
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HOW TRANSFORMERS IMPLEMENT INDUCTION HEADS:
APPROXIMATION AND OPTIMIZATION ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have demonstrated exceptional in-context learning capabilities, yet
the theoretical understanding of the underlying mechanisms remains limited. A
recent work (Elhage et al., 2021) identified a “rich” in-context mechanism known
as induction head, contrasting with “lazy” n-gram models that overlook long-
range dependencies. In this work, we provide both approximation and dynamics
analyses of how transformers implement induction heads. In the approximation
analysis, we formalize both standard and generalized induction head mechanisms,
and examine how transformers can efficiently implement them, with an emphasis
on the distinct role of each transformer submodule. For the dynamics analysis, we
study the training dynamics on a synthetic mixed target, composed of a 4-gram
and an in-context 2-gram component. This controlled setting allows us to precisely
characterize the entire training process and uncover an abrupt transition from lazy
(4-gram) to rich (induction head) mechanisms as training progresses.

1 INTRODUCTION

Transformer, introduced by Vaswani et al. (2017), have achieved remarkable success across various
domains, including natural language processing, computer vision, and scientific computing. An
emergent observation is that transformers, trained on trillions of tokens, can perform (few-shot)
in-context learning (ICL), which makes prediction based on the contextual information without
needing model retraining (Brown et al., 2020). This ICL ability is widely regarded as crucial for
enabling large language models (LLMs) to solve reasoning tasks, representing a key step toward
more advanced artificial intelligence.

To understand how transformers implement ICL, Elhage et al. (2021) and Olsson et al. (2022)
identified a simple yet powerful mechanism known as induction head. Specifically, given an input
sequence [· · ·ab· · ·a], an induction head predicts b as the next token by leveraging the prior
occurrence of the pattern ab in the context, effectively modeling an in-context bi-gram. In contrast,
traditional n-gram model (Shannon, 1948) (with a small n) utilizes only a limited number of recent
tokens to predict the next token, which is context-independent and inevitably overlooks long-range
dependence. Based on the extent of context utilization, we categorize n-gram model as a “lazy”
mechanism, whereas the induction head represents a more “rich” mechanism.

Practically, induction heads have been demonstrated to play a critical role in enabling LLMs’ ICL
capabilities (Song et al., 2024; Crosbie and Shutova, 2024), and even used to test new LLM archi-
tectures (Gu and Dao, 2023). Theoretically, induction heads also serve as a controllable tool for
understanding various aspects of LLMs, such as multi-step reasoning (Sanford et al., 2024b) and
inductive biases of different architectures (Jelassi et al., 2024).

In this paper, we aim to provide a theoretical analysis of how transformers can efficiently implement
induction heads. The first key problem is to rigorously formalize induction heads and evaluate the
efficiency of transformers in representing them. According to Elhage et al. (2021), the original
induction head can be implemented using a two-layer, twelve-head transformer without feed-forward
networks (FFNs). However, practical scenarios demand more powerful induction heads. Thus, it is
crucial to generalize the mechanism behind and explore how different transformer submodules, such
as varying the number of attention heads or incorporating FFNs, impact the transformer’s ability to
implement them. This forms our first research objective:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(Approximation). Investigate how two-layer transformers express the induction head mechanism and
its potential variants.

The next problem is to investigate the dynamics of transformers in learning induction heads. The
pioneering works by Elhage et al. (2021) and Olsson et al. (2022) demonstrated that transformers
undergo an abrupt phase transition to learning induction heads. A recent empirical study on synthetic
datasets replicate this behavior, further showing that 2-gram is always learned prior to induction
heads (Bietti et al., 2024). However, a rigorous theoretical analysis of this learning progression is still
lacking. Closing this gap forms our second research objective:

(Optimization). Understand how transformers transition from relying on n-gram patterns to
employing the induction head mechanism as training progresses.

Focusing on these two key problems, in this paper, we make the following contributions:

• Approximation analysis: how transformers express induction heads. We consider three
types of induction heads with varying complexities. First, we show that two-layer, single-head
transformers without FFNs can efficiently approximate the vanilla induction head (Elhage et al.,
2021). We then introduce two generalized induction heads, which leverage richer in-context
n-gram information and incorporate a general similarity function. Our analysis clarifies the
distinct roles of multihead attention, positional encoding, dot-product structure, and FFNs in
implementing these generalized induction heads.

• Optimization analysis: how learning undergoes a sharp transition from n-gram to induc-
tion head. We study the learning dynamics of a two-layer transformer without FFNs for a
mixed target, composed of a 4-gram and an in-context 2-gram component. This toy setting
allows us to capture the entire training process precisely. Specifically, we show that learning
progresses through four phases: partial learning of the 4-gram, plateau of induction head learn-
ing, emergence of the induction head, and final convergence, showcasing a sharp transition from
4-gram to induction head. Our analysis identifies two key drivers of the transition: 1) time-scale
separation due to low- and high-order parameter dependencies in self-attention, and 2) speed
differences caused by the relative proportions of the two components in the mixed target.

2 RELATED WORKS

Empirical observations of induction head. The induction head mechanism was first identified
by Elhage et al. (2021) in studying how two-layer transformers perform language modeling. Subse-
quently, Olsson et al. (2022) conducted a more systematic investigation, revealing two key findings: 1)
induction head emerges abruptly during training, and 2) induction head plays a critical role in the de-
velopment of in-context learning capabilities. To obtain a fine-grained understanding of how induction
head emerges during training, recent studies have developed several synthetic settings (Reddy, 2024;
Edelman et al., 2024; Bietti et al., 2024). Particularly, Bietti et al. (2024) successfully reproduced
the fast learning of (global) bigrams and the slower development of induction head. Despite these
efforts, a comprehensive theoretical understanding of how the induction head operates in two-layer
transformers and how it is learned during training remains elusive.

Expressiveness of transformers. Theoretically, Dehghani et al. (2019); Pérez et al. (2021); Wei et al.
(2022) explored the Turing-completeness of transformers; Yun et al. (2019) established the universal
approximation property of transformers. Subsequent studies examined the efficiency of transformers
in representing specific functions or tasks, such as sparse functions (Edelman et al., 2022), targets with
nonlinear temporal kernels (Jiang and Li, 2023), practical computer programs (Giannou et al., 2023),
long but sparse memories (Wang et al., 2024), induction head (Sanford et al., 2024a;b; Rajaraman
et al., 2024), and memorization and reasoning (Chen and Zou, 2024). Besides, many studies
suggest that transformers achieve in-context learning by approximating gradient-based iterations
across various layers (Garg et al., 2022; Akyürek et al., 2022; Von Oswald et al., 2023; Mahankali
et al., 2023; Bai et al., 2023; Shen et al., 2023). Besides, several studies explored the limitation of
transformer’s expressivity, particularly in modeling formal languages or simulating circuits (Hahn,
2020; Weiss et al., 2021; Bhattamishra et al., 2020; Merrill et al., 2022; Merrill and Sabharwal,
2023). Among all these works, the most closely related to ours are Rajaraman et al. (2024), which
examined a generalized induction head similar to our Eq. (6). Specifically, they showed that multi-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

layer transformers with single-head attention can implement this mechanism. In contrast, we prove
that two-layer transformers are sufficient if multihead attention is used.

Training dynamics of transformers. To gain insights into the dynamics of training transformers,
several studies have analyzed simplified transformers on toy tasks. These tasks include learning
distinct/common tokens (Tian et al., 2023), leaning balance/inblanced features (Huang et al., 2023),
linear regression task (Zhang et al., 2023; Ahn et al., 2024), multi-task linear regression (Chen
et al., 2024a), binary classification (Li et al., 2024), transformer with diagonal weights (Abbe et al.,
2024), learning causal structure (Nichani et al., 2024), sparse token selection task (Wang et al.,
2024), and learning n-gram Markov chain (Chen et al., 2024b). Additionally, studies such as those
by Ataee Tarzanagh et al. (2023), Tarzanagh et al. (2023) and Vasudeva et al. (2024) have analyzed
scenarios where transformers converge to max-margin solutions. Furthermore, Thrampoulidis (2024)
has examined the implicit bias of next-token prediction. Among these works, the most closely related
to ours are Nichani et al. (2024) and Chen et al. (2024b), which proved that two-layer transformers
can converge to induction head solutions. In this work, we explore a setting where the target is a
mixture of 4-gram and induction head. We show that two-layer transformers can effectively converge
to this mixed target and provide a precise description of the learning process associated with each
component. Importantly, we are able to capture the abrupt transition from learning 4-gram patterns
to mastering the induction head mechanism—a critical phase in the learning of induction heads, as
highlighted in the seminal works (Elhage et al., 2021; Olsson et al., 2022).

3 PRELIMINARIES

Notations. For k ∈ N+, let [k] = {1, 2, . . . , k}. For a vector v and 1 ≤ p ≤ ∞, we denote by ∥v∥p
the ℓp norm of v. For a matrix A = (ai,j), we denote by ∥A∥, ∥A∥F the spectral and Frobenius
norms, respectively; let ∥A∥1,1 =

∑
i,j |ai,j |. For an event S, we define I{S} = 1 if S is true, and

0 otherwise. We use standard big-O notations O,Ω,Θ to hide absolute positive constants, and use
Õ, Ω̃, Θ̃ to further hide logarithmic constants.

Sequence modeling. Given a sequence of tokens (x1, x2, x3, . . .) with each token lying in Rd,
let XL = (x1, x2, . . . , xL) ∈ Rd×L and Xm:n = (x⊤m, x

⊤
m+1, . . . , x

⊤
n)

⊤ ∈ R(n−m+1)d. Given
A = (a1, · · · an) ∈ Rm×n, we denote (as)

j
s=i = (ai, · · · , aj) ∈ Rm×(j−i+1). Then, we consider

the next-token prediction task: predict xL+1 using XL = (x1, x2, . . . , xL).

In a n-gram model (Shannon, 1948), the conditional probability of predicting the next token is given
by p(xL+1|XL) = p(xL+1|XL−n+2:L), meaning that the prediction depends only on the most recent
n− 1 tokens. In practice, the value of n is typically small (e.g., 2, 3, or 4), as the computational cost
of n-gram models grows exponentially with n. However, n-gram models with small n cannot capture
long-range interactions, leading to inferior performance in sequence modeling.

Transformer is designed to more efficiently capture long-range dependencies in sequence model-
ing (Vaswani et al., 2017). Specifically, given an L-token input sequenceX = (x1, · · · , xL) ∈ Rd×L,
an U -layer transformer TF processes it as follows. First, each input token is embedded into a higher-
dimensional space through an embedding layer:

x(0)s =WExs + bE , s ∈ [L], with WE ∈ RD×d, bE ∈ RD.

Next, the U -layer attention blocks process the embedded sequence X(0) = (x
(0)
1 , · · · , x(0)L) as

follows, and the output of the final layer is taken as the output sequence TF(X) = X(L) ∈ RD×L:

X(u− 1
2) = X(u−1) + SA(u)(X(u−1)), u ∈ [U];

X(u) = X(u− 1
2) + FFN(u)(X(u− 1

2)), u ∈ [U].
(1)

Here, FFN(u) denotes a (token-wise) two-layer FFN of widthM , and SA(u) represents the multi-head
self-attention operation. Specifically, when applied to a sequence Z = (z1, · · · , zL) ∈ RD×L, SA(l)

operates it as follows:

SA(u)(Z) =W
(u)
O

Hu∑
h=1

SA(u,h)(Z),

SA(u,h)(Z) =
(
W

(u,h)
V Z

)
softmax

(〈
W

(u,h)
Q Z,W

(u,h)
K Z

〉
+R(u,h)

)
,

(2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where W (u,h)
Q ,W

(u,h)
K ,W

(u,h)
V ,W

(u)
O ∈ RD×D correspond to the query, key, value and output

matrices of the (u, h)-th head, respectively. softmax represents taking softmax normalization
across columns.

〈
W

(u,h)
Q X,W

(u,h)
K X

〉
is called the dot-product (DP) structure. Furthermore,

R(u,h) = (R
(u,h)
i,j) ∈ RL×L denotes the additive relative positional encoding matrix, which satisfies

R
(u,h)
i,j = −∞ if i ≤ j for the next-token prediction task.

Relative positional encoding (RPE). Throughout this paper, we focus on the Alibi RPE (Press et al.,
2022), where R(u,h)

ij follows a Toeplitz structure, i.e., R(u,h)
ij = ϕ(i− j; p(u,h)) for i, j ∈ [L]. Here,

p(u,h)’s are learnable parameters and we consider ϕ(·; p) of the following form:

ϕ(z; p) =

{−p · (z − 1) if z ≥ 1

−∞ otherwise
. (3)

Note that we adopt the Alibi RPE only for simplicity and our results can be extended to other additive
RPEs, such as T5 (Raffel et al., 2020). However, extending our analysis to the popular rotary RPE (Su
et al., 2024) may be nontrivial, and we leave this for future work.

4 FORMULATION AND APPROXIMATION OF INDUCTION HEAD

In this section, we formalize three types of induction head mechanisms with varying levels of
complexity. We then theoretically investigate how two-layer single- or multi-head transformers, with
or without FFNs, can efficiently implement these mechanisms, highlighting the distinct roles of
different transformer submodules

4.1 VANILLA INDUCTION HEADS

The original induction head, proposed in Elhage et al. (2021) and Olsson et al. (2022), is regarded
as one of the key mechanisms to implement ICL and reasoning. This induction head suggests that
two-layer multi-head transformers without FFNs can execute a simple in-context algorithm to predict
the next token b from a context [· · ·ab· · ·a] through retrieval, copying, and pasting, based on
in-context bi-gram pairs, as illustrated in Figure 1.

Figure 1: An illustration of the original induction head (taken from Elhage et al. (2021)). The induction head
proceeds the context [· · ·The D] by retrieving the preceding information most relevant to the current token
(D), then copying and pasting the subsequent token (the green urs) as the current prediction. Notably, the two
self-attention layers focus on the highlighted red and green tokens respectively. For further details, refer to the
description below Theorem 4.1.

Formulation of IH2. Based on the phenomenon illustrated in Figure 1, we define the vanilla induction
head IH2 : ∪L∈N+Rd×L 7→ Rd as follows:

IH2(XL) = (xs)
L−1
s=2 softmax

((
x⊤LW

⋆xs−1

)L−1

s=2

)⊤
(4)

Specifically, IH2 retrieves in-context information based on the similarities of in-context bi-gram
pairs {(xs, xL)}L−2

s=1 . Note that the magnitude of matrix W ⋆ controls the sparsity of retrieval, since
increasing ∥W ⋆∥ causes the softmax output to concentrate as a delta measure over the preceding
tokens. Additionally, IH2 can handle input sequences of arbitrary length.

This model retrieves previous tokens xs−1’s that are similar to the current token xL based on a dot-
product similarity, and then copies and pastes xs−1’s subsequent token xs as the current prediction

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

xL+1. For example, in Figure 1, the current token xL is D, and the model retrieves previous tokens
similar to D, copying and pasting its subsequent token urs as the prediction.

Comparison with previous formulations. As shown in Figure 1, the current token D appears
multiple times in the preceding context, and the induction head detects all occurrences of D. Our
formulation (4) captures this behavior, as the softmax scores for all preceding D are identical. In
contrast, previous formulations, such as Sanford et al. (2024a) and Sanford et al. (2024b), focus
solely on the most recent occurrence of D, neglecting this multi-occurrence aspect.

Measure of approximation. Consider a target function H : ∪L∈N+Rd×L 7→ Rd, where d is the token
dimension and L denotes the sequence length. Given an input sequence X ∈ Rd×L, transformer TF
approximates H(X) using its last output token, i.e., TF−1(X) ∈ Rd. To quantify the approximation
error, we define the following metric: for 1 ≤ p ≤ +∞,

|||H − TF|||L,p :=
(
EXL

[∥H(XL)− TF−1(XL)∥p∞]
)1/p

. (5)

The next theorem shows that a two-layer single-head transformer without FFNs suffices to implement
vanilla induction heads.
Theorem 4.1 (two-layer single-head TF w/o FFNs). Let IH2 satisfy Eq. (4). Then exists a constant
C > 0 and a two-layer single-head transformer TF (without FFNs), with D = 2d, W (1,1)

K =

W
(1,1)
Q = 0, p(2,1) = 0, and ∥W (2,1)

K ∥, ∥W (2,1)
Q ∥ ≤ O(1, ∥W ⋆∥F), such that

sup
L∈N+

|||IH2 − TF|||L,∞ ≤ C

ep(1,1)
.

