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Abstract

Despite their vast capabilities, Large Language001
Models (LLMs) often struggle with gener-002
ating reliable outputs, frequently producing003
high-confidence inaccuracies known as hal-004
lucinations. Addressing this challenge, our005
research introduces InternalInspector, a006
novel framework designed to enhance confi-007
dence estimation in LLMs by leveraging con-008
trastive learning on internal states including009
attention states, feed-forward states, and ac-010
tivation states of all layers. Unlike existing011
methods that primarily focus on the final acti-012
vation state, InternalInspector conducts a013
comprehensive analysis across all internal states014
of every layer to accurately identify both correct015
and incorrect prediction processes. By bench-016
marking InternalInspector against existing017
confidence estimation methods across various018
natural language understanding and generation019
tasks, including factual question answering,020
commonsense reasoning, and reading compre-021
hension, InternalInspector achieves signif-022
icantly higher accuracy in aligning the estimated023
confidence scores with the correctness of the024
LLM’s predictions and lower calibration error.025
Furthermore, InternalInspector excels at026
HaluEval, a hallucination detection benchmark,027
outperforming other internal-based confidence028
estimation methods in this task.029

1 Introduction030

Large Language Models (LLMs) have demonstrated031

remarkable capabilities across a wide range of tasks,032

from reasoning to question answering (Zhao et al.,033

2023; Zhou et al., 2023; Wang et al., 2024; Liang034

et al., 2022). Despite these advancements, LLMs035

still face significant challenges in hallucinating036

facts (Ji et al., 2023a; Li et al., 2023a; Ji et al.,037

2023b; Huang et al., 2023) and providing robust038

confidence estimates for their predictions (Bom-039

masani et al., 2022; Kuhn et al., 2023; Jiang et al.,040

2021a)1. This results in LLMs delivering confident 041

but incorrect information, undermining their relia- 042

bility and affecting their potential applications in 043

real-world scenarios. Therefore, a well-established 044

confidence estimator is essential for users to deter- 045

mine when to trust the outputs of LLMs and identify 046

hallucinations in the outputs, thereby enhancing the 047

practicality and trustworthiness of LLMs. 048

Recent research suggests that LLMs exhibit a 049

degree of self-awareness regarding the truthfulness 050

of the generated statements (Kadavath et al., 2022). 051

Studies have investigated the relationship between 052

the accuracy of LLM outputs and the characteristics 053

of their final activation state (Azaria and Mitchell, 054

2023a; Burns et al., 2023). Although these find- 055

ings are promising, they primarily focus on easy 056

True/False factual question-answering tasks. Fur- 057

thermore, relying solely on the final hidden states 058

offers a limited perspective on the intricate inter- 059

nal dynamics of LLMs. The generation process 060

within LLMs involves a sophisticated interplay of 061

internal modules, including attention mechanisms 062

and Feed-Forward Networks (FFNs), which are 063

critical for shaping the generated responses. Recent 064

studies have demonstrated that these internal mod- 065

ules play a crucial role in encoding and recalling 066

the factual and linguistic knowledge essential for 067

accurate predictions in LLMs (Clark et al., 2019b; 068

Kobayashi et al., 2024; Modarressi et al., 2022; 069

Dar et al., 2023; Ferrando et al., 2022; Modarressi 070

et al., 2023). It has also been shown that halluci- 071

nations in LLM outputs primarily originate from 072

these internal modules (Geva et al., 2022a; Li et al., 073

2023c). These studies further lead us to the ques- 074

tion: can the dynamics of these internal modules 075

potentially indicate the confidence of LLMs in their 076

predictions? 077

1Following (Kadavath et al., 2022; Jiang et al., 2021a),
we define confidence as the probability of a model prediction
being correct, differing from uncertainty that quantifies the
ambiguity in data or model lack of knowledge (Hu et al., 2023).
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In response, we first provide a theoretical foun-078

dation that highlights the crucial role of internal079

states in robust and accurate confidence estimation.080

We further propose InternalInspector (I2), a081

simple yet robust confidence estimation method082

that leverages the internal states of LLMs to as-083

sess the truthfulness of generated statements across084

various tasks. Specifically, InternalInspector085

employs contrastive learning (Khosla et al., 2021)086

upon an encoder, such as a Convolutional Neural087

Network (O’shea and Nash, 2015) or a Transformer088

(Vaswani et al., 2017a), to learn meaningful feature089

representations from the internal states of an LLM090

such as LLaMA-2-7B (Touvron et al., 2023). A091

binary classifier is trained simultaneously on top092

of these feature representations to estimate a confi-093

dence score for each LLM prediction based on its094

correctness, either correct or incorrect.095

We evaluate InternalInspector together with096

various existing confidence estimation methods,097

including logit-based, self-evaluation, and other098

internal-based approaches on several natural lan-099

guage understanding and generation tasks, includ-100

ing factual question answering, commonsense rea-101

soning, and reading comprehension. Experimental102

results demonstrate that InternalInspector sig-103

nificantly enhances the alignment between accuracy104

and confidence scores, achieving up to 20.4% im-105

provement in accuracy and 8.9% in Expected Cali-106

bration Error (ECE) across the various evaluation107

tasks. Furthermore, InternalInspector excels108

at identifying hallucinations in generated outputs,109

notably existing internal-based confidence estima-110

tion methods on the HaluEval benchmark (Li et al.,111

2023a). We also investigate the importance of differ-112

ent types of internal states in confidence estimation113

and showcase that attention states are particularly114

meaningful for tasks that require deep contextual115

understanding, such as open-book question answer-116

ing and reading comprehension, while feed-forward117

states are more crucial for tasks centered on fac-118

tual information, aligning with the recent research119

finding that the Feed-Forward Networks (FFNs)120

within Transformer blocks are functioning as key-121

value memories to encode and retrieve factual and122

semantic knowledge (Geva et al., 2021).123

In summary, our contributions are as follows:124

• We pioneer in establishing a theoretical foun-125

dation underscoring the importance of internal126

states of LLMs in confidence estimation.127

• We propose InternalInspector, a simple128

yet effective confidence estimation method 129

that leverages the internal states of LLMs, 130

including the attention states, feed-forward 131

states, and activation states. 132

• Extensive experiments demonstrate that 133

InternalInspector provides robust confi- 134

dence estimates and significantly outperforms 135

existing confidence estimation methods across 136

various natural language understanding and 137

generation tasks. 138

• InternalInspector is also proven effec- 139

tive in recognizing hallucinations in LLM 140

outputs, achieving significantly better perfor- 141

mance than various baselines on HaluEval. 142

2 Related Work 143

Confidence Estimation for LLMs We summa- 144

rize existing confidence estimation methods for 145

LLMs into four categories: (1) Logit-based meth- 146

ods (Lin et al., 2022b; Jiang et al., 2021b; Kuhn 147

et al., 2023) utilize output probability distributions 148

or entropy to directly measure confidence. How- 149

ever, they mainly reflect the probability distribution 150

over possible tokens (vocabulary space) (Lin et al., 151

2022b; Si et al., 2022; Tian et al., 2023). (2) 152

Consistency-based approaches (Vazhentsev et al., 153

2023; Portillo Wightman et al., 2023; Wang et al., 154

2023; Shi et al., 2022; Manakul et al., 2023; Agrawal 155

et al., 2023) evaluate confidence by measuring the 156

agreement among different model responses, high- 157

lighting potential inconsistencies. However, these 158

methods require effective measurement of consis- 159

tency among responses which is usually challeng- 160

ing (Xiong et al., 2024; Jiang et al., 2021b; Li et al., 161

2022; Ding et al., 2024; Kuhn et al., 2023; Manakul 162

et al., 2023; Zhang et al., 2023). (3) Self-evaluation 163

methods (Kadavath et al., 2022; Manakul et al., 164

2023; Lin et al., 2024) enable models to internally 165

assess the correctness of their answers, leveraging 166

their introspective capability. This approach often 167

results in circular reasoning, exacerbating initial 168

errors and leading to overconfident inaccuracies 169

(Ji et al., 2023c; Chen et al., 2023). (4) Internal- 170

based methods (Azaria and Mitchell, 2023b; Burns 171

et al., 2022) proposed training a linear classifier 172

on the final activation state of LLMs to examine 173

whether it can differentiate between correct and 174

incorrect answers. InternalInspector falls into 175

this category but surpasses existing methods by 176

employing feature learning on the entire spectrum 177
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of the internal mechanism of LLMs to understand178

