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ABSTRACT

Transformers have demonstrated exceptional in-context learning capabilities, yet
the theoretical understanding of the underlying mechanisms remains limited. A
recent work (Elhage et al., 2021) identified a “rich” in-context mechanism known
as induction head, contrasting with “lazy” n-gram models that overlook long-
range dependencies. In this work, we provide both approximation and dynamics
analyses of how transformers implement induction heads. In the approximation
analysis, we formalize both standard and generalized induction head mechanisms,
and examine how transformers can efficiently implement them, with an emphasis
on the distinct role of each transformer submodule. For the dynamics analysis, we
study the training dynamics on a synthetic mixed target, composed of a 4-gram
and an in-context 2-gram component. This controlled setting allows us to precisely
characterize the entire training process and uncover an abrupt transition from lazy
(4-gram) to rich (induction head) mechanisms as training progresses.

1 INTRODUCTION

Transformer, introduced by Vaswani et al. (2017), have achieved remarkable success across various
domains, including natural language processing, computer vision, and scientific computing. An
emergent observation is that transformers, trained on trillions of tokens, can perform (few-shot)
in-context learning (ICL), which makes prediction based on the contextual information without
needing model retraining (Brown et al., 2020). This ICL ability is widely regarded as crucial for
enabling large language models (LLMs) to solve reasoning tasks, representing a key step toward
more advanced artificial intelligence.

To understand how transformers implement ICL, Elhage et al. (2021) and Olsson et al. (2022)
identified a simple yet powerful mechanism known as induction head. Specifically, given an input
sequence [· · ·ab· · ·a], an induction head predicts b as the next token by leveraging the prior
occurrence of the pattern ab in the context, effectively modeling an in-context bi-gram. In contrast,
traditional n-gram model (Shannon, 1948) (with a small n) utilizes only a limited number of recent
tokens to predict the next token, which is context-independent and inevitably overlooks long-range
dependence. Based on the extent of context utilization, we categorize n-gram model as a “lazy”
mechanism, whereas the induction head represents a more “rich” mechanism.

Practically, induction heads have been demonstrated to play a critical role in enabling LLMs’ ICL
capabilities (Song et al., 2024; Crosbie and Shutova, 2024), and even used to test new LLM archi-
tectures (Gu and Dao, 2023). Theoretically, induction heads also serve as a controllable tool for
understanding various aspects of LLMs, such as multi-step reasoning (Sanford et al., 2024b) and
inductive biases of different architectures (Jelassi et al., 2024).

In this paper, we aim to provide a theoretical analysis of how transformers can efficiently implement
induction heads. The first key problem is to rigorously formalize induction heads and evaluate the
efficiency of transformers in representing them. According to Elhage et al. (2021), the original
induction head can be implemented using a two-layer, twelve-head transformer without feed-forward
networks (FFNs). However, practical scenarios demand more powerful induction heads. Thus, it is
crucial to generalize the mechanism behind and explore how different transformer submodules, such
as varying the number of attention heads or incorporating FFNs, impact the transformer’s ability to
implement them. This forms our first research objective:
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(Approximation). Investigate how two-layer transformers express the induction head mechanism and
its potential variants.

The next problem is to investigate the dynamics of transformers in learning induction heads. The
pioneering works by Elhage et al. (2021) and Olsson et al. (2022) demonstrated that transformers
undergo an abrupt phase transition to learning induction heads. A recent empirical study on synthetic
datasets replicate this behavior, further showing that 2-gram is always learned prior to induction
heads (Bietti et al., 2024). However, a rigorous theoretical analysis of this learning progression is still
lacking. Closing this gap forms our second research objective:

(Optimization). Understand how transformers transition from relying on n-gram patterns to
employing the induction head mechanism as training progresses.

Focusing on these two key problems, in this paper, we make the following contributions:

• Approximation analysis: how transformers express induction heads. We consider three
types of induction heads with varying complexities. First, we show that two-layer, single-head
transformers without FFNs can efficiently approximate the vanilla induction head (Elhage et al.,
2021). We then introduce two generalized induction heads, which leverage richer in-context
n-gram information and incorporate a general similarity function. Our analysis clarifies the
distinct roles of multihead attention, positional encoding, dot-product structure, and FFNs in
implementing these generalized induction heads.

• Optimization analysis: how learning undergoes a sharp transition from n-gram to induc-
tion head. We study the learning dynamics of a two-layer transformer without FFNs for a
mixed target, composed of a 4-gram and an in-context 2-gram component. This toy setting
allows us to capture the entire training process precisely. Specifically, we show that learning
progresses through four phases: partial learning of the 4-gram, plateau of induction head learn-
ing, emergence of the induction head, and final convergence, showcasing a sharp transition from
4-gram to induction head. Our analysis identifies two key drivers of the transition: 1) time-scale
separation due to low- and high-order parameter dependencies in self-attention, and 2) speed
differences caused by the relative proportions of the two components in the mixed target.

2 RELATED WORKS

Empirical observations of induction head. The induction head mechanism was first identified
by Elhage et al. (2021) in studying how two-layer transformers perform language modeling. Subse-
quently, Olsson et al. (2022) conducted a more systematic investigation, revealing two key findings: 1)
induction head emerges abruptly during training, and 2) induction head plays a critical role in the de-
velopment of in-context learning capabilities. To obtain a fine-grained understanding of how induction
head emerges during training, recent studies have developed several synthetic settings (Reddy, 2024;
Edelman et al., 2024; Bietti et al., 2024). Particularly, Bietti et al. (2024) successfully reproduced
the fast learning of (global) bigrams and the slower development of induction head. Despite these
efforts, a comprehensive theoretical understanding of how the induction head operates in two-layer
transformers and how it is learned during training remains elusive.

Expressiveness of transformers. Theoretically, Dehghani et al. (2019); Pérez et al. (2021); Wei et al.
(2022) explored the Turing-completeness of transformers; Yun et al. (2019) established the universal
approximation property of transformers. Subsequent studies examined the efficiency of transformers
in representing specific functions or tasks, such as sparse functions (Edelman et al., 2022), targets with
nonlinear temporal kernels (Jiang and Li, 2023), practical computer programs (Giannou et al., 2023),
long but sparse memories (Wang et al., 2024), induction head (Sanford et al., 2024a;b; Rajaraman
et al., 2024), and memorization and reasoning (Chen and Zou, 2024). Besides, many studies
suggest that transformers achieve in-context learning by approximating gradient-based iterations
across various layers (Garg et al., 2022; Akyürek et al., 2022; Von Oswald et al., 2023; Mahankali
et al., 2023; Bai et al., 2023; Shen et al., 2023). Besides, several studies explored the limitation of
transformer’s expressivity, particularly in modeling formal languages or simulating circuits (Hahn,
2020; Weiss et al., 2021; Bhattamishra et al., 2020; Merrill et al., 2022; Merrill and Sabharwal,
2023). Among all these works, the most closely related to ours are Rajaraman et al. (2024), which
examined a generalized induction head similar to our Eq. (6). Specifically, they showed that multi-
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layer transformers with single-head attention can implement this mechanism. In contrast, we prove
that two-layer transformers are sufficient if multihead attention is used.

Training dynamics of transformers. To gain insights into the dynamics of training transformers,
several studies have analyzed simplified transformers on toy tasks. These tasks include learning
distinct/common tokens (Tian et al., 2023), leaning balance/inblanced features (Huang et al., 2023),
linear regression task (Zhang et al., 2023; Ahn et al., 2024), multi-task linear regression (Chen
et al., 2024a), binary classification (Li et al., 2024), transformer with diagonal weights (Abbe et al.,
2024), learning causal structure (Nichani et al., 2024), sparse token selection task (Wang et al.,
2024), and learning n-gram Markov chain (Chen et al., 2024b). Additionally, studies such as those
by Ataee Tarzanagh et al. (2023), Tarzanagh et al. (2023) and Vasudeva et al. (2024) have analyzed
scenarios where transformers converge to max-margin solutions. Furthermore, Thrampoulidis (2024)
has examined the implicit bias of next-token prediction. Among these works, the most closely related
to ours are Nichani et al. (2024) and Chen et al. (2024b), which proved that two-layer transformers
can converge to induction head solutions. In this work, we explore a setting where the target is a
mixture of 4-gram and induction head. We show that two-layer transformers can effectively converge
to this mixed target and provide a precise description of the learning process associated with each
component. Importantly, we are able to capture the abrupt transition from learning 4-gram patterns
to mastering the induction head mechanism—a critical phase in the learning of induction heads, as
highlighted in the seminal works (Elhage et al., 2021; Olsson et al., 2022).

3 PRELIMINARIES

Notations. For k ∈ N+, let [k] = {1, 2, . . . , k}. For a vector v and 1 ≤ p ≤ ∞, we denote by ∥v∥p
the ℓp norm of v. For a matrix A = (ai,j), we denote by ∥A∥, ∥A∥F the spectral and Frobenius
norms, respectively; let ∥A∥1,1 =

∑
i,j |ai,j |. For an event S, we define I{S} = 1 if S is true, and

0 otherwise. We use standard big-O notations O,Ω,Θ to hide absolute positive constants, and use
Õ, Ω̃, Θ̃ to further hide logarithmic constants.

Sequence modeling. Given a sequence of tokens (x1, x2, x3, . . . ) with each token lying in Rd,
let XL = (x1, x2, . . . , xL) ∈ Rd×L and Xm:n = (x⊤m, x

⊤
m+1, . . . , x

⊤
n )

⊤ ∈ R(n−m+1)d. Given
A = (a1, · · · an) ∈ Rm×n, we denote (as)

j
s=i = (ai, · · · , aj) ∈ Rm×(j−i+1). Then, we consider

the next-token prediction task: predict xL+1 using XL = (x1, x2, . . . , xL).

In a n-gram model (Shannon, 1948), the conditional probability of predicting the next token is given
by p(xL+1|XL) = p(xL+1|XL−n+2:L), meaning that the prediction depends only on the most recent
n− 1 tokens. In practice, the value of n is typically small (e.g., 2, 3, or 4), as the computational cost
of n-gram models grows exponentially with n. However, n-gram models with small n cannot capture
long-range interactions, leading to inferior performance in sequence modeling.

Transformer is designed to more efficiently capture long-range dependencies in sequence model-
ing (Vaswani et al., 2017). Specifically, given an L-token input sequenceX = (x1, · · · , xL) ∈ Rd×L,
an U -layer transformer TF processes it as follows. First, each input token is embedded into a higher-
dimensional space through an embedding layer:

x(0)s =WExs + bE , s ∈ [L], with WE ∈ RD×d, bE ∈ RD.

Next, the U -layer attention blocks process the embedded sequence X(0) = (x
(0)
1 , · · · , x(0)L ) as

follows, and the output of the final layer is taken as the output sequence TF(X) = X(L) ∈ RD×L:

X(u− 1
2 ) = X(u−1) + SA(u)(X(u−1)), u ∈ [U ];

X(u) = X(u− 1
2 ) + FFN(u)(X(u− 1

2 )), u ∈ [U ].
(1)

Here, FFN(u) denotes a (token-wise) two-layer FFN of widthM , and SA(u) represents the multi-head
self-attention operation. Specifically, when applied to a sequence Z = (z1, · · · , zL) ∈ RD×L, SA(l)

operates it as follows:

SA(u)(Z) =W
(u)
O

Hu∑
h=1

SA(u,h)(Z),

SA(u,h)(Z) =
(
W

(u,h)
V Z

)
softmax

(〈
W

(u,h)
Q Z,W

(u,h)
K Z

〉
+R(u,h)

)
,

(2)
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where W (u,h)
Q ,W

(u,h)
K ,W

(u,h)
V ,W

(u)
O ∈ RD×D correspond to the query, key, value and output

matrices of the (u, h)-th head, respectively. softmax represents taking softmax normalization
across columns.

〈
W

(u,h)
Q X,W

(u,h)
K X

〉
is called the dot-product (DP) structure. Furthermore,

R(u,h) = (R
(u,h)
i,j ) ∈ RL×L denotes the additive relative positional encoding matrix, which satisfies

R
(u,h)
i,j = −∞ if i ≤ j for the next-token prediction task.

Relative positional encoding (RPE). Throughout this paper, we focus on the Alibi RPE (Press et al.,
2022), where R(u,h)

ij follows a Toeplitz structure, i.e., R(u,h)
ij = ϕ(i− j; p(u,h)) for i, j ∈ [L]. Here,

p(u,h)’s are learnable parameters and we consider ϕ(·; p) of the following form:

ϕ(z; p) =

{−p · (z − 1) if z ≥ 1

−∞ otherwise
. (3)

Note that we adopt the Alibi RPE only for simplicity and our results can be extended to other additive
RPEs, such as T5 (Raffel et al., 2020). However, extending our analysis to the popular rotary RPE (Su
et al., 2024) may be nontrivial, and we leave this for future work.

4 FORMULATION AND APPROXIMATION OF INDUCTION HEAD

In this section, we formalize three types of induction head mechanisms with varying levels of
complexity. We then theoretically investigate how two-layer single- or multi-head transformers, with
or without FFNs, can efficiently implement these mechanisms, highlighting the distinct roles of
different transformer submodules

4.1 VANILLA INDUCTION HEADS

The original induction head, proposed in Elhage et al. (2021) and Olsson et al. (2022), is regarded
as one of the key mechanisms to implement ICL and reasoning. This induction head suggests that
two-layer multi-head transformers without FFNs can execute a simple in-context algorithm to predict
the next token b from a context [· · ·ab· · ·a] through retrieval, copying, and pasting, based on
in-context bi-gram pairs, as illustrated in Figure 1.

Figure 1: An illustration of the original induction head (taken from Elhage et al. (2021)). The induction head
proceeds the context [· · ·The D] by retrieving the preceding information most relevant to the current token
(D), then copying and pasting the subsequent token (the green urs) as the current prediction. Notably, the two
self-attention layers focus on the highlighted red and green tokens respectively. For further details, refer to the
description below Theorem 4.1.

Formulation of IH2. Based on the phenomenon illustrated in Figure 1, we define the vanilla induction
head IH2 : ∪L∈N+Rd×L 7→ Rd as follows:

IH2(XL) = (xs)
L−1
s=2 softmax

((
x⊤LW

⋆xs−1

)L−1

s=2

)⊤
(4)

Specifically, IH2 retrieves in-context information based on the similarities of in-context bi-gram
pairs {(xs, xL)}L−2

s=1 . Note that the magnitude of matrix W ⋆ controls the sparsity of retrieval, since
increasing ∥W ⋆∥ causes the softmax output to concentrate as a delta measure over the preceding
tokens. Additionally, IH2 can handle input sequences of arbitrary length.

This model retrieves previous tokens xs−1’s that are similar to the current token xL based on a dot-
product similarity, and then copies and pastes xs−1’s subsequent token xs as the current prediction

4
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xL+1. For example, in Figure 1, the current token xL is D, and the model retrieves previous tokens
similar to D, copying and pasting its subsequent token urs as the prediction.

Comparison with previous formulations. As shown in Figure 1, the current token D appears
multiple times in the preceding context, and the induction head detects all occurrences of D. Our
formulation (4) captures this behavior, as the softmax scores for all preceding D are identical. In
contrast, previous formulations, such as Sanford et al. (2024a) and Sanford et al. (2024b), focus
solely on the most recent occurrence of D, neglecting this multi-occurrence aspect.