This theorem shows that single head suffices to approximate the vanilla induction head and moreover,
the approximation efficiency is independent of the sequence length. The proof is provided in
Appendix A.1, offering the following insights into how two-layer single-head transformers without
FFNs implement vanilla induction heads:

• The first layer aggregates local tokens and outputs (zs = [xs−1, xs])2≤s≤L for the s-th token.
This is achieved by using SA with only RPE (no DP). Specifically, RPE allows SA to capture
the preceding token via xs−1 =

∑
j≥1 xs−jρ(j) for each token xs, where ρ(·) = I{· = 1}.

Hence, DP in this layer is not essential and can be omitted.
• The second layer extracts the relevant tokens using DP similarity. First, DP computes the sim-

ilarity ⟨WQzL,WKzs⟩ = x⊤LW
⋆xs−1, where zL = [xL−1, xL] and zs = [xs−1, xs] represent

the hidden tokens outputted by the first layer. This similarity measure enables SA to identify
tokens that match xL. Subsequently, the value/output component extracts xs in zs, effectively
copying the subsequent token and using it as the current prediction. In this layer, RPE is not
necessary and can be omitted.

Remark 4.2 (Alignment with experimental findings). Our theoretical analysis is consistent with
the experimental observations reported in Elhage et al. (2021). Specifically, the experiments there
demonstrate that SA in the first layer attends to adjacent tokens, while SA in the second layer retrieves
information related to the current token. Our analysis identifies components responsible for these two
operations, and reveals that single-head transformers suffice to perform them efficiently.

4.2 GENERALIZED INDUCTION HEADS: IN-CONTEXT n-GRAM AND GENERIC SIMILARITY

Although the standard induction head defined in Eq. (4) is intuitive, it exhibits notable limitations: 1)
it retrieves only a single token, potentially missing complete local information and leading to false
retrievals; 2) it relies solely on the dot-product to measure the similarity between two tokens, which
is not sufficiently general.

Formulation of IHn. Motivated by the limitation 1) above, we define a generalized induction head:

IHn(XL) = (xs)
L−1
s=n softmax

((
X⊤
L−n+2:LW

⋆Xs−n+1:s−1

)L−1

s=n

)⊤
, (6)

where the patch Xs−n+1:s−1 incorporates richer local information near xs and XL−n+2:L denotes
the current patches. This formulation is more general than Eq. (4), which only focuses on xs−1. This

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

induction head operates based on the similarity between the n-gram pairs: (Xs−n+1:s−1;XL−n+2:L)
for s = n, . . . , L− 1.

Integrating richer local information facilitates more accurate information retrieval. The model (6)
retrieves previous (n− 1)-token patch that are similar to the current (n− 1)-token patch, thereby
generalizing the vanilla induction head (4), which considers only single-token retrieval. For example,
as depicted in Figure 1, if the current local information is The D (comprising two tokens), and prior
local information such as Mr D and Mrs D is identified as similar to The D, transformer would
copy and paste their subsequent token, urs, as the prediction.
Theorem 4.3 (two-layer multi-head TF w/o FFNs). Let IHn satisfy Eq. (6). Then, for any q ∈ N+ ,
there exists an absolute constant C > 0 and a two-layer H-head transformer TF(·) (without FFNs),
with D = nd, such that:

sup
L∈N+

|||IHn − TF|||L,∞ ≤ C

(
ne1+0.01n

H

)q
.

This theorem demonstrates that two-layer multi-head transformers, even without FFNs, can efficiently
implement the generalized induction head (6). Notably, the approximation error scales as O(H−q),
where q can be arbitrarily large, and H ≳ ne1+0.01n is sufficient to ensure a good approximation.
Furthermore, n is typically small when extracting local semantics. For example, in the vanilla
induction head, n = 2. The proof of this theorem is provided in Appendix A.2.

The role of multiple heads. In Theorem 4.3, multiple heads are employed in the first layer to
approximate the n-gram interaction, represented by the n− 1 memory kernels {ρj := I{· = j}}n−1

j=1 .
Thus, TF can capture n−1 preceding tokens via xs−j =

∑
k≥1 xs−kρj(k) for j ∈ [n−1]. Intuitively,

as n increases, more memory kernels are required for accurate approximation, necessitating more
attention heads. In contrast, Theorem 4.1 only requires approximating a single memory kernel
I{· = 1}, which can be efficiently achieved using a single attention head.

Recently, Rajaraman et al. (2024) explored a generalized induction head similar to Eq. (6) and showed
that multi-layer single-head transformers can implement it. In contrast, our Theorem 4.3 demonstrates
that two layers suffice if multi-head self-attention is adopted.

Formulation of GIHn. Building on the formulation (6), and motivated by the limitation 2) above, we
further consider the following generalized induction head:

GIHn(XL) = (xs)
L−1
s=n softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)⊤
, (7)

where g : RD×(n−1)×RD×(n−1) → R denotes a generic function measuring the similarity between
two (n− 1)-length patches.

This model retrieves previous relevant multi-token patch Xs−n+1:s−1 that is similar to the current
multi-token patch XL−n+2:L , utilizing the generalized similarity function g(·, ·). This mechanism is
more general than Eq. (6), which is limited to dot-product similarities. For instance, the use of general
similarity g enables the model to recognize not only synonymous but also antonymic semantics,
thereby improving both the accuracy and diversity of in-context retrievals.
Theorem 4.4 (two-layer multi-head TF with FFNs). Let GIHn satisfy Eq. (7). Suppose the similarity
function g is α-well-behaved (see Definition A.7). Then, for any q ∈ N+, there exist constants
Ag,q,n, Bg,α > 0 and a two-layer H-head transformer TF(·) with FFNs of width M , such that

|||GIHn − TF|||L,2 ≤ Ag,q,nH
−q +Bg,αL

1/(1+2α)M−α/(1+3α).

This theorem establishes that if the similarity function g is well-behaved, two-layer multi-head
transformers with FFNs can efficiently implement the generalized induction head (7).

The role of FFNs. In contrast to Theorem 4.3, transformer models in Theorem 4.4 include FFNs.
These FFN layers are used to approximate the similarity function g. Specifically, we consider the
proper orthogonal decomposition (POD) of g, which can be viewed as an extension of the matrix
singular value decomposition (SVD) applied to functions of two variables. For g : I × I → R,
its POD is g(u, v) =

∑∞
k=1 σkϕk(u)ψk(v), where ϕk, ψk are orthonormal bases for L2(I) (see

Appendix D for details). Intuitively, the FFN in the first layer is used to efficiently approximate K
bases (ϕi’s and ψi’s). Then, in the second layer, DP in SA can approximately reconstruct g by using
the truncated sum g(u, v) ≈∑K

k=1 σkϕk(u)ψk(v). The complete proof is deferred to Appendix A.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 THE TRANSITION FROM LAZY TO RICH MECHANISMS IN LEARNING
INDUCTION HEADS

In this section, we investigate the dynamics of learning induction heads using a transformer, partic-
ularly focusing on how this differs from n-gram learning. To facilitate the analysis, we consider a
mixed target function that comprises a 4-gram component and a vanilla induction head component
as defined in Eq. (4). Specifically, we study the gradient flow dynamics of a two-layer multi-head
transformer without FFNs on this task.

5.1 SETUPS

5.1.1 MIXED TARGET FUNCTION

Mixed target function. Let the input sequence be X = (x1, · · · , xL) ∈ R1×L. Our mixed target
function f⋆ contains both a 4-gram component f⋆G4

and an in-context 2-gram component f⋆IH2
:

f⋆(X) :=

(
α⋆

1 + α⋆
f⋆G4

(X),
1

1 + α⋆
f⋆IH2

(X)

)⊤

∈ R2, (8)

where α⋆ > 0 represents the relative weight between the two components: f⋆G4
(X) and f⋆IH2

(X).
Here, f⋆G4

represents a 4-gram component and f⋆IH2
is given by the vanilla induction head (4) to

represent a type of in-context 2-gram information:

f⋆G4
(X) := xL−2, f⋆IH2

(X) := (xs)
L−1
s=2 softmax

((
xLw

⋆2xs−1

)L−1

s=2

)⊤
.

Note that f⋆G4
denotes a “simplest” 4-gram target, where the next token is predicted according to the

conditional probability p(z|X) = p(z|xL, xL−1, xL−2) = I{z = xL−2}.
Remark 5.1 (The reason for considering 4-gram). Note that our target includes a 4-gram component
rather than simpler 2- or 3-gram components. As suggested by the experimental results in Elhage
et al. (2021), for a learned two-layer transformer that implements vanilla induction head IH2, the first
layer has extracted both xL and xL−1, which can be outputted using the residual block. Thus, the
2- and 3-gram targets: p(z|X) = I{z = xL} and p(z|X) = I{z = xL−1} must be learned prior to
the induction head. Hence we focus on the more challenging 4-gram target to avoid trivializing the
learning process, though our analysis extends straightforwardly to the 2- or 3-gram scenarios.
Remark 5.2 (Extension). Since the transformer studied in this section does not have FFNs, its
expressive power is limited. Consequently, we only consider the simple but representative mixed
target (8). However, (8) can be generalized to f⋆(X) = F (f⋆G4

(X); f⋆IH2
(X)), where F is general

nonlinear function. Such a form can be efficiently approximated by transformers with FFNs. We
leave the optimization analysis under this general setting for future work.

5.1.2 TWO-LAYER MULTI-HEAD TRANSFORMER WITH REPARAMETERIZATION

Two-layer multi-head transformer w/o FFNs. We consider a simple two-layer multi-head trans-
former TF, where the first layer contains a single head SA(1,1), and the second layer contain two
heads SA(2,1),SA(2,2). Given an input sequence X = (x1, · · · , xL) ∈ R1×L, it is first embedded as
X(0) := (X⊤, 0⊤) ∈ R2×L. The model then processes the sequence as follows:

X(1) = X(0) + SA(1,1)(X(0)),

TF(X) = SA(2,1)(X(1)) + SA(2,2)(X(1)).

Reparameterization. Despite the simplification, the transformer above is still too complicated for
dynamics analysis. To overcome this challenge, we adopt the reparametrization trick used in previous
works (Tian et al., 2023; Huang et al., 2023; Chen et al., 2024b). Specifically, by Theorem 4.1 and its
proof, the first layer does not require DP, and the second layer does not require RPE. Moreover, to
express the 4-gram component f⋆G4

, we only need an additional head without DP in the second layer.
Therefore, we can reparameterize the model as follows:

• The first layer. This layer has only one trainable parameter p(1,1). In the unique head SA(1,1),

DP is removed by setting W (1,1)
Q = W

(1,1)
K = 0, and we let W (1,1)

V =

(
0 0
1 0

)
. The output

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

sequence of this layer given by X(1) = X(0) + SA(1,1)(X(0)) =

(
x1, · · · , xL
y1, · · · , yL

)
, where

ys = (xτ)
s−1
τ=1 softmax

((
− p(1,1)(s− 1− τ)

)s−1

τ=1

)⊤
, s ∈ [L], (9)

where p(1,1), used in RPE (3), is the unique trainable parameter in this layer.

• The second layer. This layer has 5 trainable parameters: w(2,1)
V , w

(2,2)
V , p(2,1), w

(2,2)
K , w

(2,2)
Q for

parametrizing the two heads. The first head SA(2,1) without DP is responsible to fit f⋆G4
, while

the second head SA(2,2) without RPE is responsible to fit f⋆IH2
. Specifically,

W
(2,1)
Q =W

(2,1)
K = 0,W

(2,1)
V =

(
0 w

(2,1)
V

0 0

)
, p(2,2) = 0,W

(2,2)
V =

(
w

(2,2)
V 0
0 0

)
.

Then the second layer processes X(1) and outputs the last token:

TF−1(X; θ) =

(w
(2,1)
V ys)

L−2
s=2 softmax

((
− p(2,1)(L− 1− s)

)L−2

s=2

)⊤
(w

(2,2)
V xs)

L−2
s=2 softmax

((
xLw

(2,2)
Q w

(2,2)
K xs−1

)L−2

s=2

)⊤
 , (10)

where ys is given by (9). p(2,1), w
(2,1)
V are trainable parameters in SA(2,1), while

w
(2,2)
Q , w

(2,2)
K , w

(2,2)
V are trainable parameters in SA(2,2).

The set of all six trainable parameters across both layers is denoted by θ.

5.1.3 GRADIENT FLOW ON SQUARE LOSS

We consider the Gaussian input and square loss, both of which are commonly used in analyzing
transformer dynamics and ICL (Akyürek et al., 2022; Huang et al., 2023; Wang et al., 2024). The
loss is defined as:

L(θ) = 1

2
EX∼N (0,IL×L)

[
∥TF−1(X; θ)− f⋆(X)∥22

]
, (11)

To characterize the learning of G4 and IH2, we introduce the following two partial losses:

LG4
(θ) =

1

2
EX (TF−1,1(X; θ)− f⋆1 (X))

2
, LIH2

(θ) =
1

2
EX (TF−1,2(X; θ)− f⋆2 (X))

2
,

which correspond to the two dimensions in TF−1(X; θ)− f⋆(X) ∈ R2, respectively. It follows that
L(θ) = LG4

(θ) + LIH2
(θ).

Gradient flow (GF). We analyze the GF for minimizing the objective (11):
dθ(t)

dt
= −∇L(θ(t)), starting with θ(0) = (σinit, · · · , σinit)⊤, (12)

where 0 < σinit ≪ 1 is sufficiently small. Note that σinit ̸= 0 prevents ∇L(θ(0)) = 0.

Layerwise training paradigm. We consider a layerwise training paradigm in which, during each
stage, only one layer is trained by GF. Specifically,

• Training Stage I: In this phase, only the parameter in the first layer, i.e., p(1,1), is trained.

• Training Stage II: In this phase,the first layer parameter p(1,1) keeps fixed and only parameters
in the second layer are trained: w(2,1)

V , w
(2,2)
V , p(2,1), w

(2,2)
Q , w

(2,2)
K .

This type of layerwise training has been widely used to study the training dynamics of neural
networks, including FFN networks (Safran and Lee, 2022; Bietti et al., 2023; Wang et al., 2023) and
transformers (Tian et al., 2023; Nichani et al., 2024; Chen et al., 2024b).
Lemma 5.3 (Training Stage I). For the Training Stage I, lim

t→+∞
p(1,1)(t) = +∞.

According to (9), this lemma implies that, at the end of Training Stage I, the first layer captures the
preceding token xs−1 for each token xs, i.e., ys = xs−1. This property is crucial for transformers to
implement induction heads and aligns with our approximation result in Theorem 4.1. The proof of
Lemma 5.3 is deferred to Appendix B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2 TRAINING STAGE II: TRANSITION FROM 4-GRAM TO INDUCTION HEAD

In this section, we analyze the dynamics in Training Stage II. We start from the following lemma:

Lemma 5.4 (Parameter balance). In Training Stage II, it holds that |w(2,2)
Q (t)|2 ≡ |w(2,2)

K (t)|2.

Lemma 5.4 is similar to the balance result for homogeneous networks (Du et al., 2018), and its
proof can be found at the start of Appendix C. By this lemma, we can define w(2,2)

KQ := wQ ≡ wK .
Additionally, Lemma 5.3 ensures that p(1,1) = +∞ holds during Stage II. For simplicity, we denote
wV1

:= w
(2,1)
V , wV2

:= w
(2,2)
V , p := p(2,1), wKQ := w

(2,2)
KQ . Consequently, the training dynamics are

reduced to four parameters
θ = (wV1

, wV2
, p, wKQ) ,

where we still denote the set of parameters as θ without introducing ambiguity. It is important to note
that the problem remains highly non-convex due to the joint optimization of both inner parameters
(p, wKQ) and outer parameters (wV1 , wV2) in the two heads. At this training stage, GF has a unique
fixed point:

wV1
=

α⋆

1 + α⋆
, wV2

=
1

1 + α⋆
, p = +∞, wKQ = w⋆,

which corresponds to a global minimizer of the objective (11).

0 20000 40000 60000 80000 100000

iterations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Total loss L(θ(t))

Phase I

Phase II

Phase III

Phase IV

0 20000 40000 60000 80000 100000

iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

L G
4
(θ

(t
))

0.000

0.001

0.002

0.003

0.004

L I
H

2
(θ

(t
))

Partial loss LG4
(θ(t)), LIH2

(θ(t))

0 20000 40000 60000 80000 100000

iterations

0.0

0.5

1.0

1.5

2.0

Four parameters

p (for G4)

wV1
(for G4)

WKQ (for IH2))

wV2
(for IH2)

Figure 2: Visualize the dynamical behavior of Training Stage II with total loss, partial loss, and the parameter
evolution. Here, α⋆ = 1, w⋆ = 0.49, σinit = 0.01, L = 40. The is clearly shown that transformer learns the
4-gram component first and then, starts to learn the induction head mechanism. Notably, the entire dynamics
unfold in four distinct phases, consistent with our theoretical results (Theorem 5.5). For more experimental
details, we refer to Appendix E.1.