the sophisticated non-linear operational process. It179

generalizes effectively across various datasets and180

applications, offering robust confidence estimates181

grounded in comprehensive theoretical analysis.182

Understanding Internal States in LLMs Stud-183

ies aimed at understanding the inner workings of184

transformers indicate that while attention should185

not be directly equated with explanation (Pruthi186

et al., 2019; Jain and Wallace, 2019; Wiegreffe187

and Pinter, 2019), it provides significant insights188

into the model’s operational behavior and helps in189

error diagnosis and hypothesis development (Park190

et al., 2019; Voita et al., 2019; Vig, 2019; Hoover191

et al., 2020; Vashishth et al., 2019). Concurrently,192

research has shown that Feed-Forward Networks193

(FFNs) within Transformer blocks, functioning as194

key-value memories, encode and retrieve factual195

and semantic knowledge (Geva et al., 2021). Exper-196

imental studies have established a direct correlation197

between modifications in FFN output distributions198

and subsequent token probabilities, suggesting that199

the model’s output is crafted through cumulative200

updates from each layer (Geva et al., 2022b).201

3 Confidence Estimation using Internal202

Representations203

3.1 Background: Transformer Architecture204

In this work, we primarily focused on confidence205

estimation for transformer-based LLMs (Vaswani206

et al., 2017b), as they have been the predominant ar-207

chitecture backbone of most existing frontier LLMs.208

Given a sequence of input tokens 𝑥 = [𝑥0, · · · , 𝑥𝑁 ],209

a transformer-based language model first encodes210

the tokens into vectors of input representations211

ℎ0 = [ℎ0
0, · · · , ℎ

0
𝑁
] ∈ R𝑁×𝑑 at layer 0. The input212

representations are then updated through a sequence213

of 𝐿 transformer layers, where each layer is com-214

posed of a MHSA sublayer followed by a FFN215

sublayer, interconnected by residual connections216

that facilitate the flow of information between lay-217

ers. Formally, the representation of ℎ𝑙
𝑖

of token 𝑖 at218

layer 𝑙 is obtained by:219

ℎ𝑙𝑖 = ℎ
𝑙−1
𝑖 + 𝑎𝑙𝑖 + 𝑚𝑙

𝑖 , (1)220

where 𝑎𝑙
𝑖
and𝑚𝑙

𝑖
are the outputs from the 𝑙-th MHSA221

layer and FFN sublayers, respectively.222

After the transformation through 𝐿 layers, the223

representation at the final layer is projected into224

the vocabulary space to generate the output se-225

quence 𝑦. In this work, we focus on the internal226

states at the final token across all layers, defined 227

as 𝜃 = {ℎ𝑙
𝑁
, 𝑎𝑙

𝑁
, 𝑚𝑙

𝑁
}𝐿
𝑙=1. Here, 𝑁 represents the 228

position of the last token in the input sequence. We 229

select these internal states because they encapsulate 230

the aggregation of all context information and are 231

directly involved in producing the final predictions, 232

making them particularly relevant for identifying 233

the correctness of LLM’s prediction. 234

3.2 Why Internal Representations for 235

Confidence Estimation? 236

To analyze the importance of internal states Θ in
assessing LLM response correctness, let 𝑋 and 𝑌
be the input and output random variables, respec-
tively, and 𝐾 (𝑋) the oracle response (derived from
expert/world knowledge) as the ground truth for a
query 𝑋 . Given an input-output pair (𝑋,𝑌 ), we
define a correctness indicator 𝐶 (𝑌 | 𝑋) as a binary
random variable, taking the value 1 if 𝑌 is correct
given 𝑋 , and 0 otherwise. Our confidence estima-
tor aims to predict this indicator value. We also
define the Correctness Probability 𝑆(𝐾 (𝑋), 𝑌 ), as
the expected value of 𝐶 (𝑌 | 𝑋), i.e.,

E[𝐶 (𝑌 | 𝑋)] = 𝑆(𝐾 (𝑋), 𝑌 ) = 𝑃(𝑌 is correct | 𝑋).

Let 𝐼 (·; ·|·) denotes the conditional mutual informa-
tion. Assuming

𝐼 (𝐾 (𝑋);Θ|𝑋,𝑌, 𝑆(𝐾 (𝑋), 𝑌 )) ≤ 𝜖,

where a small Residual Uncertainty 𝜖 indicates that 237

𝑆(𝐾 (𝑋), 𝑌 ) effectively captures most information 238

about the oracle answer present in𝑌 , while acknowl- 239

edging potential nuances within the LLM’s internal 240

activation Θ not fully reflected in this probability.2 241

We further assume

𝐼 (Θ;𝐾 (𝑋) | 𝑋) − 𝐼 (𝑌 ;𝐾 (𝑋) | 𝑋) ≥ Δ,

where the Internal Knowledge Advantage Δ quan- 242

tifies the additional information about the oracle 243

answer 𝐾 (𝑋) encoded in the LLM’s internal acti- 244

vation Θ, beyond what is revealed in its output 𝑌 . 245

A large Δ implies a richer internal understanding 246

compared to the expressed output. 3 247

2The residual uncertainty (𝜖) tends to be small when the
LLM is well-trained or the task is simple, as the output
accurately reflects the LLM’s knowedge in such cases.

3Empirical evidence supports a large Δ. LLM internal
states (Θ) are repositories of open-world knowledge (Geva et al.,
2021; Dai et al., 2022; Meng et al., 2022), often containing
information not fully expressed in outputs. Even incorrect
responses can still possess relevant knowledge internally (Li
et al., 2023d). Techniques like enhanced prompting (Wei et al.,
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Mathematically, we establish the key result:248

