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Abstract
Actor-critic algorithms have become a corner-
stone in reinforcement learning (RL), leverag-
ing the strengths of both policy-based and value-
based methods. Despite recent progress in un-
derstanding their statistical efficiency, no existing
work has successfully learned an ϵ-optimal policy
with a sample complexity of O(1/ϵ2) trajecto-
ries with general function approximation when
strategic exploration is necessary. We address
this open problem by introducing a novel actor-
critic algorithm that attains a sample-complexity
of O(dH5 log |A|/ϵ2+dH4 log |F|/ϵ2) trajecto-
ries, and accompanying

√
T regret when the Bell-

man eluder dimension d does not increase with
T at more than a log T rate. Here, F is the critic
function class, and A is the action space. Our
algorithm integrates optimism, off-policy critic
estimation targeting the optimal Q-function, and
rare-switching policy resets. We extend this to
the setting of Hybrid RL, where we show that ini-
tializing the critic with offline data yields sample
efficiency gains, and also provide a non-optimistic
provably efficient actor-critic algorithm, address-
ing another open problem in the literature. Numer-
ical experiments support our theoretical findings.

1. Introduction
Actor-critic algorithms have emerged as a foundational ap-
proach in reinforcement learning (RL), mitigating the defi-
ciencies of both policy-based and value-based approaches
(Sutton and Barto, 2018; Mnih et al., 2016; Haarnoja et al.,
2018). These methods combine two components: an actor,
which directly learns and improves the policy, and a critic,
which evaluates the policy’s quality. Given their popularity,
significant recent progress has been made in understand-
ing their theoretical underpinnings and statistical efficiency,
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especially in the presence of function approximation (Cai
et al., 2024; Zhong and Zhang, 2023; Sherman et al., 2024;
Liu et al., 2023b) – which is required in real-world applica-
tions with prohibitively large state and action spaces.

However, much existing work (Abbasi-Yadkori et al., 2019;
Neu et al., 2017; Liu et al., 2023a; Bhandari and Russo,
2022; Agarwal et al., 2021; Cen et al., 2022; Gaur et al.,
2024) on the convergence of actor-critic methods requires
assumptions on the reachability of the state-action space
or on the coverage of the sampled data. Liu et al. (2023b)
remark that this implies that the state-space is either well-
explored or easy to explore. This allows the agent to bypass
the need to actively explore the state-action space, making
learning significantly easier.1 Therefore, these approaches
analyze actor-critic methods from an optimization perspec-
tive and do not address the problem of exploration (Efroni
et al., 2020) – a salient problem that we seek to tackle, hence
the need for strategic exploration.

Without reachability assumptions, policy gradient methods
struggle due to a lack of strategic exploration.2 A recent
line of work utilizes optimism to address this. Efroni et al.
(2020); Wu et al. (2022) and Cai et al. (2024) achieve

√
T

regret within the settings of tabular and linear mixture MDPs
respectively, with Wu et al. (2022) attaining the minimax-
optimal rate. Still, Zhong and Zhang (2023) remark that
these analyses do not generalize to more general MDPs due
to the need to cover an exponentially growing policy class.

Within linear MDPs, Sherman et al. (2024) and Cassel and
Rosenberg (2024) have very recently been able to obtain the
optimal rate of

√
T regret or 1/ϵ2 sample complexity. They

do so via methodological advancements (specific to linear
MDPs) that let them overcome the growing policy class
issue. However, the problem is unresolved with general
function approximation – the best known algorithm from
Liu et al. (2023b) requires at least 1/ϵ3 samples, increasing
to 1/ϵ4 when the policy class grows exponentially.

1Under coverage/reachability assumptions, the linear conver-
gence of policy-based methods (Lan, 2022; Xiao, 2022; Yuan et al.,
2023) and the gradient domination lemma (Kumar et al., 2024; Mei
et al., 2022) allow natural actor-critics to learn an ϵ-optimal policy
within 1/ϵ2 samples, although vanilla policy gradient methods can
take (super) exponential time to converge (Li et al., 2021).

2To illustrate, this was not solved until Agarwal et al. (2020),
who required 1/ϵ11 samples to do so in linear MDPs.
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Algorithm Sample Complexity Regret Remarks

Agarwal et al. (2020) d3H15 log |A|/ϵ11 None
Zanette et al. (2021) H4 log |A|/ϵ2 + d3H13 log |A|/ϵ3

√
H4 log |A| log |A|T +

√
d3H13T

Zhong and Zhang (2023) d3H8 log |A|/ϵ4 + d5H4/ϵ2
√
d3H8 log |A|T +

√
d5H4T Linear MDPs only

Sherman et al. (2024) d4H7 log |A|/ϵ2
√
d4H7 log |A|T

Cassel and Rosenberg (2024) dH5 log |A|/ϵ2 + d3H4/ϵ2
√
dH5 log |A|T +

√
d3H4T

Zhou et al. (2023) (log |A|+ C3
npg ∧ C6

off) log |F|H14/ϵ6 Linear Requires offline data
Liu et al. (2023b) d log |A| log |F|H6/ϵ3 None “Good” case only, 1/ϵ4 generally

DOUHUA (Algorithm 1) H4 log |A|/ϵ2 + dH4 log |F|/ϵ2
√
H4 log |A|T +

√
dH4 log |F|T “Good” case only, vacuous generally

NORA (Algorithm 2) dH5 log |A|/ϵ2 + dH4 log |F|/ϵ2
√
dH5 log |A|T +

√
dH4 log |F|T Holds generally

Table 1. Comparison of our work to existing literature. Algorithm 2 achieves the best known bound for actor-critic methods with general
function approximation, and resolves an open problem on whether

√
T regret or 1/ϵ2 sample complexity is achievable in this scenario.

An open problem. No actor-critic algorithm with general
function approximation is currently known to achieve 1/ϵ2

sample complexity or
√
T regret in this more challenging

setting where strategic exploration is necessary. Zhong
and Zhang (2023) and Liu et al. (2023b) remark that a
way forward to achieve the desired 1/ϵ2 sample complexity
remains unclear, and raise the open problem:

Can actor-critic or policy optimization algorithms achieve
1/ϵ2 sample complexity or

√
T regret with general function

approximation and when strategic exploration is necessary?

This paper. We resolve this open problem in the affirma-
tive. As a warm-up, we first consider an easy case – where
the complexity of the class of policies considered by the pol-
icy optimization procedure does not increase exponentially
with the number of (critic) updates.3 Then, a simple modifi-
cation to the GOLF algorithm of Jin et al. (2021) allows one
to achieve a regret of

√
H4 log |A|T +

√
dH4 log |F| T , in

line with the results of (Efroni et al., 2020; Cai et al., 2024)
for tabular and linear mixture MDPs respectively.

However, this is not the case in many practical scenarios –
for example, where one uses linear models, decision trees,
neural networks, or even random forests for the critic. In this
much harder setting, Algorithm 1 does not achieve sublinear
regret. We address this by introducing an algorithm, NORA
(Algorithm 2), which leverages three crucial ingredients:
(1) optimism, (2) off-policy learning, and (3) rare-switching
critic updates that target Q∗ and accompanying policy resets.
Algorithm 2 achieves

√
dH4 log |F|T +

√
dH5 log |A|T

regret, requiring only a factor of dH log T more samples
than Algorithm 1 even in the best case for the latter.

Extensions to hybrid RL. Zhou et al. (2023) use both of-
fline and online data to bypass the need to perform strategic
exploration in policy optimization. This corresponds to the

3Zhong and Zhang (2023) showed that the log-covering number
of the policy class increases in the number of actor and critic
updates. We sharpen this bound to the number of critic updates.

setting of hybrid RL (Nakamoto et al., 2023; Amortila et al.,
2024; Ren et al., 2024; Wagenmaker and Pacchiano, 2023),
where Song et al. (2023) show that using both offline and on-
line data allows one to achieve

√
T regret without optimism.

However, the claimed
√
T regret bound in Zhou et al. (2023)

requires on-policy sampling of O(T ) samples per timestep
that does not contribute to the regret, leading to a sample
complexity of 1/ϵ6. Their algorithm cannot achieve sublin-
ear regret in the more common setup where each sample
contributes to the regret, while requiring bounded occupancy
measure ratios of the optimal policy to any policy.

