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Figure 1: We introduce a unified multi-teacher (UMT) distillation paradigm to integrate general
vision knowledge embedded in multiple pre-trained vision foundation models. The PCA feature
visualization in (a) shows that the proposed method can extract rich semantics and distinct details
across natural, aerial, and industrial images. With knowledge integration from multiple vision
foundation models, our method can achieve considerable performance improvements across diverse
vision tasks as illustrated in (b). The key to our method is the multi-space interaction mechanism,
presented in (c), which enables high-performance multi-teacher distillation using only ImageNet data.

ABSTRACT

Multi-teacher distillation has recently drawn attention to compress vision knowl-
edge in multiple vision foundation models into a versatile student. The latest
multi-teacher distillation techniques for foundation models typically require 1B of
training data, rendering a prohibitive training cost in resource-constrained scenar-
ios. Moreover, these methods usually adopt vanilla feature alignment between the
student and multiple teachers, which neglects the heterogeneity between teachers,
and are therefore highly susceptible to competition and conflicts among teachers
that hinders knowledge transfer. To address these limitations, we propose a unified
framework to transfer knowledge embedded within multiple vision foundation mod-
els into both convolution networks (CNNs) and vision Transformers (ViTs) through
training on a 1000× smaller ImageNet-1k dataset. Specifically, we introduce a
learnable model token that interacts with visual features across multiple representa-
tional spaces. These interactions are mediated through alternating intra-space and
inter-space modules, enabling joint feature alignment across diverse source models
and architectures. This simple yet effective strategy facilitates unified knowledge
transfer from pre-trained Transformers, CNNs, and their combinations—without re-
lying on complex feature-level distillation. Hence, it also establishes an innovative
paradigm for cross-architecture distillation. Extensive experiments demonstrate
that the resulting model surpasses all its source models in downstream transfer
performance, establishing a new sketch for acquiring vision foundation models.

1 INTRODUCTION

Vision foundation models (VFMs) (He et al., 2022; Dosovitskiy et al., 2020; Oquab et al.) have
revolutionized computer vision by providing powerful, transferable representations that generalize
across diverse downstream tasks. These models, including Transformers (Dosovitskiy et al., 2020;
Radford et al., 2021) and Convolutional Neural Networks (CNNs) (Liu et al., 2022b), exhibit strong
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performance on a spectrum of vision tasks, including classification, segmentation, and detection
when trained on large-scale datasets.

Current approaches for acquiring such foundation models often involve large-scale pre-training,
making training these models inaccessible for most researchers due to limited computation resources
and unpublished datasets (Sun et al., 2017). Moreover, the surrogate pre-training objectives are
often misaligned with downstream vision tasks. For instance, CLIP (Radford et al., 2021) trains
vision-language foundation models through an image-text contrastive alignment objective, which may
facilitate image classification while underperforming on fine-grained classification as well as dense
vision tasks (Rao et al., 2022). On the contrary, Mask autoencoders (MAE) (He et al., 2022) excels at
extracting distinct details with the help of a patch-level regression target, but in turn lacks in semantic
perception ability. To clarify this, we present a PCA feature visualization in Figure 1(a), where MAE
tends to capture distinct contents, but cannot easily distinguish between different objects (both the
lamp, boat edge, and cats are colored green). The latest method DINOv3 (Siméoni et al., 2025)
has become a milestone by scaling up vision model pre-training. However, it tends to compromise
distinct details with better semantic understanding as illustrated in Figure 1(a).

Hence, it remains unclear which foundation model should be chosen for a specific downstream vision
task. To obtain a robust pre-trained foundation model that exhibits versatile potential at various
downstream vision tasks, we consider integrating the knowledge from multiple pre-trained models
into a single one. With knowledge inherited from multiple pre-trained models, a single model could
be leveraged as a versatile and stronger go-to choice for a majority of downstream tasks. A handy
technique would be knowledge distillation (Hinton et al., 2015), where the student model learns by
mimicking the behavior of the teacher model on a proxy dataset. However, existing distillation-based
approaches such as MobileSAM (Zhang et al., 2023), TinyCLIP (Wu et al., 2023), and Proteus Zhang
et al. (2025b) primarily concentrate on transferring the knowledge of a specific vision foundation
model into smaller variants, usually suffering from a performance degradation under the single
teacher-student distillation setting. This shortcoming renders them incapable of aggregating general
vision knowledge within multiple vision foundation models.

Recently, the RADIO series (Ranzinger et al., 2024; Heinrich et al., 2025) develop an agglomerative
learning approach to distilling multiple VFMs, e.g., SAM (Kirillov et al., 2023) and DINO-v2 Oquab
et al., into a specific student architecture. Albeit successful, this approach requires training on
billions of samples (Gadre et al., 2023), rendering the training cost unacceptable under resource-
constrained scenarios. Moreover, the vision foundation models are usually pre-trained on different
data sources with distinct optimization objectives. Therefore, directly adopting feature alignment
between students and multiple teachers like RADIO may suffer from conflicts and competition
among multiple teachers Liu et al. (2020), which requires hand-crafted techniques such as multi-
resolution training in RADIO-v2.5 to stabilize the learning process. Furthermore, the competition
and conflicts among multiple teachers make it nearly impossible to transfer knowledge from multiple
teachers when the student presents various architectures. To address these limitations, we consider
a more general multi-teacher distillation scenario where multiple heterogeneous teachers present
with various architectures or different pre-training objectives, posing a greater challenge for multi-
teacher distillation. Given the prohibitive cost of pre-training and the substantial expense of current
multi-teacher distillation for foundation models, we raise this critical question in this paper: Can
we develop an economical, performant, and universal approach to aggregating the knowledge of
multiple pre-trained vision models into any single student?