𝐼 (𝐶 (𝑌 | 𝑋);Θ|𝑋,𝑌 ) ≥ Δ − 𝜖 . (2)249

This implies that when the internal knowledge ad-250

vantage (Δ) is large and the residual uncertainty (𝜖)251

is small, the internal states (Θ) provide substantial252

additional information about the correctness of out-253

put (𝑌 ) beyond what’s contained in the input-output254

pair (𝑋,𝑌 ) alone. A detailed proof is provided255

in Appendix A. Appendices A.1 and A.2 further256

explore how internal states influence performance257

across tasks and quantitatively analyze the impact258

of internal representation informativeness on confi-259

dence estimation, respectively.260

3.3 InternalInspector261

Problem Formulation Given the dataset D =262

{(𝑥 𝑗 , 𝑦 𝑗 , 𝜃 𝑗)}𝑀𝑗=1, each instance 𝑗 includes an input263

text 𝑥 𝑗 , a generated output 𝑦 𝑗 , and the internal states264

𝜃 𝑗 = {ℎ𝑙
𝑁 , 𝑗
, 𝑎𝑙

𝑁 , 𝑗
, 𝑚𝑙

𝑁 , 𝑗
}𝐿
𝑙=1 of an LLM when gen-265

erating the output 𝑦 𝑗 . Here, 𝑁 signifies the internal266

states are extracted at the last token of the input267

sequence. The internal states 𝜃 𝑗 include the acti-268

vation states {ℎ𝑙
𝑁 , 𝑗

}𝐿
𝑙=1, attention states {𝑎𝑙

𝑁 , 𝑗
}𝐿
𝑙=1,269

and feed-forward states {𝑚𝑙
𝑁 , 𝑗

}𝐿
𝑙=1 of the LLM270

across 𝐿 layers when processing 𝑥 𝑗 .271

To effectively analyze the internal states across272

all layers, we stack each type of internal state273

along the layer dimension. For instance, the274

activation states are constructed as ℎ
(1:𝐿)
𝑁, 𝑗

=275

[ℎ1
𝑁, 𝑗

; ℎ2
𝑁, 𝑗

; · · · ; ℎ𝐿
𝑁, 𝑗

] ∈ R𝐿×𝑑 where ; denotes276

the concatenation along the layer dimension and277

𝑑 is the feature dimension. Similarly, we form278

the attention states 𝑎 (1:𝐿)
𝑁, 𝑗

and the feed-forward279

states 𝑚
(1:𝐿)
𝑁, 𝑗

both in R𝐿×𝑑 . We further con-280

struct the stacked internal states tensor, denoted281

as 𝜃 𝑗 = [ℎ (1:𝐿)
𝑁, 𝑗

, 𝑎
(1:𝐿)
𝑁, 𝑗

, 𝑚
(1:𝐿)
𝑁, 𝑗

] ∈ R𝐿×𝑑×3 for in-282

stance 𝑗 , capturing the entire internal dynamics of283

the LLM for instance 𝑗 .284

We formulate the task as learning a function 𝑔285

that takes 𝜃 as input and outputs a confidence score286

𝑐 indicating the correctness of 𝑦. Each instance287

(𝑥 𝑗 , 𝑦 𝑗 , 𝜃 𝑗) is associated with a golden binary label288

𝑐 𝑗 based on whether the LLM’s prediction 𝑦 𝑗 is289

correct, where:290

𝑐 𝑗 =

{
1 if 𝑦 𝑗 is correct
0 if 𝑦 𝑗 is incorrect.

291

2022) and self-evaluation (Kadavath et al., 2022; Saunders
et al., 2022; Manakul et al., 2023; Ren et al., 2023; Liu et al.,
2023; Lin et al., 2024) further demonstrate the ability to tap
into this latent knowledge to improve accuracy, reinforcing the
notion of a substantial Δ.
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Figure 1: Overview of our proposed
InternalInspector. InternalInspector
takes in the internal states at the final token across all
layers, denoted as 𝜃 = {ℎ𝑙

𝑁
, 𝑎𝑙

𝑁
, 𝑚𝑙

𝑁
}𝐿
𝑙=1, as input and

outputs a confidence score 𝑐 indicating the correctness
of the LLM’s prediction.

Supervised Contrastive Learning 292

InternalInspector employs a supervised 293

contrastive learning framework that learns to dif- 294

ferentiate the distinctive characteristics associated 295

with correct and incorrect output, relying solely on 296

the internal states. It consists of an encoder, such 297

as a Convolutional Neural Network (CNN) (O’shea 298

and Nash, 2015) or a Transformer (Vaswani et al., 299

2017b) (architecture detailed at Appendix C), for 300

encoding the stacked internal states 𝜃 𝑗 ∈ R𝐿×𝑑×3 301

into a compact representation 𝑧 𝑗 = 𝐸𝑛𝑐(𝜃 𝑗). 302

Subsequently, a multilayer perceptron (MLP) 303

classifier is utilized to predict the correctness of 304

the LLM’s output 𝑦 𝑗 via 𝑐 𝑗 = 𝑓 (𝑧 𝑗). Aligning 305

with the problem formulation, the overall function 306

𝑔, which maps the internal states to the confidence 307

scores, is defined as 𝑐 𝑗 = 𝑔(𝜃 𝑗) = 𝑓 (𝐸𝑛𝑐(𝜃 𝑗)). 308

InternalInspector employs a combination of 309

contrastive loss (Chen et al., 2020) and classification 310

loss to learn fine-grained differences in the internal 311

states that correlate with output correctness. For 312

the contrastive loss, we first organize mini-batches 313
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by selecting an anchor embedding 𝑧 𝑗 from the314

dataset. For each anchor 𝑧 𝑗 , we randomly sample315

one positive embedding 𝑧+
𝑗

from the set 𝑍+
𝑗
= {𝑧𝑒 |316

𝑐𝑒 = 𝑐 𝑗} ensuring that both the anchor and the317

positive embedding correspond to predictions with318

the same correctness, i.e., 𝑐 𝑗 = 𝑐𝑒. Additionally,319

we also sample 𝐸 negative embeddings 𝑧−
𝑗
∈ 𝑍−

𝑗
,320

where 𝑍−
𝑗
= {𝑧𝑒 ∈ 𝑍 | 𝑐𝑒 ≠ 𝑐 𝑗}, representing the321

set of embeddings whose associated predictions 𝑦𝑒322

differ in correctness from that of the anchor, i.e.,323

𝑐𝑒 ≠ 𝑐 𝑗 . Then, the contrastive loss is defined as:324

Lcontr = −
𝑀∑︁
𝑗=1

log
exp

(
𝑧 𝑗 · 𝑧+𝑗/𝜏

)
∑

𝑧−
𝑗
∈𝑍−

𝑗
exp

(
𝑧 𝑗 · 𝑧−𝑗 /𝜏

) , (3)325

where 𝜏 ∈ R+ is a scalar temperature parameter.326

For classification, a cross-entropy loss is used to327

directly optimize the model’s ability to classify the328

embeddings correctly:329

Lcls = − 1
𝑀

𝑀∑︁
𝑗=1

(
𝑐 𝑗 log(𝑐 𝑗) + (1 − 𝑐 𝑗) log(1 − 𝑐 𝑗)

