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Abstract

Inverse reinforcement learning methods aim to retrieve the reward function of a Markov
decision process based on a dataset of expert demonstrations. The commonplace scarcity
and heterogeneous sources of such demonstrations can lead to the absorption of spurious
correlations in the data by the learned reward function. Consequently, this adaptation
often exhibits behavioural overfitting to the expert data set when a policy is trained on the
obtained reward function under distribution shift of the environment dynamics. In this work,
we explore a novel regularization approach for inverse reinforcement learning methods based
on the causal invariance principle with the goal of improved reward function generalization.
By applying this regularization to both exact and approximate formulations of the learning
task, we demonstrate superior policy performance when trained using the recovered reward
functions in a transfer setting 1.

1 Introduction
In the domain of reinforcement learning, the formulation of a suitable reward function plays a pivotal role in
shaping the behaviour of decision making agents. This is commonly justified by the widely adopted belief that
the reward function is a succinct representation of a task goal in a given environment specified as a Markov
decision process (MDP) (Ng et al., 2000). Eliciting the correct behavioural policies via the optimization of a
reward function is of paramount importance for the deployment of RL agents to real world domains such as
various robotics scenarios (Pomerleau, 1991; Billard et al., 2008) or expert behaviour forecasting (Kitani et al.,
2012). However, the challenge of designing such a function typically entails a cumbersome and error-prone
process of handcrafting a heuristic reward signal which accounts for all the intricacies of the task at hand.

Inverse reinforcement learning (IRL) methods aim to solve the problem of inferring the reward function of an
MDP based on a dataset of temporal behaviours. These trajectories are typically obtained from an agent
that is assumed to demonstrate near-optimal performance in the respective MDP. There are multiple benefits
to learning an explicit reward function compared to alternatives such as behavioural cloning (Pomerleau,
1991) or other imitation approaches (Ho & Ermon, 2016; Fu et al., 2017) including the ability to transfer the
reward function across problems and enhanced robustness to compounding errors (Swamy et al., 2021).

The IRL problem is challenging due to a number of factors. The problem of recovering the reward from
the statistics of expert trajectories is generally ill-posed, as there typically exist many reward functions
which satisfy the optimization constraints (Ng et al., 1999). While this property is effectively tackled by
regularization in the form of a maximum entropy objective (Ziebart et al., 2008; 2010), scaling up IRL
to handle large-scale problems remains a challenge. In particular, it requires a variational formulation
dependent on non-linear function approximation methods Finn et al. (2016a); Fu et al. (2017). Since the
amount of available expert data is typically limited, this can lead to overfitting phenomena, which are
particularly pronounced in highly parameterized models such as neural networks (Ying, 2019; Song et al.,
2019). An additional difficulty arises when there is a significant discrepancy between expert demonstrations
originating from different experts. We show that pooling expert demonstrations in one dataset under the same
label introduces spurious correlations which are absorbed in the representation of the reward function. By

1The implementation is provided at: <removed for anonymity>
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optimizing the expected cumulative reward defined by such functions, the agent might fail to learn meaningful
behaviours due to optimization of the spurious correlations present in the reward model.

In order to circumvent this issue, we consider causal properties of the reward learning problem. The
causal invariance principle (Peters et al., 2015; Heinze-Deml et al., 2017; Arjovsky et al., 2019) studies
the generalization problem of supervised learning models through the lens of causality. It postulates that
the conditional distribution of the target variable must be asymptotically stable across samples obtained
under observational and interventional settings of the data generating process. By only considering causally
invariant representations of the input, this ensures avoiding the reliance on spurious correlations in the model
predictions. We propose to adapt this principle for the context of reward function learning, where we aim
to elicit behavioural policies without exploiting spurious reward features, i.e. features which would prevent
the reward from providing a meaningful training signal under distribution shift. To achieve this goal, we
make the assumption that variations in expert demonstrations are a product of causal interventions on
the data generating process of trajectories and the optimality label conditional must be stable for experts
demonstrations gathered on a specific task. By applying the causal invariance principle under this assumption,
we show that we can recover reward functions which are invariant across a population of experts and
demonstrate improve generalized w.r.t. certain types of distribution shift.

Contributions. Our contributions are as follows: (i) we formulate the assumption that the variations between
experts performing considered to perform near-optimally on the same task can be seen as interventional
settings of the underlying trajectory distribution and (ii) propose a regularization principle for inverse
reinforcement learning methods based on the principle of causal invariance. This modelling choice allows us
to learn reward functions that are invariant to spurious correlations between the transitions and optimality
label present in the expert data. We (iii) demonstrate the efficacy of this approach in both tractable, finite
state-spaces, which we refer to as the exact setting as well as large continuous state-spaces, which we denote
as the approximate setting. In the first setting, we visually analyze the recovered reward functions and verify
their invariance properties w.r.t. the input data. In the second setting, we demonstrate improved ground
truth performance when a policy is trained using the regularized reward in MDPs with perturbed dynamics.

2 Method
In this section, we describe our method. Section 2.1 presents the problem setting of learning rewards in
the maximum entropy IRL setting (Ziebart et al., 2008) in both primal and dual form and reviews the
connection to a class of adversarial optimization methods based IRL problem based on distribution matching.
In section 2.2, we outline how spurious correlations arise in the context of the IRL problem and connect this
to the causal invariance principle. Section 2.3 shows how to incorporate this principle as a regularization
strategy for reward learning.

2.1 Problem setting

We begin by giving an overview of the problem setting. We consider environments modelled by a Markov
decision process (S,A, T , µ0, R, γ), where S is the state space, A is the action space, T is the family of
transition distributions on S indexed by S × A with p(s′|s, a) describing the probability of transitioning to
state s′ when taking action a in state s, µ0 is the initial state distribution, R : S × A → R is the reward
function and γ ∈ (0, 1) is the discount factor. A policy π : S × A → Ω(A)2 is a map from states s ∈ S to
distributions π(·|s) over actions, with π(a|s) being the probability of taking action a in state s.

In absence of a given ground truth reward function, inverse reinforcement learning methods aim to estimate
a suitable reward function based on a dataset of expert trajectories DE = {ξi}i≤K where ξi = (s(i)

1:Ti , a
(i)
1:Ti) is

a sequence of states and actions of expert i of length Ti. To achieve this goal, a number of methods based on
distribution matching may be used. Such methods typically minimize a divergence measure (Csiszár, 1972)
between the expert trajectories and the trajectories induced by a policy optimizing the estimated reward.

We begin by presenting the maximum entropy IRL (MaxEntIRL) (Ziebart et al., 2008) method, which
serves as a foundation for most of these methods. In MaxEntIRL, the first order feature statistics of the

2Ω(A) denotes the set of probability measures over the action space A
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trajectory φ(ξ) under the empirical state occupancy measure of the expert, Eξ∼DE [φ(ξ)], are matched with
the statistics of the trajectory distribution p(ξ|ψ,φ) induced by a policy interacting with the environment:
Eξ∼p(ξ|ψ,φ)[φ(ξ)]. The policy πrψ is trained by optimizing the expected cumulative reward using the reward
function estimate rψ. The model describes the fact that the expert trajectories are sampled from the Gibbs
distribution:

p(ξ|ψ,φ) = 1
Zφ,ψ

exp(rψ(φ(ξ))) (1)

which corresponds to the solution of the entropy maximization problem of the trajectory distribution under
feature matching and normalization constraints.