We demonstrate that these issues can be mitigated. Specifi-
cally, we extend our optimistic algorithm to leverage both
offline and online data, and show that actor-critic meth-
ods can benefit from hybrid data and achieve the provable
gains in sample efficiency as observed in (Li et al., 2023;
Tan and Xu, 2024; Tan et al., 2024). We also provide a
non-optimistic provably efficient actor-critic algorithm that
only additionally requires Noff ≥ c∗off(F ,Π)dH4/ϵ2 offline
samples (with bounded single-policy concentrability) in ex-
change for omitting optimism. This, along with the result
in Theorem 4, shows that hybrid RL therefore allows for
sample efficiency gains with optimistic algorithms and com-
putational efficiency gains with non-optimistic algorithms.

Notation. NA(ρ) denotes the ρ-covering number of a set A,
and NA,B(ρ) that of A ∪ B. We use standard asymptotic
notation: f(n) = O(g(n)) if f(n) grows at most as fast as
g(n); f(n) = o(g(n)) if it grows strictly slower; f(n) =
Ω(g(n)) if it grows at least as fast; and f(n) = Θ(g(n)) if
it grows at the same rate.

2. Problem Setting
Markov decision processes. This paper focuses on finite
horizon, episodic MDPs, represented by a tuple

M = (S,A, H, {Ph}Hh=1, {rh}Hh=1),

where S is the state space, A is the action space, H is the
horizon, rh : S ×A → [0, 1] is the reward function at step
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h and Ph : S ×A → ∆(S) is the transition kernel for step
h. A policy {πh}Hh=1 is a set of H functions, where each
πh : S → ∆(A) maps from a state on step h to a probability
distribution on actions. Write Π for the class of all policies,
and π(s) as shorthand for the random variable a ∼ π(·|s).
Given a policy {πh}Hh=1 and reward function {rh}Hh=1, the
state value function is defined as

V π
h (s) = E

[ H∑
h′=h

rh′(sh′ , ah′)|sh = s

]
,

where the expectation is taken over the randomness of ah′ ∼
πh′(sh′) and sh′+1 ∼ Ph(·|sh′ , ah′) for any h′ ≥ h. The
action value, or Q function is defined as

Qπ
h(s, a) = E

[ H∑
h′=h

rh′(sh′ , ah′)|sh = s, ah = a

]
,

where the expectation is taken over the similar randomness
of action and state transition, with the only difference that
the action randomness is only random as h′ ≥ h+ 1.

Without loss of generality, write s1 for the initial state. The
optimal policy is π⋆ = argmaxπ∈ΠV

π
1 (s1). Correspond-

ingly, we denote V ⋆ = V π⋆

and Q⋆ = Qπ⋆

as the optimal
value and Q-functions. The Bellman operator with respect
to the greedy policy and any policy π is given by

ThQh+1(s, a) = rh(s, a) + Es′∼Ph

[
max
a′∈A

Qh+1(s
′, a′)

]
T π
h Qh+1(s, a) = rh(s, a) + Es′∼Ph

[
Qh+1(s

′, πh+1(s
′))
]

The optimal Q-function Q⋆ is uniquely determined as the so-
lution to the Bellman equation: Q⋆

h(s, a) = ThQ⋆
h+1(s, a).

Our goal is typically to learn an ϵ-optimal policy π̂, such
that V ∗

1 (s1) − V π̂
1 (s1) ≤ ϵ, or to obtain sublinear regret

over T rounds while playing (π(t))Tt=1:

Reg(T ) =
T∑

t=1

(
V ∗
1 (s1)− V π(t)

1 (s1)
)
= o(T ).

RL with function approximation. Under general function
approximation, we approximate Q-functions with a function
class F = {Fh}h∈[H], where each fh : S × A → [0, H].
The Bellman error with regard to f ∈ F is fh−Thfh+1, and
additionally with regard to π ∈ Π as fh − T π

h fh+1. Addi-
tionally, we write πf

h(a|s) = 1(a′ ∈ argmaxa∈A fh(s, a))
for the greedy policy that plays the best action under f . We
make the following routine assumptions on the richness of
F (Jin et al., 2021; Xie et al., 2022; Rajaraman et al., 2020;
Rashidinejad et al., 2023):

Assumption 1 (Realizability). The function class F is rich
enough such that for all h ∈ [H], the function class Fh

contains the optimal action value function Q⋆
h: Q∗

h ∈ Fh.

Assumption 2 (Generalized Completeness). There exists
an auxiliary function class G = G1 × ...× GH , where each
gh ∈ Gh satisfies gh : S × A → [0, H], that is sufficiently
rich such that it contains all Bellman backups of f ∈ F .

This auxiliary function class is (T Π)TF = {T π(T ) · ... ·
T π(1)

f | f ∈ F , π(1), ..., π(T ) ∈ Π} for Algorithm 1, and
T F = {T f | f ∈ F} for Algorithm 2. The former is
far larger than the latter, with exceptions that we highlight
in Section 3. We write NF (ρ) for the ρ-covering number
of a function class F .4 To learn f ∈ F that approximates
the Q-function of a policy π (we say that f targets π), it
is common to minimize the temporal difference (TD) error
over a dataset D, as an estimate of the Bellman error:

L(t,π)
h (fh, fh+1)

=
∑

(s,a,r,s′)∈D

(fh(s, a)− r − fh+1(s
′, πh+1(s

′)))2. (1)

Measures of complexity. The complexity of online learn-
ing in the presence of general function approximation is
governed by complexity measures such as the Bellman rank
(Jiang et al., 2016), which corresponds to the intrinsic dimen-
sion in tabular, linear, and linear mixture MDPs. Another is
the Bellman eluder dimension (Jin et al., 2021), which sub-
sumes the Bellman rank and additionally characterizes the
complexity of kernel, neural, and generalized linear MDPs.
We use the squared distributional version:
Definition 1 (Squared Distributional Bellman Eluder dimen-
sion (Jin et al., 2021; Zhong et al., 2022; Xiong et al., 2023)).
LetF be a function class. The distributional Bellman Eluder
dimension is the largest d such that there exist measures
{d(1)h , . . . , d

(d−1)
h }, d(d)h , Bellman errors {δ(1)h , . . . , δ

(d−1)
h },

δ
(d)
h , and some ϵ′ ≥ ϵ, such that for all t = 1, ..., d,

∣∣∣Ed
(t)
h

[δ
(t)
h ]
∣∣∣ > ε(t) and

√√√√t−1∑
i=1

(
E
d
(i)
h

[(δ
(t)
h )2]

)
≤ ε(t).

(Jin et al., 2021) primarily consider two types of distribu-
tions: (1) distributions DF induced by greedy policies πf ,
and Dirac delta measures over state-action pairs D∆. They
suggest an RL problem has low Bellman eluder dimension
if either variant is small. Examples include tabular MDPs,
where this is the cardinality of the state-action space, and
linear MDPs, where this is the corresponding dimension.

The sequential extrapolation coefficient (SEC) of Xie et al.
(2022) subsumes the Bellman eluder dimension:
Definition 2 (Sequential Extrapolation Coefficient (SEC)).

SEC(F ,Π, T ) := max
h∈[H]

sup
f(1),...,f(T )∈F

sup
π(1),...,π(T )∈Π

4The ρ-covering number of a class corresponds to the smallest
cardinality of a set of points, such that every point in the class is at
least ρ-close to some point in that set. See (Wainwright, 2019).
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T∑

t=1

Eπ(t) [f
(t)
h − Thf

(t)
h+1]

2

H2 ∨
∑t−1

i=1 Eπ(i) [(f
(t)
h − Thf

(t)
h+1)

2]

}
.

The SEC is always bounded by d log T , but there exist
MDPs that have a Bellman eluder dimension d on the order
of
√
T , but a constant SEC (Xie et al., 2022). We shall

use these measures of complexity to characterize the regret.
Algorithm 1 scales with the SEC, which is more general and
weaker than the Bellman eluder dimension. Algorithm 2, as
presented, has a switching cost that scales with the D∆-type
Bellman eluder dimension. While this can be weakened to
the more general ℓ2 eluder condition of (Xiong et al., 2023)
with nothing more than a change in notation, we present
our results in the Bellman eluder dimension framework for
familiarity and ease of presentation.