To answer the above question, we develop a unified multi-teacher distillation (UMT) approach that
is capable of transferring knowledge across hybrid architectures. UMT aims to explore feature
interactions within multiple representational spaces, thereby mitigating the heterogeneous feature
alignment issue among different architectures. At its core is the introduction of a learnable model
token that is attached to the student’s features projected into multiple representational spaces, each of
which is responsible for aligning with a specific teacher. Then, through the alternating cross-space
and intra-space modules, our model token dynamically interacts with visual features in different
representational spaces, consequently enabling effective feature alignment without requiring complex
feature-wise matching or manual design of distillation objectives. This simple yet powerful design
bypasses many of the constraints in traditional distillation, allowing scalable and architecture-agnostic
knowledge fusion. Furthermore, we propose to use the ImageNet-1K as our proxy dataset to perform
distillation training, and show that our method achieves better performance than the pioneering
method of RADIO (Ranzinger et al., 2024) by using 1000× fewer training samples. Figure 1(b)
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demonstrates that the multi-teacher distilled student can dramatically outperform a single pre-trained
foundation model across various vision tasks, showcasing the potential and superiority of the proposed
approach. Our contributions are summarized as follows:

• We propose a resource-efficient method for transferring knowledge from multiple pre-trained
models of heterogeneous architectures, enabling more robust and adaptive vision foundation
models for a wide range of tasks.

• We introduce a learnable model token that bridges representational gaps across different
architectures by interacting with their features in a structured and modular way. A cross-
space and intra-space interaction mechanism further enhances this interaction.

• Our framework provides a unified and extensible approach to multi-teacher distillation,
with promising implications for broader areas such as cross-modal knowledge transfer and
multi-teacher learning.

2 RELATED WORK

Vision foundation models. Vision foundation models (VFMs) have quickly reshaped the landscape
of computer vision tasks, powered by advances in large-scale pre-training strategies. Early contrastive
learning methods such as MoCo (He et al., 2020), SimCLR (Chen et al., 2020), and DINO (Caron
et al., 2021) learn discriminative features by contrasting positive and negative image pairs, with
DINO notably using a self-distillation setup to train Vision Transformers (ViTs) without labels.
In parallel, masked image modeling approaches like MAE (He et al., 2022) and BEiT (Bao et al.,
2021) draw inspiration from BERT (Devlin et al., 2019), masking large portions of the input and
training the model to reconstruct them, thereby encouraging global context understanding. Beyond
single-modality learning, multi-modal pre-training strategies such as CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021) use contrastive learning between image-text pairs to align representations
across modalities, enabling zero-shot generalization and semantic reasoning. Similarly, Segment
Anything (SAM) (Kirillov et al., 2023) leverages large-scale segmentation data to build a universal
visual backbone. The latest self-supervised approach DINO-v3 (Siméoni et al., 2025) successfully
scales up VFMs with careful dataset curation and advanced training techniques. Despite their shared
goal of general-purpose representation learning, these VFMs differ significantly in architecture (e.g.,
CNNs vs. Transformers), objective (e.g., contrastive vs. reconstruction), and task preference—raising
the question of how to integrate their complementary strengths into a single, versatile model.

Knowledge distillation. Knowledge distillation (Hinton et al., 2015) has been widely used to transfer
knowledge from a single large teacher to a smaller student. Traditional methods work by matching
the intermediate features (Romero et al., 2015) or model predictions (Hinton et al., 2015) between
the teacher and the student, and often assume identical architectures (e.g., ViT-to-ViT or ResNet-to-
ResNet). Recent methods such as MobileSAM (Zhang et al., 2023), TinyCLIP (Wu et al., 2023),
and Proteus (Zhang et al., 2025b) continue this trend, typically involving one-to-one teacher-student
pairs trained on large-scale datasets. However, this formulation fails to address settings with multiple,
heterogeneous teachers—such as a hybrid set of pre-trained Transformers and CNNs teachers—each
offering complementary knowledge and strengths. Existing methods that attempt cross-architecture
feature alignment require careful manual design and struggle to scale as the number of teachers
increases (Hao et al., 2023; Zhang et al., 2025a; Liu et al., 2022a). In contrast, our work introduces
a unified and architecture-agnostic solution for fusing knowledge from diverse VFMs into a single
student model, enabling robust generalization without hand-crafted feature matching.

Mutli-teacher distillation for VFMs. (Ranzinger et al., 2024) introduce an agglomerative distillation
approach to reducing the domain knowledge embedded in various vision foundation models into a sin-
gle student model. Through a direct global-level and patch-level alignment with CLIP (Radford et al.,
2021), SAM (Kirillov et al., 2023), and DINO-v2 (Oquab et al., 2023), the consequent student model
is shown to inherit rich knowledge for various vision-related tasks. Soon, RADIO-v2.5 (Heinrich
et al., 2025) extends this concept with multi-resolution distillation, which facilitates high-resolution
vision tasks. However, these approaches directly employ feature alignment between student and
teachers, which risking unsatisfactory optimization with heterogeneous features. Moreover, they
require training on the large-scale DataComp-1B dataset, incurring enormous computation-source
demand. On the contrary, we opt for a more economical multi-teacher distillation approach, regardless
of the architectures as well as surrogate pre-training objectives.
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Figure 2: A schematic illustration of the proposed universal multi-teacher (UMT) distillation frame-
work. UMT transfers knowledge from multiple teachers (CNN, ViT, or a hybrid set of both)) to
a student model (either CNN or ViT). A learnable model token interacts with features of the stu-
dent within multiple teacher-specific representational spaces. After processing alternatively by the
proposed cross-space and intra-space module N times, the model token is required to align with
the global-level feature of teachers. Additionally, the visual features from student are aligned with
teachers correspondingly.