As shown in Figure 2, a learning transition from the 4-gram mechanism to the induction head
mechanism does occur in our setting. Moreover, the learning process exhibits a four-phase dynamics.
The next theorem provides a precise characterization of the four phases, whose proof can be found in
Appendix C.

Theorem 5.5 (Learning transition and 4-phase dynamics). Let α⋆ = Ω(1) and w⋆ = O(1), and we
consider the regime of small initialization (0 < σinit ≪ 1) and long input sequences (L≫ 1). Then
we have the following results:

• Phase I (partial learning). In this phase, most of the 4-gram component in the mixed target is
learned, while a considerable number of induction head component have not yet been learned.
Specifically, let TI = O(1), then we have the following estimates:

LG4
(θ(TI)) ≤ 0.01 · LG4

(θ(0)), LIH2
(θ(TI)) ≥ 0.99 · LIH2

(θ(0)).

• Phase II (plateau) + Phase III (emergence). In these two phases, the learning of the induction
head first gets stuck in a plateau for TII time, then is learned suddenly. Specifically, denoted by
an observation time To = Θ(L), we have the following tight estimate of the duration:

TII := inf
{
t > To : LIH2

(θ(t)) ≤ 0.99 · LIH2
(θ(To))

}
= Θ

(
(α⋆ + 1)2L log(1/σinit)/w

⋆2
)
;

TIII := inf
{
t > To : LIH2

(θ(t)) ≤ 0.01 · LIH2
(θ(To))

}
= Θ

(
(α⋆ + 1)2L log(1/σinit)/w

⋆2
)
.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

During these phases, the parameter wKQ (for learning w⋆ in IH2) increases exponentially:

wKQ(t) = σinit · exp
(
Θ

(
w⋆2t

(1 + α⋆)2L

))
, t < TIII.

• Phase IV (convergence). In this phase, the loss converges toward zero. Specifically, the
following convergence rates hold for all t > TIII :

LG4
(θ(t)) = O

(
1

t

)
, LIH2

(θ(t)) = O
(
exp

(
−Ω

(
w⋆2t

(1 + α⋆)2L

)))
,

and L(θ(t)) = LG4
(θ(t)) + LIH2

(θ(t)).

By this theorem, the 4-gram mechanism is first learned, taking time TI. Then, the learning of the
induction head mechanism enters a plateau, taking time TII, followed by a sudden emergence of
learning, taking time TIII − TII. Finally, the loss for both components converges to zero.

The clear learning transition. When any one of L,α⋆, 1/σinit, 1/w⋆ is sufficiently large, Phase II
lasts for TII ≫ 1. During this phase, the 4-gram component has been learned well but the induction
head component remains underdeveloped, demonstrating a distinct learning transition. Moreover,
Theorem 5.5 and its proof reveal two key factors that drive this transition:

• Time-scale separation due to high- and low-order parameter dependence in self attention.
The learning of DP and RPE components differ in their parameter dependencies. DP component
exhibits a quadratic dependence on the parameter wKQ, while RPE component shows linear
dependence on the parameter p. With small initialization σinit ≪ 1, a clear time-scale separation
emerges: |ẇKQ| ∼ wKQ ≪ 1 (DP, slow dynamics) and |ṗ| ∼ 1 (RPE, fast dynamics).
Consequently, the induction head (fitted by DP) is learned much slower than the 4-gram
component (fitted by RPE). This time-scale separation accounts for the term log(1/ϵinit) in the
plateau time TII.

• Speed difference due to component proportions in the mixed target. The 4-gram target
component and the induction-head component have differing proportions in the mixed target.
A simple calculation shows: LG4

(0) ∼ α⋆2/(1 + α⋆)2; If w⋆ = O(1), then LIH2
(0) ∼

1/[(1 + α⋆)2L]. Notably, LIH2
(0) is significantly smaller than LG4

(0). This proportion disparity
accounts for the (1 + α⋆)2L term in the plateau time TII.

Proof idea. We highlight that our fine-grained analysis of entire learning process is guided by two key
observations: 1) the dynamics of the two heads can be decoupled; 2) there exist a distinct transition
point in the dynamics of each head, as shown in Figure 2 (right). These insights lead us to divide the
analysis of each head into two phases: a monotonic phase and a convergence phase.

6 EXPERIMENTAL VALIDATION

To further support both our approximation results and optimization dynamics, we conduct a series of
experiments ranging from simple toy models to real-world natural language training tasks. Due to
space constraints, the detailed experimental setups and results are presented in Appendix E.

7 CONCLUSION

In this work, we present a comprehensive theoretical analysis of how transformers implement
induction heads, examining both the approximation and optimization aspects. From the approximation
standpoint, we identify the distinct roles of each transformer component in implementing induction
heads of varying complexity. On the optimization side, we analyze a toy setting, where we clearly
characterize how learning transitions from n-grams to induction heads. Looking forward, an important
direction for future research is to investigate the dynamics of learning general induction heads, which
are crucial for realizing stronger ICL capabilities.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Emmanuel Abbe, Samy Bengio, Enric Boix-Adsera, Etai Littwin, and Joshua Susskind. Transformers
learn through gradual rank increase. Advances in Neural Information Processing Systems, 36,
2024. 3

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36, 2024. 3

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022. 2, 8

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes.
arXiv preprint arXiv:1610.01644, 2016. 42, 43

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token
selection in attention mechanism. Advances in Neural Information Processing Systems, 36:48314–
48362, 2023. 3

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023. 2, 32

Andrew R Barron. Neural net approximation. In Proc. 7th Yale Workshop on Adaptive and Learning
Systems, volume 1, pages 69–72, 1992. 19

Andrew R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information theory, 39(3):930–945, 1993. 19

Andrew R Barron. Approximation and estimation bounds for artificial neural networks. Machine
Learning, 14(1):115–133, 1994. 19

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages. Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2020. 2

Alberto Bietti, Joan Bruna, and Loucas Pillaud-Vivien. On learning gaussian multi-index models
with gradient flow. arXiv preprint arXiv:2310.19793, 2023. 8

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36, 2024.
2, 43

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 1

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multi-head
softmax attention for in-context learning: Emergence, convergence, and optimality. arXiv preprint
arXiv:2402.19442, 2024a. 3

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction heads: Provable
training dynamics and feature learning in transformers. arXiv preprint arXiv:2409.10559, 2024b.
3, 7, 8

Xingwu Chen and Difan Zou. What can transformer learn with varying depth? case studies on
sequence learning tasks. arXiv preprint arXiv:2404.01601, 2024. 2

Joy Crosbie and Ekaterina Shutova. Induction heads as an essential mechanism for pattern matching
in in-context learning. arXiv preprint arXiv:2407.07011, 2024. 1

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. International Conference on Learning Representations, 2019. 2

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
models: Layers are automatically balanced. Advances in neural information processing systems,
31, 2018. 9

Weinan E, Chao Ma, and Lei Wu. A priori estimates of the population risk for two-layer neural
networks. Communications in Mathematical Sciences, 17(5):1407–1425, 2019. 19

Weinan E, Chao Ma, and Lei Wu. The barron space and the flow-induced function spaces for neural
network models. Constructive Approximation, pages 1–38, 2021. 19

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning, pages
5793–5831. PMLR, 2022. 2, 39

Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The evolution
of statistical induction heads: In-context learning markov chains. arXiv preprint arXiv:2402.11004,
2024. 2, 43, 44

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html. 1, 2, 3, 4, 5, 7

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022. 2

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. International Conference on
Machine Learning, 2023. 2

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023. 1

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020. 2

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. arXiv preprint
arXiv:2310.05249, 2023. 3, 7, 8

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.
1

Haotian Jiang and Qianxiao Li. Approximation theory of transformer networks for sequence modeling.
arXiv preprint arXiv:2305.18475, 2023. 2, 19

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. Training nonlinear
transformers for efficient in-context learning: A theoretical learning and generalization analysis.
arXiv preprint arXiv:2402.15607, 2024. 3

Chao Ma, Stephan Wojtowytsch, Lei Wu, and Weinan E. Towards a mathematical understanding
of neural network-based machine learning: what we know and what we don’t. arXiv preprint
arXiv:2009.10713, 2020. 19

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023. 2

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016. 40, 41

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

William Merrill and Ashish Sabharwal. The expresssive power of transformers with chain of thought.
arXiv preprint arXiv:2310.07923, 2023. 2

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022. 2

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024. 3, 8

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022. 1, 2, 3, 4

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing complete. The Journal of
Machine Learning Research, 22(1):3463–3497, 2021. 2

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. International Conference on Learning Representations, 2022. 4

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020. 4

Nived Rajaraman, Marco Bondaschi, Kannan Ramchandran, Michael Gastpar, and Ashok Vardhan
Makkuva. Transformers on markov data: Constant depth suffices. arXiv preprint arXiv:2407.17686,
2024. 2, 6

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. International Conference on Learning Representations, 2024. 2

Michael Reed and Barry Simon. Methods of modern mathematical physics: Functional analysis,
volume 1. Gulf Professional Publishing, 1980. 19

Itay Safran and Jason Lee. Optimization-based separations for neural networks. In Conference on
Learning Theory, pages 3–64. PMLR, 2022. 8

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the induction
heads task. arXiv preprint arXiv:2408.14332, 2024a. 2, 5

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and logarith-
mic depth. arXiv preprint arXiv:2402.09268, 2024b. 1, 2, 5

Johannes Schmidt-Hieber et al. Nonparametric regression using deep neural networks with ReLU
activation function. Annals of Statistics, 48(4):1875–1897, 2020. 20

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948. 1, 3

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers really learn
in-context by gradient descent? arXiv preprint arXiv:2310.08540, 2023. 2

Jonathan W Siegel and Jinchao Xu. Approximation rates for neural networks with general activation
functions. Neural Networks, 128:313–321, 2020. 19

Jiajun Song, Zhuoyan Xu, and Yiqiao Zhong. Out-of-distribution generalization via composition: a
lens through induction heads in transformers. arXiv preprint arXiv:2408.09503, 2024. 1

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. 4

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers as
support vector machines. arXiv preprint arXiv:2308.16898, 2023. 3

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Christos Thrampoulidis. Implicit bias of next-token prediction. arXiv preprint arXiv:2402.18551,
2024. 3

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Understanding
training dynamics and token composition in 1-layer transformer. Advances in Neural Information
Processing Systems, 36:71911–71947, 2023. 3, 7, 8

Bhavya Vasudeva, Puneesh Deora, and Christos Thrampoulidis. Implicit bias and fast convergence
rates for self-attention. arXiv preprint arXiv:2402.05738, 2024. 3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. 1, 3

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pages 35151–35174. PMLR, 2023. 2

Mingze Wang and Weinan E. Understanding the expressive power and mechanisms of transformer
for sequence modeling. Advances in Neural Information Processing Systems, 2024. 39

Zihao Wang, Eshaan Nichani, and Jason D Lee. Learning hierarchical polynomials with three-layer
neural networks. arXiv preprint arXiv:2311.13774, 2023. 8

Zixuan Wang, Stanley Wei, Daniel Hsu, and Jason D Lee. Transformers provably learn sparse token
selection while fully-connected nets cannot. arXiv preprint arXiv:2406.06893, 2024. 2, 3, 8

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on
approximating turing machines with transformers. Advances in Neural Information Processing
Systems, 35:12071–12083, 2022. 2

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Conference
on Machine Learning, pages 11080–11090. PMLR, 2021. 2

Norman Yarvin and Vladimir Rokhlin. Generalized gaussian quadratures and singular value de-
compositions of integral operators. SIAM Journal on Scientific Computing, 20(2):699–718, 1998.
19

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? arXiv preprint
arXiv:1912.10077, 2019. 2

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023. 3

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix

A Proofs in Section 4 15

A.1 Proof of Theorem 4.1 . 15

A.2 Proof of Theorem 4.3 . 16

A.3 Proof of Theorem 4.4 . 19

B Proofs of Optimization Dynamics: Training Stage I 24

C Proofs of Optimization Dynamics: Training Stage II 26

C.1 Dynamics of the parameters for 4-gram . 27

C.2 Dynamics of the parameters for induction head 32

C.3 Proof of Theorem 5.5 . 37

D Useful Inequalities 39

E Experiments 40

E.1 Experimental details for Figure 2 . 40

E.2 Additional experiments supporting optimization dynamics 40

E.3 Experiments supporting approximation results . 42

F Detailed Comparison with Related Works 43

A PROOFS IN SECTION 4

A.1 PROOF OF THEOREM 4.1

IH2(XL) = (xs)
L−1
s=2 softmax

((
x⊤LW

⋆xs−1

)L−1

s=2

)⊤
, (13)

Theorem A.1 (Restatement of Theorem 4.1). Let IH2 satisfy Eq. (13). Then, there exists a constant
C > 0 and a two-layer single-head transformer TF (without FFNs), with D = 2d, W (1,1)

K =

W
(1,1)
Q = 0, p(2,1) = 0, and ∥W (2,1)

K ∥, ∥W (2,1)
Q ∥ ≤ O(1, ∥W ⋆∥F), such that

sup
L∈N+

|||IH2 − TF|||L,∞ ≤ C

ep(1,1)
.

Proof. We consider two-layer single-head transformer without FFN, where the first layer has the
residual block, while the second layer does not have the residual block.

We first embed each token into RD as
(
xs
0

)
and take W (1)

V =

(
0 0

Id×d 0

)
, then the s-th output

token of the first layer is(
xs
ys

)
=

(
xs

(xτ)
s−1
τ=1 softmax

((
− p(1,1)(s− 1− τ)

)s−1

τ=1

))
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Then for the second layer, we choose p(2,1) = 0,

W
(2,1)
Q =

(
0 0

Id×d 0

)
, W

(2,1)
K =

(
0 0
0 W ⋆

)
, W

(2,1)
V =

(
Id×d 0
0 0

)
∈ RD×D,

and the projection W (2)
O = (Id×d 0d×d) ∈ Rd×D.

Then the last output token of the second layer is

(xs)
L−1
s=2 softmax

((
x⊤LW

⋆ys
)L−1

s=2

)⊤
.

By Lemma D.1 , for any L ∈ N+

|||IH2 − TF|||L,∞
=sup

XL

∥IH(XL)− TF−1(XL)∥∞

=

∥∥∥∥(xs)L−1
s=2 softmax

((
x⊤LW

⋆ys
)L−1

s=2

)⊤
− (xs)

L−1
s=2 softmax

((
x⊤LW

⋆xs−1

)L−1

s=2

)⊤∥∥∥∥
∞

≤∥(xs)L−1
s=2 ∥∞,∞

∥∥∥softmax
((
x⊤LW

⋆ys
)L−1

s=2

)
− softmax

((
x⊤LW

⋆xs−1

)L−1

s=2

)∥∥∥
1

≤2 sup
2≤s≤L−1

|x⊤LW ⋆ys − x⊤LW
⋆xs−1|

≤2∥x⊤LW ⋆∥1 sup
s

∥ys − xs−1∥∞

≤2
∑
i,j

|W ⋆
i,j | sup

s

∥∥∥∥∥(xτ)s−1
τ=1 softmax

((
−p(1,1)(s− 1− τ)

)s−1

τ=1

)⊤

− xs−1

∥∥∥∥∥
∞

≤2∥W ⋆∥1,1 sup
s

∥∥∥∥softmax

((
−p(1,1)(s− 1− τ)

)s−1

τ=1

)
− es−1

∥∥∥∥
1

≤4∥W ⋆∥1,1
e−p

(1,1)

1− e−p(1,1)
≤ O

(
e−p

(1,1)
)
.

A.2 PROOF OF THEOREM 4.3

IHn(XL) = (xs)
L−1
s=n softmax

((
X⊤
L−n+2:LW

⋆Xs−n+1:s−1

)L−1

s=n

)⊤
, (14)

Theorem A.2 (Restatement of Theorem 4.3). Let IHn satisfy Eq. (14). Then for any q ∈ N+ , there
exists a constant Cq,n > 0 and a two-layer H-head transformer TF(·) (without FFNs), with D = nd,
such that:

sup
L∈N+

|||IHn − TF|||L,∞ ≤ C

(
ne1+0.01n

H

)q
.

