had
a limit of up to 10 samples per rater, so, given the samples were
presented in batches of 10, each rater rated exactly 10 samples.
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Figure 1: Histogram of samples per rater in the first test (up to
60 samples per rater).

3.3. Experiments: Robustness

We analyzed the standard deviation for both tests using the boot-
strapping methodology described above. We generated 1,000
simulated tests from our real data identical to the real test con-
ditions, but with a single rating per sample, and calculated their
MOS scores. The graph of the standard deviation for these
scores as a function of the maximum number of samples per
rater is shown in Figure 2 (top). Note that the standard devia-
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Figure 2: (Top) the standard deviation as a function of max
samples per rater, (Bottom) the standard deviation as a function
of the number of raters in the simulated tests.

tion number increase is almost by factor of 2, which means that
the confidence interval should be doubled.

The same plot contains a single green dot corresponding to
the (real) test with 10 samples per rater. The deviation for this
setup is higher since the simulated data for that test was sam-
pled from the artificial pool of the second test with many more
raters, vs. the artificial smaller pool of the first test, thus lead-
ing to a higher variance. Note that the artificial scheduling in
this framework is not really capable of getting real cases like
16 raters with 60 samples per rater since the data available for
bootstrapping is limited, so the deviation in our graph is pre-
sumably lower than in real life. The dependency of the standard
deviation on the number of raters in the simulated tests is shown
in Figure 2 (bottom). It is possible to see that simulated sample
limits of 40, 50, and 60 samples per rater resulted in a very close
number of raters.

3.4. Experiments: Distribution

From the distribution point of view, the difference may be
viewed in Figure 3 showing the histogram of MOS scores of
the simulated tests. Each test has a limitation of K samples per
rater. The top graph corresponds to K = 10 vs. K = 30, and
the bottom graph to K = 10 vs. K = 60. Having 10 samples
per rater significantly reduces the deviation of MOS scores, pre-
sumably due to a larger number of raters.

Another interesting observation is that the number of sam-
ples per rater leads to an increased MOS score. The experimen-
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Figure 3: Histogram of MOS scores of simulated tests. (Top) K
= 10 vs. K = 30 samples per rater, (Bottom) K = 10 vs. K = 60
samples per rater.

tation includes many raters, so it should not be a random fluctu-
ation. We also observed similar behavior in other experiments
not mentioned in this paper. We don’t know the exact reason
for the difference in the average. It is possible that this is an
artifact of a rater getting assigned a large number of successive
rating tasks, which leads to some kind of a bias as discussed in
section 4.

3.5. Experiments: Different speakers

Intuitively, different voices may have a different score variance.
To analyze the behavior of the standard deviation as a function
of number of samples for different voices, we compared the be-
havior of two different speakers (60 samples per rater both),
where the quality of the first speaker is better. Note that the
standard deviation depends on the MOS scale, so to present the
speakers on the same scale, we multiplied the deviation of the
second speaker by the coefficient equal to MOS(first speaker)
/ MOS(second speaker). The results are shown in Figure 4.
We hypothesize that a higher variance of the second speaker is
caused by the fact that their voice quality is worse, thus leading
to a wider MOS dynamic range.

4. Evaluating the impact of
order-dependent ratings

In this section we show how to validate the impact of the order-
dependent scores of the raters that get more than one rating task.
It is interesting that not all the experiments are subject to this
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Figure 4: The standard deviation as a function of the number of
raters in the simulated tests for two speakers.

change in ratings. Also, the impact, if present, is not necessarily
positive or negative; we saw experiments with both trends.

Assume that test T (either MOS or preference test) contains
scores Srj , where r is a rater, and j is the serial index of the
sample obtained by this rater3; in other words, Srj represents
the jth rating obtained from rater r. Let us select a set of raters
R having at least K ratings. Then we can define a special value
SR(k) with k ≤ K as the cumulative average over all the rating
tasks with the serial number of k or less:

SR(k) =
1

k|R|
∑

r∈R,j≤k

Srj . (1)

We use the cumulative average since it better reflects the dy-
namics of the number of samples per rater. Note that we needed
to preselect the set of raters R to have at least K ratings in order
to have the same rater population in every slicing. If the sample
ratings were independent, the behavior of SR(k) as a function
of k would be more or less random and have no clear mono-
tonic trends. In our experiments, however, we demonstrate that
the behavior is often systematic, with relatively long monotonic
regions. In the next sections we show the behavior of SR(k) in
different setups. We also present a special sample-based analy-
sis to prove our hypothesis using a different metric.