In the more general case of stochastic dynamics p(st+1|st, at) and random initial state distribution µ0, we
can define the generative model of trajectories p(ξ|O1:T ) conditioned on the optimality variables {Ot}t=1:T as
follows (Levine, 2018):

p(ξ|O1:T ) ∝ p(ξ,O1:T ) = µ0(s0)
T∏
t=1

p(Ot = 1|st, at)p(st+1|st, at) (2)

where the conditional distribution p(Ot = 1|st, at) ∝ exp(rψ(φ(ξ))) encodes the optimality of a single timestep
of the trajectory, i.e. Ot = 1 corresponds to an expert-level transition. The optimal reward weight solution
ψ∗ can be obtained by maximizing the likelihood of eq. (2) w.r.t. the parameter ψ. In the feature matching
case, the reward rψ(φ(ξ)) is typically assumed to be linear in the state features rψ(ξ) = ψTφ(ξ). Here, the
state features φ(ξ) may be specified a priori or learned using a using a neural network model (Wulfmeier
et al., 2015). We state the primal maximum-likelihood objective (Ziebart et al., 2008):

max
ψ

Eξ∼DE

[
log 1

Z(ψ)e
ψTφ(ξ)

]
= max

ψ
Eξ∼DE [ψTφ(ξ) − logZ(ψ)] (3)

Variational dual formulation. Due to the difficulties of computing the log-partition function in high-
dimensional spaces, a dual formulation of the maximum likelihood problem is derived. The Gibbs distribution
over trajectories p(ξ|ψ,φ) obtained via the maximum entropy principle belongs to the exponential family of
distributions:

p(ξ|ψ,φ) = p0(ξ) exp(ψTφ(ξ) −A(ψ)) (4)

where A(ψ) = logZψ = log
∫

Ξ exp(ψTφ(ξ))p0(ξ)dξ is the log-partition function defined over the space of
trajectories Ξ and p0 is the base measure. Leveraging the strict concavity of the log-partition function A(ψ)
in ψ (Wainwright et al., 2008), the Fenchel-Legendre dual (Rockafellar, 2015) of A(ψ) is given by

A(ψ) = max
φ∈Φ

⟨ψ,φ(ξ)⟩ −DKL(q||p0) = max
q∈P

⟨q(ξ), gψ,ϕ(ξ)⟩ −DKL(q||p0) (5)

where we use the generalization of the marginal polytope Φ over first-order statistics φ(ξ) to the space of
distributions P (Dai et al., 2019) and gψ,ϕ(ξ) = ψTϕ(ξ). By plugging in the resulting dual of the log-partition
in eq. (5) into the maximum likelihood objective in eq. (3), we obtain the dual saddle-point objective:

max
ψ,ϕ

min
q∈P

Eξ∼DE [gψ,ϕ(ξ)] − Eξ∼q[gψ,ϕ(ξ)] +DKL(q||p0) (6)

In our case, the base measure p0 corresponds to the Lebesgue or count measure according to the continuity
of the state space, i.e. p0(ξ) = 1. Thus, DKL(q||p0) simplifies to the negative entropy of the sampling
distribution H(q).

Connection to f-divergences. The resulting dual problem is closely related to f -divergence (Csiszár,
1972) minimization which allows us to obtain a numerical solution strategy for eq. (6). It is well known
that the maximum-likelihood problem (eq. (3)) is asymptotically equivalent to the minimization of the
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KL-divergence DKL(p(ξ|θ∗)||p(ξ|θ)) (Andersen, 1970), where θ∗ is the parameter vector maximizing the
likelihood of p(x|θ∗). The variational formulation of the more general f -divergence minimization problem, of
which DKL is an instance, is given by:

Df (p||q) = Eq
[
f

(
p

q

)]
≥ sup
g:X →R

Ep[g(ξ)] − Eq[f∗(g(ξ))] (7)

where f is a convex function and f∗ denotes its Fenchel conjugate. In particular, for f(x) = 1
2 |x − 1|, we

obtain the total variation distance DTV (P,Q):

DTV (p||q) = sup
||g||∞≤1

Ep[g(ξ)] − Eq[g(ξ)] (8)

which is equivalent to eq. (6) for a restricted class of functions g ∈ {g : X → R, ||g||∞ ≤ 1} and an entropy
regularization term for the sampling distribution q. Moreover, it is related to DKL via Pinsker’s inequality
DTV (p||q) ≤ 1

2
√
DKL(p||q) (Gilardoni, 2010).

In order to perform the minimization of the f -divergence objective in eq. (7), we can leverage a correspondence
between optimal risk functions and f -divergences. In particular, for a given f -divergence Df , there exists a
corresponding decreasing convex risk function ϕ(α) of the classification margin α, such that the optimal risk
Rϕ = −Df (Nguyen et al., 2009, Thm. 1). The allows the objective to be described as a two-player zero-sum
game and is amenable to optimization using generative-adversarial-network-like (Goodfellow et al., 2014; Finn
et al., 2016a) frameworks. When used to minimize the divergence between the expert and policy occupancy
measures, this problem class includes many adversarial imitation learning algorithms (Ho & Ermon, 2016; Fu
et al., 2017; Ni et al., 2021). We will use these algorithms as solution strategies for eq. (6).

Now that we have both exact and approximate formulations of the IRL problem (eq. (3), eq. (6)) we shall see
how spurious correlations can arise when the expectations over the datasets DE in eq. (3) and eq. (6) are
evaluated over samples from diverse sources.

2.2 Spurious correlations and causal invariance approaches

We shall now outline the intuition as to what we consider spurious correlations in inverse reinforcement
learning. It is necessary, at this point, to introduce structural causal models, which will help define the
notion of spurious correlations. A structural causal model (SCM) (Pearl, 2009) is defined as a tuple
G = (S, P (ε)), where P (ε) =

∏
i≤K P (εi) is a product distribution over exogenous latent variables εi and

S = {f1, ..., fK} is a set of structural mechanisms where pa(i) denotes the set of parent nodes of variable xi:
xi := fi(pa(xi), εi) for i ∈ |S|. G induces a directed acyclic graph (DAG) over the variables nodes xi. The
SCM entails a joint observational distribution PG =

∏
i≤K p(xi|pa(xi)) over variables xi conditioned on the

parents of xi for some probability distribution p(·|pa(xi)) describing the mechanism fi. Interventions on G
constitute modifications of structural mechanisms fi yielding interventional distributions P̃G. In the context
of IRL, we consider interventional settings of the expert trajectory distribution p(ξ|ψ,φ) in eq. (2).

In supervised learning, a correlation between the input representation and the label is considered spurious it
does not generalize under distribution shift, e.g. when the trained model is evaluated on a test set of unseen
examples. More specifically, the distribution shift constitutes an intervention on the causal parents of the
target label, which allows the application of invariance based approaches, that we will describe below. In
the case of IRL, we consider a correlation to be spurious when a reward function does not generalize to
perturbations in the initial measure or dynamics of the MDP, i.e. the policy optimizing a reward that reflects
this correlation will absorb this signal and fail to perform optimally under perturbed environment dynamics.