Measure of approximation. Consider a target function H : ∪L∈N+Rd×L 7→ Rd, where d is the token
dimension and L denotes the sequence length. Given an input sequence X ∈ Rd×L, transformer TF
approximates H(X) using its last output token, i.e., TF−1(X) ∈ Rd. To quantify the approximation
error, we define the following metric: for 1 ≤ p ≤ +∞,

|||H − TF|||L,p :=
(
EXL

[∥H(XL)− TF−1(XL)∥p∞]
)1/p

. (5)

The next theorem shows that a two-layer single-head transformer without FFNs suffices to implement
vanilla induction heads.
Theorem 4.1 (two-layer single-head TF w/o FFNs). Let IH2 satisfy Eq. (4). Then exists a constant
C > 0 and a two-layer single-head transformer TF (without FFNs), with D = 2d, W (1,1)

K =

W
(1,1)
Q = 0, p(2,1) = 0, and ∥W (2,1)

K ∥, ∥W (2,1)
Q ∥ ≤ O(1, ∥W ⋆∥F ), such that

sup
L∈N+

|||IH2 − TF|||L,∞ ≤ C

ep(1,1)
.

This theorem shows that single head suffices to approximate the vanilla induction head and moreover,
the approximation efficiency is independent of the sequence length. The proof is provided in
Appendix A.1, offering the following insights into how two-layer single-head transformers without
FFNs implement vanilla induction heads:

• The first layer aggregates local tokens and outputs (zs = [xs−1, xs])2≤s≤L for the s-th token.
This is achieved by using SA with only RPE (no DP). Specifically, RPE allows SA to capture
the preceding token via xs−1 =

∑
j≥1 xs−jρ(j) for each token xs, where ρ(·) = I{· = 1}.

Hence, DP in this layer is not essential and can be omitted.
• The second layer extracts the relevant tokens using DP similarity. First, DP computes the sim-

ilarity ⟨WQzL,WKzs⟩ = x⊤LW
⋆xs−1, where zL = [xL−1, xL] and zs = [xs−1, xs] represent

the hidden tokens outputted by the first layer. This similarity measure enables SA to identify
tokens that match xL. Subsequently, the value/output component extracts xs in zs, effectively
copying the subsequent token and using it as the current prediction. In this layer, RPE is not
necessary and can be omitted.

Remark 4.2 (Alignment with experimental findings). Our theoretical analysis is consistent with
the experimental observations reported in Elhage et al. (2021). Specifically, the experiments there
demonstrate that SA in the first layer attends to adjacent tokens, while SA in the second layer retrieves
information related to the current token. Our analysis identifies components responsible for these two
operations, and reveals that single-head transformers suffice to perform them efficiently.

4.2 GENERALIZED INDUCTION HEADS: IN-CONTEXT n-GRAM AND GENERIC SIMILARITY

Although the standard induction head defined in Eq. (4) is intuitive, it exhibits notable limitations: 1)
it retrieves only a single token, potentially missing complete local information and leading to false
retrievals; 2) it relies solely on the dot-product to measure the similarity between two tokens, which
is not sufficiently general.

Formulation of IHn. Motivated by the limitation 1) above, we define a generalized induction head:

IHn(XL) = (xs)
L−1
s=n softmax

((
X⊤
L−n+2:LW

⋆Xs−n+1:s−1

)L−1

s=n

)⊤
, (6)

where the patch Xs−n+1:s−1 incorporates richer local information near xs and XL−n+2:L denotes
the current patches. This formulation is more general than Eq. (4), which only focuses on xs−1. This
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induction head operates based on the similarity between the n-gram pairs: (Xs−n+1:s−1;XL−n+2:L)
for s = n, . . . , L− 1.

Integrating richer local information facilitates more accurate information retrieval. The model (6)
retrieves previous (n− 1)-token patch that are similar to the current (n− 1)-token patch, thereby
generalizing the vanilla induction head (4), which considers only single-token retrieval. For example,
as depicted in Figure 1, if the current local information is The D (comprising two tokens), and prior
local information such as Mr D and Mrs D is identified as similar to The D, transformer would
copy and paste their subsequent token, urs, as the prediction.
Theorem 4.3 (two-layer multi-head TF w/o FFNs). Let IHn satisfy Eq. (6). Then, for any q ∈ N+ ,
there exists an absolute constant C > 0 and a two-layer H-head transformer TF(·) (without FFNs),
with D = nd, such that:

sup
L∈N+

|||IHn − TF|||L,∞ ≤ C

(
ne1+0.01n

H

)q
.

This theorem demonstrates that two-layer multi-head transformers, even without FFNs, can efficiently
implement the generalized induction head (6). Notably, the approximation error scales as O(H−q),
where q can be arbitrarily large, and H ≳ ne1+0.01n is sufficient to ensure a good approximation.
Furthermore, n is typically small when extracting local semantics. For example, in the vanilla
induction head, n = 2. The proof of this theorem is provided in Appendix A.2.

The role of multiple heads. In Theorem 4.3, multiple heads are employed in the first layer to
approximate the n-gram interaction, represented by the n− 1 memory kernels {ρj := I{· = j}}n−1

j=1 .
Thus, TF can capture n−1 preceding tokens via xs−j =

∑
k≥1 xs−kρj(k) for j ∈ [n−1]. Intuitively,

as n increases, more memory kernels are required for accurate approximation, necessitating more
attention heads. In contrast, Theorem 4.1 only requires approximating a single memory kernel
I{· = 1}, which can be efficiently achieved using a single attention head.

Recently, Rajaraman et al. (2024) explored a generalized induction head similar to Eq. (6) and showed
that multi-layer single-head transformers can implement it. In contrast, our Theorem 4.3 demonstrates
that two layers suffice if multi-head self-attention is adopted.

Formulation of GIHn. Building on the formulation (6), and motivated by the limitation 2) above, we
further consider the following generalized induction head:

GIHn(XL) = (xs)
L−1
s=n softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)⊤
, (7)

where g : RD×(n−1)×RD×(n−1) → R denotes a generic function measuring the similarity between
two (n− 1)-length patches.

This model retrieves previous relevant multi-token patch Xs−n+1:s−1 that is similar to the current
multi-token patch XL−n+2:L , utilizing the generalized similarity function g(·, ·). This mechanism is
more general than Eq. (6), which is limited to dot-product similarities. For instance, the use of general
similarity g enables the model to recognize not only synonymous but also antonymic semantics,
thereby improving both the accuracy and diversity of in-context retrievals.
Theorem 4.4 (two-layer multi-head TF with FFNs). Let GIHn satisfy Eq. (7). Suppose the similarity
function g is α-well-behaved (see Definition A.7). Then, for any q ∈ N+, there exist constants
Ag,q,n, Bg,α > 0 and a two-layer H-head transformer TF(·) with FFNs of width M , such that

|||GIHn − TF|||L,2 ≤ Ag,q,nH
−q +Bg,αL

1/(1+2α)M−α/(1+3α).

This theorem establishes that if the similarity function g is well-behaved, two-layer multi-head
transformers with FFNs can efficiently implement the generalized induction head (7).

The role of FFNs. In contrast to Theorem 4.3, transformer models in Theorem 4.4 include FFNs.
These FFN layers are used to approximate the similarity function g. Specifically, we consider the
proper orthogonal decomposition (POD) of g, which can be viewed as an extension of the matrix
singular value decomposition (SVD) applied to functions of two variables. For g : I × I → R,
its POD is g(u, v) =

∑∞
k=1 σkϕk(u)ψk(v), where ϕk, ψk are orthonormal bases for L2(I) (see

Appendix D for details). Intuitively, the FFN in the first layer is used to efficiently approximate K
bases (ϕi’s and ψi’s). Then, in the second layer, DP in SA can approximately reconstruct g by using
the truncated sum g(u, v) ≈∑K

k=1 σkϕk(u)ψk(v). The complete proof is deferred to Appendix A.3.
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5 THE TRANSITION FROM LAZY TO RICH MECHANISMS IN LEARNING
INDUCTION HEADS

In this section, we investigate the dynamics of learning induction heads using a transformer, partic-
ularly focusing on how this differs from n-gram learning. To facilitate the analysis, we consider a
mixed target function that comprises a 4-gram component and a vanilla induction head component
as defined in Eq. (4). Specifically, we study the gradient flow dynamics of a two-layer multi-head
transformer without FFNs on this task.

5.1 SETUPS

5.1.1 MIXED TARGET FUNCTION

Mixed target function. Let the input sequence be X = (x1, · · · , xL) ∈ R1×L. Our mixed target
function f⋆ contains both a 4-gram component f⋆G4

and an in-context 2-gram component f⋆IH2
:

f⋆(X) :=

(
α⋆

1 + α⋆
f⋆G4

(X),
1

1 + α⋆
f⋆IH2

(X)

)⊤

∈ R2, (8)

where α⋆ > 0 represents the relative weight between the two components: f⋆G4
(X) and f⋆IH2

(X).
Here, f⋆G4

represents a 4-gram component and f⋆IH2
is given by the vanilla induction head (4) to

represent a type of in-context 2-gram information:

f⋆G4
(X) := xL−2, f⋆IH2

(X) := (xs)
L−1
s=2 softmax

((
xLw

⋆2xs−1

)L−1

s=2

)⊤
.

Note that f⋆G4
denotes a “simplest” 4-gram target, where the next token is predicted according to the

conditional probability p(z|X) = p(z|xL, xL−1, xL−2) = I{z = xL−2}.
Remark 5.1 (The reason for considering 4-gram). Note that our target includes a 4-gram component
rather than simpler 2- or 3-gram components. As suggested by the experimental results in Elhage
et al. (2021), for a learned two-layer transformer that implements vanilla induction head IH2, the first
layer has extracted both xL and xL−1, which can be outputted using the residual block. Thus, the
2- and 3-gram targets: p(z|X) = I{z = xL} and p(z|X) = I{z = xL−1} must be learned prior to
the induction head. Hence we focus on the more challenging 4-gram target to avoid trivializing the
learning process, though our analysis extends straightforwardly to the 2- or 3-gram scenarios.
Remark 5.2 (Extension). Since the transformer studied in this section does not have FFNs, its
expressive power is limited. Consequently, we only consider the simple but representative mixed
target (8). However, (8) can be generalized to f⋆(X) = F (f⋆G4

(X); f⋆IH2
(X)), where F is general

nonlinear function. Such a form can be efficiently approximated by transformers with FFNs. We
leave the optimization analysis under this general setting for future work.

5.1.2 TWO-LAYER MULTI-HEAD TRANSFORMER WITH REPARAMETERIZATION

Two-layer multi-head transformer w/o FFNs. We consider a simple two-layer multi-head trans-
former TF, where the first layer contains a single head SA(1,1), and the second layer contain two
heads SA(2,1),SA(2,2). Given an input sequence X = (x1, · · · , xL) ∈ R1×L, it is first embedded as
X(0) := (X⊤, 0⊤) ∈ R2×L. The model then processes the sequence as follows:

X(1) = X(0) + SA(1,1)(X(0)),

TF(X) = SA(2,1)(X(1)) + SA(2,2)(X(1)).

Reparameterization. Despite the simplification, the transformer above is still too complicated for
dynamics analysis. To overcome this challenge, we adopt the reparametrization trick used in previous
works (Tian et al., 2023; Huang et al., 2023; Chen et al., 2024b). Specifically, by Theorem 4.1 and its
proof, the first layer does not require DP, and the second layer does not require RPE. Moreover, to
express the 4-gram component f⋆G4

, we only need an additional head without DP in the second layer.
Therefore, we can reparameterize the model as follows:

• The first layer. This layer has only one trainable parameter p(1,1). In the unique head SA(1,1),

DP is removed by setting W (1,1)
Q = W

(1,1)
K = 0, and we let W (1,1)

V =

(
0 0
1 0

)
. The output

7
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sequence of this layer given by X(1) = X(0) + SA(1,1)(X(0)) =

(
x1, · · · , xL
y1, · · · , yL

)
, where

ys = (xτ )
s−1
τ=1 softmax

((
− p(1,1)(s− 1− τ)

)s−1

τ=1

)⊤
, s ∈ [L], (9)

where p(1,1), used in RPE (3), is the unique trainable parameter in this layer.

• The second layer. This layer has 5 trainable parameters: w(2,1)
V , w

(2,2)
V , p(2,1), w

(2,2)
K , w

(2,2)
Q for

parametrizing the two heads. The first head SA(2,1) without DP is responsible to fit f⋆G4
, while

the second head SA(2,2) without RPE is responsible to fit f⋆IH2
. Specifically,

W
(2,1)
Q =W

(2,1)
K = 0,W

(2,1)
V =

(
0 w

(2,1)
V

0 0

)
, p(2,2) = 0,W

(2,2)
V =

(
w

(2,2)
V 0
0 0

)
.

Then the second layer processes X(1) and outputs the last token:

TF−1(X; θ) =

(w
(2,1)
V ys)

L−2
s=2 softmax

((
− p(2,1)(L− 1− s)

)L−2

s=2

)⊤
(w

(2,2)
V xs)

L−2
s=2 softmax

((
xLw

(2,2)
Q w

(2,2)
K xs−1

)L−2

s=2

)⊤
 , (10)

where ys is given by (9). p(2,1), w
(2,1)
V are trainable parameters in SA(2,1), while

w
(2,2)
Q , w

(2,2)
K , w

(2,2)
V are trainable parameters in SA(2,2).

The set of all six trainable parameters across both layers is denoted by θ.

5.1.3 GRADIENT FLOW ON SQUARE LOSS

We consider the Gaussian input and square loss, both of which are commonly used in analyzing
transformer dynamics and ICL (Akyürek et al., 2022; Huang et al., 2023; Wang et al., 2024). The
loss is defined as:

L(θ) = 1

2
EX∼N (0,IL×L)

[
∥TF−1(X; θ)− f⋆(X)∥22

]
, (11)

To characterize the learning of G4 and IH2, we introduce the following two partial losses:

LG4
(θ) =

1

2
EX (TF−1,1(X; θ)− f⋆1 (X))

2
, LIH2

(θ) =
1

2
EX (TF−1,2(X; θ)− f⋆2 (X))

2
,

which correspond to the two dimensions in TF−1(X; θ)− f⋆(X) ∈ R2, respectively. It follows that
L(θ) = LG4

(θ) + LIH2
(θ).

Gradient flow (GF). We analyze the GF for minimizing the objective (11):
dθ(t)

dt
= −∇L(θ(t)), starting with θ(0) = (σinit, · · · , σinit)⊤, (12)

where 0 < σinit ≪ 1 is sufficiently small. Note that σinit ̸= 0 prevents ∇L(θ(0)) = 0.

Layerwise training paradigm. We consider a layerwise training paradigm in which, during each
stage, only one layer is trained by GF. Specifically,

• Training Stage I: In this phase, only the parameter in the first layer, i.e., p(1,1), is trained.

• Training Stage II: In this phase,the first layer parameter p(1,1) keeps fixed and only parameters
in the second layer are trained: w(2,1)

V , w
(2,2)
V , p(2,1), w

(2,2)
Q , w

(2,2)
K .