3 METHODOLOGY

In this section, we formally formulate the multi-teacher knowledge distillation problem, alongside
the challenges. We then present detailed descriptions of our unified multi-teacher distillation (UMT)
framework and its components, including feature re-projection and multi-space token interaction.

3.1 UNIFIED MULTI-TEACHER DISTILLATION OVERVIEW

We consider a multi-teacher knowledge distillation set-up where we have access to M pre-trained
vision foundation models as teachers, denoted T = {Ti}Mi=1. Each of the teacher models may
belong to different vision architecture families (e.g., CNN, ViT) and have been trained on data of
different sources (e.g., ImageNet-1K, LAION-2B). The objective is to train a single student model
S, (e.g., CNN or ViT) that maximally inherits the diverse knowledge from all teachers. To achieve
this goal most economically, unlike the pioneering RADIO (Heinrich et al., 2025) that requires
billions of samples (Gadre et al., 2023) to train, we instead employ ImageNet-1K—with 1000× fewer
images—as our proxy dataset D to align the student’s representations with those from all teachers.
Nonetheless, naive one-to-many representation alignment may suffer from competitions or even
conflicts among multiple teachers’ representations, leading to compromised knowledge learned by
the student (Yuan et al., 2021; Liu et al., 2020).

To reconcile among multiple, possibly heterogeneous or conflicting teacher features, we propose
to project the student’s feature into M different representational spaces, each corresponding to and
responsible for assimilating the vision knowledge embedded in one of theM teachers. Unlike existing
approaches (Ranzinger et al., 2024; Heinrich et al., 2025) that enforce naive one-to-many feature
alignment that is prone to conflicts, we introduce a novel learnable model token Pm ∈ Rdm to interact
with the student’s feature in respective representational spaces as illustrated in Figure 2. Through
extensive interaction with student’s features in M representational spaces, the model token becomes
capable of capturing model-agnostic general vision knowledge across all teachers. Hence, the model
token could further promote the alignment between the student and M teachers. To facilitate this
process, we compel the model token to be aligned with all teachers’ global-level image representations
as shown in Figure 2. Hence, the student visual features, after interaction with the model token within
multiple representational spaces, could easily be aligned with the features obtained from all teachers.

3.2 FEATURE RE-PROJECTION INTO REPRESENTATIONAL SPACES

As illustrated in Figure 2, for a given image x sampled from proxy dataset D, the student model S
outputs visual feature FS ∈ RH×W×dS if it adopts a ConvNet architecture, where H , W , and dS
denote its height, width, and channel dimension, or FS ∈ R(1+L)×dS if a ViT architecture, where
L is the length of the patch sequence and “1” corresponds to the specific class token. Analogously,
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each teacher Ti processes the same input image x and produces visual feature FTi
∈ RH×W×dTi or

FTi
∈ R(1+L)×dTi , depending on whether it adopts a ConvNet or a ViT architecture.

Knowledge distillation assumes that the student S learns from a specific teacher Ti if FS is imposed to
align with FTi

for all samples in the proxy dataset. Therefore, if FS could be well aligned with visual
features {FTi

} from all teachers {Ti}, then we can fairly assume that the student has assimilated
their knowledge (Romero et al., 2015). Since the features from multiple teachers present in distinct
representational spaces due to different architectures, various pre-training data sources, and specific
optimization objectives, we first need to re-project FS into their respective representational spaces,
each responsible for alignment with a specific teacher. As such, a total of M projection operations
are involved, denoted by Γi, i = 1, 2, · · · ,M , for the set of M teachers.

F i
S = Γi(FS), i = 1, 2, · · · ,M, (1)

where F i
S ∈ RH×W×dTi or F i

S ∈ R(1+L)×dTi .

3.3 FEATURE INTERACTION IN MULTIPLE REPRESENTATIONAL SPACES

Conventional feature-based distillation transfers the teacher’s capability to the student by aligning
their intermediate features (Romero et al., 2015). However, in our multi-teacher distillation setup,
blindly forcing each F i

S to match FTi
is sub-optimal for at least two reasons: First, not all teachers are

pre-trained on the proxy dataset, hence a strict alignment between student and teacher will suffer from
dataset bias (Zhang et al., 2025b), hindering student learning. Second, the representational spaces of
different teachers can be highly diverse. For instance, an MAE pre-trained model projects images
into an Euclidean space with the mean square error (MSE) criterion, while a contrastive learning-
based model embeds images into a hypersphere (Wang & Isola, 2020). Therefore, designing proper
alignment criteria that takes account of these discrepancies between multi-teacher representations
becomes vital. To further enhance the adaptation capability of distilled model, the interaction
among representational spaces maybe helpful. Since visual features of teachers are represented in
different spaces, considering their interaction could boost the knowledge transfer of general visual
representation.