)
, (4)330

where 𝑐 𝑗 denotes the golden binary label of the331

output 𝑦 𝑗 .332

The overall training objective is the combina-333

tion of the contrastive loss and the classifica-334

tion loss, denoted as L = Lcontr + Lcls. The335

combined supervised contrastive loss empowers336

InternalInspector to effectively discern the nu-337

ances within the internal states that differentiate338

correct from incorrect LLM predictions, thus facil-339

itating InternalInspector to accurately predict340

the confidence of the LLM predictions based solely341

on internal states.342

4 Experimental Setting343

4.1 Tasks and Datasets344

We evaluate InternalInspector on one of the345

most popular autoregressive decoder-only open-346

source large language models, LLaMA-2-7B (Tou-347

vron et al., 2023), on three critical tasks and datasets.348

For factual closed-book QA, we utilize Trivi-349

aQA (Joshi et al., 2017) and MMLU (Hendrycks350

et al., 2021). For commonsense reasoning, we em-351

ploy CommonsenseQA (Talmor et al., 2019) and352

BoolQA (Clark et al., 2019a). For reading com-353

prehension, we utilize SQuAD (Rajpurkar et al.,354

2016) and OpenBookQA (Mihaylov et al., 2018).355

Additionally, we also evaluate the capability of356

InternalInspector in detecting hallucinations357

on HaluEval benchmark (Li et al., 2023a).358

4.2 Baselines 359

To effectively evaluate the effectiveness of 360

InternalInspector, we benchmark it against 361

four distinct types of baseline methods: 362

Logit-Based: Following (Jiang et al., 2021b), 363

the logit-based method utilizes the log probability 364

derived from the output logits as a metric for confi- 365

dence estimation, under the assumption that higher 366

log probabilities suggest greater confidence. 367

Self-Evaluation: Following (Kadavath et al., 368

2022), the Self-Evaluation method initiates a self- 369

assessment phase after generating an answer. After 370

the model generates an answer 𝑌 , it feeds both the 371

question 𝑋 and the generated answer 𝑌 back to the 372

model and asks whether the answer is true or false 373

for the question. The confidence is then estimated 374

as the probability of the generated response ‘True’ 375

𝑃(True|𝑋,𝑌 ). 376

Temperature Scaling: Following (Desai and 377

Durrett, 2020a), Temperature Scaling adjusts the 378

scale of logits using a scalar hyperparameter 𝑇 be- 379

fore the softmax operation, modifying the sharpness 380

of the probability distribution. 381

Last Hidden States: We employ Contrast- 382

Consistent Search (CSS) (Burns et al., 2023), which 383

involves training a linear classifier on the final hid- 384

den states of statements rephrased in both positive 385

and negative formats, and SAPLMA (Azaria and 386

Mitchell, 2023a) that transforms an initial statement 387

into a true/false question and employs a classifier on 388

the final hidden state to map it into the confidence. 389

4.3 Evaluation Metrics 390

We assess the performance of confidence estimation 391

using two primary metrics: Accuracy and Expected 392

Calibration Error (ECE) (Guo et al., 2017). 393

Accuracy This metric measures the proportion 394

of instances where the correctness of the LLM’s 395

predictions aligns with the estimated confidence. 396

Specifically, an output of the LLM is considered 397

correct if its estimated confidence score exceeds 398

a predefined threshold and incorrect if it falls be- 399

low. Following (Burns et al., 2023; Azaria and 400

Mitchell, 2023a; Li et al., 2023a), we set this thresh- 401

old at 0.5 throughout our experiments, unless stated 402

otherwise. 403

Expected Calibration Error (ECE) ECE (Guo 404

et al., 2017) quantifies the calibration performance 405

of the models. It is defined as: 406

ECE =

𝑀∑︁
𝑚=1

|𝐵𝑚 |
𝑛

|acc(𝐵𝑚) − conf(𝐵𝑚) | , (5) 407
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Model Factual QA Commonsense Reasoning Reading Comprehension

TriviaQA MMLU CommonsenseQA BoolQA SQuAD OpenBookQA

ACC ↑ ECE ↓ ACC ↑ ECE ↓ ACC ↑ ECE ↓ ACC ↑ ECE ↓ ACC ↑ ECE ↓ ACC ↑ ECE ↓
Baseline Models

Logit-Based 0.453 0.202 0.416 0.243 0.576 0.143 0.532 0.254 0.522 0.292 0.464 0.301
Temperature Scaling 0.543 0.181 0.546 0.154 0.667 0.120 0.512 0.212 0.612 0.178 0.594 0.287
Self-Evaluation (3-shot) 0.307 0.465 0.374 0.412 0.312 0.441 0.282 0.590 0.309 0.621 0.368 0.492
CSS 0.552 0.283 0.515 0.245 0.501 0.235 0.568 0.191 0.581 0.243 0.502 0.232
SAPLMA 0.596 0.163 0.606 0.148 0.575 0.123 0.591 0.193 0.617 0.126 0.609 0.157

Our Models

InternalInspectorTF 0.769 0.081 0.829 0.051 0.742 0.102 0.827 0.099 0.767 0.078 0.723 0.102
InternalInspectorCNN 0.751 0.073 0.815 0.054 0.763 0.097 0.812 0.083 0.807 0.051 0.791 0.098
w/o Contastive loss 0.627 0.142 0.641 0.111 0.603 0.168 0.618 0.199 0.660 0.153 0.615 0.171

Table 1: Comparison with baseline confidence estimation methods. Best results are highlighted in bold.

where 𝑛 is the total number of samples, 𝑀 is the408

number of bins, 𝐵𝑚 denotes the𝑚-th bin containing409

samples with confidences falling within
(
𝑚−1
𝑀
, 𝑚
𝑀

]
,410

and |𝐵𝑚 | is the number of samples in the 𝑚-th411

bin. Following (Desai and Durrett, 2020b; Kada-412

vath et al., 2022), we use 𝑀 = 10 bins. acc(𝐵𝑚)413

and conf (𝐵𝑚) denote the average accuracy and414

confidence of the samples within 𝐵𝑚, respectively.415

5 Results and Discussion416

5.1 Main Results417

Table 1 shows the performance comparison be-418

tween InternalInspector and baseline confi-419

dence estimation methods on various tasks and420

datasets. As we can see, InternalInspector con-421

sistently outperforms all baseline methods in terms422

of accuracy (ACC ↑) and Expected Calibration Er-423

ror (ECE ↓), demonstrating superior performance424

across all evaluated tasks and datasets. Specif-425

ically, InternalInspector achieves significant426

improvements over the highest-performing baseline,427

including an average 19.8% increase in accuracy428

and a 8.95% reduction in ECE for Factual QA. In429

Commonsense Reasoning, the improvements are430

20.4% in accuracy and 6.8% in ECE. For Reading431

Comprehension, InternalInspector enhances432

accuracy by 18.6 % and lowers ECE by 6.7%.433

Additionally, we explore two differ-434

ent architectures for the encoder in435

InternalInspector: a Transformer-based en-436

coder (InternalInspectorTF) and a CNN-based437

encoder (InternalInspectorCNN), as presented438

in Table 1. In general, InternalInspectorCNN439

outperforms InternalInspectorTF across440

most datasets. This superior performance is441

likely to be attributed to CNN’s adeptness at442

capturing the local structure of internal states,443

Figure 2: Comparative Distribution of Confidence
Scores. Each boxplot indicates the interquartile range
of confidence scores. The dashed red line represents the
decision threshold at 0.5.

thereby providing more effective representations 444

for confidence estimation. The discussions of 445

InternalInspector in the following sections 446

are all based on InternalInspectorCNN. 447

Moreover, we conduct an ablation study where 448

InternalInspectorCNN is trained without the 449

contrastive loss. This results in a notable perfor- 450

mance decrease across all datasets, underscoring 451

the critical role of contrastive loss in enhancing the 452

model’s effectiveness. 453

Distribution of Confidence Scores We further 454

examine the distribution of the estimated confidence 455

scores from InternalInspector compared to 456

those of SAPLMA, the highest-performing baseline. 457

As depicted in Figure 2, there is a clear separation in 458

the confidence score distributions between correct 459

and incorrect predictions across various datasets 460

for InternalInspector. InternalInspector 461

reliably maintains higher confidence scores for cor- 462

rect answers and lower for incorrect ones, compared 463

to SAPLMA. For InternalInspector, both the 464

interquartile ranges and medians for correct answers 465

consistently exceed the threshold of 0.5, and remain 466

below this threshold for incorrect predictions. Al- 467

though SAPLMA similarly positions medians above 468
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Method QA Dialouge Summarization
HaluEval (Llama2-7B) 0.480 0.443 0.476
w/ Knowledge 0.543 0.451 –
w/ CoT 0.427 0.505 0.509
CSS 0.562 0.418 0.481
SAPLMA 0.491 0.459 0.416
InternalInspector (Ours) 0.691 0.648 0.671

Table 2: Accuracy (%) of identifying whether a model’s
output contains hallucinated contents.

the threshold for correct responses and below for469

incorrect ones, it lacks a clear separation across the470

interquartile ranges, indicating less reliable perfor-471

mance in distinguishing between correct and incor-472

rect predictions. An analysis of high-confidence473

incorrect answers is in Appendix B.474

5.2 Hallucination Detection475

To assess the effectiveness of our frame-476

work in detecting hallucinations, we apply477

InternalInspector on HaluEval (Li et al.,478

2023a), a hallucination evaluation benchmark for479

LLMs. The task involves taking in a question, a480

corresponding answer, and an optional knowledge481

context and identifying whether the given answer482

contains non-factual or hallucinated information.483

In our experiments, we employ LLaMA-2-7B as484

the LLM that processes an optional knowledge con-485

tent, a question, and an answer following the instruc-486

tion templates in (Li et al., 2023a). The LLM then487

outputs whether the provided answer is hallucinated488

or not. We then employ InternalInspector,489

which utilizes the internal states of the LLM, to490

generate a confidence score indicating the likeli-491

hood of the answer being hallucinated. Specif-492

ically, we train InternalInspector on a 30%493

subset of the HaluEval and evaluate it on the re-494

maining test split. We apply the same training495

setup to CSS and SAPLMA, two baseline con-496

fidence estimation methods. We also compared497

with baseline methods from HaluEval, including498

methods with Chain of Thought (CoT) reasoning499

(Wei et al., 2022) and knowledge retrieval (Li et al.,500

2023b), which are zero-shot. As shown in Table501

2, InternalInspector significantly outperforms502

the confidence estimation baselines in hallucina-503

tion detection, suggesting InternalInspector’s504

potential in identifying hallucinations.505

5.3 Robustness on Data Distribution Shifts506

In this section, we explore InternalInspector’s507

capability to generalize across different datasets,508

focusing on Intra-Domain and Cross-Domain509

settings. In the Intra-Domain setting,510

Dataset In-Domain Intra-Domain Cross-Domain
Factual QA
SciQA 0.836 0.737 0.619
MMLU 0.815 0.707 0.598
Commonsense
BoolQA 0.812 0.694 0.592
CommonsenseQA 0.763 0.673 0.585
Reading Comp.
SQuAD 0.807 0.683 0.594
OpenBookQA 0.791 0.698 0.539

Table 3: Robustness Across Data Distribution Shifts.