This type of layerwise training has been widely used to study the training dynamics of neural
networks, including FFN networks (Safran and Lee, 2022; Bietti et al., 2023; Wang et al., 2023) and
transformers (Tian et al., 2023; Nichani et al., 2024; Chen et al., 2024b).
Lemma 5.3 (Training Stage I). For the Training Stage I, lim

t→+∞
p(1,1)(t) = +∞.

According to (9), this lemma implies that, at the end of Training Stage I, the first layer captures the
preceding token xs−1 for each token xs, i.e., ys = xs−1. This property is crucial for transformers to
implement induction heads and aligns with our approximation result in Theorem 4.1. The proof of
Lemma 5.3 is deferred to Appendix B.
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5.2 TRAINING STAGE II: TRANSITION FROM 4-GRAM TO INDUCTION HEAD

In this section, we analyze the dynamics in Training Stage II. We start from the following lemma:

Lemma 5.4 (Parameter balance). In Training Stage II, it holds that |w(2,2)
Q (t)|2 ≡ |w(2,2)

K (t)|2.

Lemma 5.4 is similar to the balance result for homogeneous networks (Du et al., 2018), and its
proof can be found at the start of Appendix C. By this lemma, we can define w(2,2)

KQ := wQ ≡ wK .
Additionally, Lemma 5.3 ensures that p(1,1) = +∞ holds during Stage II. For simplicity, we denote
wV1

:= w
(2,1)
V , wV2

:= w
(2,2)
V , p := p(2,1), wKQ := w

(2,2)
KQ . Consequently, the training dynamics are

reduced to four parameters
θ = (wV1

, wV2
, p, wKQ) ,

where we still denote the set of parameters as θ without introducing ambiguity. It is important to note
that the problem remains highly non-convex due to the joint optimization of both inner parameters
(p, wKQ) and outer parameters (wV1 , wV2 ) in the two heads. At this training stage, GF has a unique
fixed point:

wV1
=

α⋆

1 + α⋆
, wV2

=
1

1 + α⋆
, p = +∞, wKQ = w⋆,

which corresponds to a global minimizer of the objective (11).
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Figure 2: Visualize the dynamical behavior of Training Stage II with total loss, partial loss, and the parameter
evolution. Here, α⋆ = 1, w⋆ = 0.49, σinit = 0.01, L = 40. The is clearly shown that transformer learns the
4-gram component first and then, starts to learn the induction head mechanism. Notably, the entire dynamics
unfold in four distinct phases, consistent with our theoretical results (Theorem 5.5). For more experimental
details, we refer to Appendix E.1.

As shown in Figure 2, a learning transition from the 4-gram mechanism to the induction head
mechanism does occur in our setting. Moreover, the learning process exhibits a four-phase dynamics.
The next theorem provides a precise characterization of the four phases, whose proof can be found in
Appendix C.

Theorem 5.5 (Learning transition and 4-phase dynamics). Let α⋆ = Ω(1) and w⋆ = O(1), and we
consider the regime of small initialization (0 < σinit ≪ 1) and long input sequences (L≫ 1). Then
we have the following results:

• Phase I (partial learning). In this phase, most of the 4-gram component in the mixed target is
learned, while a considerable number of induction head component have not yet been learned.
Specifically, let TI = O(1), then we have the following estimates:

LG4
(θ(TI)) ≤ 0.01 · LG4

(θ(0)), LIH2
(θ(TI)) ≥ 0.99 · LIH2

(θ(0)).

• Phase II (plateau) + Phase III (emergence). In these two phases, the learning of the induction
head first gets stuck in a plateau for TII time, then is learned suddenly. Specifically, denoted by
an observation time To = Θ(L), we have the following tight estimate of the duration:

TII := inf
{
t > To : LIH2

(θ(t)) ≤ 0.99 · LIH2
(θ(To))

}
= Θ

(
(α⋆ + 1)2L log(1/σinit)/w

⋆2
)
;

TIII := inf
{
t > To : LIH2

(θ(t)) ≤ 0.01 · LIH2
(θ(To))

}
= Θ

(
(α⋆ + 1)2L log(1/σinit)/w

⋆2
)
.

9
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During these phases, the parameter wKQ (for learning w⋆ in IH2) increases exponentially:

wKQ(t) = σinit · exp
(
Θ

(
w⋆2t

(1 + α⋆)2L

))
, t < TIII.

• Phase IV (convergence). In this phase, the loss converges toward zero. Specifically, the
following convergence rates hold for all t > TIII :

LG4
(θ(t)) = O

(
1

t

)
, LIH2

(θ(t)) = O
(
exp

(
−Ω

(
w⋆2t

(1 + α⋆)2L

)))
,

and L(θ(t)) = LG4
(θ(t)) + LIH2

(θ(t)).

By this theorem, the 4-gram mechanism is first learned, taking time TI. Then, the learning of the
induction head mechanism enters a plateau, taking time TII, followed by a sudden emergence of
learning, taking time TIII − TII. Finally, the loss for both components converges to zero.

The clear learning transition. When any one of L,α⋆, 1/σinit, 1/w⋆ is sufficiently large, Phase II
lasts for TII ≫ 1. During this phase, the 4-gram component has been learned well but the induction
head component remains underdeveloped, demonstrating a distinct learning transition. Moreover,
Theorem 5.5 and its proof reveal two key factors that drive this transition:

• Time-scale separation due to high- and low-order parameter dependence in self attention.
The learning of DP and RPE components differ in their parameter dependencies. DP component
exhibits a quadratic dependence on the parameter wKQ, while RPE component shows linear
dependence on the parameter p. With small initialization σinit ≪ 1, a clear time-scale separation
emerges: |ẇKQ| ∼ wKQ ≪ 1 (DP, slow dynamics) and |ṗ| ∼ 1 (RPE, fast dynamics).
Consequently, the induction head (fitted by DP) is learned much slower than the 4-gram
component (fitted by RPE). This time-scale separation accounts for the term log(1/ϵinit) in the
plateau time TII.

• Speed difference due to component proportions in the mixed target. The 4-gram target
component and the induction-head component have differing proportions in the mixed target.
A simple calculation shows: LG4

(0) ∼ α⋆2/(1 + α⋆)2; If w⋆ = O(1), then LIH2
(0) ∼

1/[(1 + α⋆)2L]. Notably, LIH2
(0) is significantly smaller than LG4

(0). This proportion disparity
accounts for the (1 + α⋆)2L term in the plateau time TII.

Proof idea. We highlight that our fine-grained analysis of entire learning process is guided by two key
observations: 1) the dynamics of the two heads can be decoupled; 2) there exist a distinct transition
point in the dynamics of each head, as shown in Figure 2 (right). These insights lead us to divide the
analysis of each head into two phases: a monotonic phase and a convergence phase.

6 EXPERIMENTAL VALIDATION

To further support both our approximation results and optimization dynamics, we conduct a series of
experiments ranging from simple toy models to real-world natural language training tasks. Due to
space constraints, the detailed experimental setups and results are presented in Appendix E.

7 CONCLUSION

In this work, we present a comprehensive theoretical analysis of how transformers implement
induction heads, examining both the approximation and optimization aspects. From the approximation
standpoint, we identify the distinct roles of each transformer component in implementing induction
heads of varying complexity. On the optimization side, we analyze a toy setting, where we clearly
characterize how learning transitions from n-grams to induction heads. Looking forward, an important
direction for future research is to investigate the dynamics of learning general induction heads, which
are crucial for realizing stronger ICL capabilities.
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A PROOFS IN SECTION 4

A.1 PROOF OF THEOREM 4.1

IH2(XL) = (xs)
L−1
s=2 softmax

((
x⊤LW

⋆xs−1

)L−1

s=2

)⊤
, (13)

Theorem A.1 (Restatement of Theorem 4.1). Let IH2 satisfy Eq. (13). Then, there exists a constant
C > 0 and a two-layer single-head transformer TF (without FFNs), with D = 2d, W (1,1)

K =

W
(1,1)
Q = 0, p(2,1) = 0, and ∥W (2,1)

K ∥, ∥W (2,1)
Q ∥ ≤ O(1, ∥W ⋆∥F ), such that

sup
L∈N+

|||IH2 − TF|||L,∞ ≤ C

ep(1,1)
.

Proof. We consider two-layer single-head transformer without FFN, where the first layer has the
residual block, while the second layer does not have the residual block.

We first embed each token into RD as
(
xs
0

)
and take W (1)

V =

(
0 0

Id×d 0

)
, then the s-th output

token of the first layer is(
xs
ys

)
=

(
xs

(xτ )
s−1
τ=1 softmax

((
− p(1,1)(s− 1− τ)

)s−1

τ=1

))
.
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Then for the second layer, we choose p(2,1) = 0,

W
(2,1)
Q =

(
0 0

Id×d 0

)
, W

(2,1)
K =

(
0 0
0 W ⋆

)
, W

(2,1)
V =

(
Id×d 0
0 0

)
∈ RD×D,

and the projection W (2)
O = (Id×d 0d×d) ∈ Rd×D.

Then the last output token of the second layer is

(xs)
L−1
s=2 softmax

((
x⊤LW

⋆ys
)L−1

s=2

)⊤
.

By Lemma D.1 , for any L ∈ N+

|||IH2 − TF|||L,∞
=sup

XL

∥IH(XL)− TF−1(XL)∥∞

=

∥∥∥∥(xs)L−1
s=2 softmax

((
x⊤LW

⋆ys
)L−1

s=2

)⊤
− (xs)

L−1
s=2 softmax

((
x⊤LW

⋆xs−1

)L−1

s=2

)⊤∥∥∥∥
∞

≤∥(xs)L−1
s=2 ∥∞,∞

∥∥∥softmax
((
x⊤LW

⋆ys
)L−1

s=2

)
− softmax

((
x⊤LW

⋆xs−1

)L−1

s=2

)∥∥∥
1

≤2 sup
2≤s≤L−1

|x⊤LW ⋆ys − x⊤LW
⋆xs−1|

≤2∥x⊤LW ⋆∥1 sup
s

∥ys − xs−1∥∞

≤2
∑
i,j

|W ⋆
i,j | sup

s

∥∥∥∥∥(xτ )s−1
τ=1 softmax

((
−p(1,1)(s− 1− τ)

)s−1

τ=1

)⊤

− xs−1

∥∥∥∥∥
∞

≤2∥W ⋆∥1,1 sup
s

∥∥∥∥softmax

((
−p(1,1)(s− 1− τ)

)s−1

τ=1

)
− es−1

∥∥∥∥
1

≤4∥W ⋆∥1,1
e−p

(1,1)

1− e−p(1,1)
≤ O

(
e−p

(1,1)
)
.

A.2 PROOF OF THEOREM 4.3

IHn(XL) = (xs)
L−1
s=n softmax

((
X⊤
L−n+2:LW

⋆Xs−n+1:s−1

)L−1

s=n

)⊤
, (14)

Theorem A.2 (Restatement of Theorem 4.3). Let IHn satisfy Eq. (14). Then for any q ∈ N+ , there
exists a constant Cq,n > 0 and a two-layer H-head transformer TF(·) (without FFNs), with D = nd,
such that:

sup
L∈N+

|||IHn − TF|||L,∞ ≤ C

(
ne1+0.01n

H

)q
.

Proof. We consider two-layer multi-head transformer without FFN, where the first layer has the
residual block, while the second layer does not have the residual block.

First, we choose the embedding dimension D = nd, and parameters in the embedding map

WE =

(
Id×d

0(D−d)×d

)
∈ RD×d, bE = 0 ∈ RD,

then each token x(0)s after embedding is

x(0)s =WExs + bE =

(
xs
0

)
∈ RD.
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This proof can be summarized as the following process for TF−1:

(xs)
L−1
s=n softmax

((
X⊤
L−n+2:LW

⋆Xs−n+1:s−1

)L−1

s=n

)⊤
Step II. 2-st Attn ↑

XL−n+2:L

Step I. 1-st Attn ↑
(x⊤L ,0

⊤
D−d)

⊤

Step I. The first layer. We use 1-st Attn with residual to copy the previous tokens
(xs−n+1, · · · , xs−1) of each token xs. We use H =

∑n−1
i=1 Hi attention heads to realize this

step, and the following projection matrices are needed:

Pi := (0d×id, Id×d, 0d×(D−(i+1)d)) ∈ Rd×D, i = 1, . . . , n− 1.

By lemma D.2, there exist a constant C > 0 such that: for any rate q ∈ N+, there exists a function

ϕexpi (t) =

Hi∑
h=1

αh,ie
−βh,i(t−1)

such that βh > 0 and

∥I {· = i} − ϕexpi (·)∥ℓ1(N) =
+∞∑
s=i

|I {s = 1} − ϕexp(s)| ≤ Ceq+0.01(q+1)i

Hq
i

For h =
∑i−1
j=1Hj , 1 +

∑i−1
j=1Hj , . . . ,

∑i
j=1Hj , we choose parameters as follows

p(1,h) = βh,i, W
(1,h)
V = αh,i

 Hi∑
j=0

exp(−βh,i(j − 1))

Si,

W
(1,h)
K =W

(1,h)
Q = 0, W

(1)
O = ID×D

where Si ∈ RD×D is a shift matrix that takes out the first d elements of a vector and shifts it backward
to the (id+ 1)-th to (i+ 1)d-th elements. ThenPi

∑i
j=1Hj∑

h=
∑i−1

j=1Hj

SA(1,h)(X
(0)
L )


−1

=

∑i
j=1Hj∑

h=
∑i−1

j=1Hj

αh,i

L−1∑
s=1

e−βh,i(s−1)xL−s.

We denote x(1)L := SA(1)(X
(0)
L )−1, then the approximation error of this step is

ε
(1)
SA := sup

s

∥∥∥∥∥∥∥x(1)s −

 xs
...

xs−n+1


∥∥∥∥∥∥∥
∞

≤ sup
s

n−1∑
i=1

∥∥∥Pix(1)s − xs−i

∥∥∥
∞

≤ sup
s

n−1∑
i=1

∥I {· = i} − ϕexpi (·)∥ℓ1(N) ≤ Ceq
n−1∑
i=1

e0.01(q+1)i

Hq
i

.

Consequently, one detail is to assign the head number {Hi}ni=1 such that the error’s sum∑n−1
i=1

e0.01(q+1)i

Hq
i

is as small as possible. Our way is solving the minimization problem

min :

n−1∑
i=1

e0.01(q+1)i

Hq
i

s.t.

n−1∑
i=1

Hi = H,
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which suggests that we should choose the head number:

Hi =
e0.01i∑n−1
j=1 e

0.01j
, i ∈ [n− 1].

Thus, we obtain the bound

ε
(1)
SA ≤ Ceq

Hq

(
n−1∑
i=1

e0.01i

)q
≤ C

(
ene0.01n

H

)q
.

Additionally, we denote the output of this step as

x(1)s :=


xs
x̂s−1

...
x̂s−n+1

 := X̂s−n+1:s−1.

We choose H large enough so that x(1)s ∈ [−2, 2]D.

Step II. The second layer. For the second Attn, we only need use the first head (by settingW (2,h)
V = 0

for h ≥ 1). Specifically, we choose p(2,1) = 0,

W
(2,1)
Q =

(
0 0

I(D−d)×(D−d) 0

)
, W

(2,1)
K =

(
0 0
0 W ⋆

)
, W

(2)
V =

(
Id×d 0
0 0

)
∈ RD×D,

and the projection W (2)
O =

(
Id×d 0(D−d)×d

)
∈ Rd×D.