Proof. We consider two-layer multi-head transformer without FFN, where the first layer has the
residual block, while the second layer does not have the residual block.

First, we choose the embedding dimension D = nd, and parameters in the embedding map

WE =

(
Id×d

0(D−d)×d

)
∈ RD×d, bE = 0 ∈ RD,

then each token x(0)s after embedding is

x(0)s =WExs + bE =

(
xs
0

)
∈ RD.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

This proof can be summarized as the following process for TF−1:

(xs)
L−1
s=n softmax

((
X⊤
L−n+2:LW

⋆Xs−n+1:s−1

)L−1

s=n

)⊤
Step II. 2-st Attn ↑

XL−n+2:L

Step I. 1-st Attn ↑
(x⊤L ,0

⊤
D−d)

⊤

Step I. The first layer. We use 1-st Attn with residual to copy the previous tokens
(xs−n+1, · · · , xs−1) of each token xs. We use H =

∑n−1
i=1 Hi attention heads to realize this

step, and the following projection matrices are needed:

Pi := (0d×id, Id×d, 0d×(D−(i+1)d)) ∈ Rd×D, i = 1, . . . , n− 1.

By lemma D.2, there exist a constant C > 0 such that: for any rate q ∈ N+, there exists a function

ϕexpi (t) =

Hi∑
h=1

αh,ie
−βh,i(t−1)

such that βh > 0 and

∥I {· = i} − ϕexpi (·)∥ℓ1(N) =
+∞∑
s=i

|I {s = 1} − ϕexp(s)| ≤ Ceq+0.01(q+1)i

Hq
i

For h =
∑i−1
j=1Hj , 1 +

∑i−1
j=1Hj , . . . ,

∑i
j=1Hj , we choose parameters as follows

p(1,h) = βh,i, W
(1,h)
V = αh,i

 Hi∑
j=0

exp(−βh,i(j − 1))

Si,

W
(1,h)
K =W

(1,h)
Q = 0, W

(1)
O = ID×D

where Si ∈ RD×D is a shift matrix that takes out the first d elements of a vector and shifts it backward
to the (id+ 1)-th to (i+ 1)d-th elements. ThenPi

∑i
j=1Hj∑

h=
∑i−1

j=1Hj

SA(1,h)(X
(0)
L)


−1

=

∑i
j=1Hj∑

h=
∑i−1

j=1Hj

αh,i

L−1∑
s=1

e−βh,i(s−1)xL−s.

We denote x(1)L := SA(1)(X
(0)
L)−1, then the approximation error of this step is

ε
(1)
SA := sup

s

∥∥∥∥∥∥∥x(1)s −

 xs
...

xs−n+1


∥∥∥∥∥∥∥
∞

≤ sup
s

n−1∑
i=1

∥∥∥Pix(1)s − xs−i

∥∥∥
∞

≤ sup
s

n−1∑
i=1

∥I {· = i} − ϕexpi (·)∥ℓ1(N) ≤ Ceq
n−1∑
i=1

e0.01(q+1)i

Hq
i

.

Consequently, one detail is to assign the head number {Hi}ni=1 such that the error’s sum∑n−1
i=1

e0.01(q+1)i

Hq
i

is as small as possible. Our way is solving the minimization problem

min :

n−1∑
i=1

e0.01(q+1)i

Hq
i

s.t.

n−1∑
i=1

Hi = H,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

which suggests that we should choose the head number:

Hi =
e0.01i∑n−1
j=1 e

0.01j
, i ∈ [n− 1].

Thus, we obtain the bound

ε
(1)
SA ≤ Ceq

Hq

(
n−1∑
i=1

e0.01i

)q
≤ C

(
ene0.01n

H

)q
.

Additionally, we denote the output of this step as

x(1)s :=


xs
x̂s−1

...
x̂s−n+1

 := X̂s−n+1:s−1.

We choose H large enough so that x(1)s ∈ [−2, 2]D.

Step II. The second layer. For the second Attn, we only need use the first head (by settingW (2,h)
V = 0

for h ≥ 1). Specifically, we choose p(2,1) = 0,

W
(2,1)
Q =

(
0 0

I(D−d)×(D−d) 0

)
, W

(2,1)
K =

(
0 0
0 W ⋆

)
, W

(2)
V =

(
Id×d 0
0 0

)
∈ RD×D,

and the projection W (2)
O =

(
Id×d 0(D−d)×d

)
∈ Rd×D.

Then the output of this layer is

x
(2)
L = (xs)

L−1
s=n softmax

((
X̂⊤
L−n+2:LW

⋆X̂s−n+1:s−1

)L−1

s=n

)⊤
According to Lemma D.1,∥∥∥∥x(2)L − (xs)

L−1
s=n softmax

((
X⊤
L−n+2:LW

⋆Xs−n+1:s−1

)L−1

s=n

)⊤∥∥∥∥
∞

≤
L−1∑
s=n

|softmax
((
X̂⊤
L−n+2:LW

⋆X̂s−n+1:s−1

)L−1

s=n

)⊤
− softmax

((
X⊤
L−n+2:LW

⋆Xs−n+1:s−1

)L−1

s=n

)⊤)
|

≤2max
s

|X̂⊤
L−n+2:LW

⋆X̂s−n+1:s−1 −X⊤
L−n+2:LW

⋆Xs−n+1:s−1|

≤2∥W ⋆∥(1,1) · ε(1)SA .

Since the above inequality holds for any L and XL, we have:

sup
L∈N+

|||IHn − TF|||L,∞ ≤ C

(
ne1+0.01n

H

)q
.

Additionally, our proof primarily focuses on the case of H ≥ n. For the case of H < n, the
approximation error can be trivially bounded by:

sup
L∈N+

|||IHn − TF|||L,∞ ≤ sup
L∈N+

|||IHn − 0|||L,∞ ≤ 1 ≤ C

(
ne1+0.01n

H

)q
.

Then, the two cases can be unified.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3 PROOF OF THEOREM 4.4

A.3.1 APPROXIMATION RESULTS FOR FFNS

Since the setting in this subsection includes FFNs, we introduce the following preliminary results
about the approximation of FFNs.

The well-known universal approximation result for two-layer FNNs asserts that two-layer FNNs
can approximate any continuous function (Barron, 1992; 1993; 1994). Nonetheless, this result lacks
a characterization of the approximation efficiency, i.e., how many neurons are needed to achieve
a certain approximation accuracy? Extensive pre-existing studies aimed to address this gap by
establishing approximation rates for two-layer FFNs. A representative result is the Barron theory (E
et al., 2019; 2021; Ma et al., 2020): any function f in Barron space B can be approximated by a
two-layer FFN with M hidden neurons can approximate f efficiently, at a rate of O(∥f∥B/

√
M).

This rate is remarkably independent of the input dimension, thus avoiding the Curse of Dimensionality.
Specifically, Barron space is defined in as follows:
Definition A.3 (Barron space (E et al., 2019; 2021; Ma et al., 2020)). Consider functions f : X → R
that admit the following representation: f(x) =

∫
Ω
aσ(b⊤x + c)ρ(da, db, dc), x ∈ X . For any

p ∈ [1,+∞], we define the Barron norm as ∥f∥Bp
:= infρ

(
Eρ [|a|p(∥b∥1 + |c|)p]

)1/p
. Then the

Barron space are defined as: Bp := {f ∈ C : ∥f∥Bp
< +∞}.

Proposition A.4 (E et al. (2019)). For any p ∈ [1,+∞], Bp = B∞ and ∥f∥Bp
= ∥f∥B∞

.

Remark A.5. From the Proposition above, the Barron spaces Bp are equivalent for any p ∈ [1,+∞].
Consequently, in this paper, we use B and ∥·∥B to denote the Barron space and Barron norm.

The next lemma illustrates the approximation rate of two-layer FFNs for Barron functions.
Lemma A.6 (Ma et al. (2020)). For any f ∈ B, there exists a two-layer ReLU neural network

FFN(x) =
M∑
k=1

awσ(b
⊤
k x+ ck) with M neurons such that

∥f − FFN∥L∞([0,1]d) ≤ Õ
(∥f∥B√

M

)
.

A.3.2 PROPER ORTHOGONAL DECOMPOSITION

Proper orthogonal decomposition (POD) can be viewed as an extension of the matrix singular value
decomposition (SVD) applied to functions of two variables. Specifically, for a square integrable
function g : I × I → R, it has the following decomposition (Theorem 3.4 in Yarvin and Rokhlin
(1998), Theorem VI.17 in Reed and Simon (1980)):

g(u, v) =

∞∑
k=1

σkϕk(u)ψk(v). (15)

Here, ϕk, ψk are orthonormal bases for L2(I), and σk ≥ 0 are the singular values, arranged in
descending order.

Recently, Jiang and Li (2023) also used POD to study the approximation rate of single-layer single-
head Transformer for the targets with nonlinear temporal kernels.

Given that two-layer FFNs can efficiently approximate Barron functions (Ma et al., 2020), which is
dense in L2([0, 1]d) (Siegel and Xu, 2020), we introduce the following technical definition regarding
the well-behavior POD, which is used for our theoretical analysis.
Definition A.7 (Well-behaved POD). Let the POD of g : [−2, 2]D × [−2, 2]D 7→ R be g(u, v) =∑∞
k=1 σkϕk(u)ψk(v). We call the function g has α-well-behaved POD (α > 0) if:

• The decay rate of singular values satisfies σk = O(1/k1+α);

• The L∞ norms, Barron norms, and Lipschitz norms of the POD bases are all uniformly bounded:
supk

(
∥ϕk∥L∞ ∨ ∥ψk∥L∞ ∨ ∥ϕk∥B ∨ ∥ψk∥B ∨ ∥ϕk∥Lip ∨ ∥ψk∥Lip

)
<∞.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.3.3 PROOF OF THEOREM 4.4

GIHn(XL) = (xs)
L−1
s=n softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)⊤
, (16)

Theorem A.8 (Restatement of Theorem 4.4). Let GIHn satisfy Eq. (16). Suppose the similarity
function g is α-well-behaved (see Definition A.7). Then, for any q > 0, there exist constants
Ag,q,n, Bg,α > 0 and a two-layer H-head transformer TF(·) with FFN of width M , such that the
following approximation rate holds:

|||GIHn − TF|||L,2 ≤ Ag,q,n
Hn

+
Bg,αL

1/(1+2α)

Mα/(1+3α)
.

Proof. We consider two-layer multi-head transformer with FFN, where the first layer has the residual
block.

First, we set an constant K ∈ N+, and we will optimize it finally. We choose the embedding
dimension D = nd+ 2(n− 1)K, and the flowchart of the theorem proof is as follows:

(xs)
L−1
s=n softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)⊤
Step III. 2-st Attn ↑(

x⊤L , . . . , x̂L−n+1, ϕ̂1(X̂L−n+2:L), . . . , ϕ̂K(X̂L−n+2:L),

ψ̂1(X̂L−n+1:L−1), . . . , ψ̂K(X̂L−n+1:L−1)
)⊤

Step II. 1-st FFN ↑
(x⊤L , x̂L−1, . . . ,x̂L−n+1, 0

⊤)⊤

Step I. 1-st Attn ↑
(x⊤t ,0

⊤)⊤

Recalling Definition A.7, there exists constants C∞
g , C

B
g , C

Lip
g > 0 such that:

sup
k

(∥ϕk∥∞ ∨ ∥ψk∥∞) ≤ C∞
g , sup

k
(∥ϕk∥B ∨ ∥ψk∥B) ≤ CB

g , sup
k

(
∥ϕk∥Lip ∨ ∥ψk∥Lip

)
≤ CLip

g .

Additionally, σk = O(1/k1+α) implies that there exits a Cα > 0 such that:
∞∑
k=K

σk <
Cα
Kα

, ∀K ≥ 1.

Step I: Error in 1-st Attn layer. This step is essentially the same as Step I in the proof of Theorem
4.3, so we write down the error of the first Attn layer directly:

ϵ
(1)
SA ≤ Cq,n

Hn
.

Moreover, due to
∥∥∥X̂s−n+2:s −Xs−n+2:s

∥∥∥ ≤ ϵ
(1)
SA , for all s, we have:

X̂s−n+2:s ∈ [−2, 2]D.

Step II: Error in 1-st FFN layer. The 1-st FFN is used to approximate ϕk, ψk (k = 1, . . . ,K).
Each function is approximated by a 2-layer neural networks with M

2K neurons defined on RD, and
the FFNs are concatenated together (refer to section 7.1 "Parallelization" in Schmidt-Hieber et al.
(2020)) as FFN(1). We denote them as

ϕ̂k(y) =

M
2K∑
m=1

akmσ(b
k⊤

m y + ckm)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

ψ̂k(y) =

M
2K∑
m=1

ãkmσ(b̃
k⊤

m y + c̃km)

Then according to lemma A.6, such FFNs exist and satisfy the following properties hold for all
1 ≤ k ≤ K:

∥ϕ̂k − ϕk∥L∞([−2,2]D) ≤ Õ
(
∥ϕk∥B

√
K

M

)
≤ ϵ

(1)
FFN,

∥ψ̂k − ψk∥L∞([−2,2]D) ≤ Õ
(
∥ψk∥B

√
K

M

)
≤ ϵ

(1)
FFN,

where

ϵ
(1)
FFN := ·Õ

(
CB
g

√
K

M

)
.

Step III: Error in 2nd Attn layer.

We use matrices in the second layer to take out elements needed

W
(2)
V = (Id×d, 0d×D) ∈ Rd×D,

W
(2,1)
K =

K∑
i=k

√
σkek,(n−1)d+k ∈ RD×D,

W
(2,1)
Q =

K∑
k=1

√
σkek,(n−1)d+K+k ∈ RD×D.

We denote the rank-K truncation of g as

gK :=

K∑
k=1

σkϕkψk,

and its approximation as

ĝK :=

K∑
k=1

σkϕ̂kψ̂k

The second FFN is set to be identity map and we denote the final output as

x
(2)
L := (xs)

L−1
s=n softmax

((
ĝK
(
X̂L−n+2:L; X̂s−n+1:s−1

))L−1

s=n

)⊤
.

First, we consider the error under the first norm, ∥·∥∞, which can be divided the total error into three
components:∥∥∥∥x(2)L − (xs)

L−1
s=n softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)⊤∥∥∥∥
∞

≤
∥∥∥softmax

((
ĝK
(
X̂L−n+2:L; X̂s−n+1:s−1

))L−1

s=n

)
− softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)∥∥∥
∞

≤
∥∥∥softmax

((
ĝK
(
X̂L−n+2:L; X̂s−n+1:s−1

))L−1

s=n

)
− softmax

((
gK
(
X̂L−n+2:L; X̂s−n+1:s−1

))L−1

s=n

)∥∥∥
∞

+
∥∥∥softmax

((
gK
(
X̂L−n+2:L; X̂s−n+1:s−1

))L−1

s=n

)
− softmax

((
gK
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)∥∥∥
∞

+
∥∥∥softmax

((
gK
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)
− softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)∥∥∥
∞

≤max
s

∣∣∣ĝK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
X̂L−n+2:L, X̂s−n+1:s−1

)∣∣∣
+max

s

∣∣∣gK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
XL−n+2:L, Xs−n+1:s−1

)∣∣∣
+

L−1∑
s=n

∣∣gK(XL−n+2:L, Xs−n+1:s−1

)
− g
(
XL−n+2:L, Xs−n+1:s−1

)∣∣
(17)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

For the first term in RHS of (17), it holds that:

max
s

∣∣∣ĝK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
X̂L−n+2:L, X̂s−n+1:s−1

)∣∣∣
≤max

s

K∑
k=1

σk

∣∣∣ϕ̂k(X̂L−n+2:L)ψ̂k(X̂s−n+1:s−1)− ϕk(X̂L−n+2:L)ψk(X̂s−n+1:s−1)
∣∣∣

≤
K∑
k=1

σk

(∥∥∥ϕ̂k∥∥∥
L∞

∥∥∥ψ̂k − ψk

∥∥∥
L∞

+ ∥ψk∥L∞

∥∥∥ϕ̂k − ϕk

∥∥∥
L∞

)
≤ϵ(1)FFN ·

K∑
k=1

σk

(∥∥∥ϕ̂k∥∥∥
L∞

+ ∥ψk∥L∞

)
≤ϵ(1)FFN ·

K∑
k=1

σk

(
∥ϕk∥L∞ +

∥∥∥ϕ̂k − ϕk

∥∥∥
L∞

+ ∥ψk∥L∞

)
≤ϵ(1)FFN · (2C∞

g + 1)

K∑
k=1

σk ≤ (2C∞
g + 1)Cαϵ

(1)
FFN.