InternalInspector is trained on one dataset 511

of a specific task category and then tested on an- 512

other dataset from the same task category. For 513

example, within the commonsense reasoning cat- 514

egory, the model might be trained on Common- 515

senseQA and tested on BoolQA. Conversely, in the 516

Cross-Domain setting, InternalInspector is 517

tested on a dataset of a specific task type while being 518

trained on a combination of datasets from all other 519

task types that are distinct from the test dataset’s cat- 520

egory, exemplifying its adaptability across diverse 521

domains. For example, for the Cross-Domain sce- 522

nario involving BoolQA, InternalInspector is 523

evaluated on BoolQA while being trained on a com- 524

bination of datasets from SciQA, MMLU, SQuAD, 525

and OpenBook QA, none of which are within the 526

commonsense reasoning category of BoolQA. Ad- 527

ditionally, we include an In-Domain setting, where 528

the model is trained and tested on the same dataset 529

to establish a baseline for comparison. Note that, 530

in this experiment, for tasks categorized under Fac- 531

tualQA, we use SciQA (Auer et al., 2023) and 532

MMLU (Hendrycks et al., 2021) due to the simi- 533

larity in the subject matter they cover, containing 534

question and answers regarding science. 535

Table 3 showcases InternalInspector’s ro- 536

bust performance in the Intra-Domain sce- 537

narios. Although there is a performance 538

decrement compared to the In-Domain setting, 539

InternalInspector consistently outperforms 540

other baseline methods in In-Domain scenario 541

(See Table 1). This strong performance in 542

Intra-Domain generalization indicates that the 543

internal states from the same task category exhibit 544

similar patterns. In Cross-Domain setting, we 545

observe a larger performance drop, suggesting dis- 546

tinct internal states and patterns across different 547

task categories. This observation aligns with the 548

findings that linguistic and factual knowledge lo- 549

cated in different layers of LLMs (Dai et al., 2022; 550

Tenney et al., 2019; Meng et al., 2022), resulting 551

in task-specific variations in internal states. De- 552
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Dataset Full FF + Attn FF + Act Attn + Act Attn FF Act
Factual QA
TriviaQA 0.751 0.711 0.724 0.613 0.504 0.703 0.627
MMLU 0.815 0.775 0.767 0.673 0.535 0.717 0.641
Commonsense
CommonsenseQA 0.763 0.692 0.708 0.619 0.602 0.634 0.617
BoolQA 0.812 0.684 0.739 0.638 0.592 0.693 0.650
Reading Comp.
SQuAD 0.807 0.771 0.628 0.759 0.728 0.615 0.624
OpenBookQA 0.791 0.719 0.615 0.727 0.707 0.577 0.635

Table 4: Effects of utilizing different combinations of
internal states, including attention states (Attn), feed-
forward states (FF), and activation states (Act). Full
represents the use of all types of internal states.

spite these variations, InternalInspector still553

performs comparably to baseline methods that are554

trained and evaluated on the same dataset, indicat-555

ing the efficacy of InternalInspector.556

6 Ablation Study557

6.1 Effect of Different Types of Internal States558

In this section, we explore the impact of various559

internal states on InternalInspector’s perfor-560

mance, focusing on the role of attention (Attn),561

feed-forward states (FF), activation state (Act), and562

their combinations across different tasks. Table 4563

demonstrates that when using only one type of in-564

ternal states, feed-forward states generally prove to565

be the most influential for confidence estimation,566

except for the reading comprehension task, where567

the model using attention states achieves the best568

performance. This highlights the effectiveness of569

feed-forward states in tasks that require robust fac-570

tual recall, while attention states play a crucial role571

in tasks that necessitate processing and prioritizing572

extensive text segments for comprehension.573

We also explore the efficacy of various combi-574

nations of internal states. The results indicate that575

integrating multiple types of internal states often576

yields improvements over using either type of inter-577

nal states alone. Moreover, models incorporating578

all types of internal states consistently deliver opti-579

mal performance. This suggests that the integration580

of different types of internal states is necessary to581

effectively capture the complexities inherent in var-582

ious tasks, leading to robust confidence estimation583

methods. These analyses offer insights into how584

different types or combinations of internal states585

might influence model performance in various task586

categories, potentially informing future strategies587

for the optimal utilization of internal states.588

6.2 Impact of Different Layer Depths589

In this section, we explore the efficacy of leveraging590

internal states from different depths of layers within591

Shallow Layers [0-4] Mid Layers [13-17] Deep Layers [27-31]0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy TriviaQA

BoolQA
OpenBookQA

Figure 3: Impact of Internal States from Different Layer
Depths.

LLMs. Specifically, we analyze the performance 592

of InternalInspector across diverse datasets 593

such as TriviaQA, BoolQA, and OpenBookQA, 594

examining how internal states from different layer 595

depths contribute to accurate confidence estimation. 596

Figure 3 presents the performance of 597

InternalInspector when leveraging internal 598

states from shallow (layers 0-4), middle (layers 599

13-17), and deep (layers 27-31) layers. The dashed 600

horizontal line in the figure represents the baseline 601

performance achieved when internal states from all 602

layers are utilized. In general, we observe that the 603

middle layers (13-17) yield the highest performance 604

across different tasks, suggesting that the internal 605

states from the middle layers effectively encode fea- 606

tures critical for assessing the correctness of model 607

outputs. Moreover, InternalInspector exhibits 608

optimal performance when internal states from all 609

layers are utilized, underscoring the effectiveness 610

of our current model design in leveraging internal 611

states from all layers for confidence estimation. 612

7 Conclusion 613

In this work, we propose InternalInspector, a 614

simple yet robust confidence estimation method 615

utilizing the internal states of LLMs, includ- 616

ing attention, feed-forward, and activation states 617

across all layers. Experimental results un- 618

derscore InternalInspector’s superior perfor- 619

mance, which consistently outperforms base- 620

line methods in a variety of natural language 621

processing tasks, including factual question an- 622

swering, commonsense reasoning, and reading 623

comprehension. Further analysis shows that 624

InternalInspectordemonstrates strong general- 625

ization capabilities within Intra-Domain scenarios. 626

Additionally, InternalInspector outperforms 627

other internal-state-based confidence estimation 628

methods in HaluEval, suggesting its potential in 629

hallucination detection. 630
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8 Limitation631

InternalInspector is specifically designed to632

leverage the internal states of large language models633

(LLMs) to estimate the confidence scores of gener-634

ated responses. Consequently, our proposed model635

cannot be applied to proprietary LLMs where these636

internal states are not accessible.637

Moreover, in this work, we propose a simple638

yet effective approach for confidence estimation.639

While InternalInspector demonstrates robust640

performance across various tasks, we did not ex-641

tensively explore complex model architectures of642

InternalInspector. Future work could delve643

into more advanced and complex architectures that644

might offer improved performance in confidence645

estimation.646
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− 𝐼 (𝐾 (𝑋);Θ|𝑋,𝑌, 𝑆(𝐾 (𝑋), 𝑌 )) 1108

