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ABSTRACT

Change captioning generates descriptions that explicitly describe the differences
between two visually similar images. Existing methods operate on static im-
age pairs, thus ignoring the rich temporal dynamics of the change procedure,
which is the key to understand not only what has changed but also how it oc-
curs. We introduce ProCap, a novel framework that reformulates change mod-
eling from static image comparison to dynamic procedure modeling. ProCap
features a two-stage design: The first stage trains a procedure encoder to learn
the change procedure from a sparse set of keyframes. These keyframes are
obtained by automatically generating intermediate frames to make the implicit
procedural dynamics explicit and then sampling them to mitigate redundancy.
Then the encoder learns to capture the latent dynamics of these keyframes via
a caption-conditioned, masked reconstruction task. The second stage integrates
this trained encoder within an encoder-decoder model for captioning. Instead of
relying on explicit frames from the previous stage—a process incurring computa-
tional overhead and sensitivity to visual noise—we introduce learnable procedure
queries to prompt the encoder for inferring the latent procedure representation,
which the decoder then translates into text. The entire model is then trained
end-to-end with a captioning loss, ensuring the encoder’s output is both tem-
porally coherent and captioning-aligned. Experiments on three datasets demon-
strate the effectiveness of ProCap. Code and pre-trained models are available at
https://github.com/BlueberryOreo/ProCap.

1 INTRODUCTION

Change captioning aims to generate textual descriptions that emphasize differences between two
similar images. It has attracted growing interest due to its wide applications, like monitoring tem-
poral changes in remote sensing (Chouaf et al., |2021), supporting medical diagnosis by leveraging
comparisons between abnormal and normal medical images (Bian et al.| [2025), supporting urban
planning via intelligent surveillance (Sun et al.l|2024)), and improving industrial quality control (Xie
et al.,2024). Despite its promise, the task remains challenging due to (1) subtle appearance changes
often being obscured by variations in viewpoint, illumination, or background clutter, and (2) the dif-
ficulty of transforming fine-grained visual differences into coherent, accurate language descriptions.

To address them, existing methods follow an encoder-decoder framework, where the encoder cap-
tures visual differences and the decoder generates descriptive captions. Early works (Park et al.,
2019; [Shi et al.| |2020) model pixel-level differences via patch features, while later works (Qiu et al.,
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[2021}, [Yao et al, 2022} [Tu et al [2023c) introduce intricate difference extractors with alignment
mechanisms to better localize change regions. More recently, the field has seen a shift towards in-
tegrating Large Language Models (LLMs) as decoders (Yang et al 2023} [Hu et al., 2024} [Zhang
2024), leading to substantial gains in caption quality. Furthermore, recent advancements in
applying reinforcement learning to bolster LLM reasoning (Peng et al.} 2025} [Wu et all, [2025b)
present a promising avenue for further enhancing change captioning. Although promising, these
methods typically focus on static image pairs, neglecting dynamic context and temporal cues critical
for robust change perception. In practice, the transition between images often involves intermedi-
ate frames that capture rich spatio-temporal dynamics, explicitly revealing appearance and motion
changes only implicitly encoded in the static pair (see Figure[T). Explicitly modeling this transition
process thus offers a more principled basis for change understanding and captioning.

Static Image Pair Modeling

) _ <

Figure 1: Comparison between static image pair modeling and our proposed dynamic procedure
modeling. Dynamic procedures offer temporal cues: the yellow cylinder, initially partly obscured
by the green cube, changes its location.

In this work, we make the first attempt beyond change captioning on static image pairs by formulat-
ing a procedure-modeling-then-captioning paradigm. We explicitly model the dynamic change pro-
cedure between static image pairs and perform captioning on the modeled spatio-temporal change
procedure. We present ProCap, an innovative two-stage framework: (1) explicit procedure mod-
eling, which captures latent spatio-temporal dynamics between image pairs, and (2) implicit pro-
cedure captioning, which generates rich descriptions by leveraging learnable queries to implicitly
reason over the modeled change procedure.

Explicit procedure modeling. Our framework models the underlying change procedure via three
key components. Procedure Generation Module: This component synthesizes intermediate frames
to transform the implicit transformation between input images into an explicit and observable tem-
poral sequence. However, the generated sequence tends to be dense and temporally redundant, often
containing low-information content that incurs unnecessary computational overhead. Confidence-
Based Frame Sampling Module: To address this, we introduce a confidence-aware sampling module
to distill the sequence into a sparse set of informative keyframes. Each frame is assigned a con-
fidence score based on temporal and semantic importance. By retaining only the highest-scoring
frames, our module focuses learning on pivotal transition moments, thereby improving efficiency
and representational quality during training. Procedure Modeling Module: Finally, we employ a pro-
cedure encoder to learn a compact latent representation of the sampled keyframe sequence. We cast
this as a caption-conditioned masked frame reconstruction task, where a multi-granularity masking
strategy—ranging from local patches to entire frames—is introduced. This encourages the model
to capture aligned spatio-temporal dynamics across multiple scales, while mitigating overfitting to
superficial visual cues and enhancing generalization in procedural understanding.

Implicit procedure captioning. The key challenge for captioning lies in leveraging the procedu-
ral knowledge learned by the procedure encoder for efficient and effective text generation. A naive
approach—generating and encoding intermediate frames at inference—incurs high computational
cost and introduces sensitivity to synthesis noise. To address them, we present the implicit proce-
dure captioning, inserting a set of learnable procedure queries between static image pairs, acting as
“slots” to replace explicit intermediate frames. By leveraging the understanding of spatio-temporal
dynamics learned during the first stage, the procedure encoder is prompted to infer the latent change
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procedure implicitly encoded within the image pair. The resulting procedural representation is de-
coded into a textual description, enabling end-to-end optimization via a captioning loss. This yields
a temporally coherent, task-aligned representation without costly frame synthesis at inference.

Our contributions are summarized: (1) We introduce ProCap, a two-stage framework reformulat-
ing change captioning from static comparison to dynamic procedure modeling, directly addressing
limitation of prior works: their reliance on static image pairs, overlooking rich temporal dynam-
ics. (2) We propose explicit procedure modeling, where a procedure encoder is trained on sampled
keyframes from a synthesized explicit procedure, with a caption-conditioned masked reconstruc-
tion task to capture change dynamics. (3) We develop implicit procedure captioning, introducing
learnable queries to enable the encoder to model the procedure implicitly, bypassing the costly and
noise-prone frame synthesis at inference for efficient and effective captioning.

2 RELATED WORK

Existing change captioning methods primarily operate on static image pairs, treating the task as a
spatial comparison problem. Pioneering works by Jhamtani1 & Berg-Kirkpatrick| (2018) and |Park
et al.| (2019) establish a foundational encoder-decoder framework. Subsequent efforts enhance this
static comparison with two main paradigms: (1) designing intricate change encoders for fine-grained
localization and robustness to distractors like viewpoint or illumination changes (Kim et al.| 2021}
Tu et al. [2023a}; [Yue et al} [2023 [Tu et al.l [2024a} [Li et al., 2025} Hu et al., 2025)); and (2) adopt-
ing advanced training strategies, such as auxiliary retrieval tasks (Hosseinzadeh & Wang] 2021) or
multi-stage alignment (Guo et al.l 2022} |Yao et al., 2022; |Guo et al.l |2025), to guide the learn-
ing process. Although promising, these methods infer changes directly from “before” and “after”
images, ignoring the underlying continuous and dynamic transition process. In contrast, we pro-
pose to explicitly model the change procedure, shifting the paradigm from spatial comparison to
spatio-temporal procedure modeling. We argue that the intermediate sequence contains rich tem-
poral dynamics critical for robust change understanding—information inherently missing in static
pairs. While recent advances in video understanding have focused on improving temporal ground-
ing in LLMs through explicit frame identifiers (Wu et al., 2025a), the application of such dynamic
modeling in change captioning remains underexplored. The most closely related work is Zhu et al.
(2025), which implicitly models temporal dynamics in remote sensing using domain-specific change
maps. Our approach differs fundamentally: (1) we explicitly generate and model intermediate tran-
sitions to reason about how changes unfold, enhancing dynamic representation; and (2) we eliminate
reliance on domain-specific supervision, enabling generalization to complex, unconstrained natural
scenes. Additional related work, particularly on frame interpolation, is included in Appendix [B]

3 METHODOLOGY

Relying solely on two static images, existing methods neglect the rich spatio-temporal procedure
that connects an image pair. Our key insight is that such procedure is crucial for understanding
not only what has changed but also how it occurs, thereby improving the change dynamics mod-
eling. Given an image pair (Ipef, [o) containing objects O = {01, 09, ...,0,}, each object o; is
represented by three continuous attributes (p;, a;, w;) corresponding to position, appearance, and
existence, respectively. A valid change procedure with respect to a change caption 7 is formalized
as a mapping yr : [0,1] — Z, where Z denotes the space of all possible images, satisfying: (1)
boundary conditions y7(0) = Iyer and y7(1) = Iog; (2) continuous evolution of each object’s at-
tributes (p;, a;, w;) over time ¢, such that yp(t) = {(p;(t), a;(t), w;(t))}7_1; (3) consistency with
the semantic constraints imposed by caption 7'; and (4) invariance of unchanged objects throughout
the process. Our objective is to derive an informative sequence P C I that approximates yr. To
address this, we introduce procedure modeling for captioning (ProCap), illustrated in Figure 2| Our
proposed ProCap formulates change captioning as a two-stage learning process: (1) explicit proce-
dure modeling stage learning to capture the latent dynamics of the change procedure, and (2) implicit
procedure captioning stage learning to generate descriptions based on the modeled procedure.
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Figure 2: Our two-stage ProCap framework. In the first stage, Explicit Procedure Modeling, a
procedure encoder learns change dynamics from keyframes sampled from the generated explicit
procedure frames. In the second stage, Implicit Procedure Captioning, learnable procedure queries,
instead of explicit frames, prompt the encoder to infer an implicit representation for captioning.