Transition SCM. To illustrate scenarios in which such spurious correlations arise, we consider the structural
causal model of a transition in Figure 1(a). At timestep t, the model is composed of the state st , action at,
next state st+1, the optimality label Ot describing the optimality of the transition at timestep t, a variable E
encoding the setting index e ∈ I(Etr) and an unobserved latent variable C, which might vary as E changes.
In this model, we would like to identify non-causal information paths between the environment index E and
the optimality label. The presence of such paths corresponds to spurious correlations.
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In Figure 1b we can observe the scenario where we do not condition the representation of the optimality
conditional on the action. By conditioning on the collider node st+1 and not observing the action node
a, a backdoor path Pearl (2009) is formed between the setting index E and the optimality variable Ot,
resulting in the violation of their conditional independence relationship. A second scenario can be observed in
Figure 1c. This scenario requires the assumption that the orientation of the edge from node Ot to node st+1
is temporally causal, meaning that the optimality of a state st at time t is a causal parent of the next state.
In this case, observing the collider node st+1 makes nodes E and Ot conditionally dependent 3: E ⊥̸⊥ Ot|st+1.
Beyond these scenarios, one can further assume a more general partitioning of an arbitrary transition input
(s, a, s′) into the causal transition feature components x(c) = f(s, a, s′) and x(nc) : = (x(c),x(nc)), illustrated
in Figure 1d, whereby conditioning on the x(nc) collider introduces a spurious correlation path. Among other
causes, this situation can arise due to selection bias caused by a prevalence of certain transitions in the pooled
dataset, i.e., the pooling of diverse sources of demonstrations under the binary optimality label introduces a
spurious correlation between states visited by expert policies as a consequence of the respective preferences
and the binary optimality label.

OtE

(a)

C

st

st+1

at OtE

(b)

C

st

st+1

at OtE

(c)

C

st

st+1

at OtE

(d)

C

x(c)

x(nc)

Figure 1: (a) Probabilistic graphical model of a transition under influence of the index variable E and latent
variable C. The stable conditional is highlighted in blue. (b) Spurious correlations assuming state-only
formulation of the reward. Since at is unobserved, a backdoor path (in red) is formed. (c) Spurious correlations
assuming wrong edge orientation Ot → st+1. This corresponds to Ot being the causal parent of st+1 (d)
General setting where Ot depends on causal x(c) and non-causal x(nc) features of the transition.

Dataset partitioning and training settings. The standard IRL procedure typically pools input demon-
stration data into one dataset which may lead to absorption of these correlations by the learned reward. To
resolve this, we first need to make the assumption that the data is partitioned according to different sources
obtained from observational and interventional settings of the trajectory distribution. This assumption is valid
in three different scenarios: (i) expert demonstrations were gathered on different environment dynamics, (ii)
initial states were sampled from different initial state distributions or (iii) experts have reward preferences, i.e.
optimize a perturbed version of the reward associated with the true task goal. In the context of the current
work, we consider the source diversity to be a consequence of the individual expert preferences expressed as
reward functions parameterizing eq. (1). We denote the union set of samples obtained from these settings as
Etr, the set of training settings, and assume access to multiple such settings De := {(ξi)}|Etr|

i=1 during training.

From robustness to invariance. The consideration of multiple source distributions and associated
target noise warrants the application of robust methods such as distributionally robust optimization (DRO)
(Namkoong & Duchi, 2016; Bashiri et al., 2021; Viano et al., 2021). Such approaches modify the loss objective
by searching over the space of empirical distributions indexed by e ∈ Etr under which the expected loss Le is
maximized. This is implemented in practice by searching over the set of training settings Etr resulting in a
min-max objective for some function class f ∈ F :

min
f

max
e∈Etr

− Eξ∼DeLe(f, ξ) (9)

This effectively regularizes the model by optimizing based on its worst-case performance. While this
modification can tackle the issue of model overfitting to scarce data, it does not address potential diversity
of the data due to mode-seeking behaviour of the min-max problem (Rahimian & Mehrotra, 2019). This
behaviour describes the fact that the maximum "latches on" to the training setting with the largest likelihood
loss which might constitute a spurious mode of the demonstrations with respect to the actual task goal.

3Here, ⊥⊥ denotes statistical independence
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Arjovsky et al. show that the solution of robust regression is a first order stationary point of the weighted
square error (in the convex case), if the variance of the loss is used as a per-setting bias (Arjovsky et al.,
2019, Prop. 2). This limits the generalization capacity to the convex hull of the training settings Etr.

Following (Arjovsky et al., 2019), we consider causal properties of the robust estimation problem for the
purposes of improved generalization outside of the convex hull of training settings. The causal invariance
principle postulates that for the problem of estimating a target conditional, e.g. classification label, one
should only consider variables which belong to the set of causal parents of the target. More specifically,
causally invariant covariates must yield the same conditional distribution of the target in both observational
and interventional settings of the SCM. Lifting the distributional restrictions of the methods described in
(Peters et al., 2015), the invariant risk minimization (IRM) principle (Arjovsky et al., 2019) aims to identify a
causally invariant data representation φ by instantiating a bi-level optimization problem for a representation
function φ and a predictor function w:

min
φ:X →H,w:H→Y

∑
e∈Etr

Le(w ◦ φ) s.t.: w ∈ argmin
w̄:H→Y

Le(w̄ ◦ φ) ∀e ∈ Etr (10)

This objective admits an unconstrained relaxation using the gradient norm penalty D(w = 1.0, φ, e) =
||∇w|w=1.0Le(w ◦ φ)||2 which quantifies the optimality of a fixed predictor (w = 1.0) at each setting e
(Arjovsky et al., 2019). This leads to the following unconstrained formulation of the learning problem:

min
φ:X →Y

∑
e∈Etr

Le(φ) + λ||∇w|w=1.0Le(w ◦ φ)||2 (11)

In the following section, we will show how to incorporate this principle into the IRL setting.

2.3 Reward regularization using causal invariance

Mapping the objective in eq. (10) to the context of reward learning, we consider data gathered by different
experts to correspond to interventional settings of the trajectory discribution in eq. (2), where the interventions
reflect the varying preferences exhibited by the policy of the respective experts. The stable conditional we
would like to identify corresponds to the conditional distribution of the optimality label P (Ot|st, at). To
do so, we invoke the causal invariance principle to learn reward functions which utilize features which are
invariant to some class of deviations exhibited by the experts. We motivate this by the fact that despite the
discrepancies in the demonstrations, all experts are assumed to perform the task in an optimal fashion with
respect to the true task goal. This implies that all experts, at least in part, optimize the same underlying
reward that we would like to recover. In doing so, we hope to extract succinct descriptions of the underlying
agreed intentions of the experts as reward functions. As a result, we expect such rewards to be more readily
applicable to MDPs with distribution shift of the dynamics. As a next step, we show how to apply this
principle into practice by introducing the causal invariance (CI) regularization, instantiated as the IRM
penalty described in eq. (11).

Feature matching regularization. We begin by considering the maximum entropy feature matching
problem. For the Gibbs distribution p(ξ|ψ,φ) = exp(ψTφ(ξ))/Zφ,ψ over trajectories, we can write down the
constrained optimization problem analogously to eq. (10):

max
φ,ψ

∑
e∈Etr

∑
ξ∈De

log p(ξ|ψ,φ) s.t. ψ ∈ argmax
ψ̄

∑
ξ∈De

log p(ξ|ψ̄, φ) (12)

Intuitively, due to convexity of the likelihood function w.r.t. the natural parameter ψ Wainwright et al.
(2008), this corresponds to penalizing the deviation ψ in p(ξ|ψ, ϕ) from the optimal parameter ψ∗ which
maximizes the likelihood p(ξ|ψ∗, ϕ). In an analogous fashion to the IRM approach described above (eq. (10)),
we propose to relax the constrained optimization problem by defining a regularization term D(ψ,φ, e) which
describes this deviation.
Definition 1. Let Etr be the set of training settings and ψ,φ be the parameters of the likelihood p(ξ|ψ,φ).
D(ψ,φ, e) is a distance function representing the violation of the constraints of eq. (12) in training setting
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Algorithm 1 CI regularized Feature Matching IRL (CI-FMIRL)
Input: Expert trajectories De

E assumed to be obtained from multiple experts by intervening on p(ξ|ψ,φ)
Init: Initialize reward estimate rψ and state feature network φθ
for setting e in {1, ..., Etr} do

while rψ,φ not converged do
Compute feature matching gradient ∇ψL(ψ,φ; e) = EDe

E
[φ(ξ)] − Ep(ξ|ψ)[φ(ξ)) and causal invariance

penalty gradient ∇φD(ψ,φ; e) and backpropagate the weighted sum through feature network φθ(s)
Compute policy πrψ,φ using value iteration on the reward estimate rψ,φ

end for
end for
Return: Trained reward rφ,ψ

e ∈ Etr w.r.t. the optimal solution.