For the second term in RHS of (17), we have:

max
s

∣∣∣gK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
XL−n+2:L, Xs−n+1:s−1

)∣∣∣
≤max

s

K∑
k=1

σk

(
∥ϕk∥L∞ |ψk(X̂s−n+1:s−1)− ψ̂k(Xs−n+1:s−1)|

+ ∥ψk∥L∞ |ϕk(X̂L−n+1:L−1)− ϕk(XL−n+1:L−1)|
)

≤max
s

K∑
k=1

σk

(
∥ϕk∥L∞ ∥ψk∥Lip

∥∥∥X̂s−n+1:s−1 −Xs−n+1:s−1

∥∥∥
+ ∥ψk∥L∞ ∥ϕk∥Lip

∥∥∥X̂L−n+1:L−1 −XL−n+1:L−1

∥∥∥)
≤2C∞

g C
Lip
g ϵ

(1)
SA ·

(
max
s

K∑
k=1

σk

)
≤ 2C∞

g C
Lip
g Cαϵ

(1)
SA .

Additioanlly, the third term in RHS of (17), its L2 holds that:∫
[0,1]d×L

(
L−1∑
s=n

∣∣gK(XL−n+2:L, Xs−n+1:s−1

)
− g
(
XL−n+2:L, Xs−n+1:s−1

)∣∣)2

dX

≤(t− 1− n)

L−1∑
s=n

∫
[0,1]D×L

∣∣gK(X−n+2:t, Xs−n+1:s−1

)
− g
(
XL−n+2:L, Xs−n+1:s−1

)∣∣2 dX
=(L− 1− n)2

∫
[0,1]D×[0,1]D

|g(u, v)− gK(u; v)|2 dudv

=(L− 1− n)2
∫ (+∞∑

k=K+1

σkϕk(u)ψk(v)

)2

du dv

≤
∫ (+∞∑

k=K+1

σkϕ
2
k(u)

)(
+∞∑

k=K+1

σkψ
2
k(v)

)
du dv

≤(L− 1− n)2

(∞∑
k=K+1

σk

)2

≤ (L− 1− n)2C2
α

K2α
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Now we combine three error terms together to obtain the total L2 error for the output of this layer:

∫
X∈[0,1]d×L

∥∥∥∥x(2)L − (xs)
L−1
s=n softmax

((
g
(
XL−n+2:L;Xs−n+1:s−1

))L−1

s=n

)⊤∥∥∥∥2
∞

dX

≤3

∫
X∈[0,1]d×L

max
s

∣∣∣ĝK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
X̂L−n+2:L, X̂s−n+1:s−1

)∣∣∣2 dX

+ 3

∫
X∈[0,1]d×L

max
s

∣∣∣gK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
XL−n+2:L, Xs−n+1:s−1

)∣∣∣2 dX

+ 3

∫
X∈[0,1]d×L

(
L−1∑
s=n

∣∣gK(XL−n+2:L, Xs−n+1:s−1

)
− g
(
XL−n+2:L, Xs−n+1:s−1

)∣∣)2

dX

≤3max
s

∣∣∣ĝK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
X̂L−n+2:L, X̂s−n+1:s−1

)∣∣∣2
+ 3max

s

∣∣∣gK(X̂L−n+2:L, X̂s−n+1:s−1

)
− gK

(
XL−n+2:L, Xs−n+1:s−1

)∣∣∣2
+ 3

(
(L− 1− n)Cα

Kα

)2

≤3
(
(2C∞

g + 1)Cαϵ
(1)
FFN

)2
+ 3

(
2C∞

g C
Lip
g Cαϵ

(1)
SA

)2
+ 3

(
(L− 1− n)Cα

Kα

)2

≤3

(
(2C∞

g + 1)Cαϵ
(1)
FFN + 2C∞

g C
Lip
g Cαϵ

(1)
SA +

(L− 1− n)Cα
Kα

)2

.

This estimate implies that

|||GIHn − TF|||L,2

≤
√
3

(
2C∞

g C
Lip
g Cαϵ

(1)
SA + (2C∞

g + 1)Cαϵ
(1)
FFN +

(L− 1− n)Cα
Kα

)
≤O

(
Cg,q,n
Hn

)
+ Õ

(
Cg,α

√
K√

M

)
+O

(
tCα
Kα

) (18)

Step IV. Optimizing K in (18).

Notice that in RHS of (18), only Õ
(
Cg,α

√
K√

M

)
and O

(
LCα

Kα

)
depend on K.

By Young’s inequality, with p = α+ 1
2

α and q = 2(α+ 1
2), we have:

min
K

:
α

1
2 + α

Cg,α
√
K√

M
+

1
2

1
2 + α

LCα
Kα

=min
K

:
α

1
2 + α

(Cg,α√K√
M

) α
1
2
+α


1
2
+α

α

+
1
2

1
2 + α

(LCα
Kα

) 1
2

1
2
+α

2(1
2+α)

=
C ′
g,αL

1/(1+2α)

Mα/(1+2α)
.

Thus, we obtain our final bound:

|||GIHn − TF|||L,2 ≤ O
(
Cg,q,n
Hn

)
+

{
Õ
(
Cg,α

√
K√

M

)
+O

(
LCα
Kα

)}
min:K

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

≤O
(
Cg,q,n
Hn

)
+ Õ

(
C ′
g,αL

1/(1+2α)

Mα/(1+2α)

)
≤ Ag,q,n

Hn
+
Bg,αL

1/(1+2α)

Mα/(1+3α)
.

B PROOFS OF OPTIMIZATION DYNAMICS: TRAINING STAGE I

In this subsection we focus on training the first layer of Transformer model to capture the token ahead.
For simplicity, we introduce some notations:

p̃ := p(1,1), p := p(2,1), g := w
(2,1)
V , h := w

(2,2)
V , wK := w

(2,2)
K , wQ := w

(2,2)
Q ,

and denote the initialization of each parameter as p̃(0), p(0), g(0), wQ(0), wK(0), h(0) respectively.

We initialize p(0), wk(0), wQ(0) = 0 while the other parameters are all initialized at σinit. In this
training stage, we only train p̃. And our goal, the proof of Lemma 5.3 can be deduced from which,
is to prove:

lim
t→+∞

p̃(t) = +∞.

In this stage, the s-th output token of the first layer is represented as(
xs

(xτ)
s−1
τ=1 softmax

((
− p̃(s− 1− τ)

)s−1

τ=1

)⊤) ,
and the target function and output of transformer are as follows

f∗(X) =

 α⋆

1+α⋆xL−2

1
1+α⋆ (xs)

L−1
s=2 softmax

((
xLw

⋆2xs−1

)L−1

s=2

)⊤
 ,

fθ(X) =


g(0)

(∑s−1
τ=1 softmaxs(−p̃(s− 1− τ))xτ

)L−1

s=2
softmax

(
− p(0)(L− 1− s)L−1

s=2

)
h(0)(xs)

L−2
s=2 · softmax

((
wK(0)wQ(0)xL · (xτ)

s−1
τ=1 softmax

((
− p̃(s− 1− τ)

)s−1

τ=1

)⊤)L−2

s=2

)
=

(
g(0) 1

L−2

∑L−2
τ=1

(∑L−1
s=τ+1 softmax

(
− p̃(s− 1− t)s−1

t=1

)
t=τ

)
xτ

h(0) 1
L−2

∑L−2
s=2 xs

)
.

Since we only focus on p̃ and the other parameters remain the initialization value, the loss function
can be simplified as

L(θ) = E
X∼N(0,1)L

[
α⋆2

(1 + α⋆)2
x2L−2 +

g(0)2

(L− 2)2

L−2∑
τ=1

(
L−1∑
s=τ+1

softmax
(
− p̃(s− 1− t)s−1

t=1

)
t=τ

)2

x2τ

+
2g(0)

L− 2

α⋆

1 + α⋆
softmax

(
− p(0)(L− 1− s)L−1

s=2

)
s=L−1

x2L−2

]
+ C(w⋆, α⋆, w(0), h(0))

where the second term C(w⋆, α⋆, w(0), h(0)) is a constant depends on w⋆, α⋆, w(0) and h(0),
produced by calculating the error of the second head, i.e., loss of induction head, while the first term
is 4-gram loss.

We first define several functions that will be useful for calculation in this stage and the second one:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Function I. This function is purely defined for the calculation of dp
dt . Denoted by q(p̃) :=∑L−2

τ=1

(∑L−1
s=τ+1

ep̃(s−1−τ)∑s−2
k=0 e

−p̃k

)2
, we first prove q′(p̃) ≤ 0.

q(p̃) :=

L−2∑
τ=1

(
L−1∑
s=τ+1

ep̃(s−1−τ)∑s−2
k=0 e

−p̃k

)2

=

L−2∑
τ=1

(
L−1∑
s=τ+1

e−p̃(s−1−τ)

1− e−p̃(s−1)
(1− e−p̃)

)2

= (1− e−p̃)2
L−2∑
τ=1

(
L−1∑
s=τ+1

e−p̃(s−1−τ)

1− e−p̃(s−1)

)2

= (1− e−p̃)2
L−2∑
τ=1

e2p̃τ

(
L−1∑
s=τ+1

e−p̃(s−1)

1− e−p̃(s−1)

)2

= (1− e−p̃)2
L−2∑
τ=1

e2p̃τ

(
L−1∑
s=τ+1

1

ep̃(s−1) − 1

)2

Then we take its derivative of p̃

q′(p̃) = 2(1− e−p̃)e−p̃
L−2∑
τ=1

e2p̃τ

(
L−1∑
s=τ+1

1

ep̃(s−1) − 1

)2

+ (1− e−p̃)2
L−2∑
τ=1

2τe2p̃τ

(
L−1∑
s=τ+1

1

ep̃(s−1) − 1

)2

+ (1− e−p̃)2
L−2∑
τ=1

2e2p̃τ

(
L−1∑
s=τ+1

1

ep̃(s−1) − 1

)(
L−1∑
s=τ+1

−(s− 1)ep̃(s−1)

(ep̃(s−1) − 1)2

)

= 2(1− e−p̃)

L−2∑
τ=1

e2p̃τ

(
L−1∑
s=τ+1

1

ep̃(s−1) − 1

)(
L−1∑
s=τ+1

e−p̃ + τ(1− e−p̃)

ep̃(s−1) − 1
− (s− 1)ep̃(s−1)

(ep̃(s−1) − 1)2

)

q′(p̃)’s last factor can be formed as(
τ − (τ − 1)e−p̃

) (
ep̃(s−1) − 1

)
− (s− 1)ep̃(s−1)

ep̃(s−1) − 1)2

=
(τ + 1− s)ts−1 − (τ − 1)ts−2 − τ + τ−1

t

ep̃(s−1) − 1)2

where t = e−p̃ ≥ 1. Since s ≥ τ + 1, q′(p̃) ≤ 0.

Function II. For simplicity, we define M(p) and its derivative m(p):

M(p) :=

L−1∑
s=2

exp(−p(L− 1− s)) =

L−3∑
s=0

exp−ps = 1− e−p(L−2)

1− e−p
,

m(p) :=

l−3∑
s=1

s exp(−ps) = e−p − (L− 2)e−p(L−2) + (L− 3)e−p(L−1)

(1− e−p)2
.

Function III. The third function is derivative of softmax. By straightfoward calculation, we obtain:

d
dp

softmax
(
−p(L−1−t)L−1

t=2

)
t=L−1−s

=
d

dp
exp(−ps)∑L−3
τ=0 exp(−pτ)

=
−s exp(−ps)M(p) + exp(−ps)m(p)

M(p)2
.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Through the quantities and their properties above, we obtain the dynamic of p̃

dp̃
dt

= − g(0)2

(L− 2)2
q′(p̃) +

2α⋆g(0)

(1 + α⋆)(L− 2)

m(p)

M(p)2

≥ 2α⋆g(0)

(1 + α⋆)(L− 2)
e−p̃,

which implies:

lim
t→+∞

p̃(t) = +∞.

C PROOFS OF OPTIMIZATION DYNAMICS: TRAINING STAGE II

In this training stage, the first layer is already capable of capturing the token ahead i.e. ys = xs−1.
And we train the parameters wV1

, wV2
, p, wKQ in the second layer.

We start from proving the parameter balance lemma:

Lemma C.1 (Restate of Lemma 5.4). In Training Stage II, it holds that w(2,2)
Q

2
(t) ≡ w

(2,2)
K

2
(t).

Proof. Notice that

d
2dt

(
w

(2,2)
Q

2
(t)− w

(2,2)
K

2
(t)
)
= −w(2,2)

Q

∂L
∂w

(2,2)
Q

+ w
(2,2)
K

∂L
∂w

(2,2)
K

=− w
(2,2)
Q w

(2,2)
K

∂L
∂
(
w

(2,2)
Q w

(2,2)
K

) + w
(2,2)
K w

(2,2)
Q

∂L
∂
(
w

(2,2)
Q w

(2,2)
K

) ≡ 0.

Thus, we have:

w
(2,2)
Q

2
(t)− w

(2,2)
K

2
(t) ≡ w

(2,2)
Q

2
(0)− w

(2,2)
K

2
(0) = 0.

For simplicity, we still use the following notations:

p := p1, g := wV1
, w := wKQ, h := wV2

.

and notations for initialization p(0), g(0), w(0), h(0). Then the target function and output of Trans-
former can be formed as follows

f⋆(X) =

(
α⋆

1+α⋆xL−2

1
1+α⋆ (xs)

L−1
s=2 · softmax

((
w⋆2xLxs−1

)L−1

s=2

)) ,
TF(X; θ) =

g · (xs−1)
L−2
s=2 · softmax

(
(−p(L− 1− s))L−2

s=2

)
h · (xs)L−2

s=2 · softmax
((
w2xLxs−1

)L−2

s=2

)  .

And the loss function is expressed as:

L(θ) = 1

2
E

X∼N(0,1)L

[
∥f⋆(x)− TF(x; θ)∥2

]
=

1

2
EX

[(
α⋆

1 + α⋆
xL−2 − g · (xs−1)

L−2
s=2 · softmax

(
(−p(L− 1− s))L−2

s=2

))2
]

+
1

2
EX

[(
1

1 + α⋆
(xs)

L−1
s=2 · softmax

((
w⋆2xLxs−1

)L−1

s=2

)
− h · (xs)

L−2
s=2 · softmax

((
w2xLxs−1

)L−2

s=2

))2
]
.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

The total loss can naturally be divided into two parts:

L(θ) = LG4
(θ) + LIH2

(θ),

where

LG4
(θ) = LG4

(p, g)

=
1

2
EX

[(
α⋆

1 + α⋆
xL−2 − g · (xs−1)

L−2
s=2 · softmax

(
(−p(L− 1− s))L−2

s=2

))2
]
,

LIH2(θ) = LIH2(w, h)

=
1

2
EX

[(
1

1 + α⋆
(xs)

L−1
s=2 · softmax

((
w⋆2xLxs−1

)L−1

s=2

)
− h · (xs)

L−2
s=2 · softmax

((
w2xLxs−1

)L−2

s=2

))2
]
.

Notably, the dynamics of (p, g) and (w, h) are decoupled, which allows us to analyze them separately.

Additionally, we denote the optimal values of the parameters as:

p⋆ = +∞, g⋆ =
α⋆

1 + α⋆
, w⋆ := w⋆, h⋆ =

1

1 + α⋆
.

For the initialization scale and the sequence length, we consider the case:

σinit = O(1) ≪ 1, L = Ω(1/σinit) ≫ 1.

C.1 DYNAMICS OF THE PARAMETERS FOR 4-GRAM

First, we define two useful auxiliary functions:

M(p) :=
1− e−p(L−2)

1− e−p
,

m(p) :=
e−p − (L− 2)e−p(L−2) + (L− 3)e−p(L−1)

(1− e−p)2
.

Then, a straightforward calculation, combined with Lemma D.3 and Lemma D.4, yields the explicit
formulation of LG4

(θ) and the GF dynamics of p and g:

LG4
(θ) =

1

2

(
α⋆

1 + α⋆

)2

+
1

2
g2
M(2p)

M(p)2
− α⋆g

1 + α⋆
1

M(p)
. (19)

dp
dt

= −∂L
∂p

= −∂LG4

∂p
=

m(p)

M(p)2

[
g2
m(2p)

m(p)
− g2

M(2p)

M(p)
+

α⋆g

1 + α⋆

]
,

dg
dt

= −∂L
∂g

= −∂LG4

∂g
=

α⋆

1 + α⋆
1

M(p)
− g

M(2p)

M(p)2
,

Equivalently, the dynamics can be written as:

dp
dt

=
m(p)g

M(p)2

(
g⋆ − g

M(2p)

M(p)
+ g

m(2p)

m(p)

)
,

dg
dt

=
1

M(p)

(
g⋆ − g

M(2p)

M(p)

)
.