3.1 EXPLICIT PROCEDURE MODELING

This stage incorporates three key components: a procedure generation module that produces con-
tinuous frames between given static image pairs, a confidence-based frame sampling module that
identifies and selects keyframes from the produced continuous frames, and a procedure modeling
module that models the latent change dynamics in these keyframes.

3.1.1 PROCEDURE GENERATION MODULE

The first step is to make the change procedure explicit. To achieve this, we employ a pre-trained,
off-the-shelf Frame Interpolation (FI) model (Lu et al., 2022) to synthesize the procedure. Given
an image pair (Iper, Iofi), the FI model first uses a CNN to predict bidirectional optical flows
{Oleef7 O,Haft} which are applied to the 1mages and their features to generate warped image
pairs (Ibef, Iaf[) and warped feature pairs (Fbef, Faft) These warped pairs, along with the original
images, are then fed into a Transformer that produces a soft mask H and an image residual Al;.
The intermediate frame I; is synthesized as Iy = H © Iper+ (1 — H) ® L + AL, where © denotes
the Hadamard product. Typically, I; represents an intermediate state within the overall change pro-
cedure. To construct a sequence of [ pseudo-frames, we recursively apply the FI model, yielding an
explicit procedure:

P = Fl(Iper, Late) = {11, I2, ..., I} (1)

However, the generated dense sequence P! is not optimal for direct modeling (Appendix Fig-
ure[9). The primary challenge is inherent temporal redundancy. Owing to the recursive nature of the
synthesis process, redundancy in a single intermediate frame—particularly when it closely resem-
bles the input images—propagates to adjacent regions of the sequence, thereby providing minimal
novel information about the change. Modeling this entire sequence is not only computationally in-
efficient but also risks diluting the critical moments of the change with trivial, redundant frames.
Therefore, distilling the sequence into a sparse set of keyframes that are relatively more informative
about the change dynamics is critical for efficient and effective procedure modeling.

3.1.2 CONFIDENCE-BASED FRAME SAMPLING MODULE

To achieve this, we introduce a confidence-based frame sampling module. It identifies and selects
the keyframes using a “score-then-sample” strategy. Specifically, each frame in P! is assigned a
confidence score quantifying its informativeness, which then guides the sampling process.

Score. To quantify a frame’s informativeness, we formalize the intuition that the more critical
frames are those that represent the semantic midpoint of the change—the point where a frame is
semantically equidistant from the initial (/) and final (I,;) states. Conversely, frames that are
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highly similar to either endpoint are information-redundant. Given the image pair (Iper, Iog ) and the
generated set PF1, we compute the confidence score vector w as:

w=1-— 0'( [S(Ibef, PFI) - S(Iafta PFI)]Q )7 (2)

where o(+) is the softmax function, and s(-, -) is a semantic similarity function. The squared differ-
ence term ensures that frames are penalized regardless of which endpoint they are closer to. This
score w assigns high values to frames that are semantically equidistant from the start and end im-
ages, effectively identifying the “peak” of the change.

We explore two strategies to compute the similarity s(-, -), leveraging different sources of informa-
tion: (1) visual-only: based solely on visual frames, and (2) visual-text: incorporating both visual
frames and textual change caption. Further details of these strategies are presented in Appendix [C]

Sample. Guided by the confidence score vector w, we then sample a sparse subset of k keyframes,
P ={I},I5,....I}} C PFL. This sampled set is prepended with I,; and appended with I, to
construct the procedure P:

P:{Ibefv-[lsv];a"'a-[liv]aft}' (3)

This sequence serves as the input for the procedure modeling module, which learns to encode the
dynamics of the change.

3.1.3 PROCEDURE MODELING MODULE

The core of our method is the procedure modeling module, designed to learn a rich, unified repre-
sentation of the spatio-temporal dynamics within the procedure list P. Inspired by Han et al.|(2022),
we employ a Transformer-based encoder as the backbone to model the change procedure, and utilize
a pre-trained image tokenizer (Esser et al.| 2021) to quantize P into discrete tokens, which serve as
the targets for our masked multi-frame reconstruction objective. This encourages the model to infer
missing spatio-temporal information, ensuring a deep understanding of the procedural dynamics.

Input representation. To prepare the encoder input, we first create a multi-modal sequence.

* Visual stream: Each frame in the sequence P (length k+2) is passed through a frozen CNN
backbone (Esser et al., 2021)) to extract a grid of n; patch-level visual features with d-dimensional
vectors, yielding a sequential embeddings e! € R(k+2)n1xd,

» Textual stream: Concurrently, the corresponding change caption T is tokenized into np tokens
and embedded into a sequential embeddings e” € R™7*?, where each token is embedded in a
d-dimensional space.

* Special tokens: To structure this sequence for joint modeling, we prepend two learnable token
embeddings: e € R to e’ to capture frame consistency, and ei#" € R? to e to facilitate
visual-textual alignment.

The concatenated input embeddings are {eie", eT', e, el}.

Multi-granularity masking. To learn both coarse-grained semantics and fine-grained details, we
introduce a multi-granularity masking strategy. This strategy is applied to the visual patch embed-
dings e!, while leaving the caption fully visible. This encourages the encoder to learn the underlying
spatio-temporal dynamics by reconstructing masked regions under textual guidance. The strategy
comprises four distinct masking schemes. The first operates at a coarse, frame-level granularity,
while the remaining three focus on fine-grained, patch-level details:

» Entire masking masks the entire frame embeddings. It forces the encoder to reconstruct them
using cross-modal context from the change caption.

* Random patch masking masks individual patches across the frames. This strategy encourages
the encoder to learn distributed visual representations.

* In-block masking (Tan et al.| 2021)) masks a contiguous rectangular block of patches. This forces
the encoder to learn the appearance and texture of local regions by “filling in” the masked area
from its surrounding context.

* Out-of-block masking (Tong et al.| 2022) masks all patches “outside” a specific block. This
encourages the encoder to learn how to represent a region while understanding its relationship to
the broader surrounding scene.
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During each training step, every visual stream within the batch is independently masked using one
of four randomly selected multi-granularity strategy. This selected strategy then generates a binary
mask index set M € RE+2)n1 where a value of 1 indicates a patch to be masked. The chosen
patch embeddings in e’ are replaced with a learnable mask embedding e,, € R?, creating the
masked visual sequence el , . This sequence is then fed into the procedure encoder, which outputs
a sequence of contextualized hidden states H s for subsequent optimization:

Hmsk = {halign, hTa hcsy7 hr{mk}' (4)
Details on the formulation of these masking operations are provided in Appendix [D]

3.1.4 OPTIMIZATION

The objective of procedure modeling, Lpro, comprises three components: (1) masked sequence
modeling for reconstructing the masked regions in each frame, Lsm; (2) cross-modal alignment
between the visual frames and the textual change caption, Lyjign; and (3) temporal consistency within
the procedure sequence, Lcsy. The overall training objective is formulated as:

£PRO = Lmsm + Lalign + Ecsy- (5

Masked sequence modeling. We leverage a pre-trained image tokenizer (Esser et al., |2021) to
tokenize each frame in procedure sequence P into n; discrete tokens. This tokenization process
yields a corresponding discrete token sequence z € R(*+2)%1 serving as the ground truth. Given
the modeled masked frame representations h{nsk from Eq. , we apply a linear projection layer
as the masked sequence modeling head to map each position in the representation to a vocabulary-
sized logits vector, yielding the predicted token sequence y™™ € R(*+2)%1  Given the masked

frame embeddings eﬁlsk and the change caption 7T, the masked sequence modeling loss is defined as:

1 .
Emsm T — Z logp(y?lsm = % ‘ erlnsk7 eT)a (6)
|ImSk| ieImsk

where I = {i | M; = 1} denotes the index set of positions masked in multi-granularity masking.

Cross-modal alignment. We incorporate an alignment loss to bridge the visual change procedure
and its corresponding textual change caption. Using the special token representation h€", which
captures the relevance between visual and linguistic modalities as defined in Eq. (@), we optimize
the encoder to effectively differentiate between aligned and non-aligned caption-procedure pairs:

Ealign = - Ing(l | erInsk7 eT) - logp(o | eIInsk’ eT>7 (7)

I

k> and 7" is a negative sample not

where 7T is the change caption paired with frame embedding e
aligned with e .