In this paper, we introduce a learnable model token Pm ∈ Rdm , and further develop cross-space
and intra-space interaction mechanisms to facilitate alignment issue among all teachers, while
simultaneously promoting the knowledge transfer in various representational spaces.

Cross-space interaction. As illustrated in Figure 2, we first expand the model token Pm to match
the shape of each projected features F i

S and get them concatenated, before sending to a cascade of
alternating intra-space and cross-space interaction modules. With model token incorporated to all
representational spaces, we can safely explore their interactions. Concretely, let ψj

C denote the j-th
cross-space interaction module, we have

F j
C = ψj

C([{F
i
S ,Pm}]), if j = 1, (2)

F j
C = ψj

C([F
j−1
I,i ]), j ≥ 2, (3)

where [·] denotes the concatenation operation, and F j−1
I,i denotes the output feature of (j − 1)-th

intra-space interaction module corresponding to the i-th representational space.

It is noteworthy that the concatenation results in a total number of M × (dT + dm) channels, which
scales linearly with the number of teachers. Naively processing the concatenated features with a fully
channel-wise convolution or attention would incur unacceptable computation cost. To reduce the
computational complexity, we adopt following techniques:

• For CNN students, inspired by Liu et al. (2022b), we construct the module with two basic
convolutional layers, the depth-wise convolution and 1× 1 point-wise group convolution.

• For Transformer students, we enlarge the head number linearly to the number of teachers.

Intra-space interaction. Each representational space is dedicated to learning from a specific teacher,
embedding images into a meaningful and structured form. The cross-space interaction module helps
aggregate visual information from all spaces. To ensure that this visual information is accurately
represented within each space, it is essential to carefully reorganize the features accordingly. For this
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Table 1: A comprehensive comparison across ImageNet classification, fine-grained classification,
image segmentation, and depth estimation. † denotes methods for which official results are reported.
The best distillation results are in bold.

Method Student Arch. Setting # imgs ImageNet Fine-grained Cls. Segmentation (Probing) Depth Estimation
Aircraft Caltech101 CUB ADE20K (mIoU↑) NYUv2 (RMSE↓)

Classification (He et al., 2016)

ResNet-50

- 1.2M 80.9 81.6 90.5 83.3 12.4 0.439
MAE (He et al., 2022) - 1.2M 65.0 83.6 88.0 71.7 15.83 0.428
DINO (Caron et al., 2021) - 1.2M 80.0 76.1 89.6 74.8 18.4 0.426
UMT (ours) CNN→CNN 1.2M 78.0 85.4 89.9 79.7 20.5 0.408

Classification (Liu et al., 2022b)

ConvNeXt-B

- 1.2M 83.8 87.0 92.9 90.6 18.0 0.355
Spark (Tian et al., 2023) - 1.2M 84.8 92.1 91.6 82.6 31.3 0.329
DINOv3 (Siméoni et al., 2025) - 1689M 86.3 94.0 92.7 89.1 36.4 0.293
UMT (ours) CNN→CNN 1.2M 83.0 88.7 93.1 88.7 34.6 0.361
UMT (ours) ViT→CNN 1.2M 84.1 90.0 93.5 88.7 34.7 0.349

CLIP (Radford et al., 2021) ViT-B/16 - 400M 84.2 82.1 90.7 85.1 - -
MAE (He et al., 2022) ViT-B/16 - 1.2M 83.6 85.9 91.6 81.2 22.2 0.347
DINOv3 (Siméoni et al., 2025) ViT-B/16 - 1689M 86.2 92.6 93.5 90.3 50.9 0.293
Proteus† (Zhang et al., 2023) ViT-B/14 ViT→ViT 1.2M 84.9 - - - - 0.304
RADIOv2.5† (Heinrich et al., 2025) RADIOv2.5-B ViT→RADIO ∼1400M - - - - 48.9 -
UMT (ours) ViT-B/16 ViT→ViT 1.2M 85.6 90.3 94.3 89.2 46.5 0.300
CLIP (Radford et al., 2021) ViT-L/14 - 400M 86.7 84.4 91.4 88.2 - -
MAE (He et al., 2022) ViT-L/16 - 1.2M 85.9 91.5 92.4 85.5 27.1 0.267
DINOv3 (Siméoni et al., 2025) ViT-L/16 - 1689M 88.4 94.5 93.7 91.5 54.6 0.224
Proteus† (Zhang et al., 2023) ViT-L/14 ViT→ViT 1.2M 86.2 - - - - 0.240
RADIOv2.5† (Heinrich et al., 2025) RADIOv2.5-L ViT→RADIO ∼1400M - - - - 51.5 -
UMT (ours) ViT-L/16 ViT→ViT 1.2M 87.5 92.1 93.8 91.4 50.3 0.258

purpose, we design an intra-space interaction mechanism as illustrated in Figure 2, placed after the
cross-space interaction module. As a result, the intra-space module operates independently on each
projected features. Denote F j

C,i be the output corresponding to the i-th teacher, chunked from the
j-th cross-space module. And let ϕjI be the intra-space module, then we have F j+1

I,i = ϕjI(F
j
C,i) as

the reorganized feature for the i-th teacher.

3.4 MULTI-TEACHER FEATURE ALIGNMENT

Current multi-teacher distillation approaches like Zhang et al. (2025b) and Heinrich et al. (2025)
harshly align the student features with different teachers at multiple levels, risking in representation
collision among teachers. For instance, forcibly aligning the global cls token with both CLIP and
MAE simultaneously may in turn harm the global visual perception of students. Hence we argue that
a careful alignment between student and teachers must be taken into consideration.