Then the output of this layer is

x
(2)
L = (xs)

L−1
s=n softmax

((
X̂⊤
L−n+2:LW

⋆X̂s−n+1:s−1

)L−1

s=n

)⊤
According to Lemma D.1,∥∥∥∥x(2)L − (xs)

L−1
s=n softmax

((
X⊤
L−n+2:LW

⋆Xs−n+1:s−1

)L−1

s=n

)⊤∥∥∥∥
∞

≤
L−1∑
s=n

|softmax
((
X̂⊤
L−n+2:LW

⋆X̂s−n+1:s−1

)L−1

s=n

)⊤
− softmax

((
X⊤
L−n+2:LW

⋆Xs−n+1:s−1

)L−1

s=n

)⊤)
|

≤2max
s

|X̂⊤
L−n+2:LW

⋆X̂s−n+1:s−1 −X⊤
L−n+2:LW

⋆Xs−n+1:s−1|

≤2∥W ⋆∥(1,1) · ε(1)SA .

Since the above inequality holds for any L and XL, we have:

sup
L∈N+

|||IHn − TF|||L,∞ ≤ C

(
ne1+0.01n

H

)q
.

Additionally, our proof primarily focuses on the case of H ≥ n. For the case of H < n, the
approximation error can be trivially bounded by:

sup
L∈N+

|||IHn − TF|||L,∞ ≤ sup
L∈N+

|||IHn − 0|||L,∞ ≤ 1 ≤ C

(
ne1+0.01n

H

)q
.

Then, the two cases can be unified.
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A.3 PROOF OF THEOREM 4.4

A.3.1 APPROXIMATION RESULTS FOR FFNS

Since the setting in this subsection includes FFNs, we introduce the following preliminary results
about the approximation of FFNs.

The well-known universal approximation result for two-layer FNNs asserts that two-layer FNNs
can approximate any continuous function (Barron, 1992; 1993; 1994). Nonetheless, this result lacks
a characterization of the approximation efficiency, i.e., how many neurons are needed to achieve
a certain approximation accuracy? Extensive pre-existing studies aimed to address this gap by
establishing approximation rates for two-layer FFNs. A representative result is the Barron theory (E
et al., 2019; 2021; Ma et al., 2020): any function f in Barron space B can be approximated by a
two-layer FFN with M hidden neurons can approximate f efficiently, at a rate of O(∥f∥B/

√
M).

This rate is remarkably independent of the input dimension, thus avoiding the Curse of Dimensionality.
Specifically, Barron space is defined in as follows:
Definition A.3 (Barron space (E et al., 2019; 2021; Ma et al., 2020)). Consider functions f : X → R
that admit the following representation: f(x) =

∫
Ω
aσ(b⊤x + c)ρ(da, db, dc), x ∈ X . For any

p ∈ [1,+∞], we define the Barron norm as ∥f∥Bp
:= infρ

(
Eρ [|a|p(∥b∥1 + |c|)p]

)1/p
. Then the

Barron space are defined as: Bp := {f ∈ C : ∥f∥Bp
< +∞}.

Proposition A.4 (E et al. (2019)). For any p ∈ [1,+∞], Bp = B∞ and ∥f∥Bp
= ∥f∥B∞

.

Remark A.5. From the Proposition above, the Barron spaces Bp are equivalent for any p ∈ [1,+∞].
Consequently, in this paper, we use B and ∥·∥B to denote the Barron space and Barron norm.

The next lemma illustrates the approximation rate of two-layer FFNs for Barron functions.
Lemma A.6 (Ma et al. (2020)). For any f ∈ B, there exists a two-layer ReLU neural network

FFN(x) =
M∑
k=1

awσ(b
⊤
k x+ ck) with M neurons such that

∥f − FFN∥L∞([0,1]d) ≤ Õ
(∥f∥B√

M

)
.

A.3.2 PROPER ORTHOGONAL DECOMPOSITION

Proper orthogonal decomposition (POD) can be viewed as an extension of the matrix singular value
decomposition (SVD) applied to functions of two variables. Specifically, for a square integrable
function g : I × I → R, it has the following decomposition (Theorem 3.4 in Yarvin and Rokhlin
(1998), Theorem VI.17 in Reed and Simon (1980)):

g(u, v) =

∞∑
k=1

σkϕk(u)ψk(v). (15)

Here, ϕk, ψk are orthonormal bases for L2(I), and σk ≥ 0 are the singular values, arranged in
descending order.

Recently, Jiang and Li (2023) also used POD to study the approximation rate of single-layer single-
head Transformer for the targets with nonlinear temporal kernels.

Given that two-layer FFNs can efficiently approximate Barron functions (Ma et al., 2020), which is
dense in L2([0, 1]d) (Siegel and Xu, 2020), we introduce the following technical definition regarding
the well-behavior POD, which is used for our theoretical analysis.
Definition A.7 (Well-behaved POD). Let the POD of g : [−2, 2]D × [−2, 2]D 7→ R be g(u, v) =∑∞
k=1 σkϕk(u)ψk(v). We call the function g has α-well-behaved POD (α > 0) if:

• The decay rate of singular values satisfies σk = O(1/k1+α);

• The L∞ norms, Barron norms, and Lipschitz norms of the POD bases are all uniformly bounded:
supk

(
∥ϕk∥L∞ ∨ ∥ψk∥L∞ ∨ ∥ϕk∥B ∨ ∥ψk∥B ∨ ∥ϕk∥Lip ∨ ∥ψk∥Lip

)
<∞.
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A.3.3 PROOF OF THEOREM 4.4

GIHn(XL) = (xs)
L−1
s=n softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)⊤
, (16)

Theorem A.8 (Restatement of Theorem 4.4). Let GIHn satisfy Eq. (16). Suppose the similarity
function g is α-well-behaved (see Definition A.7). Then, for any q > 0, there exist constants
Ag,q,n, Bg,α > 0 and a two-layer H-head transformer TF(·) with FFN of width M , such that the
following approximation rate holds:

|||GIHn − TF|||L,2 ≤ Ag,q,n
Hn

+
Bg,αL

1/(1+2α)

Mα/(1+3α)
.

Proof. We consider two-layer multi-head transformer with FFN, where the first layer has the residual
block.

First, we set an constant K ∈ N+, and we will optimize it finally. We choose the embedding
dimension D = nd+ 2(n− 1)K, and the flowchart of the theorem proof is as follows:

(xs)
L−1
s=n softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)⊤
Step III. 2-st Attn ↑(

x⊤L , . . . , x̂L−n+1, ϕ̂1(X̂L−n+2:L), . . . , ϕ̂K(X̂L−n+2:L),

ψ̂1(X̂L−n+1:L−1), . . . , ψ̂K(X̂L−n+1:L−1)
)⊤

Step II. 1-st FFN ↑
(x⊤L , x̂L−1, . . . ,x̂L−n+1, 0

⊤)⊤

Step I. 1-st Attn ↑
(x⊤t ,0

⊤)⊤

Recalling Definition A.7, there exists constants C∞
g , C

B
g , C

Lip
g > 0 such that:

sup
k

(∥ϕk∥∞ ∨ ∥ψk∥∞) ≤ C∞
g , sup

k
(∥ϕk∥B ∨ ∥ψk∥B) ≤ CB

g , sup
k

(
∥ϕk∥Lip ∨ ∥ψk∥Lip

)
≤ CLip

g .

Additionally, σk = O(1/k1+α) implies that there exits a Cα > 0 such that:
∞∑
k=K

σk <
Cα
Kα

, ∀K ≥ 1.

Step I: Error in 1-st Attn layer. This step is essentially the same as Step I in the proof of Theorem
4.3, so we write down the error of the first Attn layer directly:

ϵ
(1)
SA ≤ Cq,n

Hn
.

Moreover, due to
∥∥∥X̂s−n+2:s −Xs−n+2:s

∥∥∥ ≤ ϵ
(1)
SA , for all s, we have:

X̂s−n+2:s ∈ [−2, 2]D.

Step II: Error in 1-st FFN layer. The 1-st FFN is used to approximate ϕk, ψk (k = 1, . . . ,K).
Each function is approximated by a 2-layer neural networks with M

2K neurons defined on RD, and
the FFNs are concatenated together ( refer to section 7.1 "Parallelization" in Schmidt-Hieber et al.
(2020) ) as FFN(1). We denote them as

ϕ̂k(y) =

M
2K∑
m=1

akmσ(b
k⊤

m y + ckm)
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ψ̂k(y) =

M
2K∑
m=1

ãkmσ(b̃
k⊤

m y + c̃km)

Then according to lemma A.6, such FFNs exist and satisfy the following properties hold for all
1 ≤ k ≤ K:

∥ϕ̂k − ϕk∥L∞([−2,2]D) ≤ Õ
(
∥ϕk∥B

√
K

M

)
≤ ϵ

(1)
FFN,

∥ψ̂k − ψk∥L∞([−2,2]D) ≤ Õ
(
∥ψk∥B

√
K

M

)
≤ ϵ

(1)
FFN,

where

ϵ
(1)
FFN := ·Õ

(
CB
g

√
K

M

)
.

Step III: Error in 2nd Attn layer.

We use matrices in the second layer to take out elements needed

W
(2)
V = (Id×d, 0d×D) ∈ Rd×D,

W
(2,1)
K =

K∑
i=k

√
σkek,(n−1)d+k ∈ RD×D,

W
(2,1)
Q =

K∑
k=1

√
σkek,(n−1)d+K+k ∈ RD×D.

We denote the rank-K truncation of g as

gK :=

K∑
k=1

σkϕkψk,

and its approximation as

ĝK :=

K∑
k=1

σkϕ̂kψ̂k

The second FFN is set to be identity map and we denote the final output as

x
(2)
L := (xs)

L−1
s=n softmax

((
ĝK
(
X̂L−n+2:L; X̂s−n+1:s−1

))L−1

s=n

)⊤
.

First, we consider the error under the first norm, ∥·∥∞, which can be divided the total error into three
components:∥∥∥∥x(2)L − (xs)

L−1
s=n softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)⊤∥∥∥∥
∞

≤
∥∥∥softmax

((
ĝK
(
X̂L−n+2:L; X̂s−n+1:s−1

))L−1

s=n

)
− softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)∥∥∥
∞

≤
∥∥∥softmax

((
ĝK
(
X̂L−n+2:L; X̂s−n+1:s−1

))L−1

s=n

)
− softmax

((
gK
(
X̂L−n+2:L; X̂s−n+1:s−1

))L−1

s=n

)∥∥∥
∞

+
∥∥∥softmax

((
gK
(
X̂L−n+2:L; X̂s−n+1:s−1

))L−1

s=n

)
− softmax

((
gK
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)∥∥∥
∞

+
∥∥∥softmax

((
gK
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)
− softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)∥∥∥
∞

≤max
s

∣∣∣ĝK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
X̂L−n+2:L, X̂s−n+1:s−1

)∣∣∣
+max

s

∣∣∣gK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
XL−n+2:L, Xs−n+1:s−1

)∣∣∣
+

L−1∑
s=n

∣∣gK(XL−n+2:L, Xs−n+1:s−1

)
− g
(
XL−n+2:L, Xs−n+1:s−1

)∣∣
(17)
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For the first term in RHS of (17), it holds that:

max
s

∣∣∣ĝK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
X̂L−n+2:L, X̂s−n+1:s−1

)∣∣∣
≤max

s

K∑
k=1

σk

∣∣∣ϕ̂k(X̂L−n+2:L)ψ̂k(X̂s−n+1:s−1)− ϕk(X̂L−n+2:L)ψk(X̂s−n+1:s−1)
∣∣∣

≤
K∑
k=1

σk

(∥∥∥ϕ̂k∥∥∥
L∞

∥∥∥ψ̂k − ψk

∥∥∥
L∞

+ ∥ψk∥L∞

∥∥∥ϕ̂k − ϕk

∥∥∥
L∞

)
≤ϵ(1)FFN ·

K∑
k=1

σk

(∥∥∥ϕ̂k∥∥∥
L∞

+ ∥ψk∥L∞

)
≤ϵ(1)FFN ·

K∑
k=1

σk

(
∥ϕk∥L∞ +

∥∥∥ϕ̂k − ϕk

∥∥∥
L∞

+ ∥ψk∥L∞

)
≤ϵ(1)FFN · (2C∞

g + 1)

K∑
k=1

σk ≤ (2C∞
g + 1)Cαϵ

(1)
FFN.

For the second term in RHS of (17), we have:

max
s

∣∣∣gK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
XL−n+2:L, Xs−n+1:s−1

)∣∣∣
≤max

s

K∑
k=1

σk

(
∥ϕk∥L∞ |ψk(X̂s−n+1:s−1)− ψ̂k(Xs−n+1:s−1)|

+ ∥ψk∥L∞ |ϕk(X̂L−n+1:L−1)− ϕk(XL−n+1:L−1)|
)

≤max
s

K∑
k=1

σk

(
∥ϕk∥L∞ ∥ψk∥Lip

∥∥∥X̂s−n+1:s−1 −Xs−n+1:s−1

∥∥∥
+ ∥ψk∥L∞ ∥ϕk∥Lip

∥∥∥X̂L−n+1:L−1 −XL−n+1:L−1

∥∥∥)
≤2C∞

g C
Lip
g ϵ

(1)
SA ·

(
max
s

K∑
k=1

σk

)
≤ 2C∞

g C
Lip
g Cαϵ

(1)
SA .

Additioanlly, the third term in RHS of (17), its L2 holds that:∫
[0,1]d×L

(
L−1∑
s=n

∣∣gK(XL−n+2:L, Xs−n+1:s−1

)
− g
(
XL−n+2:L, Xs−n+1:s−1

)∣∣)2

dX

≤(t− 1− n)

L−1∑
s=n

∫
[0,1]D×L

∣∣gK(X−n+2:t, Xs−n+1:s−1

)
− g
(
XL−n+2:L, Xs−n+1:s−1

)∣∣2 dX
=(L− 1− n)2

∫
[0,1]D×[0,1]D

|g(u, v)− gK(u; v)|2 dudv

=(L− 1− n)2
∫ ( +∞∑

k=K+1

σkϕk(u)ψk(v)

)2

du dv

≤
∫ ( +∞∑

k=K+1

σkϕ
2
k(u)

)(
+∞∑

k=K+1

σkψ
2
k(v)

)
du dv

≤(L− 1− n)2

( ∞∑
k=K+1

σk

)2

≤ (L− 1− n)2C2
α

K2α
.
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Now we combine three error terms together to obtain the total L2 error for the output of this layer:

∫
X∈[0,1]d×L

∥∥∥∥x(2)L − (xs)
L−1
s=n softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)⊤∥∥∥∥2
∞

dX

≤3

∫
X∈[0,1]d×L

max
s

∣∣∣ĝK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
X̂L−n+2:L, X̂s−n+1:s−1

)∣∣∣2 dX

+ 3

∫
X∈[0,1]d×L

max
s

∣∣∣gK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
XL−n+2:L, Xs−n+1:s−1

)∣∣∣2 dX

+ 3

∫
X∈[0,1]d×L

(
L−1∑
s=n

∣∣gK(XL−n+2:L, Xs−n+1:s−1

)
− g
(
XL−n+2:L, Xs−n+1:s−1

)∣∣)2

dX

≤3max
s

∣∣∣ĝK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
X̂L−n+2:L, X̂s−n+1:s−1

)∣∣∣2
+ 3max

s

∣∣∣gK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
XL−n+2:L, Xs−n+1:s−1

)∣∣∣2
+ 3

(
(L− 1− n)Cα

Kα

)2

≤3
(
(2C∞

g + 1)Cαϵ
(1)
FFN

)2
+ 3

(
2C∞

g C
Lip
g Cαϵ

(1)
SA

)2
+ 3

(
(L− 1− n)Cα

Kα

)2

≤3

(
(2C∞

g + 1)Cαϵ
(1)
FFN + 2C∞

g C
Lip
g Cαϵ

(1)
SA +

(L− 1− n)Cα
Kα

)2

.