= 𝐼 (𝐾 (𝑋);Θ|𝑋,𝑌 ) 1109

− 𝐼 (𝐾 (𝑋);Θ|𝑋,𝑌, 𝑆(𝐾 (𝑋), 𝑌 )) 1110

≥ 𝐼 (𝐾 (𝑋);Θ|𝑋,𝑌 ) − 𝜖, 1111

where we used the fact that 1112

𝐼 (𝑆(𝐾 (𝑋), 𝑌 );Θ|𝑋,𝑌, 𝐾 (𝑋)) = 0 since 𝑆(·, ·) is 1113

deterministic. Combining the above inequalities, 1114

we obtain the desired result. 1115

A.1 Quantitive assumption 1116

In Sec. 3.2, we demonstrate the correctness 𝐶 and 1117

internal representations Θ are not conditionally in- 1118

dependent on (𝑋,𝑌 ), 𝐼 (𝐶;Θ|𝑋,𝑌 ) > 0. In this 1119

section, we propose a more fine-grained theoret- 1120

ical model for utilizing internal representations, 1121

which use a quantified conditional mutual infor- 1122

mation 𝐼 (𝐶;Θ|𝑋,𝑌 ) to represent the captured in- 1123

formation between Θ and 𝐾 (·) and introduce the 1124

reasoning confidence and knowledging confidence 1125

to explain the performance discrepancies among 1126

different datasets. 1127

The tested capabilities of LLMs using the QA 1128

dataset could be generally divided into two cate- 1129

gories: knowledging and reasoning. This decompo- 1130

sition is intuitively based on human cognition that 1131

knowledging determines whether the LLM is incor- 1132

porated with the required knowledge to understand 1133

the question and answer the question. The reasoning 1134

capability determines whether LLM could generate 1135

the correct conclusion. Different QA datasets em- 1136

phasize different aspects of these capabilities. For 1137

instance, mathematical problems focus on the LLM 1138

reasoning capability, as they require the LLM to 1139
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apply logical computation to arrive at the correct an-1140