D(ψ,φ; e) = ||∇ψ|ψ=1.0Le(ψ,φ)||2 (13)

In our case, the deviation is computed w.r.t. the parameters maximizing the likelihood of the Gibbs
distribution due to convexity of LMLE w.r.t. function gψ,φ. Applying the gradient of this penalty to the
representation function φ effectively regularizes the representation to minimize the constraint violations. In
simple tabular MDPs, where the computation of the partition function is tractable, we directly apply this
regularizer to the primal maximum likelihood objective as follows:

LMLE(ψ, ϕ, e) = max
φ,ψ

∑
e∈Etr

(
Eξ∈De

[
log

(
1

Zψ,ϕ
exp(ψTφ(ξ))

)
+ λD(ψ,φ, e)

])
(14)

In the primal case, for a trajectory distribution described by an exponential family, we can derive a closed
form of the gradient penalty. We summarize this result as the following proposition 4:
Proposition 1. Let the likelihood p(ξ) belong to a natural exponential family with parameter ψ, sufficient
statistics φ(x) and the (Lebesgue) base measure p0. Let De

E be the dataset corresponding to interventional
setting e. Then, for all e ∈ Etr, the causal invariance penalty for the maximum likelihood loss is the norm of
the sufficient statistics expectation difference:

D(ψ,φ; e) = ||∇ψ|ψ=1.0Le(ψ,φ)||2 = ||EDe
E

[φ(ξ)] − Ep(ξ|ψ)[φ(ξ))]||2 (15)

This closed form of the gradient norm penalty can be utilized in the maximum causal entropy solver
(Ziebart et al., 2010). We assume the state features to be the output of a neural network according to the
DeepMaxEnt model (Wulfmeier et al., 2015). In order for the network to adopt invariant features, the
gradient norm penalty in eq. (15) is used to update the feature network using backpropagation 5. The
resulting algorithm (CI-FMIRL) is presented in Algorithm 1.

Penalty for dual formulation. In large scale MDPs, where the evaluation of the log-partition function is
intractable, we use the variational dual objective outlined in eq. (5). We will now show how to apply the same
regularization to the variational dual formulation of the problem outlined in eq. (5). In order to do so, we
first need to derive the causal invariance penalty for the dual formulation. By leveraging the strict concavity
of eq. (6) w.r.t. q, we can straightforwardly extend the distance penalty to the dual formulation as follows:

Ldual(ψ,φ, q, e) = max
ψ,φ

∑
e∈Etr

min
q

[Eξ∼De
E

[gψ,φ(ξ)] − Eξ∼q[gψ,φ(ξ)] +DKL(q||p0)] + λD(ψ,φ, e) (16)

The numerical solution strategy for the saddle-point objective in Equation (16) can be realized using a
two-player min-max game implemented using a GAN-like framework (Finn et al., 2016b). More specifically,

4All omitted proofs are found in appendix A
5We derive a closed form of the gradient estimate in Appendix D
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Algorithm 2 CI regularized Adversarial IRL (CI-AIRL)
Input: Expert trajectories De

E assumed to be obtained from multiple experts by intervening on p(ξ|ψ,φ)
Init: Initialize actor-critic πθ, νϑ and discriminator gξ,ϕ
for setting e in {1, ..., Etr} do

Collect trajectory buffer Dπ = {ξi}i≤|Dπ| by executing the policy πθ
Update gϕ,θ(s, a) via binary logistic regression by maximizing

L(ϕ, ψ; e) = LBCE(ξ, φ, ψ; e) + λ||∇ψ|ψ=1.0LBCE(ξ, φ, ψ; e)||2

using dataset tuple (De
E ,Dπ)

Update actor-critic (πθ, νϑ) w.r.t. the reward function of the regularized discriminator using the
soft-actor-critic RL procedure

end for
Return: Trained reward rφ,ψ and actor-critic πθ, νϑ

an equivalence between the maximum likelihood problem for a Gibbs distribution over trajectories and the
corresponding variational approximation has been shown in (Fu et al., 2017, App. A). We state the CI
gradient penalty as a result of the following proposition.
Proposition 2. The gradient of the primal exponential family maximum-likelihood problem in Equation (3)
w.r.t. the natural parameter ψ is equivalent to the gradient of the dual in Equation (5) w.r.t the parameter ψ
when the density ratio q

p is unity.

||∇ψLdual(ψ,φ, q, e)||2 = ||min
q

Eξ∼DE [φ(ξ)] − Eξ∼p(ξ|ψ,φ)

[
q(ξ)

p(ξ|ψ,φ)φ(ξ)
]

||2

Using this result, we can apply the gradient penalty to the dual. Effectively, the resulting gradient estimate
requires an importance sampling estimate of the second expectation using the sampling trajectory distribution
q induced by the policy. The minimum over q is attained when the importance weight is unity.

As we have seen in section 2.1, the dual objective is closely related to the f -divergence minimization objectives
which form the basis of multiple adversarial imitation learning algorithms (Ho & Ermon, 2016; Fu et al., 2017;
Ni et al., 2021). This class of algorithms leverages the correspondence between the f -divergence objectives
and equivalent binary classification surrogate losses as described in (Nguyen et al., 2009). One such example
is the optimal logistic loss of a binary classification function gD(x) = p(x)

p(x)+q(x) which corresponds to the
Jensen-Shannon divergence (Ho & Ermon, 2016) between distributions p(x) and q(x):

max
gD

LBCE(gD) = max
g

Ex∼DE [log gD(x)] + Ex∼π[log(1 − gD(x))] = DJS(p||q) (17)

In practice, we can make use of this equivalence in order to apply the penalty defined in definition 1 solely
to the discriminator function gD(x) which classifies transitions sampled from the expert datasets De

E and
transitions obtained from the imitation policy.

Algorithm description. We present the resulting adversarial algorithm (CI-AIRL) in Algorithm 2. The
algorithm describes a two-player zero-sum game between an agent parameterized using a soft-actor-critic
architecture and the discriminator which is used to provide a reward function by distinguishing between expert
and policy samples. The adversarial training procedure generally mimics that of divergence-based methods
such as (Ho & Ermon, 2016; Fu et al., 2017). There are three main differences compared to baseline adversarial
training algorithms. The first is the fact that we use multiple experts in a distinct fashion as opposed to
pooling the demonstrations into one big dataset. The second is the regularization of the discriminator
objective in Equation (17) using the gradient norm penalty D(ξ, ϕ, ψ; e) = ||∇ψ|ψ=1.0LBCE(ξ, φ, ψ; e)||2 in
a similar fashion to eq. (10), where ψ = 1.0 corresponds to a fixed scalar predictor. Finally, we utilize
soft-actor-critic (SAC) (Haarnoja et al., 2018) as an instance of an off-policy forward RL solution method as
opposed to the on-policy algorithms used in (Ho & Ermon, 2016; Fu et al., 2017).
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3 Experiments
We will now evaluate the proposed method empirically. The experiments are designed to answer the following
questions: (i) What is the effect of the causal invariance penalty on the recovered reward structure? (ii)
Does regularizing the reward function using causal invariance improve downstream policy performance? (iii)
What is the impact of changing the loss function of the discriminator and (iv) increasing the perturbation
magnitude? To answer these questions, we evaluate our model in two settings.