Temporal consistency. To mitigate the impact of temporal incoherence on the modeled procedure,
we incorporate a consistency loss that encourages coherent representations across frames in the
sequence. Using the special token representation h*Y that captures frame consistency from Eq. (4)),
we optimize the encoder to differentiate between consistent and non-consistent frame sequence:
I T I T

’CCS}’ = _logp(l | €msks € ) - Ing(O | €msks € ) (8)
where I denotes the temporally warped version of I, intentionally disrupting the temporal consis-
tency of the sequence. This warped version serves as a negative sample, encouraging the model
to learn to distinguish between temporally coherent and incoherent sequences and generate more
temporal coherent sequences. More details about constructing I are provided in Appendix @

3.2 IMPLICIT PROCEDURE CAPTIONING

The captioning stage employs an encoder-decoder architecture, with the encoder sharing weights
with the procedure encoder from the prior stage. Directly leveraging the synthesized intermediate
frames for captioning may introduce additional computational overhead as well as irrelevant noise.
Therefore, we propose learnable procedure queries as dynamic “slots” inserted between start and
end image features, which guide the encoder to implicitly infer change dynamics from the image
pair. This design supports end-to-end training via captioning loss and yields encoder outputs that
are both temporally coherent and task-relevant.
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Processing. First, we process the image pair (Iper, on) with a CNN backbone to extract their
respective visual patch features, el € R™ %4 and elst € R™*4  To bridge these two static
representations, we introduce learnable procedure queries that replace the k sampled intermediate
frames within the previous stage. Since each frame is represented by n; patch features, we insert k
sets of queries, where each set contains n; learnable embeddings. This results in a total of & - ny
queries. Each of these queries is a learnable masked embedding (e,,,) used in the previous stage.
The input sequence for the procedure encoder is constructed as follows:

einp = {erEfa €m, ", Emy, efan}. (9)

The procedure encoder processes el™ to produce representations that capture the underlining dy-
namic change procedure. Given these encoded representations, a Transformer-based textual decoder
then learns to generate the change caption.

Optimization. The objective of captioning, Lcap, is an autoregressive language modeling loss
that trains the entire model using ground-truth change captions as supervision:

Leap ==Y logp(T; | Tey, ™), (10)
where T; denotes ¢-th word in the caption sequence.

3.3 PROCAP INFERENCE FOR CAPTIONING

For inference on incoming image pair, the procedure encoder takes e in Eq. @) as the input.
The output, a latent procedural representation, is then translated into the text caption by the textual
decoder. Compared to other approaches, ProCap introduces only an additional & - n; matrix for pro-
cessing. As nj remains fixed throughout our experiments, the variation in computational overhead
is primarily governed by k. With k = 2, this overhead is negligible, and we further analyze its effect
in the following experiments.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Datasets. We conduct experiments on three widely-used benchmark datasets: CLEVR-
Change (Park et al., 2019), Spot-the-Diff (Jhamtani & Berg-Kirkpatrickl, |[2018)), and Image-Editing-
Request (Tan et al., 2019). These datasets cover a diverse range of change domains, from synthetic
changes (CLEVR-Change) to subtle differences in natural scenes (Spot-the-Diff and Image-Editing-
Request), allowing for a comprehensive evaluation of our model’s capabilities. Additional details
about dataset introduction are presented in Appendix [G]

Metrics. To evaluate the quality of the generated captions, we report four standard metrics: BLEU-
4 (B) (Papineni et al.| 2002), METEOR (M) (Banerjee & Laviel 2005), ROUGE-L (R) (Linl 2004),
and CIDEr (C) (Vedantam et al., [2015). All scores are obtained using the official Microsoft COCO
evaluation toolkit (Chen et al.,[2015). To evaluate the trade-off between captioning accuracy and our
procedure modeling efficiency, we also measure inference efficiency in Tokens Per Second (TPS).

4.2 PERFORMANCE COMPARISON
4.2.1 BASELINES

We compare ProCap against a set of state-of-the-art methods, which are grouped into two cate-
gories: 1) Non-LLM-based methods are the conventional paradigm, where a pre-trained CNN
extracts visual features from input image pairs. These features are then fed into a Transformer-
based encoder-decoder for captioning. We compare our method with: DUDA (Park et al.; 2019),
DUDA+Aux (Hosseinzadeh & Wang| [2021), IFDC (Huang et al.l 2021), NCT (Tu et al.| 2023b),
VARD-Trans (Tu et al.l 2023a), SCORER+CBR (Tu et al., [2023c), MURAT+GCM (Yue et al.,
2024), SMART (Tu et al., |2024b), DIRL+CCR (Tu et al.;, [2024a), RDD+ACR (Li et al.,[2025)) and
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Table 1: Comparison with SOTA on CLEVR-Change, Spot-the-Diff and Image-Editing-Request.

CLEVR-Change Spot-the-Diff Image-Editing-Request

Methods Bt M{ Rt Ct |Bf Mt Rt Ct|Bt M{ Rt C?t

LLM-based Methods

Qwen-VL (2023) 489 360 712 119.8 - - - - - - - -
LLaVA-1.5 (2023) 49.7 354 708 1224 - - - - - - - -
VIXEN-C (2024) - - - - - - - - 86 154 425 381
FINER (2024) 55.6 36.6 725 1372 | 129 147 355 618 | 133 146 396 505
LLaVA-1.5+RP (2025) - - - - 9.7 13.0 30.8 432|162 19.5 46.7 60.9

Non-LLM-based Methods

DUDA (2019) 473 339 - 1123 | 9.1 11.8 29.1 325 | 65 124 373 228
DUDA+Aux (2021) 512 37.7 705 1154 | 81 124 313 38.1 - - - -
IFDC (2021) 492 325 69.1 1187 | 87 11.7 302 37.0 - - - -
NCT (2023b) 55.1 402 738 124.1 - - - - 81 150 388 342
VARD-Trans (2023a) 554 40.1 738 1264 - 10.0 148 39.0 357

SCORER+CBR (2023c) | 56.3 412 745 1268 | 10.2 122 - 389 | 10.0 150 39.6 334
MURAT+GCM (2024) - - - - 102 13.1 33.1 394 - - - -
SMART (2024b) 56.1 40.8 742 127.0 135 316 394|105 152 39.1 3738

DIRL+CCR (2024a} - - — | 103 138 328 409|109 150 41.0 34.1
RDD+ACR (2025) 561 413 750 128.1 | 92 139 310 436 - - - -

MCT-CCDiff (2025} 575 406 75.6 1317 | 108 145 355 417 | 102 154 412 383
ProCap (Ours) 56.7 417 747 1356 | 11.0 13.6 33.7 427 | 117 159 432 406

MCT-CCDiff (Hu et al., |2025). 2) LLM-based methods leverage LLMs as powerful decoders,
capitalizing on their vast knowledge and strong generative capabilities to improve caption quality.
We compare our method with: Qwen-VL (Bai et al., [2023), LLaVA-1.5 (Liu et al.| 2023)), VIXEN-
C (Black et al., [2024), FINER (Zhang et al., 2024) and LLaVA-1.5+RP (Jiao et al., [2025).

Our ProCap falls into the non-LL.M-based category. While LLM-based methods benefit from rich
prior knowledge, they typically entail heavy computation and large parameter sizes. In contrast,
ProCap achieves strong performance with a lightweight, efficient architecture, avoiding reliance on
large external language models.

4.2.2 RESULTS

We analyze ProCap’s performance across three challenging scenarios, each testing a specific ca-
pability, in Table Additional qualitative comparisons with state-of-the-art methods, extensive
visualizations and case studies, are provided in Appendix [M]to illustrate ProCap effectiveness.

Robustness to viewpoint changes. First, we evaluate ProCap’s robustness to viewpoint shifts on
the CLEVR-Change dataset. As shown in Table [T} ProCap substantially outperforms all non-LLM
methods on CIDEr and achieves competitive results on other metrics, indicating stronger semantic
understanding. This improvement stems from our procedure modeling, which disentangles object
transformations (the “what” of change) from camera movements (distractors) by analyzing the full
transition path. Compared with LLM-based methods, ProCap surpasses Qwen-VL and LLaVA-1.5,
and even outperforms FINER on most metrics, demonstrating strong reasoning capability without
relying on large-scale decoders. A detailed comparison across different change categories is pro-
vided in Appendix

Application to multiple changes in complex scenes. Next, we evaluate ProCap on the Spot-the-
Diff dataset, a more challenging real-world benchmark with cluttered scenes and multiple subtle
changes. As shown in Table [I] ProCap achieves a competitive CIDEr score of 42.7. This demon-
strates a key strength of our approach: by modeling change as a stepwise procedure, ProCap can “re-
play” the transformation process to disentangle concurrent changes and generate accurate captions.
To better capture the rich dynamics in this setting, the frame interpolation module is pre-trained on
a specialized video dataset (Oh et al.l 2011)) before ProCap’s main training.

Generalization to open-ended scenarios. Finally, we assess ProCap’s generalization abilities on
the Image-Editing-Request dataset, which is characterized by its open-ended nature with largely un-
seen vocabulary. The results in Table [I| show that ProCap consistently outperforms all non-LLM
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baselines across all metrics. This suggests that by learning the “how” of a change (the procedure),
our model develops a core understanding of the transformation itself, making it more resilient to
variations in vocabulary and phrasing. While the LLM-based LLaVA-1.5+RP, with its vast knowl-
edge base, still leads in overall accuracy, ProCap significantly narrows the performance gap. This
demonstrates that procedural modeling is a powerful strategy for achieving robust generalization. It
highlights a key distinction: whereas LLM-based methods obtain generalization by infusing external
knowledge, ProCap’s ability stems directly from its architectural innovation.

4.3 ABLATION STUDY

We study the impact of key components within the procedure modeling stage. Additional ablations
on other components are detailed in Appendices [KHL]

Table 3: Effectiveness and performance com-
parison on CLEVR-Change dataset with vary-
ing procedure query set length k.

Table 2: Ablation study for explicit procedure
modeling (EPM) and implicit procedure cap-
tioning (IPC) on CLEVR-Change dataset.