Notice that at the initialization, it holds that dp
dt |t=0 > 0 and dg

dt |t=0 > 0. Then we first define a hitting
time:

T g1 := inf{t > 0 : g(t) > g⋆}.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Noticing g(0) = σinit ≪ g⋆ and the continuity, T g1 > 0.

Our subsequent proof can be divided into two phases: a monotonic phase t < T g1 , and a stable
convergence phase t > T g1 .

Part I. Analysis for the monotonic phase t < T g1 .

dp
dt

=
m(p)g

M(p)2

(
g⋆ − g

M(2p)

M(p)
+ g

m(2p)

m(p)

)
=
m(p)g

M(p)2

(
g⋆ − g

1 + e−p(L−2)

1 + e−p
+ g

m(2p)

m(p)

)
,

dg
dt

=
1

M(p)

(
g⋆ − g

M(2p)

M(p)

)
=

1

M(p)

(
g⋆ − g

1 + e−p(L−2)

1 + e−p

)
.

It is easy to see that p, g are monotonically increasing for t < T g1 . We can choose sufficiently large

L = Ω(1/p(0)) = Ω(1/σinit)

such that:

(L− 3)e−(L−3)p(t), e−(L−5)p(t) < 0.0001, ∀p > σinit.

Then we can calculate the following three terms in the dynamics:

m(p)

M2(p)
=
e−p

(
1− (L− 2)e−p(L−3) + (L− 3)e−p(L−2)

)
1− e−p(L−2)

=
e−p(1 + ξ1(p))

1 + ξ2(p)
,

1

M(p)
=

1− e−p(L−2)

1− e−p
=

1 + ξ3(p)

1− e−p
,

m(2p)

m(p)
=

e−p
(
1− (L− 2)e−2p(L−3) + (L− 3)e−2p(L−2)

)
(1 + e−p)2

(
1− (L− 2)e−p(L−3) + (L− 3)e−p(L−2)

)
=

e−p(1 + ξ4(p))

(1 + e−p)2(1 + ξ5(p))
,

where the error functions satisfy:

|ξ1(p)|, · · · , |ξ5(p)| ≤ 0.0001, ∀t > T g1 .

Then the dynamics satisfy:

dp
dt

=
e−pg(1 + ξ1(p))

1 + ξ2(p)

(
g⋆ − g

1 + e−p(L−2)

1 + e−p
+

ge−p(1 + ξ3(t))

(1 + e−p)2(1 + ξ5(t))

)
,

dg
dt

=
1 + ξ3(p)

1− e−p

(
g⋆ − g

1 + e−p(L−2)

1 + e−p

)
.

When g < 1
2

α⋆

1+α⋆ , we have
dp
dg

≤ 2
(
e−p − e−2p

)
g.

By define T g1/2 := inf{t > 0 : g(t) > g⋆/2} and p̃ := p(T g1/2), we have

ln(ep̃ − 1) ≤ 1

4
g⋆2 − g(0)2 + ep(0) − 1 + ln(ep(0) − 1)

then p̃ ≤ O(
√
p(0)), from which we infer that p barely increases when t ≤ T g1/2.

For 0 ≤ t ≤ T g1/2,
dg
dt

≥ 1

1− e−p(0)

[
g⋆ − g

1 + e−p(0)

]

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

g ≥ g⋆(1 + e−p(0))) +
[
g(0)− g⋆(1 + e−p(0))

]
exp

(−t
1− e−2p(0)

)
so

T g1/2 ≤ (1− e−2p(0)) ln

(
g⋆(1 + e−p(0))− g(0)

g⋆
(
(1 + e−p(0))− 1

2

)) = O (2p(0))

For T g1/2 ≤ t ≤ T g1 , let p1 := p(T g1),

dp
dg

≤ 1.01e−p(1− e−p)g

(
1 +

g
1+e−p − g

(1+e−p)2

α⋆

1+α⋆ − g
1+e−p

)

≤ 1.01

4

α⋆

1 + α⋆
(1 + e−p1)

then

p1 − p(0) ≤ 1.01

4

(
α⋆

1 + α⋆

)2

(1 + ep1),

p1 ≤ 1

2
(

α⋆

1+α⋆

)2
− 1

,

and we take α⋆ > 1.

Since for T g1/2 ≤ t ≤ T g1 ,
dp
dt

≤ 2e−pg⋆
(
g⋆ − 1

8
g⋆
)
,

dp
dt

≥ 1

2
e−pg⋆

(
g⋆ − 1

1 + e−p1
g⋆
)
,

we have

T g1 − t1 ≤ O
(
(e2p1 − 1)

(
1 + α⋆

α⋆

)2
)
.

Hence, putting the two part of time together we have

T g1 ≤ O
(
p(0) + (e2p1 − 1)

(
1 + α⋆

α⋆

)2
)

= O
(
σinit + (e2p1 − 1)

(
1 + α⋆

α⋆

)2
)

= O(1).

(20)

Part II. Analysis for the convergence phase t > T g1 .

We will prove that, in this phase, (p, g) keep in a stable region, and the convergence occurs.

Recall the dynamics:

dp
dt

=
m(p)g

M(p)2

(
g⋆ − g

1 + e−p(L−2)

1 + e−p
+ g

m(2p)

m(p)

)
,

dg
dt

=
1

M(p)

(
g⋆ − g

1 + e−p(L−2)

1 + e−p

)
.

Using contradiction, it is easy to verify that for all t > T g1 ,

g⋆ < g(t) < 2g⋆,
dp(t)

dt
> 0,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

which means g has entered a stable region (although it is possible that g is non-monotonic), while p
keeps increase. In fact, if t̃ := inf{t > 0 : g(t) = 2g⋆}, then dg

dt |t̃ < 0, which leads to a contradiction.
If t̂ := inf{t > 0 : dp(t)

dt = 0}, then(
g⋆ − g

1 + e−p(L−2)

1 + e−p
+ g

m(2p)

m(p)

)∣∣∣∣
t̂

= 0,
dg
dt

< 0,

d
dt

(
g⋆ − g

1 + e−p(L−2)

1 + e−p
+ g

m(2p)

m(p)

)
= −g′ 1 + e−p(L−2)

1 + e−p
+ g′

m(2p)

m(p)
> 0,

where the last inequality leads to a contradiction.

Thus, p(t) > p(T g1) > p(0) = σinit holds in this phase. Therefore, the dynamics

dp
dt

=
e−pg(1 + ξ1(p))

1 + ξ2(p)

(
g⋆ − g

1 + e−p(L−2)

1 + e−p
+

ge−p(1 + ξ3(t))

(1 + e−p)2(1 + ξ5(t))

)
,

dg
dt

=
1 + ξ3(p)

1− e−p

(
g⋆ − g

1 + e−p(L−2)

1 + e−p

)
,

also satisfy

|ξ1(p)|, · · · , |ξ5(p)| ≤ 0.0001, ∀t > T g1 .

For simplicity, we consider the transform:

u := e−p.

Then the dynamics of u and g can be written as:

du
dt

= − (1 + ξ1(p))u
2g

1 + ξ2(p)

(
g⋆ − g

1 + uL−2

1 + u
+

gu(1 + ξ4(p))

(1 + u)2(1 + ξ5(p))

)
,

dg
dt

=
1 + ξ3(p)

1− u

(
g⋆ − g

1 + uL−2

1 + u

)
.

Notice that this dynamics are controlled by high-order terms. Consequently, we construct a variable
to reflect the dynamics of high-order term:

v := ug⋆ + (g⋆ − g).

Then the dynamics of u and v satisfy:

du
dt

= − (1 + ξ1(p))u
2g

1 + ξ2(p)

(
v − uL−2g

1 + u
+

gu(1 + ξ4(p))

(1 + u)2(1 + ξ5(p))

)
,

dv
dt

= − (1 + ξ1(p))u
2gg⋆

1 + ξ2(p)

(
v − uL−2g

1 + u
+

gu(1 + ξ4(p))

(1 + u)2(1 + ξ5(p))

)
− 1 + ξ3(p)

1− u2
(
v − uL−2g

)
.

Now we consider the Lyapunov function about u, v:

G(u, v) :=
1

2

(
u2 + v2

)
.

Then it is straightforward:

dG
2dt

= u
du
dt

+ v
dv
dt

=− u3g(1 + ξ1(p))

1 + ξ2(p)

(
v − uL−2g

1 + u
+

gu(1 + ξ4(p))

(1 + u)2(1 + ξ5(p))

)
− (1 + ξ1(p))u

2vgg⋆

1 + ξ2(p)

(
v − uL−2g

1 + u
+

gu(1 + ξ4(p))

(1 + u)2(1 + ξ5(p))

)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

− 1 + ξ3(p)

1− u2
(
v − uL−2g

)
v.

By |ξ1|, · · · , |ξ5| ≤ 0.0001, we have the following estimate for the Lyapunov dynamics:

dG
2dt

≤1.001g

1 + u
|u3v|+ 1.0001g2

1 + u
uL+1 − 0.999g2

(1 + u2)
u4

− 0.999gg⋆

1 + u
u2v2 +

1.001g2g⋆

1 + u
|uLv|+ 1.001g2g⋆

(1 + u2)
|u3v|

− 0.999

1− u2
v2 +

1.001g

1− u2
|uL−2v|

By uL−5 = e−p(L−5) < 0.0001 and 0 < u < e−p(T
g
1), we further have:

dG
2dt

≤ 1.002g

1 + u
|u3v| − 0.99g2

(1 + u)2
u4 − 0.999gg⋆

1 + u
u2v2 +

1.005g2g⋆

(1 + u)2
|u3v| − 0.999

1− u2
v2

≤− 0.99g2

(1 + u)2
u4 − 0.99gg⋆

1 + u
u2v2 − 0.99

1− u2
v2 + 1.01

(
g

1 + u
+

g2g⋆

(1 + u)2

)
|u3v|.

By using the following inequalities:

g2g⋆

(1 + u)2
|u3v| ≤ 1

2

(
1.98

1.01

gg⋆

1 + u
u2v2 +

1.01

1.98

g3g⋆

(1 + u)3
u4
)

g

1 + u
|u3v| ≤ 1

2

(
0.99

1.01
(1 + u)v2 +

1.01

0.99

g2

(1 + u)3
u6
)

− 1

1− u2
+

1

2
(1 + u) < −2

5

we have

dG
dt

≤ −0.99
g2

(1 + u)2
u4 +

1.01

3.96

g3g⋆

(1 + u)3
u4 +

1.01

1.98

g2

(1 + u)3
u6 − 1.98

5
v2.

Since g⋆ < g < 2g⋆, u > 0 for t > T g1 , and u2

1+u ≤ 1
2 for 0 ≤ u ≤ 1, we have:

1

4

g3g⋆

(1 + u)3
+

1

2

g2u2

(1 + u)3
≤ g2

(1 + u)2

(
g⋆2

2(1 + u)
+

u2

2(1 + u)

)
≤ g2

(1 + u)2

(
1

2
+

1

4

)
=

3

4

g2

(1 + u)2
,

then

dG(u, v)
dt

≤ −0.22
g2

(1 + u)2
u4 − 2

5
v2

≤− 0.99

16
g⋆2u4 − 1.98

5
v2 ≤ −g

⋆2

65
G(u, v)2,

which implies:

G(u(t), v(t)) ≤ 1

G(u(t1), v(t1)) +
g⋆2

64 (t− t1)
, ∀t > T g1 .

Hence,

u2(t), v2(t) = O
(

1

g⋆2t

)
= O

(
1

t

)
, ∀t > T g1 = O(1)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

which implies:

e−p(t) = u(t) = O
(

1√
t

)
, ∀t > T g1 = O(1);

g(t)− g⋆ = g⋆u(t)− v(t) ≤ O
(
g⋆√
t

)
+O

(
1√
t

)
= O

(
1√
t

)
, ∀t > T g1 = O(1).

(21)

Notably, these proofs capture the entire training dynamics of p, g, from t = 0 to t = T g1 , and finally
to t→ +∞, providing a fine-gained analysis for each phase.

C.2 DYNAMICS OF THE PARAMETERS FOR INDUCTION HEAD

Recall the partial loss about the induction head:

LIH2(θ) =
1

2
EX

[(
1

1 + α⋆
(xs)

L−1
s=2 · softmax

((
w⋆2xLxs−1

)L−1

s=2

)
− h · (xs)

L−2
s=2 · softmax

((
w2xLxs−1

)L−2

s=2

))2
]
.

Technical simplification. Unlike LG4
(θ), the denominators of the softmax terms

softmax
((
w⋆2xLxs−1

)L−1

s=2

)
and softmax

((
w2xLxs−1

)L−2

s=2

)
in LIH2

(θ) depend on the input
tokens X , making it hard to derive a closed-form expression for LIH2

(θ). In Bai et al. (2023), the
authors consider a simplified transformer model, which replaces the softmax softmax(z1, · · · , zL)
with 1

L exp(z1, · · · , zL). This approximation is nearly tight when z1, · · · , zL ≈ 0. Notice that 1)
w2xLxs−1 ≈ 0 holds near the small initialization, i.e., for w ≈ σinit ≪ 1. In fact, our analysis shows
that w ≈ σinit is maintained over a long period. 2) w⋆ = O(1), which implies that w2xLxs−1 ≈ 0
for most input sequence. Thus, we adopt the simplification used in Bai et al. (2023), resulting in the
following approximation of the loss function:

LIH2
(θ) :=

1

2
EX

[(
1

1 + α⋆
1

L− 2

L−1∑
s=2

exp(w⋆2xLxs−1)xs − h
1

L− 2

L−2∑
s=2

exp(w2xLxs−1)xs

)2]
.

Then by a straightforward calculation with Lemma D.3, we can derive its explicit formulation:

LIH2
(θ) =

(1− 4w⋆4)−
1
2

2(1 + α⋆)2(L− 2)
+

1

2

h2

L− 2
(1− 4w4)−

1
2 − h(1− (w2 + w⋆2)2)−

1
2

(1 + α⋆)(L− 2)
. (22)

Furthermore, we can calculate GF dynamics as follows:

dw
dt

=
h

(1 + α⋆)(L− 2)
(1− (w2 + w⋆2)2)−

3
2 · (w2 + w⋆2) · 2w − h2

L− 2
(1− 4w4)−

3
2 · 4w3,

dh
dt

=
1

(1 + α⋆)(L− 2)
(1− (w2 + w⋆2)2)−

1
2 − h

L− 2
(1− 4w4)−

1
2 .

For simplicity, we denote:

w⋆ := w⋆, h⋆ :=
1

1 + α⋆
.

Part I. The trend and monotonicity of w, h.

For simplicity, we denote the tuning time point of h:

Th2 := inf

{
t > 0 :

dh(t)
dt

= 0

}
.

In this step, we will prove the following three claims regarding the trend and monotonicity of w, h,
which are essential for our subsequent analysis:

• (P1.1) h initially increases beyond h⋆, and then remains above this value.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

• (P1.2) w keeps increasing but always stays below w⋆.
• (P1.3) h increases before Th2 , but decreases after Th2 .

(P1.1) h initially increases beyond h⋆, and then remains above this value.

We will prove that initially, h increases beyond h⋆, and keeps growing beyond h⋆. Define

Th1 := inf{t > 0 : h(t) > h⋆},

we will prove that h remains above h⋆ thereafter.

For simplicity, we denote

ψ(x) = (1− x2)−
1
2 , ϕ(x) = (1− x2)−

3
2 · x,

then the dynamics holds:

dh
dt

=
h

L− 2
ψ(w2 + w⋆2)

[
h⋆

h
− ψ(2w2)

ψ(w2 + w⋆2)

]
,

dw
dt

=
2h2w

L− 2
· ϕ(w2 + w⋆2) ·

[
h⋆

h
− ϕ(2w2)

ϕ(w2 + w⋆2)

]
.

Notice that ϕ(2w2)
ϕ(w2+w⋆2) <

ψ(2w2)
ψ(w2+w⋆2) , w < w⋆, while ϕ(2w2)

ϕ(w2+w⋆2) >
ψ(2w2)

ψ(w2+w⋆2) , w > w⋆.

We denote the first hitting time of h decreasing to h⋆ as ṫ:

ṫ := inf
{
t > Th2 : h(t) < h⋆

}
.