Policy optimization and actor-critic algorithms. Policy
optimization approaches optimize directly in the space of
policies, enabled by the policy gradient theorem (Sutton and
Barto, 2018): ∇πV

π
1 (s1) = Eπ[Q

π
1 (s, a)∇π log π(s, a)].

This can be done with Monte-Carlo estimates of Qπ
1 (s, a)

(the REINFORCE algorithm), or a learned estimate of
Qπ

1 (s, a) called a critic (actor-critic methods).

However, vanilla policy gradient methods can converge very
slowly in the worst case (Li et al., 2021). It is often prefer-
able to use other optimization algorithms, such as a second-
order method in natural policy gradient (NPG) (Kakade,
2001), KL-regularized gradient ascent in trust region policy
optimization (TRPO) from Schulman et al. (2017), or proxi-
mal policy optimization (PPO), which performs a similar,
but easier to compute, update. These methods are closely
related in the limit of small step-sizes, and are approximate
versions of mirror ascent (Schulman et al., 2017; Neu et al.,
2017; Rajeswaran et al., 2017).

One instance in which the NPG, TRPO, and PPO up-
dates coincide is with softmax policies (Cai et al., 2024;
Cen et al., 2022; Agarwal et al., 2021): π(a|s) =
exp(g(s, a))/

∑
a∈A exp(g(s, a)) for some function g :

S ×A → R. In this case, the update has a closed form:

π
(t+1)
h (a|s) ∝ π

(t)
h (a|s) exp(ηf (t)

h (s, a)), f
(t)
h ∈ F . (2)

As mirror ascent, this update is identical to the multiplica-
tive weights or Hedge algorithm. Like (Cai et al., 2024;
Zhong and Zhang, 2023; Liu et al., 2023b), we exploit this
equivalence to prove our desired regret bounds.

3. Optimistic Actor-Critics – The Easy Case
We now present an optimistic actor-critic algorithm,
DOUHUA (Algorithm 1), with provable guarantees un-
der general function approximation. DOUHUA is a nat-
ural derivative of the GOLF algorithm of Jin et al. (2021)

Algorithm 1 Double Optimistic Updates for Heavily Updat-
ing Actor-critics (DOUHUA)

1: Input: Function class F .
2: Initialize: F (0) ← F , D(0)

h ← ∅, learning rate η =

Θ(
√
log |A|H−2T−1), policy π(1) ∝ 1, confidence

width β = Θ(log(HTNF,(T Π)TF (1/T )/δ)).
3: for episode t = 1, 2, . . . , T do
4: f

(t)
h (s, a) ∈ argmax

f∈F(t−1,π(t−1)) fh (s, a)∀s, a, h.

5: Play policy π(t) for one episode, update dataset D(t)
h .

6: Compute confidence set F (t,π(t)):

F (t,π(t)) ←
{
f ∈ F : L(t,π(t))

h (fh, fh+1)

− min
f ′
h∈Fh

L(t,π(t))
h (f ′

h, fh+1) ≤ H2β ∀h
}
,

L(t,π(t))
h (f, f ′)←∑

(s,a,r,s′)∈D(t)
h

(
f(s, a)− r − f ′(s′, π

(t)
h+1(s

′))
)2

.

7: Update π
(t+1)
h (a|s) ∝ π

(t)
h (a|s) exp(ηf (t)

h (s, a)).
8: end for

for actor-critic approaches5, with only two (very natural)
changes. The critic targets Qπ(t)

instead of Q∗ while per-
forming optimistic planning at every s, a pair, and we main-
tain a stochastic policy that is updated with Equation 2.
Learning an optimistic critic off-policy achieves sample
efficiency by reusing data while exploring efficiently.6

Algorithm 1 maintains confidence sets F (t,π(t)) that contain

all f ∈ F where the TD error L(t,π(t))
h with respect to the

Bellman operator T π(t)

h is a H2β-additive approximation

of the minimizer minf ′
h∈Fh

L(t,π(t))
h (f ′

h, fh+1). Upon the
start of each trajectory t, Algorithm 1 maximizes among
all functions in the confidence set to play f

(t)
h (s, a) =

sup
fh∈F(t−1,π(t−1))

h

fh(s, a) for all h, s, a. This is exactly

in line with GOLF, except that the critic targets Qπ(t)

in-
stead of Q∗, and we perform optimistic planning with regard
to every state and action like Liu et al. (2023b). We then
perform a mirror ascent update π

(t+1)
h ∝ π

(t)
h exp(ηf

(t)
h )

instead of playing the greedy policy πf(t)

h . This algorithm
satisfies the following regret/sample complexity bound:

Theorem 1 (Regret Bound for DOUHUA). Algorithm 1
achieves the following regret with probability at least 1− δ:

Reg(T ) = O
(√

H4T log |A|+
√
βH4TSEC(F ,Π, T )

)
,

where β = Θ
(
log
(
HTNF,(T Π)TF (1/T )/δ

))
. To learn

5Or a completely off-policy version of Liu et al. (2023b).
6Similarly to Cai et al. (2024) in linear mixture MDPs.
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an ϵ-optimal policy, it therefore requires:

N ≥ Ω
(
H4 log |A|/ϵ2 +H4βSEC(F ,Π, T )/ϵ2

)
.

Proof. We provide a proof sketch here, leaving the full proof
to Appendix A. We decompose the regret with Lemma 3:

Reg(T )

=

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h (sh, ·) , π∗

h (· | sh)− π
(t)
h (· | sh)

〉]
︸ ︷︷ ︸

Tracking error of π(t) w.r.t. π∗, bounded by mirror ascent arguments.

−
T∑

t=1

H∑
h=1

Eπ∗

[(
f
(t)
h − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
︸ ︷︷ ︸

Negative Bellman error under π∗, bounded by optimism.

+

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
︸ ︷︷ ︸

Bellman error under current policy occupancy, bounded by critic error.

.

By a mirror ascent argument in Lemma 4 and our choice of
learning rate η = Θ(

√
log |A|H−2T−1), the first term is

bounded by
√
H4T log |A|.

Lemma 7 establishes optimism: f (t)
h ≥ T (t−1)

h f
(t)
h+1. So we

see in Lemma 5 that the second term decomposes into a non-
positive term

∑T
t=1

∑H
h=1 Eπ∗

[
T π(t−1)

h f
(t)
h+1 − f

(t)
h

]
, and∑T

t=1

∑H
h=1 Eπ∗

[
T π(t)

h f
(t)
h+1 − T π(t−1)

h f
(t)
h+1

]
≤ ηH3T .

Bounding the Bellman error under the π(t) occupancy mea-
sure in Lemma 6 by

√
βH4TSEC(F ,Π, T )T , where β =

Θ
(
log
(
HTNF,(T Π)TF (1/T )/δ

))
, yields the result.

A Vacuous Bound. The form of the above regret bound is
appealing at first glance. However, the log-covering number
of the policy class increases linearly with the number of
critic updates by default, as we show below in Lemma 1.7

Lemma 1 (Bound on Covering Number of Policy Class,
Modified Lemma B.2 from Zhong and Zhang (2023)). Con-
sider the policy class Π(T ) obtained by performing T up-
dates of the mirror ascent update as in Eq. 2, where the
critics f (t)

h ∈ F are updated at times t1, ..., tK . Then, the
covering number of the policy class at time T is bounded by

N
Π

(T )
h

(ρ/2H) ≤
∏K

k=1NF(tk)

h

(ρ2/16ηKH2T ).

The proof is deferred to Appendix A.5.2. Within Algorithm
1, this implies that logN(T Π)TF (ρ) = O(T logNF (ρ)) in
general, making the bound in Theorem 1 vacuous.

7It was previously thought in Zhong and Zhang (2023) that the
log-covering number of the policy class increases in the number of
actor and critic updates. We sharpen this bound to the number of
critic updates in Lemma 1, which may be of independent interest.

A Good Case. However, within certain circumstances, it
is possible to have logN(T Π)TF (ρ) = O(logNF (ρ)). This
happens, for instance, when there exists a low-dimensional
representation of the sum of clipped Q-functions – such as
when the sum of clipped Q-functions is a scaled Q-function:
Definition 3 (Closure Under Truncated Sums). F is closed
under truncated sums if for any T ∈ N and f (1), ..., f (T ) ∈
F , T−1

∑T
t=1 min{max{f (t), 0}, H} ∈ F .