EPM IPC|k|Bt Mt Rt C? Methods | k. TPS+ | B+ Mt Rt Ct
0472 358 68.6 108.4 1 76602 | 565 419 755 1285

v 0526 380 70.1 1127 ProCap | 2 69904 | 567 417 747 1356
v |1]473 363 688 1062 P14 46124 | 574 423 755 1287

v v |1]565 419 755 1285 7 27055 | 568 418 755 130.5

Impact of introducing explicit procedure modeling and implicit procedure captioning. Ta-
ble [2| analyzes the introduction of the explicit procedure modeling stage. We begin with a baseline
encoder-decoder model trained on static image pairs from scratch. We then compare two enhance-
ments to this baseline: (1) applying a pre-training stage (explicit procedure modeling), and (2)
introducing a set of learnable procedure queries to enable implicit procedure captioning (implicit
procedure captioning). Finally, we extend the model with both pre-training and learnable procedure
queries. Compared to the baseline initialized randomly, applying the learnable queries directly (line
3) introduces random vectors of learnable queries, therefore lacking any temporal or procedural con-
text. In this case, the model cannot effectively reason about the evolution from the “before” to the
“after” image. Besides, applying explicit procedure modeling without the learnable queries (line 2)
demonstrates that pre-training alone provides only limited gains, far smaller than the improvement
observed when both pre-training and learnable queries are used together (line 4), with the CIDEr
score significantly increasing to 128.5. This remarkable gain highlights our key insight: explicitly
modeling the procedural dynamics of change is far more effective than simply comparing static im-
age pairs. Notably, Table |14|in Appendix |L] further presents the advantages of implicit procedure
captioning on reducing computational overhead and exhibiting greater robustness to visual noise,
once the explicit modeling stage has provided the rich temporal understanding.

Impact of procedure query set length k.  Table[3|shows the effect of varying the procedure query
set length k on both accuracy and computational efficiency (using one NVIDIA A40 GPU). Overall,
efficiency decreases as the sequence length increases due to the heavier computational load. Consid-
ering the overall performance across the four evaluation metrics, C reaches its peak value of 135.6
at k = 2, while the other metrics exhibit a non-monotonic trend. Although the model achieves its
best scores on B, M, and R at k& = 4, the TPS drops substantially. Therefore, we select k = 2 as
it offers the optimal balance between capturing sufficient procedural detail for accuracy and main-
taining computational efficiency. We further compare the performance and effectiveness of different
procedure query set lengths with LLM-based methods in Appendix

Integration of all the objectives. Table[|presents the contribution of each objective function from
Eq. (3) within this stage. Building on the foundation of £y, the full model—jointly optimized with
all objectives—achieves peak performance, reaching a CIDEr score of 135.6 on the CLEVR-Change
dataset and 42.7 on the Spot-the-Diff dataset. This corresponds to improvements of 8.5 on CLEVR-
Change and 13.8 on Spot-the-Diff when removing L,jign, and gains of 7.0 and 6.4 on the two datasets
when removing L. This further improvement highlights the integration of the other two losses,
each targeting a specific aspect of the procedure representation: The alignment loss (L,jign) acts as a
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Table 4: Ablation study for combinations of training objectives in explicit procedure modeling on
CLEVR-Change and Spot-the-Diff.

CLEVR-Change Spot-the-Diff
['msm Lalign [rcsy B T M T R T C T B T M T R T C T

55.1 40.6 739 1275 | 81 11.8 281 297

v 55,5 406 738 1271 | 79 11.7 28.0 289

v 56.1 409 745 1286 | 93 125 312 363
v v 56.7 41.7 747 1356 | 11.0 13.6 33.7 42.7

ENENENEN

crucial bridge, grounding the visual procedure representation in the linguistic domain. It explicitly
enforces that the learned procedure is not just visually coherent, but also semantically aligned with
its corresponding textual description. Meanwhile, the consistency loss (L) ensures the temporal
order of the procedure, specifically penalizing temporally incoherent (e.g., shuffled) sequences. This
forces the model to be sensitive to the correct order of events within the change.

5 CONCLUSION

In this paper, we introduce ProCap, a novel two-stage paradigm that shifts change captioning from
modeling static image comparison to the dynamic change procedure. The first stage learns a pro-
cedure encoder that models change dynamics by performing caption-conditioned masked recon-
struction on a sparse set of intermediate frames, distilled from the synthesized explicit procedure.
The second stage, captioning, introduces efficient and learnable procedure queries to represent the
implicit process within the image pair. This design enables end-to-end training without costly inter-
mediate frame synthesis during inference. Experiments across diverse datasets demonstrate ProCap
effectiveness.
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A APPENDIX OVERVIEW

The appendix provides the following details:

More related work about frame interpolation.

Semantic Similarity Function: A detailed description of the function s(-,-) used in our
Confidence-based Frame Sampling Module (see Eq. (2) in the main paper).

Multi-granularity Masking Schemes: An overview of the four masking schemes employed
in our Procedure Modeling Module.

[El Warping Strategies: The description of the warping strategies to enhance temporal consis-
tency in Explicit Procedure Modeling.

[ Asymptotic Upper Bound: The derivation of the asymptotic upper bound for ProCap.
Introduction of Datasets: The details of three datasets evaluated in our experiment.

[ Implementation Details: The description of hyperparameters and settings used in our ex-
periments.

I Comparison on Varied Change Categories: The performance comparison of different
change categories on CLEVR-Change with SOTA methods.

[l Extended Comparison with MCT-CCDiff: An extended analysis on Spot-the-Diff and com-
parison with MCT-CCDiff on effectiveness and inference efficiency.

[Kl Ablation on Explicit Procedure Modeling: An analysis of component contributions to our
Explicit Procedure Modeling.

[[] Ablation on Implicit Procedure Captioning: An analysis of component contributions to our
Implicit Procedure Captioning.

Ml Qualitative comparisons with SOTA methods and visualization of procedure modeling.
[Nl Limitation and Future Work: The discussion of limitations in ProCap, and future work.
The statement of ethics.

The statement of reproducibility.

The statement of using LLM:s in the paper.

B RELATED WORK

B.1 FRAME INTERPOLATION

Frame Interpolation (FI) aims to synthesize a dynamic visual transition between a given start and end
frame. Existing approaches have achieved remarkable progress with powerful generative models, in-
cluding denoising diffusion models that generate intermediate frames from noise (Voleti et al., 2022}
Hoppe et al.| 2022} |Pallotta et al.,|2025; Zhang et al.,2025bj Hur et al., [2025) and Transformer-based
architectures that predict missing content autoregressively (Yan et al., 2021} |Ge et al.,|2022). A no-
table solution is text-conditioned interpolation (Han et al., 2022} |Fu et al.|[2023)), which uses textual
descriptions to guide the synthesis in a controllable manner. However, existing FI research primar-
ily focuses on generating visually realistic videos, rather than supporting reasoning for downstream
tasks such as captioning. To enhance change captioning, we draw inspiration from FI techniques
to explicitly synthesize a procedural sequence and model the underlying change dynamics, thus
providing a richer foundation for downstream reasoning.

C SEMANTIC SIMILARITY FUNCTION

To quantify the informativeness of the intermediate frame, we investigate two strategies for com-
puting the similarity metric, s(-, ) in Eq. (2) in the main paper. These strategies are defined by the
modalities they incorporate: (1) visual-only, which relies solely on visual frame information, and
(2) visual-text, which integrates both visual frames and the corresponding textual change caption.
The effectiveness of these strategies is experimentally presented in Appendix
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C.1 VISUAL-ONLY

Modeling fine-grained semantic similarity in images—a task that requires detailed comparison of
object attributes and context—poses a challenge for conventional feature extractors. Extractors like
ResNet (He et al.,|2016)), which are pre-trained on classification tasks, tend to produce coarse, global
feature representations that overlook subtle semantic distinctions. To capture them, we employ DI-
NOvV2 (Oquab et al., [2023), a powerful Vision Transformer (ViT) (Dosovitskiy et al. 2021} pre-
trained through self-supervision. Its attention-based architecture and training objective encourage
the extraction of features that are highly sensitive to local details and object-level semantics. Conse-
quently, we employ DINOV? to extract features from each image and compute their cosine similarity,
providing a robust measure of their semantic alignment.

We formalize visual similarity using features from a pretrained DINOv2 model with a ViT-L/14
backbone, denoted as the encoder EPINO(.). Given a target image I; (where ¢ € {bef, aft}) and the
generated frame set P!, we define the visual similarity score set sy;s(I;, P™) as:

svis(Ie, P™) = {s(I1, I) | I; € P™}, (11)
S(It7 Il) = Sim[gDINO(It)vgDINO(Ii)]7

where sim|-, -] represents the cosine similarity between the extracted features.

C.2 VISUAL-TEXT

While visual similarity with P! serves to measure information redundancy, it is insufficient for
verifying the semantic correctness of the change transformation. A purely visual metric is text-
agnostic; thus, a pseudo-frame can be a visually plausible interpolation yet fail to represent the
specific change conveyed by the ground-truth caption. To resolve this issue and enforce semantic
validity, we incorporate the ground-truth change caption to explicitly model the informativeness of
each pseudo-frame.

To this end, we employ the pretrained CLIP-based model from |Guo et al.| (2022), which is specif-
ically designed to measure semantic alignment between an image-pair transformation and a tex-
tual description. The model provides a dedicated image-pair encoder EFXF (-, ), and a text encoder
EGLP(L). The similarity function syisex(+, -) between a target image I; and pseudo-frame candidates
P under caption T is defined as:

Svistext(It, PP | T) = {s(I, 1;, T) | I; € P™}, (12)
s(Iy,1;,T) = sim[EFY (1, 1;), - (T)],

where T is the change caption corresponding to the image pair (fper, [ore). If @ pseudo-frame I; is
semantically misaligned with the caption T, it will receive a lower similarity score, indicating that
it contains incorrect or irrelevant information about the change transformation.