Model token alignment. We opt for the model token to perform a global-level alignment with
teachers. With rich interaction with visual features in multiple representational spaces, this alignment
can in turn force each representational space characterizing the teacher’s feature property. With this
goal, we first pool the ultimate feature FN

I,i, and chunk the model token part to obtain a global-level
token in the i-th representational space, corresponding for aligning with the global-level token of
the i-th teacher. Specifically, we pool the CNN’s ultimate feature and use the cls token of a ViT as
supervision, respectively. For simplicity, we denote the model token alignment objective as Lm

teacher
corresponding for a specific teacher.

Student feature alignment. As shown in Figure 2, we chunk the student feature part from FN
I,i to

align student feature with each teacher. It is noteworthy that with different pre-training objectives,
the ultimate features lie in diverse manifolds. As a result, we apply different feature constraints for
different teachers. For teachers excelling at extract global-level or semantic clues, e.g., CLIP, DINO,
and classification-pre-train, we employ a cosine similarity constraint. While for reconstruction-based
pre-training models such as MAE, we use Mean Square Error (MSE) loss. For simplicity, we refer to
the feature alignment loss as Lf

teacher for a specific teacher.

With the aforementioned feature interaction mechanism and multi-teacher alignment objective, we
could distill multiple teachers into a single student from scratch on the ImageNet dataset. Details of
the model token alignment and student feature alignment losses are provided in Appendix A.3.
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Figure 3: Cosine similarity (top) and PCA (bottom) visualization of deep features at different places
within the ViT-B/16 student. The input image resolution is 2048 × 2048, resulting in 128 × 128
spatial features. Top: cosine similarity map between class token and patch tokens. Bottom: PCA
visualization by projecting features into RGB space.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation details. We conduct multi-teacher distillation on various student architectures,
including ResNet-50 (He et al., 2016), ConvNeXt-B (Liu et al., 2022b), ViT-B/16 (Dosovitskiy
et al., 2020), and ViT-L/16 (Dosovitskiy et al., 2020). For each randomly initialized student, we
employ its pretrained classification-based (CLIP for ViT), MAE-based, and DINO-based counterparts
as teachers. For DINO-based teachers, we adopt the latest DINO-v3 ConvNeXt-B and ViT series.
Distillation training is conducted on the ImageNet-1K dataset following a standard 300-epoch training
configuration with 224× 224 image resolution. We use two cross-space and intra-space modules for
CNN student, while one for ViT student, respectively. More details about the training configurations
and the cross-space and intra-space module designs are provided in Appendix A.2.

Benchmarks. We evaluate the model’s capability across a wide array of vision tasks and datasets:
image classification on ImageNet-1K (Deng et al., 2009), fine-grained image classification on
Aircraft (Maji et al., 2013), Caltech101 (Fei-Fei et al., 2007), and CUB2011 (Wah et al., 2011) datasets,
semantic segmentation on ADE20K (Zhou et al., 2017), and depth estimation on NYUv2 (Silberman
et al., 2012). More details can be found in the Section A.1.

4.2 MAIN RESULTS

We examine the capability of the UMT-distilled student across various downstream vision tasks by
comparing their performance with corresponding teachers. We select two recent advanced distillation
approaches, Proteus (Zhang et al., 2025b) and RADIO-v2.5 (Heinrich et al., 2025) for comparison.
In particular, we collect the officially reported metrics for these two methods for a fair comparison.

Multi-teacher distillation into Transformers. We distill the official CLIP ViT-B/16, MAE-
pretrained ViT-B/16, and DINO-v3 ViT-B/16 models into a vanilla ViT-B/16 student. We do not adopt
the advanced 2D rope position embedding (Su et al., 2024), hybrid architecture design like Heinrich
et al. (2025), and register tokens Darcet et al. (2024) that could benefit the student’s performance. Ta-
ble 1 presents quantitative results across four fundamental vision tasks.

We observe that the distilled student achieves competitive performance on ImageNet and fine-grained
classification. Notably, on certain tasks the student even surpasses teacher, such as on Caltech101
where it outperforms all three teachers. On dense prediction tasks, the ViT-B/16 student consistently
outperforms the MAE teacher with a 26.7% linear probing mIoU gain on semantic segmentation and
a 0.047 RMSE improvement on depth estimation. The distilled student also outperforms Proteus-B
on both ImageNet classification and depth estimation. On the other hand, since the distilled students
tends to provide features with distinct details, linear probing may not unleash its potential in dense
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Table 2: Multi-teacher distillation using teachers of different architectures. We use different combina-
tions of teacher models to distill a ConvNeXt-B student. The best results are in bold.

Combination Teacher-I (CLS) Teacher-II (MAE) Teacher-III (DINO) Lm
CLS + Lm

MAE + Lm
DINO Lf

CLS + Lf
MAE + Lf

DINO Lm
DINO + Lf

DINO

Homogeneous ConvNeXt-B ConvNeXt-B ConvNeXt-B 0.20 0.23 0.31
Hybrid CLIP ConvNeXt-B ConvNeXt-B 0.11 0.27 0.26
Hybrid ConvNeXt-B ViT-B/16 ConvNeXt-B 0.18 0.48 0.60
Hybrid CLIP ViT-B/16 ViT-B/16 0.09 0.08 0.10

segmentation which requires continuous feature maps. Nonetheless, with vision knowledge integrated
from other teachers, the student even outperforms DINO-v3 on the Caltech101 dataset. Note that
our method only falls slightly short of RADIO-v2.5 on semantic segmentation, where they rely on
explicit segmentation knowledge transfer from SAM (Kirillov et al., 2023) on a 1000× larger dataset.