This estimate implies that

|||GIHn − TF|||L,2

≤
√
3

(
2C∞

g C
Lip
g Cαϵ

(1)
SA + (2C∞

g + 1)Cαϵ
(1)
FFN +

(L− 1− n)Cα
Kα

)
≤O

(
Cg,q,n
Hn

)
+ Õ

(
Cg,α

√
K√

M

)
+O

(
tCα
Kα

) (18)

Step IV. Optimizing K in (18).

Notice that in RHS of (18), only Õ
(
Cg,α

√
K√

M

)
and O

(
LCα

Kα

)
depend on K.

By Young’s inequality, with p = α+ 1
2

α and q = 2(α+ 1
2 ), we have:

min
K

:
α

1
2 + α

Cg,α
√
K√

M
+

1
2

1
2 + α

LCα
Kα

=min
K

:
α

1
2 + α

(Cg,α√K√
M

) α
1
2
+α


1
2
+α

α

+
1
2

1
2 + α

(LCα
Kα

) 1
2

1
2
+α

2( 1
2+α)

=
C ′
g,αL

1/(1+2α)

Mα/(1+2α)
.

Thus, we obtain our final bound:

|||GIHn − TF|||L,2 ≤ O
(
Cg,q,n
Hn

)
+

{
Õ
(
Cg,α

√
K√

M

)
+O

(
LCα
Kα

)}
min:K
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≤O
(
Cg,q,n
Hn

)
+ Õ

(
C ′
g,αL

1/(1+2α)

Mα/(1+2α)

)
≤ Ag,q,n

Hn
+
Bg,αL

1/(1+2α)

Mα/(1+3α)
.

B PROOFS OF OPTIMIZATION DYNAMICS: TRAINING STAGE I

In this subsection we focus on training the first layer of Transformer model to capture the token ahead.
For simplicity, we introduce some notations:

p̃ := p(1,1), p := p(2,1), g := w
(2,1)
V , h := w

(2,2)
V , wK := w

(2,2)
K , wQ := w

(2,2)
Q ,

and denote the initialization of each parameter as p̃(0), p(0), g(0), wQ(0), wK(0), h(0) respectively.

We initialize p(0), wk(0), wQ(0) = 0 while the other parameters are all initialized at σinit. In this
training stage, we only train p̃. And our goal, the proof of Lemma 5.3 can be deduced from which,
is to prove:

lim
t→+∞

p̃(t) = +∞.

In this stage, the s-th output token of the first layer is represented as(
xs

(xτ )
s−1
τ=1 softmax

((
− p̃(s− 1− τ)

)s−1

τ=1

)⊤) ,
and the target function and output of transformer are as follows

f∗(X) =

 α⋆

1+α⋆xL−2

1
1+α⋆ (xs)

L−1
s=2 softmax

((
xLw

⋆2xs−1

)L−1

s=2

)⊤
 ,

fθ(X) =


g(0)

(∑s−1
τ=1 softmaxs(−p̃(s− 1− τ))xτ

)L−1

s=2
softmax

(
− p(0)(L− 1− s)L−1

s=2

)
h(0)(xs)

L−2
s=2 · softmax

((
wK(0)wQ(0)xL · (xτ )

s−1
τ=1 softmax

((
− p̃(s− 1− τ)

)s−1

τ=1

)⊤ )L−2

s=2

)
=

(
g(0) 1

L−2

∑L−2
τ=1

(∑L−1
s=τ+1 softmax

(
− p̃(s− 1− t)s−1

t=1

)
t=τ

)
xτ

h(0) 1
L−2

∑L−2
s=2 xs

)
.

Since we only focus on p̃ and the other parameters remain the initialization value, the loss function
can be simplified as

L(θ) = E
X∼N(0,1)L

[
α⋆2

(1 + α⋆)2
x2L−2 +

g(0)2

(L− 2)2

L−2∑
τ=1

(
L−1∑
s=τ+1

softmax
(
− p̃(s− 1− t)s−1

t=1

)
t=τ

)2

x2τ

+
2g(0)

L− 2

α⋆

1 + α⋆
softmax

(
− p(0)(L− 1− s)L−1

s=2

)
s=L−1

x2L−2

]
+ C(w⋆, α⋆, w(0), h(0))

where the second term C(w⋆, α⋆, w(0), h(0)) is a constant depends on w⋆, α⋆, w(0) and h(0),
produced by calculating the error of the second head, i.e., loss of induction head, while the first term
is 4-gram loss.

We first define several functions that will be useful for calculation in this stage and the second one:
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Function I. This function is purely defined for the calculation of dp
dt . Denoted by q(p̃) :=∑L−2

τ=1

(∑L−1
s=τ+1

ep̃(s−1−τ)∑s−2
k=0 e

−p̃k

)2
, we first prove q′(p̃) ≤ 0.

q(p̃) :=

L−2∑
τ=1

(
L−1∑
s=τ+1

ep̃(s−1−τ)∑s−2
k=0 e

−p̃k

)2

=

L−2∑
τ=1

(
L−1∑
s=τ+1

e−p̃(s−1−τ)

1− e−p̃(s−1)
(1− e−p̃)

)2

= (1− e−p̃)2
L−2∑
τ=1

(
L−1∑
s=τ+1

e−p̃(s−1−τ)

1− e−p̃(s−1)

)2

= (1− e−p̃)2
L−2∑
τ=1

e2p̃τ

(
L−1∑
s=τ+1

e−p̃(s−1)

1− e−p̃(s−1)

)2

= (1− e−p̃)2
L−2∑
τ=1

e2p̃τ

(
L−1∑
s=τ+1

1

ep̃(s−1) − 1

)2

Then we take its derivative of p̃

q′(p̃) = 2(1− e−p̃)e−p̃
L−2∑
τ=1

e2p̃τ

(
L−1∑
s=τ+1

1

ep̃(s−1) − 1

)2

+ (1− e−p̃)2
L−2∑
τ=1

2τe2p̃τ

(
L−1∑
s=τ+1

1

ep̃(s−1) − 1

)2

+ (1− e−p̃)2
L−2∑
τ=1

2e2p̃τ

(
L−1∑
s=τ+1

1

ep̃(s−1) − 1

)(
L−1∑
s=τ+1

−(s− 1)ep̃(s−1)

(ep̃(s−1) − 1)2

)

= 2(1− e−p̃)

L−2∑
τ=1

e2p̃τ

(
L−1∑
s=τ+1

1

ep̃(s−1) − 1

)(
L−1∑
s=τ+1

e−p̃ + τ(1− e−p̃)

ep̃(s−1) − 1
− (s− 1)ep̃(s−1)

(ep̃(s−1) − 1)2

)

q′(p̃)’s last factor can be formed as(
τ − (τ − 1)e−p̃

) (
ep̃(s−1) − 1

)
− (s− 1)ep̃(s−1)

ep̃(s−1) − 1)2

=
(τ + 1− s)ts−1 − (τ − 1)ts−2 − τ + τ−1

t

ep̃(s−1) − 1)2

where t = e−p̃ ≥ 1. Since s ≥ τ + 1, q′(p̃) ≤ 0.

Function II. For simplicity, we define M(p) and its derivative m(p):

M(p) :=

L−1∑
s=2

exp(−p(L− 1− s)) =

L−3∑
s=0

exp−ps = 1− e−p(L−2)

1− e−p
,

m(p) :=

l−3∑
s=1

s exp(−ps) = e−p − (L− 2)e−p(L−2) + (L− 3)e−p(L−1)

(1− e−p)2
.

Function III. The third function is derivative of softmax. By straightfoward calculation, we obtain:

d
dp

softmax
(
−p(L−1−t)L−1

t=2

)
t=L−1−s

=
d

dp
exp(−ps)∑L−3
τ=0 exp(−pτ)

=
−s exp(−ps)M(p) + exp(−ps)m(p)

M(p)2
.
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Through the quantities and their properties above, we obtain the dynamic of p̃

dp̃
dt

= − g(0)2

(L− 2)2
q′(p̃) +

2α⋆g(0)

(1 + α⋆)(L− 2)

m(p)

M(p)2

≥ 2α⋆g(0)

(1 + α⋆)(L− 2)
e−p̃,

which implies:

lim
t→+∞

p̃(t) = +∞.

C PROOFS OF OPTIMIZATION DYNAMICS: TRAINING STAGE II

In this training stage, the first layer is already capable of capturing the token ahead i.e. ys = xs−1.
And we train the parameters wV1

, wV2
, p, wKQ in the second layer.

We start from proving the parameter balance lemma:

Lemma C.1 (Restate of Lemma 5.4). In Training Stage II, it holds that w(2,2)
Q

2
(t) ≡ w

(2,2)
K

2
(t).

Proof. Notice that

d
2dt

(
w

(2,2)
Q

2
(t)− w

(2,2)
K

2
(t)
)
= −w(2,2)

Q

∂L
∂w

(2,2)
Q

+ w
(2,2)
K

∂L
∂w

(2,2)
K

=− w
(2,2)
Q w

(2,2)
K

∂L
∂
(
w

(2,2)
Q w

(2,2)
K

) + w
(2,2)
K w

(2,2)
Q

∂L
∂
(
w

(2,2)
Q w

(2,2)
K

) ≡ 0.

Thus, we have:

w
(2,2)
Q

2
(t)− w

(2,2)
K

2
(t) ≡ w

(2,2)
Q

2
(0)− w

(2,2)
K

2
(0) = 0.

For simplicity, we still use the following notations:

p := p1, g := wV1
, w := wKQ, h := wV2

.

and notations for initialization p(0), g(0), w(0), h(0). Then the target function and output of Trans-
former can be formed as follows

f⋆(X) =

(
α⋆

1+α⋆xL−2

1
1+α⋆ (xs)

L−1
s=2 · softmax

( (
w⋆2xLxs−1

)L−1

s=2

)) ,
TF(X; θ) =

g · (xs−1)
L−2
s=2 · softmax

(
(−p(L− 1− s))L−2

s=2

)
h · (xs)L−2

s=2 · softmax
( (
w2xLxs−1

)L−2

s=2

)  .

And the loss function is expressed as:

L(θ) = 1

2
E

X∼N(0,1)L

[
∥f⋆(x)− TF(x; θ)∥2

]
=

1

2
EX

[(
α⋆

1 + α⋆
xL−2 − g · (xs−1)

L−2
s=2 · softmax

(
(−p(L− 1− s))L−2

s=2

))2
]

+
1

2
EX

[(
1

1 + α⋆
(xs)

L−1
s=2 · softmax

((
w⋆2xLxs−1

)L−1

s=2

)
− h · (xs)

L−2
s=2 · softmax

( (
w2xLxs−1

)L−2

s=2

))2
]
.
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The total loss can naturally be divided into two parts:

L(θ) = LG4
(θ) + LIH2

(θ),

where

LG4
(θ) = LG4

(p, g)

=
1

2
EX

[(
α⋆

1 + α⋆
xL−2 − g · (xs−1)

L−2
s=2 · softmax

(
(−p(L− 1− s))L−2

s=2

))2
]
,

LIH2(θ) = LIH2(w, h)

=
1

2
EX

[(
1

1 + α⋆
(xs)

L−1
s=2 · softmax

((
w⋆2xLxs−1

)L−1

s=2

)
− h · (xs)

L−2
s=2 · softmax

( (
w2xLxs−1

)L−2

s=2

))2
]
.

Notably, the dynamics of (p, g) and (w, h) are decoupled, which allows us to analyze them separately.

Additionally, we denote the optimal values of the parameters as:

p⋆ = +∞, g⋆ =
α⋆

1 + α⋆
, w⋆ := w⋆, h⋆ =

1

1 + α⋆
.

For the initialization scale and the sequence length, we consider the case:

σinit = O(1) ≪ 1, L = Ω(1/σinit) ≫ 1.

C.1 DYNAMICS OF THE PARAMETERS FOR 4-GRAM

First, we define two useful auxiliary functions:

M(p) :=
1− e−p(L−2)

1− e−p
,

m(p) :=
e−p − (L− 2)e−p(L−2) + (L− 3)e−p(L−1)

(1− e−p)2
.

Then, a straightforward calculation, combined with Lemma D.3 and Lemma D.4, yields the explicit
formulation of LG4

(θ) and the GF dynamics of p and g:

LG4
(θ) =

1

2

(
α⋆

1 + α⋆

)2

+
1

2
g2
M(2p)

M(p)2
− α⋆g

1 + α⋆
1

M(p)
. (19)

dp
dt

= −∂L
∂p

= −∂LG4

∂p
=

m(p)

M(p)2

[
g2
m(2p)

m(p)
− g2

M(2p)

M(p)
+

α⋆g

1 + α⋆

]
,

dg
dt

= −∂L
∂g

= −∂LG4

∂g
=

α⋆

1 + α⋆
1

M(p)
− g

M(2p)

M(p)2
,

Equivalently, the dynamics can be written as:

dp
dt

=
m(p)g

M(p)2

(
g⋆ − g

M(2p)

M(p)
+ g

m(2p)

m(p)

)
,

dg
dt

=
1

M(p)

(
g⋆ − g

M(2p)

M(p)

)
.

Notice that at the initialization, it holds that dp
dt |t=0 > 0 and dg

dt |t=0 > 0. Then we first define a hitting
time:

T g1 := inf{t > 0 : g(t) > g⋆}.
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Noticing g(0) = σinit ≪ g⋆ and the continuity, T g1 > 0.

Our subsequent proof can be divided into two phases: a monotonic phase t < T g1 , and a stable
convergence phase t > T g1 .

Part I. Analysis for the monotonic phase t < T g1 .

dp
dt

=
m(p)g

M(p)2

(
g⋆ − g

M(2p)

M(p)
+ g

m(2p)

m(p)

)
=
m(p)g

M(p)2

(
g⋆ − g

1 + e−p(L−2)

1 + e−p
+ g

m(2p)

m(p)

)
,

dg
dt

=
1

M(p)

(
g⋆ − g

M(2p)

M(p)

)
=

1

M(p)

(
g⋆ − g

1 + e−p(L−2)

1 + e−p

)
.

It is easy to see that p, g are monotonically increasing for t < T g1 . We can choose sufficiently large

L = Ω(1/p(0)) = Ω(1/σinit)

such that:

(L− 3)e−(L−3)p(t), e−(L−5)p(t) < 0.0001, ∀p > σinit.