D MULTI-GRANULARITY MASKING SCHEMES

We adopt four masking strategies as illustrated in Figure [3|during the training of Explicit Procedure
Modeling: (1) entire masking, (2) random patch masking, (3) in-block masking (Tan et al., [2021])
and (4) out-of-block masking (Tong et al.|[2022). During training, one masking strategy is randomly
selected with a probability of 0.1, 0.7, 0.1, 0.1, respectively, and applied to each sample in a batch.
Given an input image embedding e/ € R(*+2)71xd_the binary mask index set is denoted as M €
R*+2)n1 where a value of 1 on index i indicates the i-th patch to be masked.

Entire Masking. This strategy masks all embeddings in the process sequence, forcing the model
to reconstruct the entire process solely based on the accompanying text sequences in the alignment
setting. Formally, the masking probability is defined as:

ple] =efy el €e’)=1. (13)
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Figure 3: Four masking schemes in the proposed multi-granularity strategy. We mask visual patch
embeddings for reconstruction during training; the masks are visualized at the patch level for clarity.

Random Patch Masking. Given an interval (a, b), the masking probability for index ¢ is sampled
from a uniform distribution over this interval, denoted as U(a,b), where a and b are set to 0.2 and
0.5 respectively in experiments. Specifically, for e/ € e, the probability of replacing e! with a
mask token el , is given by:

p(eiI = e{nsk | ef € eI) =p; wherep; ~U(a,b). (14)

In-block and Out-of-block Masking. Given an unflattened image embedding el € R">wxd 4
rectangular region, whose area ratio to the whole image is randomly sampled within [0.2, 0.8] (with
an expected value of approximately 0.5), is randomly selected with bottom-left corner at (z1, y1)
and top-right corner at (z2, y2):

R:{(l7]>|$1§2§$2,yl SJSy?}a (15)

where 0 < 7 < x93 < wand 0 < y; < y2 < h. In In-block masking, all embeddings within this
region are masked:

p(e?’” =emx | ey " €ep, ke {l,...k+2}, (m,n) € R) =1 (16)
Conversely, in Out-of-block masking, all embeddings outside the selected region are masked:

p(ef” = em| e € el ke {1, k+2}, (mn) ¢ R) =1. (17)

E  WARPING STRATEGIES

We apply four widely used warping strategies for disrupting the temporal consistency of the frame
sequence for training in Explicit Procedure Modeling stage: (1) batch procedure frame shuffle, (2)
frame shuffle, (3) color shifting, and (4) affine transformation.

Batch Procedure Frame Shuffle. Given a batch of procedures {P;, Pa, ..., P}, the sequence
frame shuffle strategy randomly selects two positions ¢ and j from two different procedure Py, and
P, , respectively. It then replaces the frame I; € Py, with I; € Py,.

Frame Shuffle. Given a procedure P, a random permutation is applied to its frames to produce a
shuffled sequence P’, which serves as the augmented data.
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Color Shifting. Given a procedure P € RT*H>*Wx3 'we randomly select a single RGB channel
and add a random scalar value a to all the pixels in that channel across the entire sequence. This
results in a color shifting augmentation:

L = I° + a, (18)

where I¢ € RT*H*W represents the selected RGB channel of all images in P.

Affine Transformation. We apply a random affine transformation to the input image I; € P.
Specifically, we sample:

* arotation angle 6 ~ U(—a, &),
* horizontal and vertical transitions t,,,t, ~ U(—7,T),

* and a scaling factor s ~ U(1 — p, 1 + p).

where «, T and p are user-defined hyperparameters, which is set to 30, 0.1 and 0.1 in out experiments
respectively. An affine transformation matrix is defined as:
s-cosf —s-sinf t,
A= L~sin0 5-cosf ty] (19)

For each position of the input image [z y], the augmented output can be denoted as:

']  |s-cosf —s-sinf| |z e

[y’] - {s -sinf)  s-cosf } {y] T [t?j ‘ (20)
F ASYMPTOTIC UPPER BOUND

In this section, we will discuss the asymptotic upper bound in inference. Let n; denote the length of
image embeddings and nr the length of text embeddings. For simplicity, we assume all embeddings
have a uniform dimensionality d. The asymptotic upper bound of the entire model in inference can
be divided into two compnents: one corresponding to procedure encoder, and the other to the text
decoder.

Analysis for Procedure Encoder. Before sending to the Transformer-based procedure encoder,
image pairs are first encoded into embeddings via a CNN. These embeddings are then concatenated
with masked embeddings to form a sequence of shape (k + 2)n; x d. For clarity in complexity
analysis, we let K = k 4 2 and denote K - ny as np. The time complexity of CNN can be denoted
as O(ny x channels? x kernels). Assuming a constant kernel size and fixed number of channels,
the time complexity of a convolutional layer scales linearly with the number of output pixels, i.e.,
O(ny). For each layer in the Transformer architecture, the input embeddings are linearly projected
to obtain queries, keys, and values, incurring a time complexity of O(np x d?). The self-attention
mechanism, as introduced by |Vaswani et al.| (2017), computes attention as follows:

T

K
Attention(Q, K, V') = softmax ( @

Vd

This step dominates the computational cost of the attention mechanism, with a time complexity of
O(n% x d).

As a result, the final asymptotic upper bound of procedure encoder of [, layers can be denoted as:

)v. 1)

O(nr + 1. x (np x d* +n% x d)). (22)

Given that d > 1, the lower-order term O(n;) becomes negligible, and the complexity can be
approximated by:

O(le x (np x d* +nPp x d)). (23)
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Analysis for Text Decoder. The text decoder for captioning is a [4-layer Transformer decoder,

which includes both self-attention and cross-attention mechanisms. For the self-attention mecha-

nism, the time complexity per layer is given by O(nr x d? + n% x d). For the cross-attention

mechanism, where attention is computed between the change procedure sequence and the text se-
quence, the time complexity can be expressed as:

O(np x np x d+np x d* +np x d?), (24)

accounting for the projections of both input sequences and the attention computation. As np > nr
and d > N, in our experiments, Eq. (24) can be approximated by:

O(np x d+np x d* + d?*) = O(np x d?). (25)

Therefore, the final asymptotic upper bound of a [;-layer text decoder can be denoted as:
O(lg x (np x d* +n2 x d+np x d?)), (26)
which can be approximated by:
O(lg x np x d?). (27)
Asymptotic Upper Bound in Inference. Comprising Eq. and Eq. (27), the final asymptotic
upper bound of the entire model in inference can be denoted as:
O(le x (np x d* +nPp x d) + 1y x np x d?). (28)

Since [, is a small constant, it can be omitted from the asymptotic expression. Therefore, the asymp-
totic upper bound can be denoted as:

O(l. x (np x d* +n% x d)). (29)
Substituting np = K X nj into the above expression yields:
O(le x (K xnp x d® 4+ K% xn? x d)). (30)

It can be noted that the inference computation scales quadratically with respect to procedure length
K. Therefore, it is necessary to reach a ballance between performance and inference computation
cost.

G INTRODUCTION OF DATASETS

We conduct experiments on three widely used benchmark datasets: Spot-the-Diff (Jhamtani & Berg-
Kirkpatrick, 2018), CLEVR-Change (Park et al., 2019), and Image-Editing-Request (Tan et al.,
2019). In this section, we provide a detailed overview of each dataset.

Spot-the-Diff is the first dataset specifically designed for change captioning. It is constructed by
sampling from VIRAT (Oh et al., 201 1), a realistic video surveillance dataset. The dataset comprises
13,192 pairs of similar images, each paired with a human-annotated change caption. Since the image
pairs are derived from surveillance videos, they are well-aligned, and each pair contains at least one
semantic change. The dataset is split to training, validation and testing sets with an 8:1:1 distribution.

CLEVR-Change is a synthetic dataset generated using CLEVR (Johnson et al.,2017), a rendering
engine capable of producing images of objects with complex relationships. It consists of 79,606
pairs of similar images with 493,735 change caption annotations, which is split into 67,660, 3,976,
and 7,970 training/validation/test image pairs, respectively. Unlike Spot-the-Diff, CLEVR-Change
introduces distractors alongside semantic changes—for example, variations in viewpoint that do not
alter object positions. This design poses greater challenges for change captioning, requiring models
to distinguish genuine semantic changes from irrelevant visual differences and to be more robust in
reasoning about visual transformations.

Image-Editing-Request provides similar image pairs with image editing approaches guided by
instructions. It comprises 3,939 similar image pairs with 5,695 human-annotated instructions as
change captions. The dataset is segmented into 3,061 training pairs, 383 validation pairs, and 495
testing pairs.
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Table 5: Evaluation on CLEVR-Change with varied change categories by METEOR.

Method | Color Texture Add Drop Move
DUDA (2019) 32.8 273 334 314 235
DUDA+Aux (2021) | 36.1 304 378 367 270
IFDC (2021) 33.1 279 362 314 312
NCT (2023b) 39.1 363  39.0 372 305
SMART (2024b} 402 378 393 381 315
DIRL+CCR (2024a) | 40.7 382 400 379 335
ProCap (Ours) 39.7 37.6 41.0 39.0 38.1

Table 6: Extended comparison with MCT-CCDiff on the Spot-the-Diff dataset, where T denotes
model training with LLM-augmented captions.