The first setting considers a tabular gridworld scenario, where the partition function is tractable. We perform
reward learning experiments using variants of the maximum entropy feature expectation matching algorithm.
In particular, we use the DeepMaxEnt (Wulfmeier et al., 2015) model of state features with different
regularization strategies. In the second setting, we test the invariance regularization in an adversarial IRL
setting on simulated robotic locomotion environments. Here, we demonstrate the generalization of the
obtained reward functions by retraining policies using the recovered rewards on perturbed versions of the
environment dynamics.

3.1 Tractable setting: Gridworld experiments using feature matching
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Figure 2: Gridworld ERM vs IRM reward recovery. (a) expert trajectory datasets: 1st group (blue) 400
trajectories, 2nd group (white): 25 trajectories, 3rd group (green): 3 trajectories. (b) MaxEnt IRL ERM
baseline (c) MaxEnt IRL ERM baseline with L2 regularization coefficent λL2 = 1e− 3 (d) MaxEnt IRL with
CI penalty, λI = 0.01, (e) MaxEnt IRL with CI penalty, λI = 0.05

For the first experiment, we aim to illustrate the principle of causal invariance regularization in the tractable
IRL setting using Algorithm 1. To do so, we choose a simple gridworld environment with stochastic dynamics
and a sparse ground truth reward structure and corresponding trajectories illustrated in (Figure 2a). The
goal of the agent is to navigate from the bottom left to the top right corner. Due to the tabular nature of the
state space, this setting allows a direct visual comparison of the recovered reward functions for the different
regularization strategies.

Setup. In order to construct the dataset settings Etr, we generate a dataset of 3 groups of expert trajectories
using a value iteration method on modified versions of the MDP. The initial and final states of the trajectories
are fixed. We introduce a selection bias into the IRL feature expectation matching problem by manipulating
the expert preferences to choose different paths. This results in a trajectory dataset with different number of
trajectories for each of the three paths chosen by the experts (Figure 2a): 40 trajectories for 1st group, 10
trajectories for 2nd group and 1 trajectory for the 3rd group.

Baselines. Throughout this section, we compare the proposed regularization to both non-regularized and
regularized versions of the DeepMaxEnt algorithm. In particular, we use an L2 penalties of the reward
feature weights φ(s) and a Lipschitz smoothness penalty Yoshida & Miyato (2017) as baseline regularization
strategies.

Results. In Figure 2, we can observe that both the unregularized MaxEnt IRL algorithm (ERM) (Figure 2b)
and L2-regularized MaxEnt IRL algorithm (ERM-L2) (Figure 2c) exhibit overfitting to the expert datasets
and partially fail to recover a meaningful reward and respective policy. In contrast, the IRM-regularized
version recovers a shaped reward function which takes the different optimal paths into account in a manner
which demonstrates an invariance to the setting index e. In particular, increasing the regularization strength
λ improves the reward significantly (Figure 2d - Figure 2e). It is easy to see that the CI-regularized reward
can more straightforwardly be used in a setting where the dynamics of the MDP might be modified, e.g.
when obstacles are introduced.
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3.2 Adversarial setting
For the second experiment, we perform experiments in large state spaces, which require the use of Algorithm 2.
Our primary goal is to investigate how well the recovered reward function allows the elicitation of a policy
under change of dynamics. To do so, we first learn a reward function using the adversarial training procedure
and then retrain a policy from scratch using the recovered reward as training signal.
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Figure 3: Comparison of SAC policy performance w.r.t. ground truth reward when trained on inferred
reward functions. Every row depicts a different type of dynamics perturbation for the five MuJoCo tasks as
described in section 3.2. Here, AIRL is chosen as the baseline algorithm. The variants correspond to the
unregularized baseline: erm, Lipschitz regularization: lip and three best CI regularization parameters ci.

Setup. For our experimental setting, we choose a set of robot locomotion tasks from the MuJoCo (Todorov
et al., 2012) suite. We generate the demonstration datasets by using pretrained soft-actor-critic (SAC) policies
from the stable-baselines3 repository 6. In order to diversify the demonstrations, we perturb the policies
using a structured noise approach: the optimal policy action is perturbed with Gaussian noise at every
timestep with a probability p = 0.3 of the noise being applied. We have used 10 expert trajectories for every
environment in all the experiments performed in this section. The reward function is obtained by using a
number of different discriminator functions corresponding to variations of the f -divergence objective. In order
to assess the quality of the recovered reward, we retrain policies on the recovered reward under distribution
shift of the dynamics realized by perturbing physical parameters of the simulation. Specifically, we apply
Gaussian noise to four parameters of the MuJoCo simulation: the body mass, joint range and actuator
control range of the robot as well as the contact friction coefficient of the simulated surface. We evaluate the
behaviour of the algorithms for a variety of perturbation magnitudes.7

Baselines. Throughout this section, we use three different adversarial IRL algorithms as baselines for reward
learning: (i) AIRL (Fu et al., 2017), an adversarial IRL approach which relies on a structured discriminator to
recover a stationary reward function (ii) MEIRL, an adaptation of the maximum entropy IRL algorithm for
large state spaces without an importance sampling estimator (Ni et al., 2021) and (iii) GAIL (Ho & Ermon,

6https://huggingface.co/sb3
7Additional experimental details are provided in appendix C
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2016), an imitation learning where we extract the unshaped discriminator as a reward function for policy
learning. All baselines use the SAC (Haarnoja et al., 2018) algorithm as a forward RL agent for purposes of
sample efficiency.

Results. Figure 3 depicts the results of a SAC agent trained using the reward function recovered by the
AIRL baseline algorithm and two regularization strategies: (i) the Lipschitz smoothness regularizer (Gulrajani
et al., 2017) controlled by the penalty coefficient λL and the proposed regularization in definition 1, controlled
by the penalty coefficient λI . We evaluate the models on combinations of regularization coefficients drawn
from the following sets: λI ∈ {0.0, 0.1, 1.0, 10.0, 100.0} and λL ∈ {0.0, 1.0, 10.0} and pick the three best
performing λI coefficients for every environment. We can observe that applying the causal invariance penalty
leads to superior performance compared to using non-regularized or Lipschitz regularized rewards. The choice
of the λI hyperparameter is problem dependent – we report three best performing variants per-environment.

Impact of adversarial algorithm variation. We evaluate our method on a number of variants of the
adversarial imitation learning algorithms based on f -divergence minimization, as outlined above. The results
are presented in table 1. We report the ground truth reward performance attained using an SAC agent
trained using the recovered rewards after 1 million timesteps. The regularization coefficients are selected on a
per-environment basis. The full results tables are provided in appendix B.4. We observe improved cumulative
ground truth reward metrics for all three algorithms when compared to both the unregularized (ERM) and
Lipschitz regularized (Lip) baselines. The improvement is most pronounced in the Ant, Walker2d and
Humanoid environments, which are of higher state-space dimensionality.