Then we can calculate the following three terms in the dynamics:

m(p)

M2(p)
=
e−p

(
1− (L− 2)e−p(L−3) + (L− 3)e−p(L−2)

)
1− e−p(L−2)

=
e−p(1 + ξ1(p))

1 + ξ2(p)
,

1

M(p)
=

1− e−p(L−2)

1− e−p
=

1 + ξ3(p)

1− e−p
,

m(2p)

m(p)
=

e−p
(
1− (L− 2)e−2p(L−3) + (L− 3)e−2p(L−2)

)
(1 + e−p)2

(
1− (L− 2)e−p(L−3) + (L− 3)e−p(L−2)

)
=

e−p(1 + ξ4(p))

(1 + e−p)2(1 + ξ5(p))
,

where the error functions satisfy:

|ξ1(p)|, · · · , |ξ5(p)| ≤ 0.0001, ∀t > T g1 .

Then the dynamics satisfy:

dp
dt

=
e−pg(1 + ξ1(p))

1 + ξ2(p)

(
g⋆ − g

1 + e−p(L−2)

1 + e−p
+

ge−p(1 + ξ3(t))

(1 + e−p)2(1 + ξ5(t))

)
,

dg
dt

=
1 + ξ3(p)

1− e−p

(
g⋆ − g

1 + e−p(L−2)

1 + e−p

)
.

When g < 1
2

α⋆

1+α⋆ , we have
dp
dg

≤ 2
(
e−p − e−2p

)
g.

By define T g1/2 := inf{t > 0 : g(t) > g⋆/2} and p̃ := p(T g1/2), we have

ln(ep̃ − 1) ≤ 1

4
g⋆2 − g(0)2 + ep(0) − 1 + ln(ep(0) − 1)

then p̃ ≤ O(
√
p(0)), from which we infer that p barely increases when t ≤ T g1/2.

For 0 ≤ t ≤ T g1/2,
dg
dt

≥ 1

1− e−p(0)

[
g⋆ − g

1 + e−p(0)

]
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g ≥ g⋆(1 + e−p(0))) +
[
g(0)− g⋆(1 + e−p(0))

]
exp

( −t
1− e−2p(0)

)
so

T g1/2 ≤ (1− e−2p(0)) ln

(
g⋆(1 + e−p(0))− g(0)

g⋆
(
(1 + e−p(0))− 1

2

)) = O (2p(0))

For T g1/2 ≤ t ≤ T g1 , let p1 := p(T g1 ),

dp
dg

≤ 1.01e−p(1− e−p)g

(
1 +

g
1+e−p − g

(1+e−p)2

α⋆

1+α⋆ − g
1+e−p

)

≤ 1.01

4

α⋆

1 + α⋆
(1 + e−p1)

then

p1 − p(0) ≤ 1.01

4

(
α⋆

1 + α⋆

)2

(1 + ep1),

p1 ≤ 1

2
(

α⋆

1+α⋆

)2
− 1

,

and we take α⋆ > 1.

Since for T g1/2 ≤ t ≤ T g1 ,
dp
dt

≤ 2e−pg⋆
(
g⋆ − 1

8
g⋆
)
,

dp
dt

≥ 1

2
e−pg⋆

(
g⋆ − 1

1 + e−p1
g⋆
)
,

we have

T g1 − t1 ≤ O
(
(e2p1 − 1)

(
1 + α⋆

α⋆

)2
)
.

Hence, putting the two part of time together we have

T g1 ≤ O
(
p(0) + (e2p1 − 1)

(
1 + α⋆

α⋆

)2
)

= O
(
σinit + (e2p1 − 1)

(
1 + α⋆

α⋆

)2
)

= O(1).

(20)

Part II. Analysis for the convergence phase t > T g1 .

We will prove that, in this phase, (p, g) keep in a stable region, and the convergence occurs.

Recall the dynamics:

dp
dt

=
m(p)g

M(p)2

(
g⋆ − g

1 + e−p(L−2)

1 + e−p
+ g

m(2p)

m(p)

)
,

dg
dt

=
1

M(p)

(
g⋆ − g

1 + e−p(L−2)

1 + e−p

)
.

Using contradiction, it is easy to verify that for all t > T g1 ,

g⋆ < g(t) < 2g⋆,
dp(t)

dt
> 0,
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which means g has entered a stable region (although it is possible that g is non-monotonic), while p
keeps increase. In fact, if t̃ := inf{t > 0 : g(t) = 2g⋆}, then dg

dt |t̃ < 0, which leads to a contradiction.
If t̂ := inf{t > 0 : dp(t)

dt = 0}, then(
g⋆ − g

1 + e−p(L−2)

1 + e−p
+ g

m(2p)

m(p)

)∣∣∣∣
t̂

= 0,
dg
dt

< 0,

d
dt

(
g⋆ − g

1 + e−p(L−2)

1 + e−p
+ g

m(2p)

m(p)

)
= −g′ 1 + e−p(L−2)

1 + e−p
+ g′

m(2p)

m(p)
> 0,

where the last inequality leads to a contradiction.

Thus, p(t) > p(T g1 ) > p(0) = σinit holds in this phase. Therefore, the dynamics

dp
dt

=
e−pg(1 + ξ1(p))

1 + ξ2(p)

(
g⋆ − g

1 + e−p(L−2)

1 + e−p
+

ge−p(1 + ξ3(t))

(1 + e−p)2(1 + ξ5(t))

)
,

dg
dt

=
1 + ξ3(p)

1− e−p

(
g⋆ − g

1 + e−p(L−2)

1 + e−p

)
,

also satisfy

|ξ1(p)|, · · · , |ξ5(p)| ≤ 0.0001, ∀t > T g1 .

For simplicity, we consider the transform:

u := e−p.

Then the dynamics of u and g can be written as:

du
dt

= − (1 + ξ1(p))u
2g

1 + ξ2(p)

(
g⋆ − g

1 + uL−2

1 + u
+

gu(1 + ξ4(p))

(1 + u)2(1 + ξ5(p))

)
,

dg
dt

=
1 + ξ3(p)

1− u

(
g⋆ − g

1 + uL−2

1 + u

)
.

Notice that this dynamics are controlled by high-order terms. Consequently, we construct a variable
to reflect the dynamics of high-order term:

v := ug⋆ + (g⋆ − g).

Then the dynamics of u and v satisfy:

du
dt

= − (1 + ξ1(p))u
2g

1 + ξ2(p)

(
v − uL−2g

1 + u
+

gu(1 + ξ4(p))

(1 + u)2(1 + ξ5(p))

)
,

dv
dt

= − (1 + ξ1(p))u
2gg⋆

1 + ξ2(p)

(
v − uL−2g

1 + u
+

gu(1 + ξ4(p))

(1 + u)2(1 + ξ5(p))

)
− 1 + ξ3(p)

1− u2
(
v − uL−2g

)
.

Now we consider the Lyapunov function about u, v:

G(u, v) :=
1

2

(
u2 + v2

)
.

Then it is straightforward:

dG
2dt

= u
du
dt

+ v
dv
dt

=− u3g(1 + ξ1(p))

1 + ξ2(p)

(
v − uL−2g

1 + u
+

gu(1 + ξ4(p))

(1 + u)2(1 + ξ5(p))

)
− (1 + ξ1(p))u

2vgg⋆

1 + ξ2(p)

(
v − uL−2g

1 + u
+

gu(1 + ξ4(p))

(1 + u)2(1 + ξ5(p))

)
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− 1 + ξ3(p)

1− u2
(
v − uL−2g

)
v.

By |ξ1|, · · · , |ξ5| ≤ 0.0001, we have the following estimate for the Lyapunov dynamics:

dG
2dt

≤1.001g

1 + u
|u3v|+ 1.0001g2

1 + u
uL+1 − 0.999g2

(1 + u2)
u4

− 0.999gg⋆

1 + u
u2v2 +

1.001g2g⋆

1 + u
|uLv|+ 1.001g2g⋆

(1 + u2)
|u3v|

− 0.999

1− u2
v2 +

1.001g

1− u2
|uL−2v|

By uL−5 = e−p(L−5) < 0.0001 and 0 < u < e−p(T
g
1 ), we further have:

dG
2dt

≤ 1.002g

1 + u
|u3v| − 0.99g2

(1 + u)2
u4 − 0.999gg⋆

1 + u
u2v2 +

1.005g2g⋆

(1 + u)2
|u3v| − 0.999

1− u2
v2

≤− 0.99g2

(1 + u)2
u4 − 0.99gg⋆

1 + u
u2v2 − 0.99

1− u2
v2 + 1.01

(
g

1 + u
+

g2g⋆

(1 + u)2

)
|u3v|.

By using the following inequalities:

g2g⋆

(1 + u)2
|u3v| ≤ 1

2

(
1.98

1.01

gg⋆

1 + u
u2v2 +

1.01

1.98

g3g⋆

(1 + u)3
u4
)

g

1 + u
|u3v| ≤ 1

2

(
0.99

1.01
(1 + u)v2 +

1.01

0.99

g2

(1 + u)3
u6
)

− 1

1− u2
+

1

2
(1 + u) < −2

5

we have

dG
dt

≤ −0.99
g2

(1 + u)2
u4 +

1.01

3.96

g3g⋆

(1 + u)3
u4 +

1.01

1.98

g2

(1 + u)3
u6 − 1.98

5
v2.

Since g⋆ < g < 2g⋆, u > 0 for t > T g1 , and u2

1+u ≤ 1
2 for 0 ≤ u ≤ 1, we have:

1

4

g3g⋆

(1 + u)3
+

1

2

g2u2

(1 + u)3
≤ g2

(1 + u)2

(
g⋆2

2(1 + u)
+

u2

2(1 + u)

)
≤ g2

(1 + u)2

(
1

2
+

1

4

)
=

3

4

g2

(1 + u)2
,

then

dG(u, v)
dt

≤ −0.22
g2

(1 + u)2
u4 − 2

5
v2

≤− 0.99

16
g⋆2u4 − 1.98

5
v2 ≤ −g

⋆2

65
G(u, v)2,

which implies:

G(u(t), v(t)) ≤ 1

G(u(t1), v(t1)) +
g⋆2

64 (t− t1)
, ∀t > T g1 .

Hence,

u2(t), v2(t) = O
(

1

g⋆2t

)
= O

(
1

t

)
, ∀t > T g1 = O(1)
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which implies:

e−p(t) = u(t) = O
(

1√
t

)
, ∀t > T g1 = O(1);

g(t)− g⋆ = g⋆u(t)− v(t) ≤ O
(
g⋆√
t

)
+O

(
1√
t

)
= O

(
1√
t

)
, ∀t > T g1 = O(1).

(21)

Notably, these proofs capture the entire training dynamics of p, g, from t = 0 to t = T g1 , and finally
to t→ +∞, providing a fine-gained analysis for each phase.

C.2 DYNAMICS OF THE PARAMETERS FOR INDUCTION HEAD

Recall the partial loss about the induction head:

LIH2(θ) =
1

2
EX

[(
1

1 + α⋆
(xs)

L−1
s=2 · softmax

((
w⋆2xLxs−1

)L−1

s=2

)
− h · (xs)

L−2
s=2 · softmax

( (
w2xLxs−1

)L−2

s=2

))2
]
.

Technical simplification. Unlike LG4
(θ), the denominators of the softmax terms

softmax
( (
w⋆2xLxs−1

)L−1

s=2

)
and softmax

( (
w2xLxs−1

)L−2

s=2

)
in LIH2

(θ) depend on the input
tokens X , making it hard to derive a closed-form expression for LIH2

(θ). In Bai et al. (2023), the
authors consider a simplified transformer model, which replaces the softmax softmax(z1, · · · , zL)
with 1

L exp(z1, · · · , zL). This approximation is nearly tight when z1, · · · , zL ≈ 0. Notice that 1)
w2xLxs−1 ≈ 0 holds near the small initialization, i.e., for w ≈ σinit ≪ 1. In fact, our analysis shows
that w ≈ σinit is maintained over a long period. 2) w⋆ = O(1), which implies that w2xLxs−1 ≈ 0
for most input sequence. Thus, we adopt the simplification used in Bai et al. (2023), resulting in the
following approximation of the loss function:

LIH2
(θ) :=

1

2
EX

[(
1

1 + α⋆
1

L− 2

L−1∑
s=2

exp(w⋆2xLxs−1)xs − h
1

L− 2

L−2∑
s=2

exp(w2xLxs−1)xs

)2 ]
.

Then by a straightforward calculation with Lemma D.3, we can derive its explicit formulation:

LIH2
(θ) =

(1− 4w⋆4)−
1
2

2(1 + α⋆)2(L− 2)
+

1

2

h2

L− 2
(1− 4w4)−

1
2 − h(1− (w2 + w⋆2)2)−

1
2

(1 + α⋆)(L− 2)
. (22)

Furthermore, we can calculate GF dynamics as follows:

dw
dt

=
h

(1 + α⋆)(L− 2)
(1− (w2 + w⋆2)2)−

3
2 · (w2 + w⋆2) · 2w − h2

L− 2
(1− 4w4)−

3
2 · 4w3,

dh
dt

=
1

(1 + α⋆)(L− 2)
(1− (w2 + w⋆2)2)−

1
2 − h

L− 2
(1− 4w4)−

1
2 .

For simplicity, we denote:

w⋆ := w⋆, h⋆ :=
1

1 + α⋆
.

Part I. The trend and monotonicity of w, h.

For simplicity, we denote the tuning time point of h:

Th2 := inf

{
t > 0 :

dh(t)
dt

= 0

}
.

In this step, we will prove the following three claims regarding the trend and monotonicity of w, h,
which are essential for our subsequent analysis:

• (P1.1) h initially increases beyond h⋆, and then remains above this value.
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• (P1.2) w keeps increasing but always stays below w⋆.
• (P1.3) h increases before Th2 , but decreases after Th2 .

(P1.1) h initially increases beyond h⋆, and then remains above this value.

We will prove that initially, h increases beyond h⋆, and keeps growing beyond h⋆. Define

Th1 := inf{t > 0 : h(t) > h⋆},

we will prove that h remains above h⋆ thereafter.

For simplicity, we denote

ψ(x) = (1− x2)−
1
2 , ϕ(x) = (1− x2)−

3
2 · x,

then the dynamics holds:

dh
dt

=
h

L− 2
ψ(w2 + w⋆2)

[
h⋆

h
− ψ(2w2)

ψ(w2 + w⋆2)

]
,

dw
dt

=
2h2w

L− 2
· ϕ(w2 + w⋆2) ·

[
h⋆

h
− ϕ(2w2)

ϕ(w2 + w⋆2)

]
.

Notice that ϕ(2w2)
ϕ(w2+w⋆2) <

ψ(2w2)
ψ(w2+w⋆2) , w < w⋆, while ϕ(2w2)

ϕ(w2+w⋆2) >
ψ(2w2)

ψ(w2+w⋆2) , w > w⋆.

We denote the first hitting time of h decreasing to h⋆ as ṫ:

ṫ := inf
{
t > Th2 : h(t) < h⋆

}
.