If w(ṫ) ≥ w⋆, then at the first hitting time of w increasing to w⋆, dw
dt < 0, which leads to a

contradiction. If w(ṫ) < w⋆, then dh
dt |ṫ > 0, which also leads to a contradiction. Hence, ṫ = +∞,

which means that h always remains above h⋆ for t > Th2 .

(P1.2) w keeps increasing but always below w⋆.

We first prove that w always remains below w⋆. We denote the first hitting time of w increasing to
w⋆ as t′, then it is not difficult to see dw

dt |t′ < 0, which leads to a contradiction.

Next we prove that w keeps increasing throughout. We define the following functions

H :=
1

1 + α⋆

(
1− (w2 + w⋆2)2

)− 3
2

(w2 + w⋆2)− h(1− 4w4)−
3
2 · 2w2

Q :=
1

1 + α⋆

(
1− (w2 + w⋆2)2

)− 1
2 − h

(
1− 4w4

)− 1
2

If at some t̄, dw
dt reaches its zero point at the first time, then

dH
dt

∣∣∣∣
t̄

= −h′(t̄)(1− 4w⋆4)−
3
2 · 2w(t̄) > 0,

which leads to a contradiction. Hence t̄ does not exist and w keeps increasing.

(P1.3) After the tuning point t > Th2 , h will be monotonically decreasing.

The first sign-changing zero point of dh
dt is Th2 , then Q(Th2) = 0. H(Th2) > 0,

dQ
dt

∣∣∣∣
Th
2

=
1

1 + α⋆
(1− (w(Th2)

2 + w⋆2)2)−
1
2 · 2w(Th2) · w′(Th2)

·
[
(1− (w(Th2)

2 + w⋆2)2)−1 · (w(Th2)2 + w⋆2)− (1− 4w(Th2)
4)−1 · 4w(Th2)2

]
.

We can see that Th2 is a sign-changing zero point only if

(1− 4w(Th2)
4) · (w(Th2)2 + w⋆2)

(1− (w(Th2)
2 + w⋆2)2) · 4w(Th2)2

< 1,

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

i.e. we have:

w(Th2) > w◦ :=

√
3− 4w⋆4 −

√
(4w⋆4 − 3)2 − 16w⋆4

8w⋆2
≥ w⋆

2
, (23)

when w⋆ = O(1).

Next we show that h keeps decreasing after Th2 . We denote the first zero point of dh
dt as t◦, then

Q(t◦) = 0. Since dw
dt |t◦ > 0, we have dQ

dt |t◦ > 0 which leads to a contradiction. Hence t◦ does not
exist and h keeps decreasing after Th2 .

Part II. Estimation of Th1 , Th2 , and the tight estimate of w(t) before Th2 .

At the first stage, we prove that h grows first and w barely increases. If w ≤ 0.01w⋆ and h ≤
1

1+α⋆

(1−w⋆4)−
1
2

(1−0.014w⋆4)−
1
2

,

dh
dt

≥ −1

L− 2

[
h(1− 0.014w⋆4)−

1
2 − 1

1 + α⋆
(1− w⋆4)−

1
2

]
,

h ≥ 1

1 + α⋆
(1− w⋆4)−

1
2

(1− 0.014w⋆4)−
1
2

−
[

1

1 + α⋆
(1− w⋆4)−

1
2

(1− 0.014w⋆4)−
1
2

− h(0)

]
exp

(−t
(L− 2)(1− 0.01w⋆4)

1
2

)
.

(24)
For h increasing from h(0) to 1

1+α⋆ , it takes

Th1 ≤ (1− 0.01w⋆4)
1
2 (L− 2) ln

 1

1− (1−w⋆4)
1
2

(1−0.014w⋆4)
1
2


≤ 2(L− 2)(1− 1

2
w⋆4) = O(L). (25)

For 0 ≤ t ≤ Th1 ,
dw
dt

≤ 1

L− 2
(1− 4w⋆4)−

3
2 · w⋆2 · 4w.

Hence, it take O(L log(1/σinit)) for w to reach 0.01w⋆, which allows sufficient time for h to reach
1

1+α⋆ beforehand.

Therefore, there exists a small constant ε(w(0), w⋆) only depends on w(0) and w⋆ such that h is
dominated by 1 + ε(w(0), w⋆) times right hand side of (24), from which we deduce that (25) is a
tight estimation of Th1 instead of an upper bound, i.e. Th1 = Θ(L).

We then give a bound for h(Th2). By dh
dt = 0,

h(Th2)/h
⋆ ≤ (1− 4w4)

1
2

(1− (w2 + w⋆2)2)
1
2

:= r(w).

Moreover, r(w) is an decreasing function of w for w > w◦, and w◦ is a function of w⋆, we have

h(Th2)/h
⋆ ≤ r(w◦) := R(w⋆),

where w◦ is a function about w⋆, defined in Eq. (23). It is clear that

R(w⋆ = 0) = 1, R′(w⋆ = 0) = 0.

Then using the continuity of R′(·) (in [0, 0.4]), there exists c > 0 such that |R′(w⋆)| < 0.04 holds
for all 0 < w⋆ < c, which implies:

R(w⋆) = R(0) +

∫ w⋆

0

R′(v)dv < 1 + 0.04w⋆, 0 < w⋆ < c.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

i.e., if w⋆ = O(1), then R(w⋆) < 1 + 0.04w⋆. This implies:

h⋆ ≤ h(t) ≤ (1 + 0.04375w⋆)h⋆, ∀t ≥ Th1 . (26)

By some computation, we can prove that w◦(w⋆) is an increasing function of w⋆, and is always
above 1

2w
⋆. Thus we obtain a lower bound of w◦ for the estimation of lower bound of Th2 :

For the second stage, h barely changes and w starts to grow exponentially fast, and we use the tight
estimation of Tw1/2 := inf

{
t > 0 : w(t) > 1

2w
⋆
}

to give a lower bound of Th2 . During this stage,

dw
dt

≤ 2w

(1 + α⋆)2(L− 2)

[
(1− (w2 + w⋆2)2)−

3
2 · (w2 + w⋆2)− (1− 4w4)

3
2

]
≤ 2w

(1 + α⋆)2(L− 2)
(1− 4w⋆4)

3
2 · 2w⋆2,

and w has upper bound

w ≤ w(0) exp

(
4w⋆2(1− 4w⋆4)

3
2

(1 + α⋆)(L− 2)
t

)
. (27)

Hence, the lower bound of time for w to reach 1
2w

⋆ is

Tw1/2 − Th1 =
(1 + α⋆)2(L− 2)

4w⋆2(1− 4w⋆4)
3
2

ln(
w⋆

2w(0)
),

and lower bound for Tw1/2 is

Tw1/2 ≥ (L− 2)

[
(1 + α⋆)2 ln(w⋆

2w(0))

4w⋆2(1− 4w⋆4)
3
2

− ln
(
1− (1− w⋆4)

1
2

)]

≥ (L− 2)(1 + α⋆)2

16w⋆2
ln

(
1

w(0)

)
= Ω

(
(1 + α⋆)2L

w⋆2
log

(
1

σinit

))
. (28)

On the other hand, we estimate the lower bound of w. Let

C(x) = (1− x2)−
3
2 · x,

then
C ′(x) = 3(1− x2)−

5
2x2 + (1− x2)−

3
2 > 1, 0 < x < 1,

C ′′(x) = 15x3(1− x2)−
7
2 + 6x(1− x2)−

5
2 + 3x(1− x2)−

5
2 > 0, 0 < x < 1.

C(x) is a monotonically increasing convex function on (0, 1) and C(x) ≥ x.

Using conclusions above, before w2 increases to 1
2γ(w⋆)+β−1w

⋆2 for some β > 0,

C(w2 + w⋆2)

≥ C((2γ(w⋆) + β)w2)

≥ C(2γ(w⋆) · w2) + C(βw2) (Lemma D.6)

≥ γ(w⋆) · C(2w2) + βw2 (C(ax) ≥ aC(x), for a > 1)

then we have

dw
dt

≥ 2w

(1 + α⋆)2(L− 2)
(C(w2 + w⋆2)− γ(w⋆) · C(2w2))

≥ 2w

(1 + α⋆)2(L− 2)

β

γ(w⋆) + β
w⋆2

and

w ≥ w(0) exp

(
2β

γ(w⋆) + β

1

(1 + α⋆)2(L− 2)
w⋆2t

)
.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Take β = 2, then

w ≥ w(0) exp

(
w⋆2t

(1 + α⋆)2(L− 2)

)
, ∀t ∈ [0, Tw1/2]. (29)

From the above inequality, (28) is not only an upper bound, but a tight estimation of Tw1/2, i.e.

Tw1/2 = Θ

(
(1 + α⋆)2L

w⋆2
log

(
1

σinit

))
.

Part II. Dynamics after the critical point Tw1/2.

For simplicity, we consider:

v := w2,

and denote v⋆ := w⋆2, h⋆ := 1
1+α⋆ . Then we focus on the dynamics of v and h.

Additionally, we introduce a few notations used in this part:

ϕ(x) :=
x

(1− x2)3/2
, ψ(x) :=

1

(1− x2)1/2
.

Then the dynamics of v and g are:

dv
dt

=
4vh

L− 2

(
h⋆ϕ(v + v⋆)− hϕ(2v)

)
,

dh
dt

=
1

L− 2

(
h⋆ψ(v + v⋆)− hψ(2v)

)
.

Step II.1. A coarse estimate of the relationship between v and h.

It is easy to verify the monotonicity that dv
dt > 0 and dh

dt < 0 for t > t2. Additionally, we have

ψ(v + v⋆)

ψ(2v)
<

h

h⋆
<
ϕ(v + v⋆)

ϕ(2v)
.

Then by Monotone convergence theorem, we obtain:

lim
t→+∞

v = v⋆, lim
t→+∞

h = h⋆.

Step II.2. Convergence analysis by Lyapunov function.

This step aims to establish the convergence rate of v and h.

In fact, the dynamics of v, h can be approximately characterized by their linearized dynamics. In
contrast, the dynamics of p, g are controlled by high-order terms. Therefore, the proof for v and h is
significantly simpler than the corresponding proof for p and g. We only need to consider the simplest
Lyapunov function:

G(v, h) :=
1

2

(
(v − v⋆)2 + (h− h⋆)2

)
.

It is easy to verify that

(L− 2)
dG(v, h)

dt
= (v − v⋆)

dv
dt

+ (h− h⋆)
dh
dt

=4vh(v − v⋆)
(
h⋆ϕ(v + v⋆)− hϕ(2v)

)
+ (h− h⋆)

(
h⋆ψ(v + v⋆)− hψ(2v)

)
=4vh(v − v⋆)

(
ϕ(v + v⋆)(h⋆ − h)− h(ϕ(v + v⋆)− ϕ(2v))

)
+ (h− h⋆)

(
(h⋆ − h)ψ(v + v⋆) + h(ψ(v + v⋆)− ψ(2v))

)
=− 4vh2(v⋆ − v)(ϕ(v + v⋆)− ϕ(2v))− ψ(v + v⋆)(h− h⋆)2

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

+ 4vhϕ(v + v⋆)(v − v⋆)(h⋆ − h) + h(h− h⋆)(ψ(v + v⋆)− ψ(2v)).

Let v⋆ ≤ 0.3 = O(1). Recalling (23) and (26), as well as the monotonicity about p and w, we have:

v⋆

4
< v(t) < v⋆; h⋆ < h(t) < 1.02h⋆, ∀t > Th2 .

Combining these estimates with the properties of ϕ and ψ, we have the following straight-forward
estimates:

ϕ(v + v⋆)− ϕ(2v) = ϕ′(ξ)(v⋆ − v) =
1 + 2ξ2

(1− ξ2)5/2
(v⋆ − v) ≥ v⋆ − v;

ϕ(v + v⋆) ≤ ϕ(2v⋆) ≤ 1;

ψ(v + v⋆) =
1

(1− (v + v⋆)2)1/2
≥ 1;

ψ(v + v⋆)− ψ(2v) = ψ′(ξ)(v⋆ − v) =
ξ

(1− ξ2)3/2
(v⋆ − v) ≤ 1.3v⋆(v⋆ − v).

Thus, we have the following estimate for the Lyapunov function:

(L− 2)
dG(v, h)

dt

≤− 4

1.02
v⋆h⋆2(v − v⋆)2 − (h− h⋆)2

+ 4.08v⋆h⋆(v − v⋆)(h⋆ − h) + 1.3 · 1.02v⋆h⋆(v⋆ − v)(h− h⋆)

=− 4

1.02
v⋆h⋆2(v − v⋆)2 − (h− h⋆)2 + 5.41v⋆h⋆(v⋆ − v)(h− h⋆)

≤− 3.92v⋆h⋆2(v − v⋆)2 − (h− h⋆)2 +

(
9.6v⋆2h⋆2(v − v⋆)2 +

3

4
(h− h⋆)2

)
≤− (3.92− 9.6 · 0.3)v⋆h⋆2(v − v⋆)2 − 0.25(h− h⋆)2 ≤ −1

4
v⋆h⋆2G(v, h).

Consequently, we have the exponential bound for all t > Th2 :

G(v(t), h(t)) ≤ G
(
v(Th2), h(T

h
2)
)
exp

(
− v⋆h⋆2

4(L− 2)
(t− Th2)

)
, ∀t > Th2 ,

This can imply:

(h(t)− h⋆)2 = (h(Th2)− h⋆)2 exp

(
−Ω

(
w⋆2(t− Th2)

L(1 + α⋆)2

))
= O

(
h⋆2 exp

(
−Ω

(
w⋆2(t− Th2)

L(1 + α⋆)2

)))
, ∀t > Th2 ;

(w(t)− w⋆)2 = (w(Th2)− w⋆)2 exp

(
−Ω

(
w⋆2(t− Th2)

L(1 + α⋆)2

))
= O

(
w⋆2 exp

(
−Ω

(
w⋆2(t− Th2)

L(1 + α⋆)2

)))
, ∀t > Th2 .

(30)

Notably, these proofs capture the entire training dynamics of w, h, from t = 0 to t = Th1 , to
t = Tw1/2 ≤ Th2 , and finally to t→ +∞, providing a fine-gained analysis for each phase.

C.3 PROOF OF THEOREM 5.5

This theorem is a direct corollary of our analysis of the entire training dynamics in Appendix C.1
and C.2, leveraging the relationship between the parameters and the loss.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Proof of Phase I (partial learning).

By combining (19) and (21), it follows that: LG4
(θ(0)) = Θ(1). Moreover,

LG4
(θ(t)) = O

(
1

t

)
, t > T g1 = O(1).

Thus, there exists a sufficiently large TI = Θ(1), such that:

LG4
(θ(TI)) ≤ 0.01LG4

(θ(0)).

Recalling our proof in Appendix C.2, for t < Th1/2 = O(L), it holds that h(t) < σinit +

O(t/((1 + α⋆)L)), w(t) < σinit + o(t/((1 + α⋆)L)). Additionally, since TI = Θ(1) ≪ Θ(L),
it follows that

w(TI) = O(σinit + 1/L) < 2σinit ≪ w⋆, h(TI) = O(σinit + 1/L) < 2σinit ≪ h⋆.

Substituting these estimates into (22), we obtain by Lipschitz continuity of LIH2
:

|LIH2
(θ(TI))− LIH2

(θ(0))| ≤ 2σinit

(∣∣∣∣∂LIH2

∂w

∣∣∣∣+ ∣∣∣∣∂LIH2

∂h

∣∣∣∣)
≤ 2σinit

(
O
(

1

(1 + α⋆)L

)
+ o

(
1

(1 + α⋆)L

))
≤ 0.01LIH2

(θ(0)).

Thus,

LIH2
(θ(TI)) ≥ 0.99LIH2

(θ(0)).

Proof of Phase II (plateau) + Phase III (emergence).

First, (27) and (29) ensures that w grows exponentially before t < Tw1/2:

σinit exp

(
w⋆2

(1 + α⋆)2(L− 2)
t

)
≤ w ≤ σinit exp

(
4w⋆2(1− 4w⋆4)

3
2

(1 + α⋆)(L− 2)
t

)
.

Thus, we have:

w(t) = σinit exp

(
Θ

(
w⋆2t

(1 + α⋆)2L

))
, t < Θ

(
(1 + α⋆)2L

w⋆2
log

(
1

σinit

))
.

Now we define the observation time To := Th1 = Θ(L). Notably,

h(To) = h⋆, w(To) < 0.01w⋆.