swer. Closed-book QA tasks primarily assess LLM1141

knowledging capability. Therefore we assume the1142

confidence signal 𝐶 generated from the LLM could1143

be decomposed into knowledgeing confidence 𝑆𝑘1144

and reasoning confidence 𝑆𝑟 and each component1145

influences the confidence independently. For sim-1146

plicity, we use a binary version of the confidence1147

score, and the contributions of each component are1148

described in this way:1149

𝑃(𝐶 = 1|𝑆𝑟 = 1) = 𝑃(𝐶 = 0|𝑆𝑟 = 0) = 𝛼1150

𝑃(𝐶 = 0|𝑆𝑟 = 1) = 𝑃(𝐶 = 1|𝑆𝑟 = 0) = 1 − 𝛼1151

𝑃(𝐶 = 1|𝑆𝑘 = 1) = 𝑃(𝐶 = 0|𝑆𝑘 = 0) = 𝛽1152

𝑃(𝐶 = 0|𝑆𝑘 = 1) = 𝑃(𝐶 = 1|𝑆𝑘 = 0) = 1 − 𝛽1153

0.5 ≤ 𝛼, 𝛽 ≤ 11154

𝛼 represents the contribution of reasoning confi-1155

dence and 𝛽 represents the contribution of knowl-1156

edging confidence 𝛼 and 𝛽 are greater than 0.51157

because two confidence scores contribute positively1158

to the correctness. Then we can derive the proba-1159

bility distribution of 𝐶 on the joint distribution of1160

𝑆𝑟 and 𝑆𝑘 :1161

𝑃(𝐶 = 1|𝑆𝑟 = 1, 𝑆𝑘 = 1) = 0.5(𝛼 + 𝛽)1162

𝑃(𝐶 = 1|𝑆𝑟 = 1, 𝑆𝑘 = 0) = 0.5(𝛼 + 1 − 𝛽)1163

𝑃(𝐶 = 1|𝑆𝑟 = 0, 𝑆𝑘 = 1) = 0.5(1 − 𝛼 + 𝛽)1164

𝑃(𝐶 = 1|𝑆𝑟 = 0, 𝑆𝑘 = 0) = 1 − 0.5(𝛼 + 𝛽)1165

𝑃(𝐶 = 0|𝑆𝑟 = 1, 𝑆𝑘 = 1) = 1 − 0.5(𝛼 + 𝛽)1166

𝑃(𝐶 = 0|𝑆𝑟 = 1, 𝑆𝑘 = 0) = 0.5(1 − 𝛼 + 𝛽)1167

𝑃(𝐶 = 0|𝑆𝑟 = 0, 𝑆𝑘 = 1) = 0.5(𝛼 + 1 − 𝛽)1168

𝑃(𝐶 = 0|𝑆𝑟 = 0, 𝑆𝑘 = 0) = 0.5(𝛼 + 𝛽)1169

𝐼 (𝐶;Θ|𝑋,𝑌 ) = 𝐻 (𝐶 |𝑋,𝑌 ) − 𝐻 (𝐶 |Θ, 𝑋,𝑌 ).1170

The first term 𝐻 (𝐶 |𝑋,𝑌 ) depends on the data1171

distribution of the selected dataset. To sim-1172

plify, we assume the dataset 𝐷 contains the1173

same number of correct and wrong answers.1174

𝑃(𝐶 = 1|𝑋,𝑌 ∈ 𝐷) = 𝑃(𝐶 = 0|𝑋,𝑌 ∈ 𝐷) = 1
2 .1175

Then 𝐻 (𝐶 |𝑋,𝑌 ) = −2 ∗ ( 1
2 ) log( 1

2 ) = log 2.1176

The second term 𝐻 (𝐶 |Θ, 𝑋,𝑌 ) =1177

−∑
𝑃(Θ, 𝑋,𝑌 )∑ 𝑃(𝐶 |Θ, 𝑋,𝑌 ) log 𝑃(𝐶 |Θ, 𝑋,𝑌 ),1178

𝑃(𝐶 |Θ, 𝑋,𝑌 ) = ∑
𝑃(𝐶 |𝑆𝑟 , 𝑆𝑘)𝑃(𝑆𝑟 , 𝑆𝑘 |Θ, 𝑋,𝑌 )1179

Inspired by the interaction tensor (Jiang et al.,1180

2023), we consider a binarized formulation of1181

the latent features of the internal representations1182

and input-output pair. The three-dimension ten-1183

sor Ω ∈ {0, 1}𝑀,𝑁,𝑇 , where the binary label of1184

Ω𝑚𝑛𝑡 = 1 indicates the 𝑛𝑡ℎ data point contains the1185

𝑡𝑡ℎ feature and the 𝑚𝑡ℎ model learns the 𝑡𝑡ℎ feature. 1186

We extend the concept of interaction tensor into 1187

our case through two modifications. 1. We do not 1188

consider multiple models but care about internal rep- 1189

resentations from multiple layers. Therefore we use 1190

the first axis with size 𝑀 as the hidden states from 1191

each layer. 2. We focus on two specific features of 1192

data: reasoning and knowledging. Therefore, for 1193

the third axis, we focus on two features 𝑡1 related to 1194

reasoning capability and 𝑡2 related to knowledging 1195

capability. Then our interaction tensor Ω𝑚𝑛𝑡 = 1 1196

indicates the 𝑛𝑡ℎ question requires the 𝑡𝑡ℎ capability 1197

and the 𝑚𝑡ℎ hidden states is related to the 𝑡𝑡ℎ ca- 1198

pability. In this project, we leverage all the hidden 1199

states to train the confidence estimator, therefore 1200

as long as any 𝑚 ∈ 𝑀 hidden state is related to 1201

the feature required by the data point, leveraging 1202

internal representation is helpful. We define a latent 1203

embedding Θ𝑏 = {0, 1} of the internal represen- 1204

tation Θ and question-answer pair (𝑋,𝑌 ). Given 1205

the 𝑛𝑡ℎ data point (𝑋,𝑌 ), any Ω𝑚𝑛𝑡 = 1 indicates 1206

some hidden states capture the required capability, 1207

we set Θ𝑏 = 1. Otherwise, Θ𝑏 = 0. We assume Θ𝑏 1208

extracts sufficient information from the question, 1209

answer, and internal representation to infer 𝑆𝑟 and 1210

𝑆𝑘 . And 𝑆𝑟 and 𝑆𝑘 are conditionally independent on 1211

Θ𝑏. 𝑃(𝑆𝑟 , 𝑆𝑘 |Θ𝑏) = 𝑃(𝑆𝑟 |Θ𝑏)𝑃(𝑆𝑘 |Θ𝑏) Consider 1212

the internal representation could provide a binary 1213

signal about the reasoning confidence and knowl- 1214

edging confidence and the relations are described 1215

in this way: 1216

𝑃(𝑆𝑟 = 1|Θ𝑏 = 1) = 𝑃(𝑆𝑟 = 0|Θ𝑏 = 0) = 𝛿 1217

𝑃(𝑆𝑟 = 0|Θ𝑏 = 1) = 𝑃(𝑆𝑟 = 1|Θ𝑏 = 0) = 1 − 𝛿 1218

𝑃(𝑆𝑘 = 1|Θ𝑏 = 1) = 𝑃(𝑆𝑘 = 0|Θ𝑏 = 0) = 𝜖 1219

𝑃(𝑆𝑘 = 0|Θ𝑏 = 1) = 𝑃(𝑆𝑘 = 1|Θ𝑏 = 0) = 1 − 𝜖 1220

𝛿 and 𝜖 represent how the internal representation 1221

is informative to the model reasoning confidence 1222

and knowledging confidence respectively. Then 1223

we can enumerate the probability function of 𝐶 1224
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conditioned on Θ𝑏.1225