Multi-teacher distillation into CNNs. We further adopt UMT to distill two CNN variants, i.e.,
ResNet-50 and ConvNeXt-B, where their ImageNet classification pre-trained, MAE, and DINO
counterparts are used as teachers. Quantitative results are presented in Table 1. We observe that
the ResNet-50 student achieves substantial improvements on dense prediction tasks, including
segmentation and depth estimation, whereas the ConvNeXt-B student struggles to integrate knowledge
from all teachers as shown in Table 6. We conjecture that the strong inductive bias of CNN with
dataset bias will amplify the difficulty for multi-teacher distillation among CNNs. We will show that
hybrid multi-teacher distillation can alleviate this issue.

Multi-teacher distillation from hybrid teacher architectures. Cross-architecture distillation
remains an open challenge due to difficulties in reconciling heterogeneous features (Hao et al., 2023;
Zhang et al., 2025a). However, as illustrated in Table 1, distilling a ConvNeXt-B student using all
ViT teachers consistently outperforms the homogeneous distilled student across four vision tasks.
Here, in contrast to the standard single teacher-student cross-architecture distillation, we make a
counter-intuitive observation: in the presence of dataset bias among the student and teachers, using
all ViT teachers can maximally alleviate the performance degradation when the student is CNN. We
explore this by fixing the student to ConvNeXt-B, and change the architecture combination of all
teachers. As shown in Table 2, by substituting a classification-pretrained CNN teacher with CLIP, we
can obtain a slight training loss decrease. However, if we simultaneously employ a ViT-based MAE
teacher and a CNN-based DINO teacher, the multi-teacher distillation becomes challenging due to
the heterogeneous spatial feature alignment. Surprisingly, with all ViT teachers, the multi-teacher
distillation becomes much easier. One step further, we observe that the DINO loss accounts for
the performance variation as shown in Table 2, caused the dataset bias between LVD-1689M and
ImageNet-1K. Therefore, we make this safe assertion that all ViT teachers can alleviate the dataset
bias influence for multi-teacher distillation with a CNN student.

4.3 ABLATION STUDIES

In this section, we conduct experiments to verify the importance of the introduced model token,
together with the cross-space and intra-space modules. We also show that the student distilled using
the proposed approach can extract robust features against various input resolutions. Besides, we
examine the impact of feature alignment objectives, which underscores the importance of careful
alignment between the student and teachers.

Table 3: Ablation on model token and the
cross-space and intra-space modules.

Configuration Model token loss Feature loss

w/o model token - 0.29
w/o cross-space module 0.18 0.35
w/o intra-space module 3.56 2.60
UMT (ours) 0.20 0.23

Role of the model token. We first investigate the
role of the model token. We distill a ConvNeXt-B
student by eliminating the model token. The results
in Table 3 suggest that model token helps optimize
the feature alignment loss. With the interaction be-
tween the model token and the student visual fea-
tures within multiple representational spaces, the
model-agnostic general vision knowledge captured
by the model token facilitates the alignment between student and all teachers.

Effectiveness of intra- and cross-space modules. We distill a ConvNeXt-B student by ablating
the intra-space and cross-space modules to understand their effectiveness. As shown in Table 3,
the feature re-organization by the intra-space module is crucial for both model token and student
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feature alignments. Additionally, the cross-space module could help reduce the feature alignment
loss between student and teachers.

Table 4: Effect of using different features for
classification on the CUB2011 dataset.

Backbone DINO head MAE head CLS head

73.8 77.9 (+4.1) 77.0 (+3.2) 79.7 (+5.9)

Effect of multi-space feature interaction. We ex-
amine the benefits of using the features after interac-
tion facilitated by the model token, compared to us-
ing the raw features from the backbone. We conduct
fine-grained classification on the CUB2011 dataset,
with ResNet-50 as the student backbone. We adopt
the model token projected to DINO, MAE, and classification head for classification. From Ta-
ble 4, using the features from backbone yields unsatisfactory performance, with a 5.9% accuracy
degradation.

With the model token being projected into different heads (DINO, MAE, CLS), we observe a
consistent accuracy gain. Additionally, we present a PCA visualization analysis in Figure 3, where
the projected DINO head perceives a better sematic understanding as well as exhibits powerful detail
capturing capability. We leave detail discussion in Appendix A.6.

Table 5: Impact of different feature alignment
objectives.

DINO objective Aircraft Caltech101 CUB2011 Average

MSE 89.4 92.8 90.6 90.9
Cosine 92.1 93.8 91.4 92.4

Table 6: CKA feature similarity analysis for
ViT-B and ViT-L students.

Student Level CLIP MAE DINO-v3
ImageNet-1K - CLIP-400M ImageNet-1K LVD-1689M

ViT-B/16 global 0.83 0.98 0.76
patch - 0.95 0.81

ViT-L/16 global 0.71 0.85 0.66
patch - 0.92 0.73

Choices of alignment objectives. We evaluate the
performance of the ViT-L/16 student trained us-
ing different DINO objective on three fine-grained
datasets. As presented in Table 5, using a cosine sim-
ilarity constraint could better transfer the semantic
understanding ability to the student.