Perturbation magnitude. In this experiment, we investigate the policy ground truth performance as a
function of the perturbation magnitude applied to the physical parameters of the environment dynamics.
In fig. 4, we observe that using the CI-penalty improves the ground truth episode reward performance of
the trained policies for a large spectrum of perturbations for 3 out of 5 environments and does not suffer a
performance penalty for the other two. 8

4 Related work

Invariance and causality in RL. Following the introduction of causally invariant methods for supervised
and representation learning (Peters et al., 2015; Heinze-Deml et al., 2017; Arjovsky et al., 2019; Ahuja et al.,
2020), the concept of causal invariance has been used in a number of reinforcement learning works. Invariant
causal prediction has been utilized in (Zhang et al., 2020) to learn model invariant state abstractions in a
multiple MDP setting with a shared latent space. Invariant policy optimization (Sonar et al., 2021) uses the
IRM games (Ahuja et al., 2020) formulation to learn policies invariant to certain domain variations. The
authors of (de Haan et al., 2019) tackle the problem of causal confusion in imitation learning by making

8We provide a number of additional evaluations for both the tractable and approximate settings in appendix B

Table 1: Policy rollout results using ground truth reward for perturbed MuJoCo environments after being
trained for 1M timesteps using the rewards recovered from the different discriminators in section 3.2. Here,
the body mass parameter is perturbed with a noise magnitude of ε = 0.2. The results are averaged over 10
rollouts and obtained by training the model using five different random seeds.

Environment Ant-v3 Walker2d-v3 Hopper-v3 HalfCheetah-v3 Humanoid-v3

Expert 3168.49±1715.68 3565.33±527.40 3119.54±524.36 4340.61±2020.14 4774.17±2063.52

AIRL (ERM) 580.78±1048.73 -3.29±0.71 77.64±88.27 2046.29±460.98 4451.74±1759.31
AIRL (Lip) 1194.04±1583.08 3388.48±1586.45 3382.91±234.02 4388.94±726.69 1788.85±1643.00
AIRL (CI) 1880.42±935.15 4162.70±517.13 3334.91±221.80 4477.97±532.72 5107.54±119.31

GAIL (ERM) -746.31±468.03 328.44±66.02 1637.50±1419.59 886.25±404.82 122.62±71.53
GAIL (Lip) 220.97±524.83 553.36±277.24 1832.39±832.32 1403.77±1282.75 77.24±4.66
GAIL (CI) 230.43±565.68 1172.57±539.86 2636.65±1114.94 2365.55±1679.64 549.63±1692.08

MEIRL (ERM) -66.66±112.03 169.11±344.87 3.22±0.22 -177.39±211.43 55.99±3.45
MEIRL (Lip) -365.41±143.70 917.14±132.05 1045.40±54.76 -335.10±84.66 1001.49±1889.60
MEIRL (CI) 153.43±1134.46 2520.24±994.27 2351.07±679.37 1371.59±1469.01 3099.51±2411.21
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Figure 4: Comparison of SAC policy performance w.r.t. ground truth reward when trained on recovered
reward functions as a function of perturbation magnitude of the body mass parameter. Here, AIRL is chosen
as the baseline algorithm. erm denotes the unregularized baseline, lip the best Lipschitz regularization
hyperparameters per environment and ci the best causal invariance regularization hyperperameters.

use of causal structure of demonstrations. Causal imitation learning under temporally correlated noise has
been studied in (Swamy et al., 2022). In the offline RL setting without access to environment interactions,
(Bica et al., 2021) propose to use the invariance principle for policy generalization. To the best of our
knowledge, our algorithm is the first proposed method to use invariant causal prediction in the context of
inverse reinforcement learning with the primary purpose focused on recovery of reward functions and their
subsequent deployment for downstream purposes.

Learning from diverse demonstrations. Li et al. investigate the issue of imitation learning from diverse
experts through the lens of identifying latent factors of variation. The authors of (Zolna et al., 2019) propose
a model which also tackles the issue of spurious correlations being absorbed from expert data. However, their
focus is on visual features in a solely imitation learning setting as opposed to our approach, which recovers
reward functions that perform favorably in a transfer setting. Diverse demonstrations have been studied in
both the context of adversarial imitation learning under assumptions on latent variables in (Tangkaratt et al.,
2020) as well as offline imitation learning (Kim et al., 2021) under assumptions of explicit access to a dataset
of suboptimal demonstrations. The authors of (Haug et al., 2020) propose to use suboptimal demonstrations
to derive an additional supervision signal by way of matching optimality profiles for preference learning.

Comparison to other regularization techniques. The divergence-based dual objective used in this work
admits a number of regularization strategies, which result as a the restriction of the critic function class
F . A commonly used regularization is the Lipschitz smoothness penalty Gulrajani et al. (2017); Yoshida &
Miyato (2017) which restricts the class of functions F in eq. (6) to the class of Lipschitz smooth functions.
Contrary to methods which penalizes the estimated gradient norm w.r.t. the input, the causal invariance
penalty penalized the norm of the gradient w.r.t. to the predictor parameters of the model which vary across
settings Etr. Kim & Park restrict the function class F to belong to an RKHS space, resulting in an imitation
learning method based on the Maximum Mean Discrepancy (MMD) metric. The authors of (Bashiri et al.,
2021) present a distributionally robust imitation learning method which generalizes the maximum entropy
IRL robustness properties from logistic loss to arbitrary losses. In comparison, our method tackles the issue
of learning rewards as opposed to imitation policy learning and allows for improved generalization due to the
properties of the causal invariance penalty.

5 Conclusion
In this work, we have presented a regularization objective for inverse reinforcement learning to recover
reward functions which are robust to spurious correlations present in expert datasets which feature diverse
demonstrations. The robustness manifests itself as improved policy performance in a transfer setting in both
the maximum entropy IRL case based on feature expectation matching as well as the adversarial setting.
Limitations and future work. The hyperparameter λI is strongly dependent on the data and environment
– finding a automatic tuning procedure would overcome the main limitation in terms of the applicability of
the method. Currently, the proposed method relies on a linear formulation of the causal invariance penalty.
Successor methods of (Arjovsky et al., 2019) which introduce a nonlinear formulation (Lu et al., 2022) or
include a larger class of distribution shifts (Rothenhäusler et al., 2021) could be considered in order to improve
the overly conservative nature (Ahuja et al., 2021) of causally invariant features.
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A Proposition proofs

Proposition 1. Let the likelihood p(ξ) belong to a natural exponential family with parameter ψ, sufficient
statistics φ(x) and the (Lebesgue) base measure p0. Let De

E be the dataset corresponding to interventional
setting e. Then, for all e ∈ Etr, the causal invariance penalty for the maximum likelihood loss is the norm of
the sufficient statistics expectation difference:

D(ψ,φ; e) = ||∇ψ|ψ=1.0Le(ψ,φ)||2 = ||EDe
E

[φ(ξ)] − Ep(ξ|ψ)[φ(ξ))]||2 (15)

Proof. The result directly follows from the definition of the primal problem.

∇ψ|ψ=1.0Le(ψ,φ) = ∇ψ

(
Eξ∈De

[
log

(
1

Zψ,ϕ
exp(ψTφ(ξ))

)])
= Eξ∈De

[
∇ψ(ψTφ(ξ) − logZψ,ϕ)

]
= EDe

E
[φ(ξ)] − ∇ψ logZψ,ϕ

= EDe
E

[φ(ξ)] − Ep(ξ|ψ)[φ(ξ))]

where we use the moment generating property of the log partition function ∇ψ logZψ,φ = Ep(ξ|ψ)[φ(ξ)].