4.1. Raters’ scores in preference tests

In the first experiment we analyze the ratings in two different
preference tests. The preference test setup we use is actually a
comparative MOS (CMOS) task where raters score the sample
on the whole-number scale of -3 to +3, where -3 is a strong
preference for one stimulus and +3 a strong preference for the
other. The raters were able to rate up to 60 samples. Note that
not all raters will achieve this. The cumulative average SR(k)
as a function of k for the raters that rated at least 40 and at least
60 samples is shown in Figure 5. Intuitively, a monotonic trend
in both graphs after about 10 samples should not be random, but
we cannot conclude it from the graph only, and a more formal
analysis is given in Section 4.3. Also in both these cases the
average scores are all positive, reflecting that the experiment
voice turned out to be considered better than the baseline.

3The notation here differs from Section 3.
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Figure 5: The average score as a function of the number of
samples, for the raters that rated at least 40 samples (top), for
the raters that rated at least 60 samples (bottom).

4.2. Raters’ scores in MOS tests

The MOS tests are subject to the same phenomenon. We com-
pared the MOS tests for two speakers4. Each test used 10 rat-
ings per sample, with up to 60 samples per rater in batches of
10. The results are shown in Figure 6. We do see a clear trend
in the second speaker test but not in the first speaker test. The
first speaker has a higher quality, so it is possible that fatigue /
calibration plays a lesser role than for the second speaker.

4.3. Sample-level analysis

Since there is still a chance of monotonic trends occurring in
random sequences, we performed a different type of analysis to
support the existence of the fatigue / calibration trend. In this
series of experiments we analyze tests with multiple ratings per
audio sample and show that the ratings have a monotonic trend.

Let us have a test with L ratings per audio sample, and let
T (r,X) be a rating task of rater r associated with sample X ,
and Sr(X) be its score. Assume that for each rater r we sort
all the rating tasks {T (r,X)} performed by this rater in time-
based order, such that each task becomes associated with the
corresponding ordinal number from 1 to |{T (r,X)}|, which
we denote by N(r,X). For example, N(r,X) = 2 means that
sample X was the second audio sample rated by rater r.

Let {Sr(X)} be the set of multiple scores of the same au-
dio sample X , and assume that we define an order on this set,
based on N(r,X). Namely, we say that Sr1(X) ⪯ Sr2(X) iff
N(r1, X) ≤ N(r2, X). Let V (X) be the vector obtained by
sorting {Sr(X)} according to the relation above. Each vector
V (X) contains L items (the number of ratings per sample), and
due to the nature of the relation, if i < j, then the rating Vi(X)
is associated with the “earlier” rating than Vj(X) (not necessar-

4The two tests from Section 3.5.
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Figure 6: The average score as a function of the number of
samples, for the raters that rated at least 60 samples, for two
different speakers.

ily of the same rater), since the relation promotes early ratings
of each rater.

We may, therefore, define L artificial evaluation tests Ti =
{Vi(X)}, each one containing the i-th slice across all vectors
V (X). The average Mi = Mean[Vi(X)] is an average eval-
uation score (e.g., MOS or CMOS) of Ti, where smaller in-
dices are associated with earlier ratings. Note that since the
order of the elements in V (X) is not uniquely defined for the
case N(r1, X) = N(r2, X), Ti are not uniquely defined ei-
ther. To avoid random fluctuations, we used the averaged values
M ′

i = Mean[Mi] over large number of random iterations.
In the rest of this section we show that the resulting vector

(M ′
1,M

′
2, . . . ,M

′
L) has a clear monotonic trend, at least when

the number of rating tasks per rater is large enough. We use the
Mann-Kendall test [10,11] to validate the monotonicity hypoth-
esis. The implementation is based on [12] for a small number
of data points. We calculate the Mann-Kendall statistic

S =

L−1∑
k=1

L∑
j=k+1

sign(M ′
j −M ′

k),

and look for the p-value for the null-hypothesis of no trend to
S and L in the table specified in [12]. The lower p-value is, the
more we are confident that the sequence is monotonic.

Table 1 shows the outcome for different tests and different
configurations. The tests were conducted on different sets of
audio samples and required 10 ratings per item, except T9 and
T10 with 8 ratings per item. It is possible to see that all the
tests with many tasks per rater had a clear monotonic behav-
ior (except maybe T1 which had a somewhat high probability
threshold). However, tests with a small number of tasks per
rater had a less clear behavior – some of them had a monotonic
behavior, while some didn’t. Other parameters like the nature
of the test (MOS / CMOS) seemed to have no impact. Neither

we were able to predict whether the sequence of M ′
i is increas-

ing or decreasing. We hypothesize that there are two trends,
calibration and fatigue, where the calibration trend affects some
of the raters even for a small number of rating tasks, while the
fatigue trend affects almost all the raters having a large number
of tasks.