As such, this is an interesting case where the log-covering
number of the policy class does not blow up, with down-
stream implications for the regret of Algorithm 1:
Lemma 2 (Policy Class Growth). Let F be a function class
that satisfies Definition 3, i.e. it is closed under truncated
sums. Then, logN(T Π)TF (ρ) = O(logNF (ρ

2/ηH2T )).
Corollary 1 (Regret of DOUHUA, The Good Case). If F is
closed under truncated sums, then with probability at least
1− δ, Algorithm 1 achieves a regret of:

Reg(T ) = O
(√

H4T log |A|+
√
βH4TSEC(F ,Π, T )

)
,

where β = Θ(log(HTNF (H/ log |A|T 2)/δ)). To learn
an ϵ-optimal policy, it therefore requires:

N ≥ Ω
(
H4 log |A|/ϵ2 +H4βSEC(F ,Π, T )/ϵ2

)
.

We defer the proof of Lemma 2 to Appendix A.5.3. Al-
gorithm 1 then achieves a regret in line with the results of
(Efroni et al., 2020; Cai et al., 2024) for tabular and linear
mixture MDPs respectively. However, closure under trun-
cated sums is a very strong condition that is not fulfilled by
many function classes, although tabular classes fulfill it. It
is not fulfilled by linear models due to the clipping operator,
requiring Sherman et al. (2024) and Cassel and Rosenberg
(2024) to develop bespoke algorithms to get around this in
the setting of linear MDPs.8 With trees, random forests,
boosting, and neural networks, without further assumptions,
one needs to increase the size of the function class – perhaps
even on the same order as the increase in Lemma 1.

This prompts us to explore the possibility of algorithmic
modifications to Algorithm 1 in order to achieve the optimal
regret rates in the harder, more general case where the log-
covering number of the policy class may increase linearly
in critic updates. We do so in the next section.

4. Optimistic Actor-Critics – The Hard Case
Given what we have seen in our analysis of Algorithm 1, can
we simply modify Algorithm 1 to include rare-switching
critic updates? If we can perform only O(dH log T ) critic
updates as in (Xiong et al., 2023), perhaps it may be possible
to obtain a similar regret bound to Corollary 1.

8These avoid truncation by using reward-agnostic exploration
and feature shrinkage respectively. The moving target issue is
bypassed with rare-switching bonus (but not critic) updates.
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Figure 1. Illustration of tracking error in policy optimization, with
a rare-switching critic f (t) that targets π∗. The {blue and pink,
pink} area depicts the tracking error of {π∗ to π(t), πf(t)

to π(t)}.
Both incur

√
T regret. In contrast, f (t,π(t)

) is a rare-switching
critic that targets π(t), and so is insufficiently optimistic as π(t)

changes. The blue, pink, and rust area depicts the tracking error of
π∗ to π(tlast) from insufficient optimism, which yields linear regret.

4.1. Challenges and algorithm design

However, this is not the case. Intuitively, if the critic targets
a rapidly changing π(t), the Bellman error with regard to
the policy π(tlast) at the last update will not be close to the
Bellman error with regard to π(t). Although the former is
what the critic f (tlast) = f (t) targets, we evaluate the latter
when considering a switch at time t. Therefore, the critic
updates far more often when we target Qπ(t)

rather than Q∗

– as it tries to hit a moving target.

Furthermore, this results in insufficient optimism. In
Lemma 7, we can only guarantee optimism with respect
to the Bellman operator at the last critic update time tlast,
f
(t)
h ≥ T π(tlast)

h f
(t)
h+1. But we require f

(t)
h ≥ T π(t)

h f
(t)
h+1. At-

tempting to work with this form of limited optimism results
in the tracking error relative to π∗ becoming

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h (s′, ·), π∗

h(·|s′)− π
(tlast)
h (·|s′)

〉]
,

incurring linear regret. This is the shaded area in Figure 1.

A way forward. Having the critic target Q∗ instead of
Qπ(t)

provides a solution. This ensures sufficient optimism,
as we show in Lemma 14 that f (t)

h ≥ T π(t)

h f
(t)
h+1. Fur-

thermore, we do not need to control logN(T Π)TF (ρ), as
maxa Qh+1(s, a) is a contraction and it suffices to control
logNT F (ρ), which is often approximately logNF (ρ).

However, this introduces an additional term we need to
control – the deviation of the current policy π(t) from the
greedy policy πf(t)

, depicted as the pink area in Figure 1.
This term is difficult to control, as πf(t)

changes with every
critic update, and the actor requires sufficient time to catch

up to the critic updates. To address this issue, we introduce
policy resets at every critic update, allowing us to bound this
with the standard mirror descent regret bound as in Lemma
12. The total tracking error scales with the number of critic
updates, which is then resolved with rare-switching critic
updates in line with Xiong et al. (2023). Lastly, we increase
the learning rate to reduce the regret incurred by the policy
resets. This makes more aggressive policy updates to catch
up with the sudden, rare, and large critic updates.

Summary. Algorithm 2 combines optimism for strategic
exploration and off-policy learning for sample efficiency.
While rare-switching critic updates are a-priori appealing,
they are unstable when the critic targets π(t), due to lim-
ited optimism and the challenge of tracking a moving pol-
icy (as we describe below, and further show in Appendix
F). These are resolved by targeting π∗ and re-introducing
rare-switching critic updates respectively. However, this
introduces additional error, as the agent has to effectively
unlearn the policy after each rare critic update. We there-
fore introduce policy resets to the uniform policy after each
critic update – incurring minimal cost due to their rarity (as
there are only O(dH log T ) updates). A more aggressive
learning rate (by a factor of

√
dH log T ) mitigates some of

the additional regret incurred, and can be seen as making
more aggressive updates to make up for lost ground from
policy resets. See Appendix B for more details.

4.2. Regret bound for NORA

To control the switching cost with the framework of Xiong
et al. (2023), we concern ourselves with function classes of
low D∆-type Bellman Eluder dimension (Jin et al., 2021):
Assumption 3 (Bounded D∆-type Bellman Eluder Di-
mension). Let D∆ := {D∆,h}h∈[H], where D∆,h ={
δ(s,a)(·) | s ∈ S, a ∈ A

}
. That is, we only consider distri-

butions that are Dirac deltas on a single state-action pair.
We assume that d := dBE(F , D∆, 1/

√
T ) <∞.

This can be weakened to the more general ℓ2 eluder condi-
tion of (Xiong et al., 2023) with nothing more than a change
in notation. However, we present our results in the Bell-
man eluder dimension framework for familiarity and ease
of presentation. We now show the following:
Theorem 2 (Regret Bound for NORA). Algorithm 2
achieves the following regret with probability at least 1− δ:

Reg(T ) = O
(√

dH5T log T log |A|+ dH3 log T

+
√
βH4TSEC(F ,Π, T )

)
.

where β = Θ(log
(
HT 2NF,T F (1/T )/δ

)
). This implies a

sample complexity (ignoring lower order terms) of

N ≥ Ω
(
dH5 log T log |A|/ϵ2 +H4βSEC(F ,Π, T )/ϵ2

)
.
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Algorithm 2 No-regret Optimistic Rare-switching Actor-
critic (NORA)

1: Input: Function class F .
2: Initialize: F (0) ← F , D(0)

h ← ∅,∀h ∈ [H], η =

Θ(
√
d log T log |A|H−1T−1), π(1) ∝ 1, confidence

width β = Θ(log(HT 2NF,T F (1/T )/δ)).
3: for episode t = 1, 2, . . . , T do
4: Set f (t)

h (s, a) ∈ argmaxf∈F(tlast) fh (s, a)∀s, a, h.
5: Play policy π(t) for one episode, obtain trajectory,

update dataset D(t)
h .

6: if L(t)
h (f

(t)
h , f

(t)
h+1) ≥ minf ′

h∈Fh
L(t)
h (f ′

h, f
(t)
h+1) +

5H2β for some h then
7: Compute confidence set F (t):

F (t) ←
{
f ∈ F : L(t)

h (fh, fh+1)

− min
f ′
h∈Fh

L(t)
h (f ′

h, fh+1) ≤ H2β ∀h
}
,

L(t)
h (f, f ′)←∑

(s,a,r,s′)∈D(t)
h

(
f(s, a)− r −max

a′∈A
f ′(s′, a′)

)2

.