Proposition 2. The gradient of the primal exponential family maximum-likelihood problem in Equation (3)
w.r.t. the natural parameter ψ is equivalent to the gradient of the dual in Equation (5) w.r.t the parameter ψ
when the density ratio q

p is unity.

||∇ψLdual(ψ,φ, q, e)||2 = ||min
q

Eξ∼DE [φ(ξ)] − Eξ∼p(ξ|ψ,φ)

[
q(ξ)

p(ξ|ψ,φ)φ(ξ)
]

||2

Proof. We begin by computing the gradient of

min
q

[Eξ∼De
E

[gψ,φ(ξ)] − Eξ∼q[gψ,φ(ξ)] +DKL(q||p0)]

w.r.t. to the parameters ψ for setting e ∈ Etr:

∇ψLdual(ψ,φ, q, e) = ∇ψ(min
q

[Eξ∼De
E

[gψ,φ(ξ)] − Eξ∼q[gψ,φ(ξ)] +DKL(q||p0)])

(1)= ∇ψ(min
q

[Eξ∼DE [gψ,φ(ξ)] − Eξ∼q[gψ,φ(ξ)] + H(q)])

(2)= min
q

[∇ψ (Eξ∼DE [gψ,φ(ξ)] − Eξ∼q[gψ,φ(ξ)] + H(q))]

(3)= min
q

[Eξ∼De
E

[∇ψgψ,φ(ξ)] − Eξ∼q[∇ψgψ,φ(ξ)]]

where we use: (1) the fact that we assume the base measure p0 to be the Lebesgue measure (or count measure
in the discrete case), i.e. p0(ξ) = 1, (2) the envelope theorem and (3) the fact that q does not directly depend
on ψ and thus, ∇ψH(q) = 0. We can rewrite the second expectation using the importance sampling trick:

min
q

Ex∼DE [φ(ξ)] − Ex∼q[φ(ξ)] = min
q

Ex∼DE [φ(ξ)] − Ex∼p(ξ|ψ,φ)

[
q(ξ)

p(ξ|ψ,φ)φ(ξ)
]

By definition of the distribution matching problem and strict concavity w.r.t. q, the optimum is attained
when q(ξ) = p(ξ|ψ,φ), i.e. when the importance sampling ratio is 1.
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B Additional results

In this section, we present additional experimental evidence to support the claims made in the main text.

B.1 Additional gridworld results

Figure 5 depicts an additional experimental setting using algorithm 1. Here, we choose 5 sets of trajectories
which solve a horizontal navigation problem illustrated in fig. 5a. We compare this to a same set of baselines
as described in section 3.1 with the addition of a spectral norm Yoshida & Miyato (2017) regularizer which
imposes the Lipschitz smoothness penalty on the reward representation. We motivate this choice by the
fact that Lipschitz smoothness is a successful regularization techniques in the approximate setting. We can
observe a similar pattern to the one reported in section 3.1, where the ERM MaxEnt baseline overfits to
reward to the observed trajectories (fig. 5(b,c)). The Lipschitz regularization in fig. 5(d) provides a more
succinct reward representation but fails to capture the horizontal reward gradient which is indicative of the
shared intent of the expert. The CI penalty with both regularization strengths (fig. 5(e,f)) recovers this
aspect of the ground truth reward.
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Figure 5: Gridworld ERM vs IRM reward recovery. (a) expert trajectory datasets: every color represents a
modality containing 50 trajectories (b) MaxEnt IRL ERM baseline (c) MaxEnt IRL ERM baseline with L2
regularization coefficent λL2 = 1e− 3 (d) MaxEnt IRL baseline with spectral norm (Lipschitz) regularization
(e) MaxEnt IRL with CI penalty, λI = 0.1, (f) MaxEnt IRL with CI penalty, λI = 0.5

B.2 Adversarial training results

For reference, in fig. 6, we present the results of the adversarial training procedure used to recover the reward
functions for the experiments in section 3.2. We can observe that when used to regularize the discriminator
in an adversarial setting, the CI penalty does not produce a significant regularization effect as has been
established in the transfer setting.

B.3 Alternative discriminator training

Similar to the training dynamics reported in fig. 3 for the AIRL discriminator structure, we provide the
results for the other two algorithms – GAIL in fig. 7 and MEIRL in fig. 8. We observe that for GAIL, the
regularization is beneficial in all settings except for HalfCheetah where it is outperformed by the Lipschitz
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Figure 6: Comparison of SAC policy training performance w.r.t. ground truth reward when trained using the
adversarial training procedures. Every row depicts a different type of algorithm used to train the policies.

regularized baseline. For the MEIRL setting, we also observe a significant improvement with the exception of
the Ant environment, where all algorithm fail to achieve movement using the recovered reward.
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Figure 7: Comparison of SAC policy training performance w.r.t. ground truth reward when trained on
recovered reward functions. Every row depicts a different type of dynamics perturbation for the five MuJoCo
tasks as described in section 3.2. Here, GAIL is chosen as the baseline.
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Figure 8: Comparison of SAC policy training performance w.r.t. ground truth reward when trained on
recovered reward functions. Every row depicts a different type of dynamics perturbation for the five MuJoCo
tasks as described in section 3.2. Here, MEIRL is chosen as the baseline.
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Figure 9: Comparison of SAC policy performance w.r.t. ground truth reward when trained on recovered
reward functions as a function of the perturbation strength. Every row depicts a different type of dynamics
perturbation for the five MuJoCo tasks as described in section 3.2. Here, AIRL is chosen as the baseline.
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Table 2: Policy rollout results using ground truth reward for perturbed MuJoCo environments after being
trained for 1M timesteps using the rewards recovered from the different discriminators in section 3.2. Here,
the joint range parameter is perturbed with a noise magnitude of ε = 0.2. The results are averaged over 10
rollouts and obtained by training the model using five different random seeds.

Environment Ant-v3 Walker2d-v3 Hopper-v3 HalfCheetah-v3 Humanoid-v3

Expert 3168.49±1715.68 3565.33±527.40 3119.54±524.36 4340.61±2020.14 4774.17±2063.52

AIRL (ERM) -18.73±255.23 -3.50±1.66 48.82±76.24 2310.93±118.75 3261.17±2272.68
AIRL (Lip) -213.89±738.75 3202.09±185.98 2544.28±445.86 4293.70±666.33 710.88±356.04
AIRL (CI) 155.62±875.01 3670.21±599.00 2906.77±490.33 4653.89±762.09 4022.43±671.37

GAIL (ERM) -486.05±388.06 359.23±254.85 1047.76±871.98 1160.78±1134.26 508.86±601.99
GAIL (Lip) -208.97±252.99 577.40±550.86 2339.87±465.97 4168.13±472.22 122.49±82.43
GAIL (CI) 1021.26±1845.56 3479.99±1242.39 2976.49±417.33 5581.43±1442.39 2170.96±2425.51

MEIRL (ERM) -57.30±93.23 -3.69±0.18 3.17±0.52 347.55±790.54 54.70±1.92
MEIRL (Lip) -554.25±82.05 622.45±464.25 1136.95±209.97 -297.84±71.23 1014.42±1915.24
MEIRL (CI) -337.17±1310.57 2292.94±1521.43 2800.37±666.09 1650.50±1683.38 2935.90±2262.13

Table 3: Policy rollout results using ground truth reward for perturbed MuJoCo environments after being
trained for 1M timesteps using the rewards recovered from the different discriminators in section 3.2. Here,
the actuator control range parameter is perturbed with a noise magnitude of ε = 0.2. The results are averaged
over 10 rollouts and obtained by training the model using five different random seeds.