Method | Speed (s/caption) | | Bt M+t Rt C1t

MCT-CCDiff (2025) 0.91 10.8 145 355 417
ProCap (Ours) 0.04 11.0 13.6 33.7 427
ProCap' (Ours) 0.04 117 142 346 446

H IMPLEMENTATION DETAILS

We employ a pre-trained frame interpolation model, VFIformer (Lu et al., |2022), to synthesize
pseudo change procedures, with the process length set as [ = 7. To balance captioning quality and
inference efficiency, we sample k = 2 intermediate frames. For image representation, we fine-tune
a pre-trained VQGAN on the change captioning datasets via an image reconstruction task. The
VQGAN is configured with a codebook size of K = 1024 and a latent dimension d, = 256. Input
images are resized to 224 x 224 and encoded into a latent resolution of 14 x 14. The procedure
encoder is configured with [, = 12 layers on CLEVR-Change and Image-Editing-Request, and
le = 4 layers on Spot-the-Diff. The hidden size is fixed at 768. The caption decoder consists of
lg = 2 layers on CLEVR-Change and Image-Editing-Request datasets, and consists of [; = 3 layers
on Spot-the-Diff dataset, with a common hidden size of 512.

In the Explicit Procedure Modeling stage, we train our model for 200,000 steps on 2 NVIDIA A40
GPUs using a warm-up strategy that linearly increases the learning rate from 1 x 1076 to 1 x 10~*
over the first 5,000 steps. The total batch size is set to 8. In the Implicit Procedure Captioning
stage, we train our model for 40 epochs with the total batch size of 16 on 1 NVIDIA A40 GPU. The
procedure encoder is optimized with a fixed learning rate of 5 x 10~° on the CLEVR-Change and
Image-Editing-Request datasets, and 2 x 10~5 on the Spot-the-Diff dataset. Meanwhile, the caption
decoder adopts a warm-up schedule that linearly increases the learning rate from 0 to 5 x 10~°
during the first 10% of total training steps for all datasets.

Code and data for our experiments will be made publicly available.

I COMPARISON ON VARIED CHANGE CATEGORIES

In this section, we present a detailed comparison of performance across different change categories
on CLEVR-Change, evaluated with METEOR against SOTA methods. Table [5] shows that our ap-
proach achieves competitive results on color and texture changes, and attains the best performance
on addition, removal, and movement changes. In particular, it significantly outperforms the cur-
rent SOTA method on movement changes, indicating a superior ability to distinguish action-related
changes in the presence of environmental distractors.

J EXTENDED COMPARISON WITH MCT-CCDIFF

To better understand the performance characteristics of ProCap on the Spot-the-Diff dataset, we
conducted an extended analysis comparing our method with the current SOTA approach, MCT-
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CCDiff (Hu et all} 2025). We observed that MCT-CCDiff reports notably higher METEOR and
ROUGE scores on this dataset, while ProCap achieves superior CIDEr performance. Upon exami-
nation, we found that this discrepancy is primarily attributable to differences in the richness of the
training captions rather than limitations of the model architecture itself.

As documented in MCT-CCDiff, their training pipeline expands the original Spot-the-Diff training
set with GPT-generated captions, substantially enriching the linguistic diversity of the supervision.
In contrast, our primary experiments strictly follow the original, unaugmented annotations. Since
METEOR and ROUGE are highly sensitive to caption diversity and surface-level phrasing, this
difference in training data preparation naturally affects these metrics.

To isolate the effect of caption richness, we conducted an additional experiment in which we aug-
mented the Spot-the-Diff training captions using Qwen3 (Yang et al., [2025), following the strategy
introduced in MCT-CCDiff. As shown in Table[6] under this matched setting, ProCap achieves com-
parable METEOR and ROUGE scores and surpasses MCT-CCDiff on the more semantically aligned
measures, including CIDEr and BLEU-4 (with improvements of +7% and +8%, respectively). These
results indicate that the gap previously observed on METEOR and ROUGE stems largely from the
linguistic properties of the training set rather than from the robustness of the model.

In addition to accuracy, we also compare inference efficiency. Under identical conditions, Pro-
Cap is 22x faster than MCT-CCDiff while maintaining superior CIDEr performance. This demon-
strates that ProCap offers not only competitive captioning quality but also a significantly better
efficiency—effectiveness trade-off compared to existing non-LLM SOTA approaches.

K ABLATION ON EXPLICIT PROCEDURE MODELING

This section extends the ablation study from Sec. of the main paper with a detailed compo-
nent analysis on the three commonly used datasets. We specifically evaluate the contributions of
individual components within the Procedure Generation, Confidence-based Frame Sampling, and
Procedure Modeling Modules.

K.1 MORE ABLATION ON SPOT-THE-DIFF DATASET

Tables [7|and [§] present additional ablation studies on the Spot-the-Diff dataset, which contains more
realistic scenarios compared with CLEVR-Change. Consistent patterns emerge across these experi-
ments, further demonstrating the effectiveness of our method and its strong generalization ability in
real-world settings.

Table 8: Effectiveness and performance com-
parison on Spot-the-Diff dataset with varying
procedure query set length k.

Table 7: Ablation study for explicit procedure
modeling (EPM) and implicit procedure cap-
tioning (IPC) on Spot-the-Diff dataset.

Methods | £ | B+ Mt Rt C1

EPM IPC |k|BT Mt Rt C1

7 117 350 289 1] 86 125 322 360
9 117280 28. 2| 110 13.6 337 427
v 0|85 121 27.8 30.6 ProCa
s 11183 121 275 2938 P4 85 124 277 313
v v | 1]86 12,5 322 36.0 7 7.5 11.8 25.7 29.2

K.2 PROCEDURE GENERATION MODULE

We investigate the interaction between the number of generated pseudo-frames, [, and the choice of
semantic similarity function for keyframe sampling. To this end, we evaluate the two functions (see
Appendix [C)) within our Confidence-based Frame Sampling Module, benchmarking them against a
random sampling baseline that selects frames uniformly.

Varying number of generated pseudo-frames /. Figure [ examines how varying the number of
generated frames [ affects captioning performance, while keeping the number of sampled keyframes
in the Procedure Modeling Module fixed at £ = 2. The results highlight a clear trade-off: increas-
ing [ enriches spatio-temporal cues but simultaneously introduces substantial redundancy and noise.
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This trade-off is most pronounced in the random sampling strategy on the CLEVER-Change dataset
and in the visual-only sampling strategy on the Spot-the-Diff dataset. In both cases, performance
improves as [ increases from 3 to 7, but then noticeably degrades when [ rises to 15. Although our
proposed sampling strategy also experiences a slight decline on the Spot-the-Diff dataset as [ contin-
ues to grow, it consistently outperforms the other two strategies. This suggests that, without semantic
guidance, redundant and irrelevant frames can easily overwhelm the model, reinforcing the need for
more robust sampling mechanisms capable of isolating truly informative temporal cues while filter-
ing out misleading ones. Based on these observations, we set [ = 7 as the default configuration in
our experiments.

140 50

—®— Random
45 Visual Only

135 ——a Visual + Text
40
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= =

2 130 235

o o
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Visual Only 25
Visual + Text

3 7 15 31 3 7 15 31

Figure 4: Comparison of CIDEr scores across four sampling strategies with respect to the number
of pseudo-frames [ on CLEVR-Change dataset (left) and Spot-the-Diff dataset (right). Each strategy
is set to sample two key frames from the pseudo-frames.

Measure of constraint in FI model. As defined in Sec. (3| we formalized the change procedure
as a mapping 7 : [0, 1] — Z, where T is a referred change caption and Z denotes the space of all
possible images. As the mapping is non-bijective, without additional constraints, there exist infinite
procedures for the same image pair. In our experiment, to restrict the solution space, we adopt an off-
the-shelf optical-flow-based frame interpolation method to synthesize change procedures, where the
optical flow serves as a strong constraint: the intermediate frame is obtained by warping the before
and after images according to the linearly interpolated optical flow, rather than being generated from
scratch. To empirically demonstrate the necessity of these constraints, we compared our approach
on the Image-Editing-Request dataset with one diffusion-based frame interpolation, which operates
within a significantly less constrained solution space. As shown in Table [J] relaxing the constraints
leads to noticeable performance degradation compared to the optical-flow-based approach. We at-
tribute this drop to the stochastic nature of diffusion models. Unlike optical-flow-based methods that
enforce strict pixel-wise correspondence, diffusion models inherently introduce unpredictable and
uncontrollable visual variations in the intermediate frames (as shown in Figure[5)). These unintended
variations make procedure modeling more difficult, hindering effective model training.

Table 9: Performance comparison with different constraints of the FI model on the Image-Editing-
Request dataset.

FI Models | B+ Mt Rt Ct

Ours (diffusion-based (2025a)) 9.9 153 413 37.8
Ours (optical-flow-based (2022)) | 11.7 159 432 40.6

K.3 CONFIDENCE-BASED FRAME SAMPLING MODULE

Impact of semantic similarity functions. Figure [4] illustrates the comparative performance of
three distinct semantic similarity functions for keyframe selection. Our analysis yields the fol-
lowing observations. (1) Random Sampling vs Visual Only Strategies: Compared with random
sampling, Visual Only demonstrates benefits, particularly when sampling a larger number of pseudo-
frames, such as [ = 15. This highlights the effectiveness of filtering out redundant frames in long
frame sequences. However, Visual Only strategy still exhibits a clear performance decline as [ in-
creases, indicating its sensitivity to irrelevant visual content when textual grounding is absent. (2)
Visual+Text Strategy: In contrast, Visual+Text strategy consistently outperforms other strategies

22



Published as a conference paper at ICLR 2026

(d

Figure 5: Uncontrollable predicted intermediate frames examples of diffusion-based FI models.
Samples (a) and (b) show an unexpected object prediction, while samples (c) and (d) show an unex-
pected motion generation.

across most evaluated values of [. Its performance remains robust even as [ increases, suggesting
that the integration of textual cues provides a strong guiding signal for identifying informative and
relevant frames. This makes Visual+Text strategy resilient to noisy or redundant frames within the
temporal sequence. (3) Overall: These results collectively highlight the effectiveness of leveraging
multimodal signals—particularly textual grounding—for key frame selection under varying tempo-
ral resolutions. As a result, we select Visual+Text strategy for our model.
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Figure 6: Effectiveness and performance comparison with LLM-based methods on CLEVR-Change
dataset.