8: Reset policy π(t) ∝ 1.
9: Set tlast ← t, N (t)

updates ← N
(t−1)
updates + 1.

10: else
11: Set N (t)

updates ← N
(t−1)
updates, F (t) ← F (t−1).

12: end if
13: Update π

(t+1)
h (a|s) ∝ π

(t)
h (a|s) exp(ηf (t)

h (s, a)).
14: end for

Proof. We provide a proof sketch here, and defer the full
proof to Appendix B. By Lemma 8, we have a slightly
different regret decomposition than usual:

Reg(T )

=

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h (sh, ·) , π∗

h (· | sh)− π
(t)
h (· | sh)

〉]
︸ ︷︷ ︸

Tracking error of π(t) w.r.t. π∗, bounded by mirror ascent arguments.

−
T∑

t=1

H∑
h=1

Eπ∗

[(
f
(t)
h − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
︸ ︷︷ ︸

Negative Bellman error under π∗, bounded by optimism.

+

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − Thf

(t)
h+1

)
(sh, ah)

]
︸ ︷︷ ︸

Bellman error under current policy occupancy, bounded by critic error.

+

T∑
t=1

H∑
h=1

Eπ(t)

[〈
f
(t)
h+1(s

′, ·), πf(t)

h+1(·|s
′)− π

(t)
h+1(·|s

′)
〉]

︸ ︷︷ ︸
Tracking error of π(t) w.r.t. πf(t)

, bounded by mirror ascent and policy resets.

.

We take care of the second and third terms first. Target-

ing Q∗ yields sufficient optimism to assert that f
(t)
h ≥

T π(t)

h f
(t)
h+1 in Lemma 14, and so we argue that second

term for the negative Bellman error under π∗ is non-
positive in Lemma 10. The third term is bounded by√

βH4TSEC(F ,Π, T ) via a standard argument from Xie
et al. (2022) in Lemma 11.

Instead of directly bounding the first and fourth terms right
away, consider the critic switch times t1, ..., tK . Then,
tk+1∑

t=tk+1

H∑
h=1

Eπ(t)

[〈
f
(t)
h+1(s

′, ·), πf(t)

h+1(·|s
′)− π

(t)
h+1(·|s

′)
〉]

is bounded by O(ηH3(tk+1 − tk) +H log |A|/η+H2) in
Lemma 12. We exploit the fact that we reset the policy after
the episode is collected at every tk in doing so. We then do
the same for the other term in Lemma 9.

To conclude, we bound the number of critic updates in
Lemma 13 by dH log T with the techniques of Xiong et al.
(2023). Summing over all t1, ..., tK lets us bound the first
and fourth terms by

√
dH5 log T log |A| + dH3 log T by

our choice of learning rate. We modify the learning rate
η = Θ(

√
d log T log |A|H−1T−1) to mitigate the switch

cost, shaving off a factor of dH log T in the final sample
complexity. Putting everything together yields the result.

Quality of the regret bound. Even compared to the “good
case” for Algorithm 1 in Corollary 1, Algorithm 2 requires
only dH log T more samples to learn an ϵ-optimal policy.
This is exactly the same as the switch cost, in line with what
Cassel and Rosenberg (2024) observe for linear MDPs.

The Bellman eluder dimension can scale poorly with T
(e.g., dBE(F , D∆, 1/

√
T ) = Ω(

√
T ) in rare cases), and so

we primarily rely on the SEC of Xie et al. (2022), which is
always at most O(d log T ) – though our result still depends
on d due to the switch cost. Still, function classes with low
Bellman eluder dimension are ubiquitous, and so Algorithm
2 achieves

√
T regret on a large class of problems including

linear and kernel MDPs (Jin et al., 2021). We can use the
weaker ℓ2 eluder condition of (Xiong et al., 2023) with
only a change in notation, but we present our results in the
language of the Bellman eluder dimension for clarity.

Comparison with other work. The only other method
claiming

√
T regret with policy optimization and general

function approximation is Zhou et al. (2023). However, they
allow themselves to collect Ω(T ) samples at every timestep
t without incurring any additional regret. This incurs a
sample complexity of 1/ϵ6, while Algorithm 2 enjoys a
1/ϵ2 gurarantee in comparison. Their regret bound is not
sublinear in the more common setup where this sampling
contributes to the regret. Liu et al. (2023b) achieves 1/ϵ3

complexity with batched critic updates but do not quantify
the potential growth of the policy class.
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Extension to other policy updates. We are able to accom-
modate other policy optimization updates other than the
multiplicative weights update, if they satisfy the following:

Corollary 2. If there exists some policy optimization oracle
π(t+1) ← PO(π(t), f (t), η), and some OPT∗,OPTf such
that

∑
h,t Eπ∗ [⟨f (t)

h (s, ·), π∗
h(·|s) − π

(t)
h (·|s)⟩] ≤ OPT∗,∑

h,t Eπ(t) [⟨f (t)
h (s, ·), πf(t)

h (·|s) − π
(t)
h (·|s)⟩] ≤ OPTf ,

then Algorithm 2 with this update obtains a regret of
Reg(T ) = O

(√
βH4TSEC(F ,Π, T ) + OPT∗ + OPTf

)
.

4.3. Further comments on the design of NORA

Targeting Q∗. We are not the only ones who consider a
critic that targets Q∗ instead of Qπ(t)

. For example, Crites
and Barto (1994) propose an actor-critic algorithm that mim-
ics Q-learning via a critic that targets Q∗. Similarly, popular
methods like DDPG (Lillicrap et al., 2019) and TD3 (Fu-
jimoto et al., 2018) alternately update a deterministic pol-
icy approximately maximizing its own Q-function estimate
(thus indirectly targeting Q∗), combined with stochastic
exploration to track the evolving policy.

Similarity to deep deterministic policy gradients
(DDPG). Algorithm 2 shares similarities with DDPG (Lil-
licrap et al., 2019), which alternates updates between a
deterministic policy g

(t)
h (s) ≈ argmaxa f

(t)
h (s, a) and a

critic minimizing the TD error, using slowly updated targets
reminiscent of our rare-switching updates. DDPG explores
via Gaussian perturbations around its deterministic policy,
indirectly targeting Q∗. This suggests that DDPG and its
successor TD3 (Fujimoto et al., 2018) may be useful back-
bones for adapting algorithmic insights garnered from the
design and analysis of Algorithm 2 for practical RL.9

5. Extension to Hybrid RL
Here, we demonstrate two benefits of hybrid offline-online
data in actor-critic algorithms. With optimism, these algo-
rithms achieve improved sample efficiency. Alternatively,
offline data enables one to omit optimism, simplifying im-
plementation and improving computational efficiency.

5.1. Computational efficiency through hybrid RL

Song et al. (2023); Amortila et al. (2024); Zhou et al. (2023)
show hybrid RL can avoid optimism altogether given of-
fline data with sufficient coverage. Following this idea,
we provide non-optimistic variants of Algorithms 1 and 2
in Algorithms 3 and 4. These achieve

√
T regret without

optimizing over a confidence set, detailed in Appendix C.

9This provides insight on why DDPG/TD3 are more sample-
efficient than on-policy PPO. Algorithm 2 needs 1/ϵ2 samples,
while on-policy sampling needs at least 1/ϵ4 (Liu et al., 2023b)

When c∗off(F ,Π) is the single-policy concentrability coef-
ficient defined in Definition 4, these enjoy the following
guarantees (with proof deferred to Appendix D.1):

Theorem 3. Algorithms 3 and 4 achieve an ad-
ditional regret of O(

√
βπH4c∗off(F ,Π)T 2/Noff) and

O(
√
β∗H4c∗off(F)T 2/Noff) respectively over Algorithms

1 and 2, where βπ = Θ
(
log
(
HTNF,(T Π)TF (1/T )/δ

))
,

β∗ = Θ(log
(
HT 2NF,T F (1/T )/δ

)
).