The exponential growth of w further implies:

Tw0.01 := {t > 0 : w(t) > 0.01w⋆} = Θ

(
(1 + α⋆)2L

w⋆2
log

(
1

σinit

))
.

Regarding the dynamics of h, by (26), we have |h(t)− h(To)| < 0.02|h(To)|, ∀t ≥ To.

Now we incorporate these facts (0 < w(To) < 0.01w⋆, 0 < w(Tw0.01) ≤ 0.01w⋆, |h(Tw0.01) −
h(To)| < 0.02|h(To)|, h(To) = h⋆) into the loss (22). By the Lipschitz continuity of LIH2

, it is
straightforward that

LIH2
(θ(Tw0.01)) ≥ 0.99L(θ(To)).

Thus, we have established the lower bound for TII:

TII := inf
{
t > To : LIH2

(θ(t)) ≤ 0.99 · LIH2
(θ(To))

}
38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

≥ Tw0.01 = Ω

(
(1 + α⋆)2L

w⋆2
log

(
1

σinit

))
.

Combining the loss (22) and our parameter estimates (30), we obtain:

LIH2
(θ(t)) = O

(
exp

(
−Ω

(
w⋆2t

L(1 + α⋆)2

)))
, t > Th2 = Θ

(
(1 + α⋆)2L

w⋆2
log

(
1

σinit

))
.

This implies the upper bound for TIII:

TIII := inf {t > To : LIH2
(θ(t)) ≤ 0.01 · LIH2

(θ(To))}
= Tw1/2 +O

(
(α⋆ + 1)2L log(1/σinit)/w

⋆2
)
= O

(
(α⋆ + 1)2L log(1/σinit)/w

⋆2
)
.

Combining the fact TII < TIII, the lower bound for TII, and the uppper bound for TIII, we obtain the
two-sided bounds for both TII and TIII:

TII, TIII = Θ
(
(α⋆ + 1)2L log(1/σinit)/w

⋆2
)
.

Proof of Phase IV (convergence).

By combining the loss (19), (22), and our parameter estimates (21), (30), it follows that:

LG4
(θ(t)) = O

(
1

t

)
, LIH2

(θ(t)) = O
(
exp

(
−Ω

(
w⋆2t

L(1 + α⋆)2

)))
, t > TIII.

D USEFUL INEQUALITIES

Lemma D.1 (Corollary A.7 in Edelman et al. (2022)). For any θ, θ′ ∈ Rd, we have

∥softmax(θ)− softmax(θ′)∥1 ≤ 2∥θ − θ′∥∞
Lemma D.2 (lemma E.1 in Wang and E (2024)). For any T ∈ N+, q,m ∈ N+, there exists and

absolute constant C > 0 and a ϕexpm (t) =
m∑
k=1

αke
−βkt such that

∥I(· = T)− ϕexpm (·)∥ℓ1(N) ≤
Ceq+0.01(q+1)T

mq
.

where βk > 0 holds for any k ∈ [m].

Lemma D.3. E
X,Y,Z

exp(aXY)Z2 = (1− a2)−1/2, a < 1.

Proof of Lemma D.3.∫
exp(aXY)Z2

(
1

2π

)−3/2

exp(−1

2
X2 − 1

2
Y 2 − 1

2
Z2) dXdY dZ

=

∫
1

2π
exp(−1

2
(X − aY)2 − 1

2
Y 2 +

1

2
a2Y 2) d(X − aY)dY

=

∫
1√
2π

exp(−1

2
W 2) dW (W = (1− a2)1/2Y)

= (1− a2)−1/2

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Lemma D.4. Let M(p) := 1−e−p(L−2)

1−e−p , then it holds that∥∥softmax
(
(−p(L− 1− s))L−1

s=1

)∥∥2
2
=
M(2p)

M(p)2
.

Definition D.5 (weakly majorizes). A vector x ∈ Rn is said to weakly majorize another vector
y ∈ Rn, denoted by x ≺w y, if the following conditions hold:

1.
∑k
i=1 x[i] ≤

∑k
i=1 y[i] for all k = 1, 2, . . . , n− 1,

2.
∑n
i=1 x[i] =

∑n
i=1 y[i],

where x[i] and y[i] are the components of x and y, respectively, arranged in decreasing order.
Lemma D.6 (Weighted Karamata Inequality). Let f : R → R be a convex function, and let x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors in Rn. If x weakly majorizes y (i.e.,
x ≺w y), and w1, w2, . . . , wn are non-negative weights such that

n∑
i=1

wi = 1,

then the following inequality holds:
n∑
i=1

wif(xi) ≤
n∑
i=1

wif(yi).

E EXPERIMENTS

E.1 EXPERIMENTAL DETAILS FOR FIGURE 2

In line with our theoretical setting, we examine a simplified two-layer transformer, as described
in (10). Specifically, the first layer only contains RPE (3) and the second layer consists of two heads:
one uses only RPE and the other employs only dot-product structure. The target function is specified
by (8) with α⋆ = 1, w⋆ = 0.49, σinit = 0.01, L = 40, and the distribution of each token is Gaussian,
i.e., xi

iid∼ N (0, 1) for i ∈ [L]. Training is conducted by minimizing the squared loss (11) using
online SGD with learning rate 0.1 and batch size B = 1, 000. Following our theoretical analysis, the
two layers are trained sequentially:

• Training Stage I: only the first layer is trained for 100,000 iterations;
• Training Stage II: Subsequently, only the second layer undergoes training for another 100,000

iterations.

The dynamical behavior of the Training Stage II is visualized in Figure 2.

E.2 ADDITIONAL EXPERIMENTS SUPPORTING OPTIMIZATION DYNAMICS

1. Standard transformers on real-world natural language dataset.

Setup. We train a two-layer two-head standard transformer with RPE (3) (without any simplifica-
tion) on the wikitext-2 dataset, a natural language dataset (Merity et al., 2016). The transformer has
an embedding dimension D = 128 and FFN width W = 512. For this dataset, the input dimension is
d = 33278. We use a context length L = 200 and batch size B = 32. The parameters are initialized
with the scale 0.01. The model is trained for 1,500 epochs on 1 H100, using cross-entropy loss and
SGD with learning rate 0.1, and the initialization scale is 0.01. It is important to note that both layers
are trained simultaneously. The results are presented in Figure 3.

2. Discrete token distribution in toy setting.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

0 250 500 750 1000 1250 1500

epochs

0

2

4

6

8

10

loss

0 250 500 750 1000 1250 1500

epochs

0.1

0.2

0.3

0.4

0.5

‖p
‖

(f
or

G
4
)

50

100

150

200

250

300

‖(
W

K
W

Q
)‖

(f
or

IH
2
)

parameter norms ‖p‖, ‖(WK ,WQ)‖

Figure 3: The loss and parameters for the experiment training a two-layer two-head standard
transformer (without any simplification) on the wikitext-2 dataset (Merity et al., 2016). Here,
∥p∥ and ∥(WK ,WQ)∥ denote the Frobenius norms of all positional encoding parameters and all
WK ,WQ parameters across layers and heads, respectively, The results show that: the loss exhibits
a clear plateau; position encoding p’s are learned first; and the dot-product structure WK ,WQ are
learned slowly at the beginning, resembling an exponential increase; additionally, as WK ,WQ are
learned, the loss escapes that plateau. These findings closely resemble the behavior observed in our
toy model (Figure 2). This experiment provides further support for our theoretical insights regarding
the time-scale separation between the learning of positional encoding and the dot-product structure.

Setup. We modified the Gaussian input distribution used in the setup for Figure 2 to a boolean input
distribution, where each input token, where each input token xi

iid∼ Unif({±1}) for i ∈ [L], All other
experimental setups remain the same as in the setup for Figure 2. The training dynamics of Stage (ii)
are presented in Figure 4. We can see clearly that the dynamical behavior of the learning process is
nearly the same as the one observed for Gaussian inputs in Figure 2.

0 20000 40000 60000 80000 100000

iterations

0.000

0.005

0.010

0.015

0.020

Total loss L(θ(t))

Phase I

Phase II

Phase III

Phase IV

0 20000 40000 60000 80000 100000

iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

L G
4
(θ

(t
))

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

L I
H

2
(θ

(t
))

Partial loss LG4
(θ(t)), LIH2

(θ(t))

0 20000 40000 60000 80000 100000

iterations

0.0

0.5

1.0

1.5

2.0

Four parameters

p (for G4)

wV1
(for G4)

WKQ (for IH2))

wV2
(for IH2)

Figure 4: Visualization of the total loss, partial loss, and the parameter dynamics, for the experiment
on discrete token distribution (Boolean, X ∼ Unif({±1}L)) in our toy setting with α⋆ = 1, w⋆ =
0.49, σinit = 0.01, L = 40. The figure clearly shows that transformer learns the 4-gram component
first and then, starts to learn the induction head mechanism. Notably, the entire dynamics exhibit
four phases. These results are extremely similar to that observed with Gaussian inputs, as shown in
Figure 2.

3. Adam in high-dimensional toy setting.

Setup. We modified the setup for Figure 2 to employ a high-dimensional model (D = 100). Specifi-
cally, the target is w⋆ = 0.49ID/D, the dot-produce parameters are WK ,WQ ∈ RD, initialized such
that ∥WK∥F , ∥WQ∥F = σinit. Additionally, for the Adam optimizer, we use learning rate 5e-4.
All other experimental setups remain the same as in the setup for Figure 2.

The training dynamics are depicted in Figure 5, where, for comparison, results using GD are also
presented. In both scenarios, the learning process begins with the 4-gram pattern, followed by a
gradual learning phase of the induction head mechanism. Notably, within the given number of
iterations, GD remains stuck in the plateau, whereas Adam successfully escapes that plateau.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000

iterations

0.0

0.5

1.0

1.5

2.0

L G
4
(θ

(t
))

0.000

0.001

0.002

0.003

0.004

0.005

L I
H

2
(θ

(t
))

GD (d = 100)

0 10000 20000 30000 40000 50000

iterations

0

5

10

15

20

L G
4
(θ

(t
))

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

L I
H

2
(θ

(t
))

Adam (d = 100)

Figure 5: Partial loss for the experiment comparing GD v.s. Adam optimizer in high-dimensional
settings (D = 100). In this setting, a larger D increases the difficulty of the transition from the lazy
regime (learning 4-gram) to the rich regime (learning induction head). The results indicate that: (1)
GD learns the 4-gram component first but becomes stuck in a plateau when learning induction head;
(2) Adam, while eventually transitioning from the lazy regime (learning 4-gram) to the rich regime
(learning induction head), experiences a challenging transition characterized by multiple plateaus
during learning induction heads. This finding closely resembles the dynamics for GD.

E.3 EXPERIMENTS SUPPORTING APPROXIMATION RESULTS

1. Supporting the necessity of the required H and D in Theorem 4.3.

Setup. We train two-layer transformers (without FFN layers) with varying H and D to learn the
generalized induction head (6) with n = 4. The input sequence X = (x1, · · · , xL) is boolean, with
xi

i.i.d.∼ Unif({±1}) and L = 10. Each model is trained for 200,000 iterations using squared loss
and (online) Adam optimizer with learning rate 5e-4 and batch size B = 100. Both layers are
trained simultaneously. The results for the models with D = H = 8 and D = H = 2 are presented
in Figure 3.

0 50000 100000 150000 200000

iteration

0.0

0.1

0.2

0.3

0.4
Loss for learning IH4 (n = 4)

D = H = 8

D = H = 2

Figure 6: Results supporting the necessity of the required number of heads H and embedding
dimension D in Theorem 4.3. We train two-layer transformers with varying H and D to learn the
target in Eq. (6) with n = 4. The results indicate that the transformer with H = D = 8 (> n)
successfully expresses this task, while the transformer with H = D = 2 (< n) fails. These results
confirm that the sufficient conditions provided in Theorem 4.3 (H ≳ n and D ≥ nd, where d = 1 in
our setting) are also nearly necessary.

2. Supporting our construction in Theorem 4.3.

Setup. We linear probing experiments (Alain and Bengio, 2016) on the transformers with H =
D = 8 trained in the above experiment (Figure 6). For each checkpoint model TF, we denote its
output in the first layer on the input sequence X as TF(1)(X). The probing loss is measured by

dist
(
X·−n+1:·; TF

(1)(X)
)
= min

P∈RD×n
:

L∑
s=n

∥∥∥Xs−n+1:s − TF(1)
s (X)P

∥∥∥, where n = 4, L = 10,

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

and X = (x1, · · · , xL) is generated by xi
i.i.d.∼ Unif({±1}) with testing batch 1000. The results are

shown in Figure 7.

0 50000 100000 150000 200000

iteration

10

20

30

40

50

60

70

Linear probing for the first layer

Figure 7: Probing results supporting our construction in Theorem 4.3. First, we train a two-
layer two-layer transformer with head H = 8 and embedding dimension D = 8 to learn Eq. (6)
with n = 4, and the checkpoints are stored during training. For each checkpoint model TF, we
denote its output in the first layer on the input sequence X as TF(1)(X). To validate whether it
encodes the semantic information Xs−n+2:s near each xs, as predicted by our construction, we
conduct a standard linear probing experiment (Alain and Bengio, 2016). Specifically, we measured

dist
(
X·−n+1:·; TF

(1)(X)
)
= min
P∈RD×n

:
L∑
s=n

∥∥∥Xs−n+1:s − TF(1)
s (X)P

∥∥∥. As the results shown, the

probing loss decreases significantly during training, confirming our key construction in Theorem 4.3:
the first layer is responsible for extracting local semantic information Xs−n+2:s near each xs,
enabling the second layer to generate the final output.

F DETAILED COMPARISON WITH RELATED WORKS

In this section, we discuss the relationship between our work and two closely related studies: Bietti
et al. (2024) and Edelman et al. (2024).

Comparison with Bietti et al. (2024).

• Approximation analysis:
– Bietti et al. (2024) focus primarily on the implementation of the vanilla induction head.

In contrast, our study extends this analysis by investigating not only how two-layer trans-
formers achieve vanilla induction heads (Eq. (4)) but also how they implement generalized
induction heads, i.e., in-context n-grams (Eqs. (6) and (7)).

– Furthermore, our work provides explicit approximation rate results, offering insights into
the distinct roles of multiple heads, positional encoding, dot-product structure, and FFNs in
implementing these induction heads.

• Optimization analysis:

– Study objective: While Bietti et al. (2024) examines the transition from 2-gram to induction
head, our work focuses on the transition from 4-gram to induction head.

– study methods: Bietti et al. (2024) conducts extensive experiments supported by partial
theoretical properties but does not fully characterize the training dynamics theoretically. In
contrast, our study provides a precise theoretical analysis of the entire training process in a
toy model, uncovering the sharp transition from 4-gram to induction head.

– Main insights: Bietti et al. (2024) emphasizes the the role of weight matrices as associative
memories and the impact of data distributional properties. Our analysis, on the other hand,
identifies two primary drivers of the transition: (1) the time-scale separation due to low-

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

and high-order parameter dependencies in self-attention; (2) the speed differences caused
by the relative proportions of the two components in the mixed target.

Comparison with Edelman et al. (2024). The primary connection between Edelman et al. (2024) and
our work lies in the optimization analysis. Specifically, Edelman et al. (2024) focuses on the transition
from uni-gram to bi-gram mechanisms in Markov Chain data. In contrast, our study investigates
the transition from 4-gram to in-context 2-gram mechanisms (induction head). Additionally, we
theoretically identify two primary drivers of the transition: (1) the time-scale separation due to low-
and high-order parameter dependencies in self-attention; (2) the speed differences caused by the
relative proportions of the two components in the mixed target.

44

	Introduction
	Related Works
	Preliminaries
	Formulation and Approximation of Induction Head
	Vanilla Induction Heads
	Generalized Induction Heads: In-context -gram and Generic Similarity

	The Transition from Lazy to Rich Mechanisms in Learning Induction Heads
	Setups
	Mixed Target Function
	Two-layer Multi-head Transformer with Reparameterization
	Gradient Flow on Square Loss

	Training Stage II: Transition from -gram to Induction Head

	Experimental Validation
	Conclusion
	Proofs in Section 4
	Proof of Theorem 4.1
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Proofs of Optimization Dynamics: Training Stage I
	Proofs of Optimization Dynamics: Training Stage II
	Dynamics of the parameters for -gram
	Dynamics of the parameters for induction head
	Proof of Theorem 5.5

	Useful Inequalities
	Experiments
	Experimental details for Figure 2
	Additional experiments supporting optimization dynamics
	Experiments supporting approximation results

	Detailed Comparison with Related Works