K.4 PROCEDURE MODELING MODULE

Comparison with LLM-based methods on different query set lengths k. Figure[6|presents the
performance comparison with LLM-based approaches on the CLEVR-Change dataset, using the
same query set configurations as in Sec.[d.3] Our method achieves clear improvements over general
multi-modal large language models Qwen-VL and LLaVA-1.5, demonstrating its strong capabil-
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Figure 7: Comparison of CIDEr scores on the Spot-the-Diff dataset under different masking strate-
gies across varying probability settings. When the probability of one strategy is set to p, the proba-
bilities of the remaining three strategies are each set to (1 — p)/3.

ity in change captioning. Although the specifically trained LLM-based method FINER performs
well on CLEVR-Change, it suffers from substantial computational cost due to its large number of
parameters. In contrast, our approach attains competitive overall performance while maintaining
remarkable effectiveness at k = 2.

Impact of caption-conditioning. Table[T0|presents the benefit of incorporating ground-truth cap-
tions as a condition during procedure modeling. A significant performance boost is observed when
the model is conditioned on the text, compared to using visual inputs alone. This shows the power
of cross-modal learning in our procedure modeling. The caption acts as a powerful semantic prior,
achieving two key objectives: (1) helping understand the nature of visual changes, and (2) achieving
an early alignment between visual dynamics and linguistic contents. By learning to generate a pro-
cedure that is consistent with the target description, the model produces a representation that is not
only visually coherent but also semantically aligned with the captioning stage. Therefore, we utilize
ground-truth captions as conditional guidance for training the procedure modeling module.

Table 10: Ablation study for caption-conditioning in explicit procedure modeling on CLEVR-
Change and Spot-the-Diff.

CLEVR-Change Spot-the-Diff
Settings | B+ Mt RT C1 | Bt M1 Rt C?

57.0 409 747 128.8‘ 8.0 11.6 28.1 289

w/o caption

w/ caption | 56.7 41.7 747 1356 |11.0 13.6 33.7 427

Table 11: Ablation study for multi-granularity masking strategy in explicit procedure modeling stage
on Spot-the-Diff.

Settings | Bt Mt Rt C*?
w/o Entire Masking 88 119 302 325
w/o Random Patch Masking | 10.3 12,5 32.7 40.7
w/o In-block Masking 79 12.0 28.0 30.0

w/o Out-of-block Masking 80 12.1 27.6 305
w/ All Masking Strategies \11.0 13.6 33.7 427

Impact of multi-granularity masking strategy. Table|l 1| shows the contribution of each mask-
ing strategy described in Sec Without the entire masking strategy, the model cannot ade-
quately learn to reconstruct intermediate frames solely from change captions, thereby weakening
its cross-modal understanding ability. In contrast, incorporating random patch masking yields bet-
ter performance by promoting the learning of distributed visual representations. Furthermore, the
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significant performance drop observed when either in-block or out-of-block masking is removed
highlights the crucial role of these strategies in facilitating spatial-temporal understanding. Figure
illustrates the performance comparison across different probability configurations of the four mask-
ing strategies. Together with Table [T1] the observations consistently reveal three key findings: (1)
Stronger learning of distributed visual representations leads to better performance. Random patch
masking plays a central role by providing broad and dense visual coverage, and therefore receives
the highest probability. (2) Entire masking, in-block masking, and out-of-block masking are es-
sential for modeling global context and localized structural cues. However, overemphasizing any
of these structured strategies removes too many fine-grained visual details, which hampers detailed
feature learning and ultimately degrades change-detection performance. This is evident from the
steady performance drop observed when the probability of any of these three strategies is increased.
(3) The four masking strategies work synergistically, jointly supporting both coarse-grained and
fine-grained representation learning. In contrast, relying solely on random patch masking yields
only marginal improvements.

Impact of the procedure encoder’s depth. We investigate the impact of the procedure encoder’s
depth on the CLEVR-Change and Spot-the-Diff datasets, with results presented in Tables [I2]and[T3]
The results reveal that the optimal encoder depth is dataset-dependent. On CLEVR-Change, per-
formance consistently improves with a deeper encoder, peaking with a 12-layer architecture. This
suggests that modeling the changes in CLEVR-Change benefits from a higher-capacity encoder. In
contrast, a shallower 4-layer encoder is optimal for Spot-the-Diff, as an overfitting is observed with
deeper encoders.

Table 12: Ablation results of using different  Table 13: Ablation results of using different

procedure encoder layers on CLEVR-Change. procedure encoder layers on Spot-the-Diff.
Layers| B M R C Layers| B M R C
2 526 389 718 1174 2 74 130 284 302
4 539 399 731 1243 4 |11.0 13.6 337 427
8 |542 410 739 1332 8 94 120 321 422
12 |567 417 747 135.6 12 | 74 135 278 302

L ABLATION ON IMPLICIT PROCEDURE CAPTIONING

We further evaluate the contributions of two key components within the implicit procedure caption-
ing on the CLEVR-Change dataset and the Spot-the-Diff dataset.

Explicit and implicit procedure captioning. We compare our proposed Implicit Procedure Cap-
tioning (using learnable queries) against a baseline that performs Explicit Procedure Captioning
(directly encoding synthesized frames). Table [I4]shows that our implicit approach with procedure
queries achieves superior performance on the CLEVR-Change dataset. The explicit baseline, which
relies on synthesized frames, not only incurs higher computational costs but also suffers in perfor-
mance. We attribute the lower accuracy of explicit procedure modeling to the redundant and noisy
temporal information in the generated frames. In contrast, our learnable queries provide a more
robust representation of procedural dynamics, leading to more accurate change descriptions.

Table 14: Impact of implicit procedure captioning using procedure queries. The first line denotes
explicit procedure captioning using synthetic pseudo-frames generated from Procedure Generation
Module directly.

Settings | TPS | B M R C

421.03|56.5 40.8 74.4 128.5
699.04 |56.7 41.7 74.7 135.6

Explicit procedure captioning
Implicit procedure captioning
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Impact of the text decoder’s depth. We analyze the effect of decoder depth on the CLEVR-
Change and Spot-the-Diff datasets (Tables [I5]and[16), observing a general trend of overfitting with
excessive layers. The optimal decoder depth for Spot-the-Diff (3 layers) is greater than for CLEVR-
Change (2 layers). We attribute this to the nature of the target change descriptions. Unlike the
highly structured descriptions for CLEVR-Change, Spot-the-Diff requires more descriptive power.
Its surveillance-style scenes feature non-canonical object poses and complex background clutter,
demanding greater linguistic capacity from decoder.

Table 15: Ablation results of using different text ~ Table 16: Ablation results of using different text

decoder layers on CLEVR-Change. decoder layers on Spot-the-Diff.
Layers| B M R C Layers| B M R C
2 |567 417 747 1356 2 94 120 326 37.1
3 56.7 41.4 747 129.5 3 11.0 13.6 33.7 42.7
4 56.5 40.7 74.6 129.7 4 7.1 10.7 281 31.7
5 |568 41.0 747 1304 5 81 117 275 285

M  QUALITATIVE RESULTS

M.1 COMPARISON OF CAPTIONING GENERATIONS

Figure [§| presents the qualitative results of our ProCap. We compare our model with two non-LLM-
based approaches (DIRL (Tu et al., 2024a) and SCORER (Tu et al., 2023c)) and one LLM-based
method (FINER (Zhang et al., 2024)) to highlight its generation capabilities. Our model demon-
strates robust performance across a variety of change scenarios. Moreover, by incorporating tempo-
ral information into the change captioning process, our model better captures the temporal order of
events, enabling it to generate more accurate and coherent captions, as exemplified in Figure 8| (j).

M.2 VISUALIZATION OF CHANGE PROCEDURES

Figures [O12] present qualitative visualizations of the explicit change procedures generated by our
model on three datasets: CLEVR-Change, Spot-the-Diff, and Image-Editing-Request. Our model
leverages the synthetic procedures from the Procedure Generation Module and the key frames se-
lected by the Confidence-based Frame Sampling Module to effectively capture the transformation
process between image pairs. Notably, it remains robust even when the synthesized procedures ex-
hibit temporal redundancy in the third and fourth samples, which is a critical prerequisite for the
subsequent Implicit Procedure Captioning.

M.3 CASES WITH SIGNIFICANT VIEWPOINT SHIFT

Figure[I3|shows several cases exhibiting significant viewpoint shifts in the CLEVR-Change dataset.
Following [Park et al.| (2019), we use the IoU between similar image pairs to quantify the degree
of viewpoint change. The mean IoU in CLEVR-Change is 0.51 with a variance of 0.02; therefore,
an IoU around 0.2 is regarded as indicating a substantial viewpoint shift (as illustrated in the first
two rows). Notably, even under such drastic viewpoint differences, our model is able to reconstruct
a plausible intermediate process, demonstrating the robustness of our procedure modeling module.
We attribute this robustness to our proposed consistency loss, which explicitly promotes spatial-
temporal consistency in the reconstructed intermediate frames.