In exchange for omitting optimism, we incur an additional√
βH4c∗off(F)T 2/Noff error term, which amounts to

√
T

regret as long as Noff = Ω(T ). This shows that the prov-
able efficiency achieved without optimism by hybrid FQI-
type methods (Song et al., 2023) also extends to actor-critic
methods – resolving the issue within Zhou et al. (2023) of
needing to collect Θ(T ) samples at every timestep t. We
achieve a sample complexity of 1/ϵ2, in contrast to the 1/ϵ6

sample complexity of Zhou et al. (2023).

5.2. Sample efficiency gains with hybrid RL

The extension, found in Algorithm 5, appends the offline
data to the online data and minimizes the TD error over
the combined dataset when constructing the confidence sets.
This yields the following guarantee:

Theorem 4 (Hybrid RL Regret Bound for NORA). Let
Xoff ,Xon be an arbitrary partition over X = S ×A× [H].
Algorithm 5 satisfies with probability at least 1− δ:

Reg(Non) = O
(

inf
Xon,Xoff

(√
βH4coff(F1Xoff

)N2
on/Noff

+
√

βH4NonSEC(F1Xon ,Π, T ) +
√

dH5Non log |A|
))

,

where β = C log (HNNF,T F (1/N)/δ) for some constant
C, N = Noff+Non, 1Xoff

,1Xon
are indicator variables for

whether s, a ∈ Xoff or Xon, and coff(F1Xoff
) is the partial

all-policy concentrability coefficient (Tan and Xu, 2024).

We defer the proof to Appendix D.3. Broadly, the critic
error splits into offline and online terms, bounded by of-
fline coverage and online exploration respectively. Algo-
rithm 5 is completely unaware of the partition, but the
regret bound optimizes over all partitions of the state-
action space. With sufficient high-quality offline data, the
regret is approximately

√
βH4NonSEC(F1Xon

,Π, T ) +√
dH5Non log |A| for some small Xon, yielding improve-

ments over Theorem 2. This shows that actor-critic methods
can benefit from hybrid data, achieving the provable gains in
sample efficiency compared to offline-only and online-only
learning observed by Li et al. (2023); Tan et al. (2024).

6. Numerical experiments
We provide two numerical experiments to empirically verify
our findings, with details deferred to Appendix H.
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Figure 2. Per-episode reward and cumulative regret of Algorithms
1 and 2, compared to a rare-switching version of LSVI-UCB (Jin
et al., 2019) on a linear MDP tetris task. Algorithm 1 outperforms
LSVI-UCB, and Alg. 2 catches up after some time, though all
achieve

√
T regret. Results averaged over 30 trials.

Optimism in linear MDPs. The first experiment exam-
ines Algorithms 1 and 2 in a linear MDP setting, in or-
der to validate if they indeed achieve

√
T regret in prac-

tice. Accordingly, we implement optimism with LSVI-UCB
bonuses (Jin et al., 2019) instead of global optimism as in
GOLF. We compare our algorithms to a rare-switching10

version of LSVI-UCB on a linear MDP tetris task (Tan et al.,
2024; Tan and Xu, 2024). The condition required for Algo-
rithm 1 to work holds here, as we do not clip the Q-function
estimates. Figure 2 shows that Algorithm 1 (surprisingly)
performs better than LSVI-UCB, and empirically illustrates
that Algorithm 2 also achieves

√
T regret even though it

performs slightly worse than LSVI-UCB.

Deep hybrid RL. We compare variants of Algorithms 3
and 4, that we call Algorithms 1H and 2H respectively, to
Cal-QL (Nakamoto et al., 2023). The differences are as
follows. Algorithms 1H and 2H employ offline pretraining
of both the actor and the critic, and the actor employs the
soft actor-critic (SAC) update from (Haarnoja et al., 2018).
Additionally, Algorithm 2H omits the policy resets. Like
Cal-QL, and unlike Algorithm 1H, Algorithm 2H takes
a maximum over 10 randomly sampled actions from the
policy to enhance exploration – approximately targeting π∗.

Algorithm 2H outperforms Cal-QL, which in turn slightly
outperforms Algorithm 1H. These results suggest that Al-
gorithms 1H and 2H remain highly competitive, and may
perform just as well as the state of the art in hybrid RL
(Cal-QL) – even without the use of pessimism. Our results
support our theoretical findings that hybrid RL allows for
computationally efficient actor-critic algorithms.

10Implemented with the doubling determinant method used in
(He et al., 2023). This incurs at most a dH log T switching cost.

Figure 3. Comparison of Cal-QL (Nakamoto et al., 2023), Alg.
1H, and Alg. 2H on the antmaze-medium-diverse-v2 task.
Alg. 2H outperforms both Cal-QL and Alg. 1H, suggesting that
hybrid RL enables efficient exploration without pessimism. Eval-
uation plots show offline pretraining in the first 1000 steps. All
plots are exponentially smoothed.

7. Conclusions and Future Work
We resolve an open problem in the online RL literature by
designing an actor-critic method in Algorithm 2 with general
function approximation that achieves 1/ϵ2 (and matching√
T regret) without making any reachability or coverage

assumptions. This was achieved through several key in-
gredients in the algorithm design. By (1) performing opti-
mistic exploration, (2) learning a critic off-policy without
throwing away any data, (3) having the critic target Q∗

instead of Qπ(t)

to ensure sufficient optimism and enable
rare-switching critic updates, and (4) performing policy re-
sets to control the deviation of the current policy from the
greedy policy, we achieve the desired result in Theorem 2.

We resolve another open problem in hybrid RL with a non-
optimistic, provably efficient actor-critic algorithm requiring
Noff ≥ c∗off(F ,Π)dH4/ϵ2 offline samples. Together with
Theorem 4, this shows hybrid RL enables sample efficiency
via optimism and computational efficiency without it.

While Algorithm 2 is generally computationally inefficient,
the insights gained are promising for empirical applications.
Optimism, crucial for strategic exploration, can be imple-
mented via linear bonuses (Agarwal et al., 2020), count-
based methods (Martin et al., 2017), randomized value func-
tions (Osband et al., 2019), or random latent exploration
(Mahankali et al., 2024). An off-policy critic can lever-
age DDQN (van Hasselt et al., 2015), updating only on
high TD error. Optimistic TD3 (Fujimoto et al., 2018) with
rare-switching updates and resets is particularly promising.
Further numerical experiments would be valuable.

One might incorporate rarely-updated bonus functions
(Agarwal et al., 2022; Zhao et al., 2023), updating the base
critic each episode. This may achieve optimism without
targeting Q∗ if sums of Q-functions approximate scaled
Q-functions. Extending He et al. (2023) to study minimax-
optimal policy optimization in linear MDPs as Wu et al.
(2022) did for tabular MDPs, is another valuable direction.
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A. Proofs for Theorem 1
We prove a regret bound for Algorithm 1 here. This algorithm achieves sublinear regret only when the covering number of
the function class does not increase linearly with the number of critic updates.

A.1. Regret decomposition

We first work with the following regret decomposition below. This is the same regret decomposition as that of Cai et al.
(2024) and Zhong and Zhang (2023), and we provide the proof for completeness.

Lemma 3 (Regret Decomposition For Qπ-Targeting Actor-Critics). The regret at time T yields the following decomposition

Reg(T ) =

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h (sh, ·) , π∗

h (· | sh)− π
(t)
h (· | sh)

〉]
−

T∑
t=1

H∑
h=1

Eπ∗

[(
f
(t)
h − T

π∗

h f
(t)
h+1

)
(sh, ah)

]
+

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
.