Environment Ant-v3 Walker2d-v3 Hopper-v3 HalfCheetah-v3 Humanoid-v3

Expert 3168.49±1715.68 3565.33±527.40 3119.54±524.36 4340.61±2020.14 4774.17±2063.52

AIRL (ERM) 1279.87±1281.66 -0.41±3.07 37.62±62.71 2536.90±212.27 357.19±135.66
AIRL (Lip) 809.60±1425.76 2779.73±1303.91 2784.28±510.50 4175.49±918.92 312.24±90.05
AIRL (CI) 2166.58±1471.70 3897.58±831.24 2884.34±130.60 4470.17±731.81 2730.60±982.13

GAIL (ERM) -641.93±284.65 1180.57±1413.21 491.27±565.63 1862.67±1026.74 1219.94±1784.26
GAIL (Lip) -92.74±363.44 1672.06±1263.95 2028.07±1004.96 3638.51±1164.42 93.01±24.01
GAIL (CI) 2486.00±2078.11 2660.74±866.36 2985.44±280.70 3979.90±2494.31 2986.70±2389.78

MEIRL (ERM) -10.63±3.35 -3.83±0.45 3.17±0.27 -36.66±489.57 58.40±0.15
MEIRL (Lip) -411.65±244.20 832.80±311.20 1073.22±138.00 -261.74±164.78 1064.41±2011.91
MEIRL (CI) 133.50±969.39 2286.80±1040.59 2551.59±1131.76 3303.82±2332.89 3058.78±2286.41

B.4 Tables of results

In addition to the results reported on the body mass parameter of the MuJoCo simulation, we provide the
results tables for other three perturbation parameters: joint range in table 2, actuator control range in table 3
and geometry friction in table 4. We observe a similar effect in terms of the reward generalization properties
as described in the main text.

Table 4: Policy rollout results using ground truth reward for perturbed MuJoCo environments after being
trained for 1M timesteps using the rewards recovered from the different discriminators in section 3.2. Here,
the geometry friction parameter is perturbed with a noise magnitude of ε = 0.2. The results are averaged
over 10 rollouts and obtained by training the model using five different random seeds.

Environment Ant-v3 Walker2d-v3 Hopper-v3 HalfCheetah-v3 Humanoid-v3

Expert 3168.49±1715.68 3565.33±527.40 3119.54±524.36 4340.61±2020.14 4774.17±2063.52

AIRL (ERM) 603.00±909.86 -3.87±0.44 149.17±151.96 2141.85±942.19 4507.23±659.04
AIRL (Lip) 283.73±1294.15 3429.17±372.29 3311.25±128.82 4659.44±533.32 1432.57±952.87
AIRL (CI) 1434.01±1530.65 4167.15±721.26 3288.86±149.76 4737.72±749.52 4756.93±368.15

GAIL (ERM) -421.27±752.40 910.12±951.80 939.05±959.38 1563.17±1245.51 871.61±1002.21
GAIL (Lip) -172.69±196.92 1065.02±1672.12 2541.08±906.67 4795.59±1018.65 89.51±16.87
GAIL (CI) 1148.32±1938.45 2395.43±1282.70 3068.00±459.50 4037.08±983.32 3385.58±2279.28

MEIRL (ERM) -103.10±188.90 -3.43±0.15 3.36±0.19 191.23±630.81 56.41±2.24
MEIRL (Lip) -252.29±184.32 865.84±308.25 1128.52±125.06 -284.92±204.61 991.70±1871.72
MEIRL (CI) -191.76±912.46 2546.37±1073.22 2425.38±1070.78 1724.44±2057.07 2155.55±2281.06
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C Model architecture and training details

Gridworld. For the gridworld experiments, we use a DeepMaxEnt (Wulfmeier et al., 2015) formulation of
the IRL problem. The state features are parametrized by a 2-layer MLP with a 1-dimensional hidden layer.
We use RMSProp as an optimizer with a learning rate of 1e− 3.

MuJoCo. For the adversarial learning experiments, we use an actor and critic network with two hidden
layers of size 256 and a discriminator network with two hidden layers of size 128. We use Adam (Kingma &
Ba, 2014) as the optimizer with an initial learning rate of η = 3e− 4. We use the gradient penalty strategy
described in (Gulrajani et al., 2017) to impose the Lipschitz smoothness constraint on the discriminator
networks in section 3.2. We perform one update of the discriminator network for every update of the
actor-critic networks. We use an extension of the cleanRL (Huang et al., 2022) library for all the experiments.
to train the policy networks both using the ground truth reward as well as during adversarial training and
using the recovered reward for the transfer experiments.

D Derivation of the penalty term for feature matching IRL

To apply the proposed regularization to the feature matching problem described in algorithm 1, we need to
derive an explicit gradient term. We will do so here. The gradient of the per-environment log-likelihood loss
LMLE(ψ,φ, e) =

∑
ξ∈De log p(ξ|ψ,φ) w.r.t. to ψ is computed as follows:

LMLE =
∑
ξ∈De

log p(ξ|ψ,φ) =
∑
ξ∈De

log(exp(ψTφ(ξ))) − logZψ,φ =
∑
ξ∈De

ψTφ(ξ) − logZψ,φ

Differentiating w.r.t. ψ yields:
∂LMLE

∂ψ
= EDe [φ(ξ)] − 1

Zψ,φ

∫
exp(ψTφ(ξ))φ(ξ)dξ

= EDE [φ(ξ)] − Ep(ξ|ψ)[φ(ξ)]

The gradient penalty term from Equation (15) with respect to the features φ is derived as follows:

∇φ

∥∥∇ψ|ψ=1.0Le (r (ψ,φ))
∥∥2 =

∂||∂Le(r(ψ,φ)·)
∂ψ |ψ=1.0||2

∂φ

We employ the chain rule:
∂Le (r (ψ,φ))

∂ψ
= ∂Le (r (ψ,φ))

∂r
· ∂ (r (ψ,φ))

∂ψ
= ∂Le (r (ψ,φ))

∂r
· φ

where the last equality holds because we assume a linear reward with respect to the features φ: r (ψ,φ) = ψTφ.
In section 2.1 we showed that :

∂Le (r (ψ,φ))
∂r

= EDE [φ(ξ)] − Ep(ξ|ψ)[φ(ξ)]

where EDE [φ(ξ)] are the trajectory feature statistics of the expert and Eπ [φ(ξ)] are the trajectory feature
statistics of the imitation policy. For the sake of simplicity we define: C := EDE [φ(ξ)] − Ep(ξ|ψ)[φ(ξ)) which
is independent of φ: Then:

∂Le (r (ψ,φ))
∂ψ

= Cφ

We obtain the CI penalty for the feature matching maximum entropy IRL case as the following term:

∇φ

∥∥∇ψ|ψ=1.0Le (r (ψ,φ))
∥∥2 =

∂||∂Le(r(ψ,φ)·)
∂ψ |ψ|ψ=1.0||2

∂φ
= ∂ ∥Cφ∥2

∂φ

= ∂ [Cφ]T [Cφ]
∂φ

= CTC
∂φTφ

∂φ
= 2 ∥C∥2

φ = 2||ρE − E [ρψ] ||2φ
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