If w(ṫ) ≥ w⋆, then at the first hitting time of w increasing to w⋆, dw
dt < 0, which leads to a

contradiction. If w(ṫ) < w⋆, then dh
dt |ṫ > 0, which also leads to a contradiction. Hence, ṫ = +∞,

which means that h always remains above h⋆ for t > Th2 .

(P1.2) w keeps increasing but always below w⋆.

We first prove that w always remains below w⋆. We denote the first hitting time of w increasing to
w⋆ as t′, then it is not difficult to see dw

dt |t′ < 0, which leads to a contradiction.

Next we prove that w keeps increasing throughout. We define the following functions

H :=
1

1 + α⋆

(
1− (w2 + w⋆2)2

)− 3
2

(w2 + w⋆2)− h(1− 4w4)−
3
2 · 2w2

Q :=
1

1 + α⋆

(
1− (w2 + w⋆2)2

)− 1
2 − h

(
1− 4w4

)− 1
2

If at some t̄, dw
dt reaches its zero point at the first time, then

dH
dt

∣∣∣∣
t̄

= −h′(t̄)(1− 4w⋆4)−
3
2 · 2w(t̄) > 0,

which leads to a contradiction. Hence t̄ does not exist and w keeps increasing.

(P1.3) After the tuning point t > Th2 , h will be monotonically decreasing.

The first sign-changing zero point of dh
dt is Th2 , then Q(Th2 ) = 0. H(Th2 ) > 0,

dQ
dt

∣∣∣∣
Th
2

=
1

1 + α⋆
(1− (w(Th2 )

2 + w⋆2)2)−
1
2 · 2w(Th2 ) · w′(Th2 )

·
[
(1− (w(Th2 )

2 + w⋆2)2)−1 · (w(Th2 )2 + w⋆2)− (1− 4w(Th2 )
4)−1 · 4w(Th2 )2

]
.

We can see that Th2 is a sign-changing zero point only if

(1− 4w(Th2 )
4) · (w(Th2 )2 + w⋆2)

(1− (w(Th2 )
2 + w⋆2)2) · 4w(Th2 )2

< 1,
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i.e. we have:

w(Th2 ) > w◦ :=

√
3− 4w⋆4 −

√
(4w⋆4 − 3)2 − 16w⋆4

8w⋆2
≥ w⋆

2
, (23)

when w⋆ = O(1).

Next we show that h keeps decreasing after Th2 . We denote the first zero point of dh
dt as t◦, then

Q(t◦) = 0. Since dw
dt |t◦ > 0, we have dQ

dt |t◦ > 0 which leads to a contradiction. Hence t◦ does not
exist and h keeps decreasing after Th2 .

Part II. Estimation of Th1 , Th2 , and the tight estimate of w(t) before Th2 .

At the first stage, we prove that h grows first and w barely increases. If w ≤ 0.01w⋆ and h ≤
1

1+α⋆

(1−w⋆4)−
1
2

(1−0.014w⋆4)−
1
2

,

dh
dt

≥ −1

L− 2

[
h(1− 0.014w⋆4)−

1
2 − 1

1 + α⋆
(1− w⋆4)−

1
2

]
,

h ≥ 1

1 + α⋆
(1− w⋆4)−

1
2

(1− 0.014w⋆4)−
1
2

−
[

1

1 + α⋆
(1− w⋆4)−

1
2

(1− 0.014w⋆4)−
1
2

− h(0)

]
exp

( −t
(L− 2)(1− 0.01w⋆4)

1
2

)
.

(24)
For h increasing from h(0) to 1

1+α⋆ , it takes

Th1 ≤ (1− 0.01w⋆4)
1
2 (L− 2) ln

 1

1− (1−w⋆4)
1
2

(1−0.014w⋆4)
1
2


≤ 2(L− 2)(1− 1

2
w⋆4) = O(L). (25)

For 0 ≤ t ≤ Th1 ,
dw
dt

≤ 1

L− 2
(1− 4w⋆4)−

3
2 · w⋆2 · 4w.

Hence, it take O(L log(1/σinit)) for w to reach 0.01w⋆, which allows sufficient time for h to reach
1

1+α⋆ beforehand.

Therefore, there exists a small constant ε(w(0), w⋆) only depends on w(0) and w⋆ such that h is
dominated by 1 + ε(w(0), w⋆) times right hand side of (24), from which we deduce that (25) is a
tight estimation of Th1 instead of an upper bound, i.e. Th1 = Θ(L).

We then give a bound for h(Th2 ). By dh
dt = 0,

h(Th2 )/h
⋆ ≤ (1− 4w4)

1
2

(1− (w2 + w⋆2)2)
1
2

:= r(w).

Moreover, r(w) is an decreasing function of w for w > w◦, and w◦ is a function of w⋆, we have

h(Th2 )/h
⋆ ≤ r(w◦) := R(w⋆),

where w◦ is a function about w⋆, defined in Eq. (23). It is clear that

R(w⋆ = 0) = 1, R′(w⋆ = 0) = 0.

Then using the continuity of R′(·) (in [0, 0.4]), there exists c > 0 such that |R′(w⋆)| < 0.04 holds
for all 0 < w⋆ < c, which implies:

R(w⋆) = R(0) +

∫ w⋆

0

R′(v)dv < 1 + 0.04w⋆, 0 < w⋆ < c.
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i.e., if w⋆ = O(1), then R(w⋆) < 1 + 0.04w⋆. This implies:

h⋆ ≤ h(t) ≤ (1 + 0.04375w⋆)h⋆, ∀t ≥ Th1 . (26)

By some computation, we can prove that w◦(w⋆) is an increasing function of w⋆, and is always
above 1

2w
⋆. Thus we obtain a lower bound of w◦ for the estimation of lower bound of Th2 :

For the second stage, h barely changes and w starts to grow exponentially fast, and we use the tight
estimation of Tw1/2 := inf

{
t > 0 : w(t) > 1

2w
⋆
}

to give a lower bound of Th2 . During this stage,

dw
dt

≤ 2w

(1 + α⋆)2(L− 2)

[
(1− (w2 + w⋆2)2)−

3
2 · (w2 + w⋆2)− (1− 4w4)

3
2

]
≤ 2w

(1 + α⋆)2(L− 2)
(1− 4w⋆4)

3
2 · 2w⋆2,

and w has upper bound

w ≤ w(0) exp

(
4w⋆2(1− 4w⋆4)

3
2

(1 + α⋆)(L− 2)
t

)
. (27)

Hence, the lower bound of time for w to reach 1
2w

⋆ is

Tw1/2 − Th1 =
(1 + α⋆)2(L− 2)

4w⋆2(1− 4w⋆4)
3
2

ln(
w⋆

2w(0)
),

and lower bound for Tw1/2 is

Tw1/2 ≥ (L− 2)

[
(1 + α⋆)2 ln( w⋆

2w(0) )

4w⋆2(1− 4w⋆4)
3
2

− ln
(
1− (1− w⋆4)

1
2

)]

≥ (L− 2)(1 + α⋆)2

16w⋆2
ln

(
1

w(0)

)
= Ω

(
(1 + α⋆)2L

w⋆2
log

(
1

σinit

))
. (28)

On the other hand, we estimate the lower bound of w. Let

C(x) = (1− x2)−
3
2 · x,

then
C ′(x) = 3(1− x2)−

5
2x2 + (1− x2)−

3
2 > 1, 0 < x < 1,

C ′′(x) = 15x3(1− x2)−
7
2 + 6x(1− x2)−

5
2 + 3x(1− x2)−

5
2 > 0, 0 < x < 1.

C(x) is a monotonically increasing convex function on (0, 1) and C(x) ≥ x.

Using conclusions above, before w2 increases to 1
2γ(w⋆)+β−1w

⋆2 for some β > 0,

C(w2 + w⋆2)

≥ C((2γ(w⋆) + β)w2)

≥ C(2γ(w⋆) · w2) + C(βw2) (Lemma D.6)

≥ γ(w⋆) · C(2w2) + βw2 (C(ax) ≥ aC(x), for a > 1)

then we have

dw
dt

≥ 2w

(1 + α⋆)2(L− 2)
(C(w2 + w⋆2)− γ(w⋆) · C(2w2))

≥ 2w

(1 + α⋆)2(L− 2)

β

γ(w⋆) + β
w⋆2

and

w ≥ w(0) exp

(
2β

γ(w⋆) + β

1

(1 + α⋆)2(L− 2)
w⋆2t

)
.
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Take β = 2, then

w ≥ w(0) exp

(
w⋆2t

(1 + α⋆)2(L− 2)

)
, ∀t ∈ [0, Tw1/2]. (29)

From the above inequality, (28) is not only an upper bound, but a tight estimation of Tw1/2, i.e.

Tw1/2 = Θ

(
(1 + α⋆)2L

w⋆2
log

(
1

σinit

))
.

Part II. Dynamics after the critical point Tw1/2.

For simplicity, we consider:

v := w2,

and denote v⋆ := w⋆2, h⋆ := 1
1+α⋆ . Then we focus on the dynamics of v and h.

Additionally, we introduce a few notations used in this part:

ϕ(x) :=
x

(1− x2)3/2
, ψ(x) :=

1

(1− x2)1/2
.

Then the dynamics of v and g are:

dv
dt

=
4vh

L− 2

(
h⋆ϕ(v + v⋆)− hϕ(2v)

)
,

dh
dt

=
1

L− 2

(
h⋆ψ(v + v⋆)− hψ(2v)

)
.

Step II.1. A coarse estimate of the relationship between v and h.

It is easy to verify the monotonicity that dv
dt > 0 and dh

dt < 0 for t > t2. Additionally, we have

ψ(v + v⋆)

ψ(2v)
<

h

h⋆
<
ϕ(v + v⋆)

ϕ(2v)
.

Then by Monotone convergence theorem, we obtain:

lim
t→+∞

v = v⋆, lim
t→+∞

h = h⋆.

Step II.2. Convergence analysis by Lyapunov function.

This step aims to establish the convergence rate of v and h.

In fact, the dynamics of v, h can be approximately characterized by their linearized dynamics. In
contrast, the dynamics of p, g are controlled by high-order terms. Therefore, the proof for v and h is
significantly simpler than the corresponding proof for p and g. We only need to consider the simplest
Lyapunov function:

G(v, h) :=
1

2

(
(v − v⋆)2 + (h− h⋆)2

)
.

It is easy to verify that

(L− 2)
dG(v, h)

dt
= (v − v⋆)

dv
dt

+ (h− h⋆)
dh
dt

=4vh(v − v⋆)
(
h⋆ϕ(v + v⋆)− hϕ(2v)

)
+ (h− h⋆)

(
h⋆ψ(v + v⋆)− hψ(2v)

)
=4vh(v − v⋆)

(
ϕ(v + v⋆)(h⋆ − h)− h(ϕ(v + v⋆)− ϕ(2v))

)
+ (h− h⋆)

(
(h⋆ − h)ψ(v + v⋆) + h(ψ(v + v⋆)− ψ(2v))

)
=− 4vh2(v⋆ − v)(ϕ(v + v⋆)− ϕ(2v))− ψ(v + v⋆)(h− h⋆)2
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+ 4vhϕ(v + v⋆)(v − v⋆)(h⋆ − h) + h(h− h⋆)(ψ(v + v⋆)− ψ(2v)).

Let v⋆ ≤ 0.3 = O(1). Recalling (23) and (26), as well as the monotonicity about p and w, we have:

v⋆

4
< v(t) < v⋆; h⋆ < h(t) < 1.02h⋆, ∀t > Th2 .

Combining these estimates with the properties of ϕ and ψ, we have the following straight-forward
estimates:

ϕ(v + v⋆)− ϕ(2v) = ϕ′(ξ)(v⋆ − v) =
1 + 2ξ2

(1− ξ2)5/2
(v⋆ − v) ≥ v⋆ − v;

ϕ(v + v⋆) ≤ ϕ(2v⋆) ≤ 1;

ψ(v + v⋆) =
1

(1− (v + v⋆)2)1/2
≥ 1;

ψ(v + v⋆)− ψ(2v) = ψ′(ξ)(v⋆ − v) =
ξ

(1− ξ2)3/2
(v⋆ − v) ≤ 1.3v⋆(v⋆ − v).

Thus, we have the following estimate for the Lyapunov function:

(L− 2)
dG(v, h)

dt

≤− 4

1.02
v⋆h⋆2(v − v⋆)2 − (h− h⋆)2

+ 4.08v⋆h⋆(v − v⋆)(h⋆ − h) + 1.3 · 1.02v⋆h⋆(v⋆ − v)(h− h⋆)

=− 4

1.02
v⋆h⋆2(v − v⋆)2 − (h− h⋆)2 + 5.41v⋆h⋆(v⋆ − v)(h− h⋆)

≤− 3.92v⋆h⋆2(v − v⋆)2 − (h− h⋆)2 +

(
9.6v⋆2h⋆2(v − v⋆)2 +

3

4
(h− h⋆)2

)
≤− (3.92− 9.6 · 0.3)v⋆h⋆2(v − v⋆)2 − 0.25(h− h⋆)2 ≤ −1

4
v⋆h⋆2G(v, h).

Consequently, we have the exponential bound for all t > Th2 :

G(v(t), h(t)) ≤ G
(
v(Th2 ), h(T

h
2 )
)
exp

(
− v⋆h⋆2

4(L− 2)
(t− Th2 )

)
, ∀t > Th2 ,

This can imply:

(h(t)− h⋆)2 = (h(Th2 )− h⋆)2 exp

(
−Ω

(
w⋆2(t− Th2 )

L(1 + α⋆)2

))
= O

(
h⋆2 exp

(
−Ω

(
w⋆2(t− Th2 )

L(1 + α⋆)2

)))
, ∀t > Th2 ;

(w(t)− w⋆)2 = (w(Th2 )− w⋆)2 exp

(
−Ω

(
w⋆2(t− Th2 )

L(1 + α⋆)2

))
= O

(
w⋆2 exp

(
−Ω

(
w⋆2(t− Th2 )

L(1 + α⋆)2

)))
, ∀t > Th2 .

(30)

Notably, these proofs capture the entire training dynamics of w, h, from t = 0 to t = Th1 , to
t = Tw1/2 ≤ Th2 , and finally to t→ +∞, providing a fine-gained analysis for each phase.

C.3 PROOF OF THEOREM 5.5

This theorem is a direct corollary of our analysis of the entire training dynamics in Appendix C.1
and C.2, leveraging the relationship between the parameters and the loss.
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Proof of Phase I (partial learning).

By combining (19) and (21), it follows that: LG4
(θ(0)) = Θ(1). Moreover,

LG4
(θ(t)) = O

(
1

t

)
, t > T g1 = O(1).

Thus, there exists a sufficiently large TI = Θ(1), such that:

LG4
(θ(TI)) ≤ 0.01LG4

(θ(0)).

Recalling our proof in Appendix C.2, for t < Th1/2 = O(L), it holds that h(t) < σinit +

O(t/((1 + α⋆)L)), w(t) < σinit + o(t/((1 + α⋆)L)). Additionally, since TI = Θ(1) ≪ Θ(L),
it follows that

w(TI) = O(σinit + 1/L) < 2σinit ≪ w⋆, h(TI) = O(σinit + 1/L) < 2σinit ≪ h⋆.