CKA visualization. We also adopt the Central Ker-
nel Alignment (CKA) (Kornblith et al., 2019) to
quantify the representation similarity between stu-
dent and all teachers. As shown in Table 6, the
student shares a highest CKA metric with MAE
since they are all trained on the same dataset. With a
larger training dataset scale, where potential dataset
bias becomes more prominent, the CKA similarity
between student and teacher decreases, resulting in
performance drop compared to DINO-v3 teacher as shown in Table 1.

5 LIMITATIONS

As can be seen in Table 1, the major limitation lies in the dataset bias incurred between DINO-
v3’s LVD-1689M dataset and the distillation proxy dataset ImageNet-1K. Specifically, the LVD-
1689M dataset contains high-quality images from the Web, public ImageNet dataset, and street-level
sequences, covering all visual concepts appearing on the web. However, most images within the
ImageNet-1K dataset only contain one major subject, limiting the knowledge transfer of multi-object
perception capability from DINO-v3 pre-trained models. Furthermore, the strong inductive bias
learned from different datasets poses a challenge in multi-teacher distillation with CNN architectures.
Although we find that utilizing all ViT is a viable way to mitigate the dataset bias, it requires further
exploration into combating the dataset bias in multi-teacher distillation.

6 CONCLUSION

In this paper, we introduce a unified multi-teacher distillation approach to integrate multiple vision
foundation models’ knowledge into a singe model. The distilled model has shown impressive
performance across a range of downstream vision tasks from classification and semantic segmentation
to depth estimation. In particular, we introduce a learnable model token, which interacts with visual
features at multiple representational spaces, facilitating the heterogeneous feature alignment with
different architectures. This powerful strategy paves an economical way to obtain a versatile vision
model by training on ImageNet-1K, without requirement for large-scale data sources or complex
training procedures.
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7 ETHICS STATEMENT

This work focuses on developing a resource-efficient framework for multi-teacher distillation of vision
foundation models. By reducing the reliance on billion-scale datasets and extensive computational
resources, our approach lowers the environmental footprint of training and makes advanced vision
models more accessible to researchers with limited resources. This aligns with broader goals of
sustainability and inclusiveness in AI research.

8 REPRODUCIBILITY STATEMENT

We use the publicly-accessible datasets ImageNet-1k, FGVC-aircraft, Caltech101, CUB2011,
ADE20K, and NYUv2. We have elaborated our method and experimental settings in detail in
the paper. Additionally, our downstream task training is based on the public MMSegmentation toolkit
and follows the public repositories. We will upload our codes in the further for re-implementation of
the proposed approach.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We conduct all experiments with 8 NVidia A800 GPUs using the PyTorch (Paszke, 2019) framework.
In this section, we provide more details on the training of distillation and downstream benchmarks.

Multi-teacher Distillation Setting. We train all students on the ImageNet-1K from scratch with
image resolution be 224× 224. The training batch size for ResNet-50, ConvNeXt-B, and ViT-B is
set to 1024. For ViT-L experiments, we set the batch size to 512 due to GPU memory constraint.
Besides, we employ the mixed precision training to save GPU memory and accelerate training. We
freeze all teachers during distillation, which forms a standard and default choice. The advanced
AdamW Loshchilov & Hutter (2017) optimizer is employed with a cosine annealing learning rate
schedule. The base learning rate is set as 1e-4, with Below we provide details on the student and
teachers:

• ResNet-50 student. We utilize the official ImageNet-1K classification pretrained, MAE
pre-trained by SparK (Tian et al., 2023), and DINO pre-trained ResNet-50 models as
teachers.

• ConvNeXt-B student. We adopt the official ImageNet-1K classification pre-trained, MAE
pre-trained by SparK (Tian et al., 2023), and latest DINO-v3 ConvNeXt-B models as
teachers.

• ViT-B student. We implement a vanilla ViT-B/16 under the timm framework without register
tokens and only using learnable position embedding. We employ the official CLIP ViT-
B/16, MAE pre-trained ViT-B/16, along with latest DINO-v3 ViT-B/16 as teachers. It is
noteworthy that DINO-v3 employs advanced 2D ROPE position embeddings for better
performance.

• ViT-L student. We implement a vanilla ViT-L/16 student using the official timm library. As
for teachers, we adopt the official CLIP ViT-L/14, MAE pre-trained ViT-L/16, together with
latest DINO-v3 ViT-L/16 models.

Benchmark Training. We conduct performance evaluation of the distilled student on four founda-
mental vision tasks, ImageNet classification, fine-grained classification, image segmentation, and
depth estimation.

We first fine-tune all listed models in Table 1 except for Proteus and RADIO-v2.5 on the ImageNet-1K
dataset for 10 epochs with a learning rate 1e-4. The training starts with one epoch warmup. We set
the batch size as 512. The training input resolution is 224× 224. We adopt a layer-wise learning-rate
decay of 0.8 for all models. Once tuning finished for the models, we report their top-1 accuracy on
the validation set of ImageNet-1K.

For the dense segmentation on ADE20K dataset, we adopt a linear decoder head following Heinrich
et al. (2025) while freezing the backbones. Typically, we adopt a standard 80k training schedule
with a training batch size 16 utilizing the off-the-shelf MMSegmentation toolkit. We report the
mean Intersection over Union (mIoU) metric on the validation set. The training resolution is fixed
as 512 × 512 for all models. To enabling training on this resolution, we adopt a bicubic position
embedding strategy.