Table 1: Mann-Kendall p-value and monotonicity trend for dif-
ferent evaluation tests.

Test Type Samples Trend p-valueper rater

T1 MOS 60 Down 0.108
T2 MOS 60 Up 0.014
T3 MOS 60 Up < 0.001
T4 MOS 60 Up 0.023
T5 CMOS 60 Down 0.014
T6 CMOS 10 Down 0.431
T7 MOS 10 Up < 0.001
T8 MOS 10 Up 0.431
T9 MOS 6 Up 0.500
T10 MOS 7 Down 0.031
T11 CMOS 5 Up 0.014

5. Discussion
This work has focused on two very significant sources of vari-
ability in the TTS evaluations. The first one, caused by the vari-
ance among raters, may be considered well-proven, but taking it
into account in a confidence interval requires a more elaborated
setup than is typically used in TTS evaluations. However, it can
be addressed by increasing the number of raters, which leads
to reducing the variance without affecting the number of rated
samples.

In our experiments we observed a substantial improvement
by increasing the number of raters to a rather large number. This
corresponds to the findings in [3], where the recommendations
were to use about 30 paid raters in controlled conditions, and
many more raters (the exact number was not specified) for less
controlled scenarios like crowdsourcing.

An interesting question is whether this behavior is common
for all MOS tasks (text-to-speech synthesis, voice conversion,
speech enhancement, etc.). We would expect some difference
since we observed the difference even across the samples pro-
duced by the same TTS system for different speakers (see Sec-
tion 3.5). We believe though that the variance associated with
the rater choice should be inherent to MOS tests, thus creating
a similar type of the dependency on the number of raters, even
if the absolute numbers differ.

The second factor that is analyzed in this paper is caused
by a dynamic trend in the raters’ rating process. This factor is
more vague. While we observe its existence, we cannot claim
exactly what the source of this type of behavior is—fatigue, or
some process of raters self-calibration, or something else. It is
also unclear how different this factor is for different raters. It is
possible that this type of problem may be mitigated by modify-
ing the instructions for raters, in a way to keep them more alert
and calibrated.

Note that the tradeoff between calibration and fatigue is
hard to analyze given the lack of ground truth in this type of
evaluation. So, we assume that there should be a minimal num-
ber of audio samples for the calibration, but the paper doesn’t



set a goal to find this number (and it is unclear if it is feasible
in the current setup). Given that reducing the number of tasks
per rater also requires more raters and thus reduces the impact
of per-rater variability (the first factor), we do consider limiting
the number of tasks per rater beneficial.

6. Conclusions
In this work we presented the analysis of two important aspects
of TTS evaluations that are currently not taken into account by
the way confidence intervals are usually calculated.

The first factor is caused by the rater variance, i.e. by pick-
ing the raters from the rater pool. We showed the impact of this
type of variance using bootstrapping simulations on tests with
a large number of raters and with multiple ratings per task. In
particular, we showed that using 60 audio samples per rater in-
stead of 10 may double the variance even if the number of rating
tasks remains the same.

The second aspect implies that we have a non-random com-
ponent in our evaluations that depends on the number of tasks
performed by the rater, which causes the scores to behave
monotonically depending on the order of the rating task. While
this does not necessarily increase the variance, this factor leads
to quality-unrelated scoring of items, and affects both MOS and
preference tests. It is unclear though whether all raters are sub-
ject to such a behavior, or only some of them. Our results
demonstrate the presence and the impact of this phenomenon
intrinsically. Increasing the number of raters, which is equiv-
alent to reducing the number of rating tasks per rater, helps to
partially mitigate the problem.

It is difficult to give recommendations regarding the exact
number of raters since the process is affected by many factors.
There is a tradeoff between the necessity for a rater to learn
the task on one hand and not to be affected by fatigue on the
another. In this paper, we used the minimal number of 10 audio
samples per rater, and the number of raters was derived from
the number of samples per rater, e.g., a test with 1000 audio
samples required 100 raters. For a different type of the test,
it may be beneficial to fine tune these numbers by calculating
confidence intervals using the techniques like [9] that take into
account the rater variability.

Increasing awareness of these factors will allow researchers
to make more informed decisions when setting up TTS evalua-
tions. A large number of rating tasks per rater may lead to the
evaluation artifacts that are typically not addressed in the way
results are analyzed, and the results of such experiments may
not be reproducible. However, very simple changes in experi-
ment design may significantly improve the reproducibility (and
potentially provide a more precise score) without changing to
the number of overall rated items.
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