𝑃(𝐶 = 1|Θ𝑏 = 1)1226

=𝑃(𝐶 = 1|𝑆𝑟 = 1, 𝑆𝑘 = 1)𝑃(𝑆𝑟 = 1, 𝑆𝑘 = 1|Θ𝑏 = 1)1227

+𝑃(𝐶 = 1|𝑆𝑟 = 1, 𝑆𝑘 = 0)𝑃(𝑆𝑟 = 1, 𝑆𝑘 = 0|Θ𝑏 = 1)1228

+𝑃(𝐶 = 1|𝑆𝑟 = 0, 𝑆𝑘 = 1)𝑃(𝑆𝑟 = 0, 𝑆𝑘 = 1|Θ𝑏 = 1)1229

+𝑃(𝐶 = 1|𝑆𝑟 = 0, 𝑆𝑘 = 0)𝑃(𝑆𝑟 = 0, 𝑆𝑘 = 0|Θ𝑏 = 1)1230

= 𝛿𝜖 ∗ 0.5(𝛼 + 𝛽)1231

+ 𝛿(1 − 𝜖) ∗ 0.5(𝛼 + 1 − 𝛽)1232

+ (1 − 𝛿)𝜖 ∗ 0.5(1 − 𝛼 + 𝛽)1233

+ (1 − 𝛿) (1 − 𝜖) ∗ (1 − 0.5(𝛼 + 𝛽))1234

1235

𝑃(𝐶 = 1|Θ𝑏 = 0)1236

= 𝑃(𝐶 = 1|𝑆𝑟 = 1, 𝑆𝑘 = 1)𝑃(𝑆𝑟 = 1, 𝑆𝑘 = 1|Θ𝑏 = 0)1237

+ 𝑃(𝐶 = 1|𝑆𝑟 = 1, 𝑆𝑘 = 0)𝑃(𝑆𝑟 = 1, 𝑆𝑘 = 0|Θ𝑏 = 0)1238

+ 𝑃(𝐶 = 1|𝑆𝑟 = 0, 𝑆𝑘 = 1)𝑃(𝑆𝑟 = 0, 𝑆𝑘 = 1|Θ𝑏 = 0)1239

+ 𝑃(𝐶 = 1|𝑆𝑟 = 0, 𝑆𝑘 = 0)𝑃(𝑆𝑟 = 0, 𝑆𝑘 = 0|Θ𝑏 = 0)1240

= (1 − 𝛿) (1 − 𝜖) ∗ 0.5(𝛼 + 𝛽)1241

+ (1 − 𝛿)𝜖 ∗ 0.5(𝛼 + 1 − 𝛽)1242

+ 𝛿(1 − 𝜖) ∗ 0.5(1 − 𝛼 + 𝛽)1243

+ 𝛿𝜖 ∗ (1 − 0.5(𝛼 + 𝛽))1244

1245

𝑃(𝐶 = 0|Θ𝑏 = 1) = 1 − 𝑃(𝐶 = 1|Θ𝑏 = 1)1246

𝑃(𝐶 = 0|Θ𝑏 = 0) = 1 − 𝑃(𝐶 = 1|Θ𝑏 = 0)1247

The numerical assumption about the probability1248

relation between total confidence, reasoning and1249

knowledging confidence, and internal representa-1250

tion is used to quantitatively analyze the usefulness1251

of leveraging internal representations to predict1252

answer correctness.1253

A.2 Anslysis in Different Regimes1254

To simplify the expression, 𝑝1 = 𝑃(𝐶 = 1|Θ𝑏 = 1),1255

𝑝0 = 𝑃(𝐶 = 1|Θ𝑏 = 0). And 𝑃(Θ𝑏 = 1) =1256

𝑃(Θ𝑏 = 0) = 1
2 .1257

𝐻 (𝐶 |Θ𝑏, 𝑋,𝑌 ) = −[𝑝1 log 𝑝1 + (1 − 𝑝1) log(1 − 𝑝1)]1258

− [𝑝0 log 𝑝0 + (1 − 𝑝0) log(1 − 𝑝0)]1259

For a fixed LLM, the binarized latent feature Θ𝑏1260

is a deterministic function of (Θ, 𝑋,𝑌 ). Therefore1261

𝐼 (𝐶;Θ𝑏 |𝑋,𝑌 ) ≤ 𝐼 (𝐶; 𝑋,𝑌,Θ|𝑋,𝑌 ).1262

𝐼 (𝐶; 𝑋,𝑌,Θ|𝑋,𝑌 ) = 𝐻 (𝑋,𝑌,Θ|𝑋,𝑌 )1263

− 𝐻 (𝑋,𝑌,Θ|𝑋,𝑌, 𝐶)1264

= 𝐻 (Θ|𝑋,𝑌 ) − 𝐻 (Θ|𝑋,𝑌, 𝐶)1265

= 𝐼 (𝐶;Θ|𝑋,𝑌 )1266

In the following sections, we quantitatively analyze 1267

the relationship between the internal representations 1268

and confidence through 𝐼 (𝐶;Θ𝑏 |𝑋,𝑌 ) in different 1269

regimes, positive 𝐼 (𝐶;Θ𝑏 |𝑋,𝑌 ) implies positive 1270

𝐼 (𝐶;Θ|𝑋,𝑌 ). 1271

A.2.1 Θ𝑏 is highly informative about the 𝑆𝑟 1272

and 𝑆𝑘 1273

When the internal representation is highly informa- 1274

tive about the 𝑆𝑟 and 𝑆𝑘 . 𝛿 and 𝜖 could be both 1275

close to 1 or both close to 0. The former case 1276

indicates that both events often happen together 1277

and the latter case indicates one event often hap- 1278

pens when the other event does not. Therefore, 1279

both cases indicate the strong dependence of 𝐶 1280

on 𝑆𝑟 and 𝑆𝑘 . When both 𝛿 and 𝜖 are close to 1, 1281

𝑝1 ≈ 0.5(𝛼 + 𝛽) and 𝑝0 ≈ 1 − 0.5(𝛼 + 𝛽). When 1282

both 𝛿 and 𝜖 are close to 0, 𝑝0 ≈ 0.5(𝛼 + 𝛽) and 1283

𝑝1 ≈ 1−0.5(𝛼+𝛽). Introduce 𝛾 = 0.5(𝛼+𝛽) ≥ 0.5 1284

for simplification. In both cases, 𝐻 (𝐶 |Θ𝑏, 𝑋,𝑌 ) ≈ 1285

−𝑃(Θ𝑏 = 1) [𝛾 log(𝛾) + (1 − 𝛾) log(1 − 𝛾)] − 1286

𝑃(Θ𝑏 = 0) [𝛾 log(𝛾) + (1 − 𝛾) log(1 − 𝛾)] ≈ 1287

−𝛾 log(𝛾) + (1 − 𝛾) log(1 − 𝛾). The conditional 1288

entropy is a concave function with respect to 1289

𝛾, which achieves maximum value at 𝜂 = 0.5. 1290

𝐼 (𝐶;Θ𝑏 |𝑋,𝑌 ) = 𝐻 (𝐶 |𝑋,𝑌 ) − 𝐻 (𝐶 |Θ𝑏, 𝑋,𝑌 ) ≈ 1291

log 2− 𝛾 log 𝛾 + (1− 𝛾) log(1− 𝛾) is non-negative 1292

when 𝛾 ≥ 1
2 1293

A.2.2 Θ𝑏 provides little information about 𝑆𝑟 1294

and 𝑆𝑘 1295

When Θ𝑏 provides little information about 1296

𝑆𝑟 and 𝑆𝑘 , 𝛿 and 𝜖 are close to 0.5. Then 1297

𝑝1 ≈ 0.5 and 𝑝0 ≈ 0.5. 𝐻 (𝐶 |Θ𝑏, 𝑋,𝑌 ) ≈ 1298

−𝑃(Θ𝑏 = 1) [0.5 log 0.5 + 0.5 log 0.5] − 𝑃(Θ𝑏 = 1299

0) [0.5 log 0.5 + 0.5 log 0.5] = log 2. 1300

𝐼 (𝐶;Θ𝑏 |𝑋,𝑌 ) = 𝐻 (𝐶 |𝑋,𝑌 ) − 𝐻 (𝐶 |Θ𝑏, 𝑋,𝑌 ) ≈ 1301

log 2 − log 2 is minimized near to 0. 1302

A.2.3 𝑆𝑟 and 𝑆𝑘 contributes to 𝐶 1303

When 𝑆𝑟 and 𝑆𝑘 contributes positively to 𝐶, 𝛼 1304

and 𝛽 are close to 1. Then we get 𝑝1 ≈ 𝛿+𝜖
2 and 1305

𝑝0 ≈ 1 − 𝛿+𝜖
2 . Introduce 𝜂 = 𝛿+𝜖

2 for simplifica- 1306

tion. 𝐻 (𝐶 |Θ𝑏, 𝑋,𝑌 ) ≈ −𝑃(Θ𝑏 = 1) [𝜂 log 𝜂 + (1− 1307

𝜂) log(1 − 𝜂)] − 𝑃(Θ𝑏 = 0) [(1 − 𝜂) log(1 − 𝜂) + 1308

𝜂 log 𝜂] = −𝜂 log 𝜂 + (1 − 𝜂) log(1 − 𝜂). The con- 1309

ditional entropy is a concave function with respect 1310

to 𝜂, which achieves maximum value at 𝜂 = 0.5. 1311

𝐼 (𝐶;Θ𝑏 |𝑋,𝑌 ) = 𝐻 (𝐶 |𝑋,𝑌 ) − 𝐻 (𝐶 |Θ𝑏, 𝑋,𝑌 ) ≈ 1312

log 2 − 𝜂 log 𝜂 + (1 − 𝜂) log(1 − 𝜂) is non-negative 1313

𝜂 ≥ 1
2 1314
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A.2.4 𝑆𝑟 and 𝑆𝑘 are not correlated to the 𝐶1315

When 𝑆𝑟 and 𝑆𝑘 are not correlated to the1316

𝐶, 𝛼 and 𝛽 are close to 0.5. Then we get1317

𝑝0 ≈ 0.5 and 𝑝1 ≈ 0.5. 𝐻 (𝐶 |Θ𝑏, 𝑋,𝑌 ) ≈1318

−𝑃(Θ𝑏 = 1) [0.5 log 0.5 + 0.5 log 0.5] − 𝑃(Θ𝑏 =1319

0) [0.5 log 0.5 + 0.5 log 0.5] = log 2.1320

𝐼 (𝐶;Θ𝑏 |𝑋,𝑌 ) = 𝐻 (𝐶 |𝑋,𝑌 ) − 𝐻 (𝐶 |Θ𝑏, 𝑋,𝑌 ) ≈1321

log 2 − log 2 is minimized near to 0.1322

B High-Confidence Incorrect Answers1323

We further extend our analysis to specifically focus1324

on high-confidence incorrect answers, a critical1325

metric for evaluating the reliability of confidence1326

estimation methods. This analysis is crucial for1327

identifying overconfidence in model predictions,1328

which can have severe implications in high-stakes1329

scenarios. Following the guidelines suggested in1330

(Lin et al., 2022a; Mielke et al., 2022; Lin et al.,1331

2022a), we examine instances where the model,1332

despite incorrect predictions, assigns dispropor-1333

tionately high confidence levels — scores above1334

0.8. Figure 4 compares the percentage of high-1335

confidence incorrect predictions across various1336

confidence estimation methods. The results demon-1337

strate that InternalInspectormaintains a signif-1338

icantly lower percentage of high-confidence errors1339

across all datasets and tasks compared to other base-1340

lines. This performance underscores the enhanced1341

calibration capability of InternalInspector, ef-1342

fectively minimizing the risk associated with over-1343

confident misjudgments and thereby improving the1344

model’s overall reliability.1345

Figure 4: Percentage of high-confidence incorrect an-
swers across various tasks.

C Implementation Detail and 1346

Hyperparameters 1347

C.1 Encoder Architecture 1348

We employed the ResNet18 architecture (He et al., 1349

2016) to encode the internal states of the LLM. 1350

The deep residual learning framework of ResNet18 1351

efficiently captures relationships both within and 1352

across different layers of the LLM. In designing 1353

the Transformer as an alternative encoder for our 1354

experimental setup, we implemented an 8-layer 1355

configuration without an input embedding mod- 1356

ule, utilizing a model dimensionality of 𝑑 = 768. 1357

Each of these layers comprises a self-attention layer 1358

and an MLP layer. Atop the feature representa- 1359

tions obtained from either the Transformer or the 1360

CNN encoder, we train a binary classifier consist- 1361

ing of a multilayer perceptron (MLP) with three 1362

layers. This MLP is configured with ReLU activa- 1363

tion to effectively process and classify the nuanced, 1364

high-dimensional encoded data. To enhance the 1365

classifier’s robustness and prevent overfitting, L2 1366

regularization and a dropout rate of 0.1 are incorpo- 1367

rated into the MLP. It is optimized using a learning 1368

rate of 0.001, ensuring stable and efficient learning 1369

dynamics. 1370

C.2 Computational Resources 1371

We conduct our experiments on a server equipped 1372

with four NVIDIA A100 Tensor Core GPUs. Train- 1373

ing InternalInspector on various datasets is 1374

efficiently completed in under four hours using two 1375

of these GPUs. 1376

C.3 Data Split 1377

We train InternalInspector on the training split 1378

of the datasets and evaluate its performance on the 1379

test split. 1380
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