Finally, we conduct downstream depth estimation on the widely adopted NYUv2 benchmark. Fol-
lowing Zhang et al. (2025b), we use the DPT (Ranftl et al., 2021) as the decoder head. Specifically,
the DPT decoder head requires hierarchical spatial features together with a summary token as inputs.
Therefore, with ResNet-50 and ConvNeXt-B backbones, we utilize the hierarchical spatial features
within four stages, and spatially pool these features to obtain a summary token. This design makes
the DPT decoder head suitable for depth estimation with CNN models. As for the ViT-B backbone,
we form the hierarchical deep features by extracting features at indices 3, 5, 7, 11. Specifically, the
corresponding cls tokens are regarded as the summary tokens required by the DPT deocder head.
Additionally, the output indices for the ViT-L model is changed to 7, 11, 15, 23. In practice, We train
the student and teachers (except CLIP) on NYUv2 with batch size 16, experiencing a standard 25k
training schedule. Following Zhang et al. (2025b), the learning rate for the backbone is scaled by a
factor of 0.1. Specifically, we adopt the Root Mean Square Error (RMSE) metric for evaluation.
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Table 7: Alleviate the impact of dataset bias by choosing teachers (Student as ConvNeXt-B).

Teacher-I Teacher-II Teacher-III ADE20K NYUv2 (RMSE)

CLIP (ViT-B/16) MAE (ViT-B/16) DINO-v3 (ViT-B/16) 34.7 0.349
DINO-v3 (ConvNeXt-B) DINO-v3 (ViT-B/16) - 35.1 0.332

A.2 CROSS-SPACE AND INTRA-SPACE MODULE DESIGN

CNN as student. We adopt two cross-space and intra-space modules for CNN student. The cross-
space module is comprised of layer normalization, followed by a depth convolution with 3×3 kernels,
GELU activation, and a 1× 1 convolution layer with G groups. We set G for ResNet-50 to 128 and
64 for ConvNeXt-B.

The intra-space module follows the same architecture design with cross-space module. Additionally,
the intra-space module is shared across different representational spaces. We adopt a residual
connection to both types of modules.

ViT as student. We build the cross-space and intra-space module on the vanilla attention block,
featuring a norm-attention-norm-ffn design. Both types of modules share the same architecture. For
the cross-space module, we enlarge the head number in the attention block linearly to the number of
teachers. Additionally, the intra-space module is shared across multiple representational spaces.

A.3 DETAILS ON HYBRID ARCHITECTURE DISTILLATION

Model token alignment loss. After the alternating cross-space and intra-space modules, we chunk
the model token from ultimate deep features at different representational spaces. We the use a shared
projection head (LayerNorm-Linear) to align its channels with all teachers. We then pool the model
token to align with the teachers’ global-level token. For CNN teachers, we utilize their pooling
features as supervision. On the contrary, we adopt the cls token from ViT teachers except CLIP
for supervision. For CLIP teacher, we directly use its image encoding vector as aligning target. We
simply adopt MSE loss for all types of teachers.

Student Feature Alignment Loss. After the alternating cross-space and intra-space modules, we
chunk the student feature from the ultimate deep features. For classification-based and CLIP teachers,
we pool the features and utilize a cosine loss for semantic alignment. For MAE teacher, we adopt a
MSE loss for patch-level alignment. As for DINO teacher, we utilize a patch-level cosine constraint
for the alignment.

A.4 ROBUSTNESS TO DIFFERENT INPUT RESOLUTIONS

Heinrich et al. (2025) observes that the student’s feature tends to diverge when input resolution
increases to 1024. However, since all teachers in our design are pre-trained at similar resolutions, the
ultimate student can extract robust features when input resolution changes from 5122 to 40962 as
illuatrated in Figure 4.

A.5 MITIGATE DATASET BIAS IMPACT BY CHOOSING TEACHERS

As illustrated in Section 4.2, we can mitigate the influence of dataset bias among teacher and students
by substituting all CNN teachers with ViTs. In this section, we observe that reducing the dataset
bias between teachers could also improve distillation performance. As shown in table 7, we adopt a
DINO-v3 CNN and ViT teacher to distill a ConvNeXt-B student. Since the teachers are all pre-trained
on the same LVD-1689M dataest, the dataset bias between them can be neglected. As a result, we
obtain a better segmentation and depth estimation performance as shown in table 7.

A.6 EFFECT OF USING DIFFERENT FEATURES FOR CLASSIFICATION ON CUB2011 DATASET.

We continue our discussion about the multi-space feature interaction by analyzing the feature quality
of a distilled ViT-B/16 student.
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(d) 128x128(a) 32x32 (b) 64x64 (d) 256x256

Figure 4: ViT-B/16 student extracts robust features against different input resolutions across 5122,
10242, 20482, and 40962. Top: cosine map between cls token and patch tokens. Bottom: PCA
visualization into RGB for features projected to the DINO head.

We visualize the PCA projected feature as well as the cosine similarity map between cls token
and patch tokens. As shown in Figure 3, the features from backbone shows satisfactory semantic
information, while the cosine map suggests that the cls token fails to capture discriminative
information for classification. Furthermore, both the CLIP and MAE head fail to simultaneously
capture clean semantic clues together with discriminative information. In contrast, the DINO projected
feature captures rich semantic information and presents the best concentration of the cls token.
With these obervations, we utilize the model token projected to the DINO head for classification.
Analogously, we employ the deep features projected to the DINO head for dense prediction tasks.
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