Proof. By adding and subtracting f
(t)
1 (s

(t)
1 , π

(t)
1 (s

(t)
1 )), we obtain

Reg(T ) =
T∑

t=1

(
V ∗
1 (s

(t)
1 )− V π(t)

1 (s
(t)
1 )
)

=

T∑
t=1

(
V ∗
1 (s

(t)
1 )− f

(t)
1 (s

(t)
1 , π

(t)
1 (s

(t)
1 ))

)
+

T∑
t=1

(
f
(t)
1 (s

(t)
1 , π

(t)
1 (s

(t)
1 ))− V π(t)

1 (s
(t)
1 )
)
. (3)

We can now apply the value difference lemma/generalized policy difference lemma in Lemma 23 (Cai et al., 2024; Efroni
et al., 2020) with f (t) as the Q-function, π′ = π∗, and π = π(t) to find that

T∑
t=1

(
V ∗
1 (s

(t)
1 )− f

(t)
1 (s

(t)
1 , π

(t)
1 (s

(t)
1 ))

)
=

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h (sh, ·) , π∗

h (· | sh)− π
(t)
h (· | sh)

〉]
−

T∑
t=1

H∑
h=1

Eπ∗

[(
f
(t)
h − T

π∗

h f
(t)
h+1

)
(sh, ah)

]
. (4)

Another application of Lemma 23 with π = π′ = π(t) and with f (t) as the Q-function yields

T∑
t=1

(
f
(t)
1 (s

(t)
1 , π

(t)
1 (s

(t)
1 ))− V π(t)

1 (s
(t)
1 )
)

=

T∑
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H∑
h=1

Eπ(t)

[〈
f
(t)
h (sh, ·) , π(t)

h (· | sh)− π
(t)
h (· | sh)

〉]
+

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
=

T∑
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H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
. (5)

Plugging (4) and (5) into (3) concludes the proof.

A.2. Bounding the tracking error

The first term is bounded by
√

H4T log |A|, as we see in the following lemma. This lemma is the standard mirror descent
regret bound, and is a similar argument to lemmas found in Liu et al. (2023b) and Cai et al. (2024).
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Lemma 4 (Mirror Descent Tracking Error for Algorithm 1). Let π(1) ∝ 1 and consider updating policies with respect to a
set of Q-function estimates f (1), ..., f (T ) by

π
(t+1)
h+1 (·|s′) =

π
(t)
h+1(·|s′) exp(ηf

(t)
h+1(s

′, ·))∑
a∈A π

(t)
h+1(a|s′) exp(ηf

(t)
h+1(s

′, a))
= Z−1π

(t)
h+1(·|s

′) exp(ηf
(t)
h+1(s

′, ·)). (6)

The tracking error with respect to the optimal policy is then bounded by:

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h (sh, ·) , π∗

h (· | sh)− π
(t)
h (· | sh)

〉]
≤ ηH3T/2 +

H log |A|
η

.

Proof. Rearranging (6) yields

ηf
(t)
h+1(s

′, ·) = logZ + log π
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h+1 (·|s′)− log π

(t)
h+1(·|s

′),

where logZ is

logZ = log

(∑
a∈A

π
(t)
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′) exp(ηf
(t)
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′, a))

)
.

We can now bound, noting that
∑

a∈A

(
π∗
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)
= 0, that〈
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〉
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h+1 (·|s′)

〉
=
〈
log π
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h+1 (·|s′)− log π

(t)
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〉
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(
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(
π∗
h+1(·|s′) || π
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π
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, (7)

where the last line follows directly from Lemma 24 by setting π = π
(t+1)
h+1 (·|s′), π1 = π⋆

h+1(·|s′) and π2 = π
(t)
h+1(·|s′). As

a result, we can bound the desired inner product as follows,〈
ηf
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′)
〉

=
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′)||1, (8)

where the last line follows directly from (7). Summing up the inner product bounded in (8), we derive that
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f
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Now we apply Pinsker’s inequality and note that

KL(π(t+1)
h+1 (·|s′)||π(t)

h+1(·|s
′)) ≥ ∥π(t+1)

h+1 (·|s′)− π
(t)
h+1(·|s

′)∥21/2, (10)

and plugging (10) into (9) yields that

T∑
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f
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where we use the fact that maxx∈R
{
−x2/2 + ηHx

}
= η2H2/2 in the last line. Continuing to simplify this expression

yields
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where the last inequality follows from the fact that the KL-divergence is non-negative as well as noting that π(1) is the
uniform policy, so that the KL divergence can be bounded as

KL
(
π∗
h+1(·|s′) || π

(1)
h+1(·|s

′)
)
=
∑
a∈A
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= log |A|. (13)

A.3. Asserting optimism

Lemma 5 (Negative Bellman Error, Algorithm 1). Within Algorithm 1, it holds that

−
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f
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h f
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Proof. First, we decompose the negative bellman error as follows
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h+1 − f

(t)
h

]
+

T∑
t=1

H∑
h=1

Eπ∗

[
T π∗

h f
(t)
h+1 − T

π(t)

h f
(t)
h+1

]
17
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=

T∑
t=1

H∑
h=1

Eπ∗

[
T π(t−1)

h f
(t)
h+1 − f

(t)
h

]
+

T∑
t=1

H∑
h=1

Eπ∗

[
T π(t)

h f
(t)
h+1 − T

π(t−1)

h f
(t)
h+1

]
+

T∑
t=1

H∑
h=1

Eπ∗

[
T π∗

h f
(t)
h+1 − T

π(t)

h f
(t)
h+1

]
. (14)

Here, using the result from Lemma 7 that f (t)
h ≥ T (t−1)

h f
(t)
h+1, we note that the first term is less than 0. We employ Lemma

25 with t1 = 1 and t2 = T to bound the second term by ηH3T . For the third term, we note that

T∑
t=1

H∑
h=1

Eπ∗

[
T π∗

h f
(t)
h+1 − T

π(t)

h f
(t)
h+1

]
=

T∑
t=1

H∑
h=1

Eπ∗

[
rh(sh, ah) + f

(t)
h+1

(
sh+1, π

∗
h+1(sh+1)

)
− rh(sh, ah)− f

(t)
h+1

(
sh+1, π

(t)
h+1(sh+1)

)]
=

T∑
t=1

H∑
h=1

Eπ∗

[
f
(t)
h+1

(
sh+1, π

∗
h+1(sh+1)

)
− f

(t)
h+1

(
sh+1, π

(t)
h+1(sh+1)

)]
=

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h+1(sh+1, ·), π∗

h+1(·|sh+1)− π
(t)
h+1(·|sh+1)

〉]
. (15)

Replacing the last term in (14) with (15) concludes the proof.

A.4. Bounding the Bellman error under the learned policies

Lemma 6 (Bellman Error Under Policy Occupancy, Algorithm 1). Within Algorithm 1, it holds that

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
≤
√
βH4TSEC(F ,Π, T ) + ηH3T

with probability at least 1− δ, where β = Θ
(
log
(
TGNF,(T II)TF (1/T )/δ

))
.

Proof. We first decompose the Bellman error

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
=

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t−1)

h f
(t)
h+1

)
(sh, ah)

]
+

T∑
t=1

H∑
h=1

Eπ(t)

[(
T π(t−1)

h f
(t)
h+1 − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
=

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t−1)

h f
(t)
h+1

)
(sh, ah)

]
+ ηH3T, (16)

where the last line holds by Lemma 25. We will further bound the first term by applying Cauchy-Schwarz inequality, and we
will see that

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t−1)

h f
(t)
h+1

)
(sh, ah)

]

=

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t−1)

h f
(t)
h+1

)
(sh, ah)

]H2 ∨
∑t−1

i=1 Eπ(i)

[(
f
(t)
h − T π(t−1)

h f
(t)
h+1

)2]
H2 ∨

∑t−1
i=1 Eπ(i)

[(
f
(t)
h − T π(t−1)

h f
(t)
h+1

)2]


1/2
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≤

√√√√√√√
T∑

t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T π(t−1)

h f
(t)
h+1

)]2
H2 ∨

∑t−1
i=1 Eπ(i)

[(
f
(t)
h − T π(t−1)

h f
(t)
h+1

)2]
√√√√ T∑

t=1

H∑
h=1

H2 ∨
t−1∑
i=1

Eπ(i)

[(
f
(t)
h − T π(t−1)

h f
(t)
h+1

)2]
, (17)

where the last step follows from Cauchy-Schwarz inequality. Within the last inequality, the first term can be bounded by H
times the SEC of Xie et al. (2022), by the very definition of the SEC in Definition 2. The second term is bounded by Lemma
14, where β = Θ

(
log
(
TGNF,(T II)TF (1/T )/δ

))
. Putting these bounds into (17), we obtain that

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t−1)

h f
(t)
h+1

)
(sh, ah)

]
≤
√

HSEC(F ,Π, T )
√
βH3T ≤

√
βH4TSEC(F ,Π, T ). (18)

Plugging (18) into (16), we finally obtain that

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
≤
√
βH4TSEC(F ,Π, T ) + ηH3T. (19)

A.5. Auxiliary lemmas

A.5.1. SHOWING OPTIMISM FOR CRITICS TARGETING Qπ(t)

We prove the following lemma in more generality than is needed for Algorithm 1, accomodating critic updates that are rarer
than in every episode, with the aim to use the more general result in future sections. This can be thought of as an analogue
of Lemma 15 in Xie et al. (2022), which is also Lemmas 39 and 40 in Jin et al. (2021).