M.4 FAILURE CASES

Figure [[4] presents several failure cases produced by our proposed ProCap. For most failures on
the CLEVR-Change dataset, the modifications are extremely subtle, which makes it difficult for the
model to reliably detect the change throughout the procedure. In contrast, the primary source of
errors in the Image-Editing-Request and Spot-the-Diff datasets lies in inaccurate reconstruction of
the intermediate procedure, which subsequently leads to incorrect change captions. We attribute
this issue to overfitting, as these two datasets are more open and unconstrained compared with the

26



Published as a conference paper at ICLR 2026

(a) Color Change

before after

Ground Truth: the tiny yellow cube
turned gray

ProCap (Ours): the small yellow rubber
cube that is behind the big yellow matte
object changed to gray

DIRL: the scene remains the same
SCORER: the scene remains the same
FINER: there is no change

(d) Object Remove
before after

Ground Truth: the tiny green cylinder is
no longer there

ProCap (Ours): the small green matte
cylinder that is behind the big gray matte
cylinder is no longer there

DIRL: the scene remains the same
SCORER: the small yellow rubber cube
that is behind the small brown rubber
block became red

FINER: there is no change

(g) Complex Scenes

Ground Truth: a black suv has appeared
ProCap (Ours): a black vehicle is driving
down the road in the second image
DIRL: there is a person walking in the
parking lot

FINER: there is a person walking in the
parking lot

(j) General Attribute Change
before after

Ground Truth: Darken the entire image
ProCap (Ours): darken the image
DIRL: Brighten the image

FINER: brighten the entire image

(b) Texture Change
before after

Ground Truth: the small blue shiny cube
behind the large gray rubber object be-
came rubber

ProCap (Ours): the small blue metal cube
that is behind the large gray matte ball
changed to rubber

DIRL: the scene remains the same
SCORER: the scene is the same as before
FINER: there is no change

(e) Object Move

before after

Ground Truth: the shiny cylinder
changed its location

ProCap (Ours): the small green metal
cylinder that is in front of the small red
matte object changed its location

DIRL: the scene remains the same
SCORER: the scene is the same as before
FINER: there is no change

(h) Fine-Grained Attribute Change
before after

Ground Truth: Remove the text from the
entire image

ProCap (Ours): remove the text from the
photo

DIRL: Change the snake on the snake
FINER: change the background to pink

(k) General Attribute Change
before after

Ground Truth: crop photo

ProCap (Ours): crop the image

DIRL: Change the background from that
it looks like a little

FINER: remove the people in the back-
ground

(c) Object Add

before after

Ground Truth: the yellow ball has been
newly placed

ProCap (Ours): the small yellow metal
ball that is in front of the big blue object
has been newly placed

DIRL: the small cyan matte ball that is
in front of the big red metal thing became
yellow

FINER: the small cyan matte ball that is
in front of the big red cube changed to
metallic

(f) Complex Scenes
before after

Ground Truth: the white vehicle driving
in the lot on the left is gone
ProCap (Ours): a silver car has left the
parking lot
DIRL: there is a person walking in the
parking lot
FINER: there is a person walking in the
parking lot

(i) Composite Change

before after

|
Ground Truth: Change the wall color
from white to blue

ProCap (Ours): change the color of the
image to a blue

DIRL: change the background from a lit-
tle bit

FINER: zoom in on the girl

(1) Pattern Change

ROCOOXA

Ground Truth: remove the text “louis
vuitton” and the “LV” sign, add the same
area that is behind and above instead of the
text and the sign

ProCap (Ours): remove the text

DIRL: remove all background

FINER: remove the background

Figure 8: Comparison of captioning generations. We compare our model against two non-LLM-
based approaches (DIRL and SCORER) and one LLM-based method (FINER). The examples are
grouped into 10 change types, and (a)-(e) are from the CLEVR-Change dataset, (f)-(g) from Spot-
the-Diff, and (h)-(1) from Image-Editing-Request.

CLEVR-Change dataset. In future work, we plan to further investigate the generation and modeling
of more coherent and semantically reasonable intermediate transformation processes to improve the

robustness of change captioning.
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Caption: the big matte cube changed to purple

Caption: the tiny rubber cube changed to metal

Caption: the tiny brown thing has been added

Caption: the small sphere is no longer there

Figure 9: Visualization of change procedures on CLEVR-Change. For each sample, the top row
displays the synthetic procedure generated by the Procedure Generation Module. The bottom-
left shows key frames selected from this synthetic procedure using the Confidence-based Frame
Sampling Module, while the bottom-right visualizes the reconstructed procedural representation
produced by the Procedure Encoder within the Procedure Modeling Module.
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Caption: the large cylinder is in a different location

Caption: there is no difference

Caption: the scene is the same as before

Caption: no change has occurred

Figure 10: Additional visualizations of change procedures on CLEVR-Change.
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E

Caption: there is only one person shown

Figure 11: Visualization of change procedures on Spot-the-Diff.
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Caption: color his hair blonde

Caption: lighten the image

RARR AR
LR R &R R R

Caption: make this a solid white background brighten up the whole image of him

[ S | TSy [ sy 3= Fer, &

Caption: sharpen this image

Figure 12: Visualization of change procedures on Image-Editing-Request.
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Caption: the blue object is in a different location

overlaid

Caption: the large brown block became metallic

overlaid

Caption: the big sphere moved

before after overlaid

Caption: the green matte cylinder changed to shiny

overlaid

0.23

loU =

Figure 13: Visualization of cases with significant viewpoint shift. The left shows the original image
pair with the overlaid image. The right visualizes the reconstructed procedural representation pro-
duced by the Procedure Encoder within the Procedure Modeling Module.

Reference: the tiny brown shiny sphere right of the tiny yellow thing became yellow
ProCap: no change has occurred

Reference: the cube changed its location
ProCap: no change has occurred

. . ¢

Reference: Adjust the brightness
ProCap: change the background to a

I £} i 1Y i Y

Reference: a red car has left the scene
ProCap: there is a black car in the middle of the lot

Figure 14: Visualization of failure cases generated by ProCap. The left shows key frames selected
from the synthetic procedure using the Confidence-based Frame Sampleing Module, while the right
visualizes the reconstructed procedural representation produced by the Procedure Encoder within
the Procedure Modeling Module.

32



Published as a conference paper at ICLR 2026

N LIMITATION AND FUTURE WORK

In this work, we propose a novel two-stage framework, ProCap, which reformulates change cap-
tioning from static comparison to dynamic procedure modeling. While experiments demonstrate
that our method achieves strong performance across three widely-used benchmark datasets, certain
challenges remain in specific scenarios.

For instance, when scenes exhibit dramatic changes, for example, where transformations exceed the
variations in position, appearance, and existence defined in Sec. [3] or drastic viewpoint changes hap-
pen, generating perfectly physically grounded intermediate frames becomes inherently ill-posed for
any current generative model, as pixel-level correspondence is no longer preserved. In such cases,
2D generative models, such as optical-flow-based approaches (Lu et al., [2022), face fundamental
limitations due to the lack of explicit geometric depth reasoning. We believe that a paradigm shift
toward 3D scene modeling to maintain geometric consistency is beneficial to maintain geometric
consistency and produce physically grounded intermediate frames under such extreme variations.
Consequently, we identify 3D-aware representation as a critical direction to extreme geometric dis-
continuities in future exploration.

Another open problem lies in defining what constitutes a theoretically optimal informative point.
While our current formulation provides a practical solution, a more rigorous theoretical definition
remains unexplored. Future work could investigate a principled mathematical characterization of
this optimal point within the broader context of change analysis, potentially leading to more robust
and generalizable criteria.

Finally, integrating LLMs represents a natural and valuable extension of our framework. We plan
to explore LLM-based architectures—such as instruction-tuning strategies—to combine the high-
level reasoning capability of LLMs with the explicit dynamic modeling strengths of ProCap. Such
integration may enable richer semantic guidance and more adaptive dynamic understanding in future
systems.

Collectively, we believe these limitations highlight several promising avenues for continued devel-
opment. With more refined model design and deeper theoretical grounding, ProCap can be extended
to address these challenges more effectively.

O ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. No human subjects or animal experiments were
involved in this study. All datasets used, including CLEVR-Change, Spot-the-Diff, and Image-
Editing-Request, were obtained in accordance with their respective usage guidelines, ensuring full
compliance with privacy standards. We have taken care to minimize potential biases and avoid
discriminatory outcomes throughout the research process. No personally identifiable information
was utilized, and no experiments were conducted that could raise privacy or security concerns. We
are committed to upholding transparency, fairness, and integrity in all aspects of this research.

P REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our results. All code and data
used in the experiments will be released publicly to facilitate replication and independent verifica-
tion. The experimental setup—including training procedures, model configurations, and hardware
specifications—is detailed in Appendix |H| In addition, we provide a comprehensive description of
ProCap to further support reproducibility.

Furthermore, the three change captioning datasets used in our work—CLEVR-Change, Spot-the-
Diff, and Image-Editing-Request—are publicly available, ensuring consistent and reproducible eval-
uation.

We believe these efforts will enable other researchers to faithfully reproduce our findings and con-
tribute to advancing the field.
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Q STATEMENT OF USING LLMS IN THE PAPER

Large Language Models (LLMs) were employed to assist in writing and refining this manuscript,
specifically for grammar checking and sentence polishing, with the aim of enhancing overall read-
ability.

Importantly, the LLM was not involved in the ideation, research methodology, experimental design,
or data analysis. All research concepts, ideas, and analyses were independently developed and
carried out by the authors. The role of the LLM was strictly limited to improving the linguistic
quality of the text, without contributing to the scientific content.

The authors take full responsibility for the manuscript, including any portions refined with LLM
assistance. We have ensured that the use of LLMs complies with ethical standards and does not
involve plagiarism or scientific misconduct.
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