Substituting these estimates into (22), we obtain by Lipschitz continuity of LIH2
:

|LIH2
(θ(TI))− LIH2

(θ(0))| ≤ 2σinit

(∣∣∣∣∂LIH2

∂w

∣∣∣∣+ ∣∣∣∣∂LIH2

∂h

∣∣∣∣)
≤ 2σinit

(
O
(

1

(1 + α⋆)L

)
+ o

(
1

(1 + α⋆)L

))
≤ 0.01LIH2

(θ(0)).

Thus,

LIH2
(θ(TI)) ≥ 0.99LIH2

(θ(0)).

Proof of Phase II (plateau) + Phase III (emergence).

First, (27) and (29) ensures that w grows exponentially before t < Tw1/2:

σinit exp

(
w⋆2

(1 + α⋆)2(L− 2)
t

)
≤ w ≤ σinit exp

(
4w⋆2(1− 4w⋆4)

3
2

(1 + α⋆)(L− 2)
t

)
.

Thus, we have:

w(t) = σinit exp

(
Θ

(
w⋆2t

(1 + α⋆)2L

))
, t < Θ

(
(1 + α⋆)2L

w⋆2
log

(
1

σinit

))
.

Now we define the observation time To := Th1 = Θ(L). Notably,

h(To) = h⋆, w(To) < 0.01w⋆.

The exponential growth of w further implies:

Tw0.01 := {t > 0 : w(t) > 0.01w⋆} = Θ

(
(1 + α⋆)2L

w⋆2
log

(
1

σinit

))
.

Regarding the dynamics of h, by (26), we have |h(t)− h(To)| < 0.02|h(To)|, ∀t ≥ To.

Now we incorporate these facts ( 0 < w(To) < 0.01w⋆, 0 < w(Tw0.01) ≤ 0.01w⋆, |h(Tw0.01) −
h(To)| < 0.02|h(To)|, h(To) = h⋆) into the loss (22). By the Lipschitz continuity of LIH2

, it is
straightforward that

LIH2
(θ(Tw0.01)) ≥ 0.99L(θ(To)).

Thus, we have established the lower bound for TII:

TII := inf
{
t > To : LIH2

(θ(t)) ≤ 0.99 · LIH2
(θ(To))

}
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≥ Tw0.01 = Ω

(
(1 + α⋆)2L

w⋆2
log

(
1

σinit

))
.

Combining the loss (22) and our parameter estimates (30), we obtain:

LIH2
(θ(t)) = O

(
exp

(
−Ω

(
w⋆2t

L(1 + α⋆)2

)))
, t > Th2 = Θ

(
(1 + α⋆)2L

w⋆2
log

(
1

σinit

))
.

This implies the upper bound for TIII:

TIII := inf {t > To : LIH2
(θ(t)) ≤ 0.01 · LIH2

(θ(To))}
= Tw1/2 +O

(
(α⋆ + 1)2L log(1/σinit)/w

⋆2
)
= O

(
(α⋆ + 1)2L log(1/σinit)/w

⋆2
)
.

Combining the fact TII < TIII, the lower bound for TII, and the uppper bound for TIII, we obtain the
two-sided bounds for both TII and TIII:

TII, TIII = Θ
(
(α⋆ + 1)2L log(1/σinit)/w

⋆2
)
.

Proof of Phase IV (convergence).

By combining the loss (19), (22), and our parameter estimates (21), (30), it follows that:

LG4
(θ(t)) = O

(
1

t

)
, LIH2

(θ(t)) = O
(
exp

(
−Ω

(
w⋆2t

L(1 + α⋆)2

)))
, t > TIII.

D USEFUL INEQUALITIES

Lemma D.1 (Corollary A.7 in Edelman et al. (2022)). For any θ, θ′ ∈ Rd, we have

∥softmax(θ)− softmax(θ′)∥1 ≤ 2∥θ − θ′∥∞
Lemma D.2 (lemma E.1 in Wang and E (2024)). For any T ∈ N+, q,m ∈ N+, there exists and

absolute constant C > 0 and a ϕexpm (t) =
m∑
k=1

αke
−βkt such that

∥I(· = T )− ϕexpm (·)∥ℓ1(N) ≤
Ceq+0.01(q+1)T

mq
.

where βk > 0 holds for any k ∈ [m].

Lemma D.3. E
X,Y,Z

exp(aXY )Z2 = (1− a2)−1/2, a < 1.

Proof of Lemma D.3.∫
exp(aXY )Z2

(
1

2π

)−3/2

exp(−1

2
X2 − 1

2
Y 2 − 1

2
Z2) dXdY dZ

=

∫
1

2π
exp(−1

2
(X − aY )2 − 1

2
Y 2 +

1

2
a2Y 2) d(X − aY )dY

=

∫
1√
2π

exp(−1

2
W 2) dW (W = (1− a2)1/2Y )

= (1− a2)−1/2
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Lemma D.4. Let M(p) := 1−e−p(L−2)

1−e−p , then it holds that∥∥softmax
(
(−p(L− 1− s))L−1

s=1

)∥∥2
2
=
M(2p)

M(p)2
.

Definition D.5 (weakly majorizes). A vector x ∈ Rn is said to weakly majorize another vector
y ∈ Rn, denoted by x ≺w y, if the following conditions hold:

1.
∑k
i=1 x[i] ≤

∑k
i=1 y[i] for all k = 1, 2, . . . , n− 1,

2.
∑n
i=1 x[i] =

∑n
i=1 y[i],

where x[i] and y[i] are the components of x and y, respectively, arranged in decreasing order.
Lemma D.6 (Weighted Karamata Inequality). Let f : R → R be a convex function, and let x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors in Rn. If x weakly majorizes y (i.e.,
x ≺w y), and w1, w2, . . . , wn are non-negative weights such that

n∑
i=1

wi = 1,

then the following inequality holds:
n∑
i=1

wif(xi) ≤
n∑
i=1

wif(yi).

E EXPERIMENTS

E.1 EXPERIMENTAL DETAILS FOR FIGURE 2

In line with our theoretical setting, we examine a simplified two-layer transformer, as described
in (10). Specifically, the first layer only contains RPE (3) and the second layer consists of two heads:
one uses only RPE and the other employs only dot-product structure. The target function is specified
by (8) with α⋆ = 1, w⋆ = 0.49, σinit = 0.01, L = 40, and the distribution of each token is Gaussian,
i.e., xi

iid∼ N (0, 1) for i ∈ [L]. Training is conducted by minimizing the squared loss (11) using
online SGD with learning rate 0.1 and batch size B = 1, 000. Following our theoretical analysis, the
two layers are trained sequentially:

• Training Stage I: only the first layer is trained for 100,000 iterations;
• Training Stage II: Subsequently, only the second layer undergoes training for another 100,000

iterations.

The dynamical behavior of the Training Stage II is visualized in Figure 2.

E.2 ADDITIONAL EXPERIMENTS SUPPORTING OPTIMIZATION DYNAMICS

1. Standard transformers on real-world natural language dataset.

Setup. We train a two-layer two-head standard transformer with RPE (3) (without any simplifica-
tion) on the wikitext-2 dataset, a natural language dataset (Merity et al., 2016). The transformer has
an embedding dimension D = 128 and FFN width W = 512. For this dataset, the input dimension is
d = 33278. We use a context length L = 200 and batch size B = 32. The parameters are initialized
with the scale 0.01. The model is trained for 1,500 epochs on 1 H100, using cross-entropy loss and
SGD with learning rate 0.1, and the initialization scale is 0.01. It is important to note that both layers
are trained simultaneously. The results are presented in Figure 3.

2. Discrete token distribution in toy setting.
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Figure 3: The loss and parameters for the experiment training a two-layer two-head standard
transformer (without any simplification) on the wikitext-2 dataset (Merity et al., 2016). Here,
∥p∥ and ∥(WK ,WQ)∥ denote the Frobenius norms of all positional encoding parameters and all
WK ,WQ parameters across layers and heads, respectively, The results show that: the loss exhibits
a clear plateau; position encoding p’s are learned first; and the dot-product structure WK ,WQ are
learned slowly at the beginning, resembling an exponential increase; additionally, as WK ,WQ are
learned, the loss escapes that plateau. These findings closely resemble the behavior observed in our
toy model (Figure 2). This experiment provides further support for our theoretical insights regarding
the time-scale separation between the learning of positional encoding and the dot-product structure.

Setup. We modified the Gaussian input distribution used in the setup for Figure 2 to a boolean input
distribution, where each input token, where each input token xi

iid∼ Unif({±1}) for i ∈ [L], All other
experimental setups remain the same as in the setup for Figure 2. The training dynamics of Stage (ii)
are presented in Figure 4. We can see clearly that the dynamical behavior of the learning process is
nearly the same as the one observed for Gaussian inputs in Figure 2.
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Figure 4: Visualization of the total loss, partial loss, and the parameter dynamics, for the experiment
on discrete token distribution (Boolean, X ∼ Unif({±1}L)) in our toy setting with α⋆ = 1, w⋆ =
0.49, σinit = 0.01, L = 40. The figure clearly shows that transformer learns the 4-gram component
first and then, starts to learn the induction head mechanism. Notably, the entire dynamics exhibit
four phases. These results are extremely similar to that observed with Gaussian inputs, as shown in
Figure 2.

3. Adam in high-dimensional toy setting.

Setup. We modified the setup for Figure 2 to employ a high-dimensional model (D = 100). Specifi-
cally, the target is w⋆ = 0.49ID/D, the dot-produce parameters are WK ,WQ ∈ RD, initialized such
that ∥WK∥F , ∥WQ∥F = σinit. Additionally, for the Adam optimizer, we use learning rate 5e-4.
All other experimental setups remain the same as in the setup for Figure 2.

The training dynamics are depicted in Figure 5, where, for comparison, results using GD are also
presented. In both scenarios, the learning process begins with the 4-gram pattern, followed by a
gradual learning phase of the induction head mechanism. Notably, within the given number of
iterations, GD remains stuck in the plateau, whereas Adam successfully escapes that plateau.
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Figure 5: Partial loss for the experiment comparing GD v.s. Adam optimizer in high-dimensional
settings (D = 100). In this setting, a larger D increases the difficulty of the transition from the lazy
regime (learning 4-gram) to the rich regime (learning induction head). The results indicate that: (1)
GD learns the 4-gram component first but becomes stuck in a plateau when learning induction head;
(2) Adam, while eventually transitioning from the lazy regime (learning 4-gram) to the rich regime
(learning induction head), experiences a challenging transition characterized by multiple plateaus
during learning induction heads. This finding closely resembles the dynamics for GD.

E.3 EXPERIMENTS SUPPORTING APPROXIMATION RESULTS

1. Supporting the necessity of the required H and D in Theorem 4.3.

Setup. We train two-layer transformers (without FFN layers) with varying H and D to learn the
generalized induction head (6) with n = 4. The input sequence X = (x1, · · · , xL) is boolean, with
xi

i.i.d.∼ Unif({±1}) and L = 10. Each model is trained for 200,000 iterations using squared loss
and (online) Adam optimizer with learning rate 5e-4 and batch size B = 100. Both layers are
trained simultaneously. The results for the models with D = H = 8 and D = H = 2 are presented
in Figure 3.
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Loss for learning IH4 (n = 4)

D = H = 8

D = H = 2

Figure 6: Results supporting the necessity of the required number of heads H and embedding
dimension D in Theorem 4.3. We train two-layer transformers with varying H and D to learn the
target in Eq. (6) with n = 4. The results indicate that the transformer with H = D = 8 (> n)
successfully expresses this task, while the transformer with H = D = 2 (< n) fails. These results
confirm that the sufficient conditions provided in Theorem 4.3 (H ≳ n and D ≥ nd, where d = 1 in
our setting) are also nearly necessary.

2. Supporting our construction in Theorem 4.3.

Setup. We linear probing experiments (Alain and Bengio, 2016) on the transformers with H =
D = 8 trained in the above experiment (Figure 6). For each checkpoint model TF, we denote its
output in the first layer on the input sequence X as TF(1)(X). The probing loss is measured by

dist
(
X·−n+1:·; TF

(1)(X)
)
= min

P∈RD×n
:

L∑
s=n

∥∥∥Xs−n+1:s − TF(1)
s (X)P

∥∥∥, where n = 4, L = 10,
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and X = (x1, · · · , xL) is generated by xi
i.i.d.∼ Unif({±1}) with testing batch 1000. The results are

shown in Figure 7.
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Figure 7: Probing results supporting our construction in Theorem 4.3. First, we train a two-
layer two-layer transformer with head H = 8 and embedding dimension D = 8 to learn Eq. (6)
with n = 4, and the checkpoints are stored during training. For each checkpoint model TF, we
denote its output in the first layer on the input sequence X as TF(1)(X). To validate whether it
encodes the semantic information Xs−n+2:s near each xs, as predicted by our construction, we
conduct a standard linear probing experiment (Alain and Bengio, 2016). Specifically, we measured

dist
(
X·−n+1:·; TF

(1)(X)
)
= min
P∈RD×n

:
L∑
s=n

∥∥∥Xs−n+1:s − TF(1)
s (X)P

∥∥∥. As the results shown, the

probing loss decreases significantly during training, confirming our key construction in Theorem 4.3:
the first layer is responsible for extracting local semantic information Xs−n+2:s near each xs,
enabling the second layer to generate the final output.

F DETAILED COMPARISON WITH RELATED WORKS

In this section, we discuss the relationship between our work and two closely related studies: Bietti
et al. (2024) and Edelman et al. (2024).

Comparison with Bietti et al. (2024).

• Approximation analysis:
– Bietti et al. (2024) focus primarily on the implementation of the vanilla induction head.

In contrast, our study extends this analysis by investigating not only how two-layer trans-
formers achieve vanilla induction heads (Eq. (4)) but also how they implement generalized
induction heads, i.e., in-context n-grams (Eqs. (6) and (7)).

– Furthermore, our work provides explicit approximation rate results, offering insights into
the distinct roles of multiple heads, positional encoding, dot-product structure, and FFNs in
implementing these induction heads.

• Optimization analysis:

– Study objective: While Bietti et al. (2024) examines the transition from 2-gram to induction
head, our work focuses on the transition from 4-gram to induction head.

– study methods: Bietti et al. (2024) conducts extensive experiments supported by partial
theoretical properties but does not fully characterize the training dynamics theoretically. In
contrast, our study provides a precise theoretical analysis of the entire training process in a
toy model, uncovering the sharp transition from 4-gram to induction head.

– Main insights: Bietti et al. (2024) emphasizes the the role of weight matrices as associative
memories and the impact of data distributional properties. Our analysis, on the other hand,
identifies two primary drivers of the transition: (1) the time-scale separation due to low-
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and high-order parameter dependencies in self-attention; (2) the speed differences caused
by the relative proportions of the two components in the mixed target.

Comparison with Edelman et al. (2024). The primary connection between Edelman et al. (2024) and
our work lies in the optimization analysis. Specifically, Edelman et al. (2024) focuses on the transition
from uni-gram to bi-gram mechanisms in Markov Chain data. In contrast, our study investigates
the transition from 4-gram to in-context 2-gram mechanisms (induction head). Additionally, we
theoretically identify two primary drivers of the transition: (1) the time-scale separation due to low-
and high-order parameter dependencies in self-attention; (2) the speed differences caused by the
relative proportions of the two components in the mixed target.
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