Lemma 7 (Optimism and in-sample error control for critics targeting Qπ(t)

). Let tlast be the time of the last critic update
before episode t. Consider a critic targeting Qπ(t)

as in Algorithm 1. With probability at least 1− δ, for all t ∈ [T ], we
have that for all h = 1, . . . ,H

(i) T π(tlast)

h f
(t)
h+1 ∈ F

(t)
h , and so f

(t)
h ≥ T π(tlast)

h f
(t)
h+1,

(ii)
t−1∑
i=1

E
dπ(i)

[(
f
(t)
h − T

π(t−1)

h f
(t)
h+1

)2]
≤ O

(
H2β

)
,

by choosing β = c1(log[HTNF,(T Π)TF (ρ)/δ]) for some constant c1.

Proof. We note that it does not hold that Q∗ ∈ F (t), as our Bellman operator is given by the operator T π(t)

h under policy
π(t) and not the greedy policy under f (t). Furthermore, as we do not throw away samples not in the current batch as Liu
et al. (2023b) do, we do not enjoy the same conditional independence of dataset and next-step value functions. We therefore
take a different approach, of modifying the analysis of Xiong et al. (2023) to the policy gradient setting in order to do so.

By Lemma 17 applied to policy π(t), for any h ∈ [H] and t ∈ [T ], we have with probability 1− δ that

0 ≤ L(t,π(t))
h (T π(t)

h f
(t)
h+1, f

(t)
h+1)− min

f ′
h∈Fh

L(t)
h (f ′

h, f
(t)
h+1) ≤ H2β. (20)

We construct the confidence sets only at timesteps tk where switches occur:

F (tlast,π
(tlast))

h :=

{
f ∈ F : L(tlast,π

(tlast))
h (fh, fh+1)− min

f ′
h∈Fh

L(tlast,π
(tlast))

h (f ′
h, fh+1) ≤ H2β ∀h ∈ [H]

}
. (21)

It must then follow that T π(tk)

h fh+1 ∈ F (tk)
h for any f ∈ F and tk. Now, we want to establish that

T π(tlast)

h f
(t)
h+1 ≤ sup

fh∈F(tlast)
h

fh (s, a) = f
(t)
h . (22)
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Further recall that we have defined

F (tlast)
h :=

{
f ∈ F : L(tlast)

h (fh, fh+1)− min
f ′
h∈Fh

L(tlast)
h (f ′

h, fh+1) ≤ H2β ∀h ∈ [H]

}
.

So we can apply Lemma 17 on tlast, f
(t)
h+1, and π(t) to find that

0 ≤ L(tlast)
h (T π(tlast)

h f
(t)
h+1, f

(t)
h+1)− min

f ′
h∈Fh

L(tlast)
h (f ′

h, f
(t)
h+1) ≤ H2β. (23)

It then holds that
T π(tlast)

h f
(t)
h+1 ∈ F

tlast
h , and so T π(tlast)

h f
(t)
h+1 ≤ sup

fh∈F(tlast)
h

fh (s, a) = f
(t)
h .

The second result can now be shown by Lemma 18 using a similar argument to the proof of Theorem 1 in Xiong et al.
(2023), which in turn takes inspiration from the proofs of Lemmas 39 and 40 in Jin et al. (2021). We elaborate accordingly.

Consider two cases, one where we perform an update at episode t− 1 and one where we do not. If we perform an update at
episode t− 1, then by the construction of F (t−1) it must hold that

L(t−1,π(t−1))
h

(
f
(t)
h , f

(t)
h+1

)
− min

f ′
h∈Fh

L(t−1,π(t−1))
h

(
f ′
h, f

(t)
h+1

)
≤ H2β,

and by Lemma 17 it must also hold that

0 ≤ L(t−1,π(t−1))
h

(
T π(t−1)

h f
(t)
h , f

(t)
h+1

)
− min

f ′
h∈Fh

L(t−1,π(t−1))
h

(
f ′
h, f

(t)
h+1

)
≤ H2β.

One can then see that

L(t−1,π(t−1))
h

(
f
(t)
h , f

(t)
h+1

)
− L(t−1,π(t−1))

h

(
T π(t−1)

h f
(t)
h , f

(t)
h+1

)
≤ 6H2β. (24)

The same holds for the other case where we do not perform an update at episode t− 1. Observe that because we did not
perform an update,

L(t−1,π(t−1))
h

(
f
(t−1)
h , f

(t−1)
h+1

)
− min

f ′
h∈Fh

L(t−1,π(t−1))
h

(
f ′
h, f

(t−1)
h+1

)
≤ 5H2β.

From Lemma 17, it also holds that

L(t−1,π(t−1))
h

(
T π(t−1)

h f
(t−1)
h , f

(t−1)
h+1

)
− min

f ′
h∈Fh

L(t−1,π(t−1))
h

(
f ′
h, f

(t−1)
h+1

)
≤ H2β.

Putting the above two statements together and using that f (t) = f (t−1) again yields

L(t−1,π(t−1))
h

(
f
(t)
h , f

(t)
h+1

)
− L(t−1,π(t−1))

h

(
T π(t−1)

h f
(t)
h , f

(t)
h+1

)
= L(t−1,π(t−1))

h

(
f
(t−1)
h , f

(t−1)
h+1

)
− L(t−1,π(t−1))

h

(
T π(t−1)

h f
(t−1)
h , f

(t−1)
h+1

)
≤ 6H2β. (25)

An application of Lemma 18 to both cases then yields in either case that

t−1∑
i=1

(
f
(t)
h − T

π(t−1)

h f
(t)
h+1

)2
(s

(t)
h , a

(t)
h ) ≤ 7H2β, (26)

and also that
t−1∑
i=1

E
d
(i)
h

[(
f
(t)
h − T

π(t−1)

h f
(t)
h+1

)2]
≤ 7H2β. (27)
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A.5.2. BOUND ON COVERING NUMBER OF VALUE FUNCTION CLASS (PROOF OF LEMMA 1)

The proof is similar to that of Lemma B.2 in Zhong and Zhang (2023), but we strengthen the result to show that the
covering number increases only in the number of critic updates, not policy updates. As in Zhong and Zhang (2023), let
F (tk)

ρ2/16ηKH2T,h be a minimal ρ2/16ηKH2T -net of F (tk)
h for all k. So for any π ∝ exp(η

∑K
i=1(ti − ti−1)f

(ti)
h ) with

f
(ti)
h ∈ F (ti)

h , there exists some f̂
(ti)
h ∈ F (tk)

ρ2/16ηKH2T,h so

sup
s,a
|f (ti)

h (s, a)− f̂
(ti)
h (s, a)| ≤ ρ2

16ηKH2T
for all i ∈ [K].

It then holds that

sup
s,a

∣∣∣∣∣η
K∑
i=1

(ti − ti−1)f
(ti)
h (s, a)− η

K∑
i=1

(ti − ti−1)f̂
(ti)
h (s, a)

∣∣∣∣∣ ≤ η

K∑
i=1

(ti − ti−1) sup
s,a
|f (ti)

h (s, a)− f̂
(ti)
h (s, a)|

≤ ηT

K∑
i=1

sup
s,a
|f (ti)

h (s, a)− f̂
(ti)
h (s, a)| ≤ ρ2

16H2
. (28)

Now we invoke Lemma B.3 of Zhong and Zhang (2023), provided as Lemma 21 for completeness, to show that

sup
s
||π(·|s)− π′(·|s)||1 ≤ 2

√√√√sup
s,a

∣∣∣∣∣η
K∑
i=1

(ti − ti−1)f
(ti)
h (s, a)− η

K∑
i=1

(ti − ti−1)f̂
(ti)
h (s, a)

∣∣∣∣∣ ≤ ρ

2H
. (29)

It then holds that

N
Π

(T )
h

(ρ/2H) ≤
K∏
i=1

NF(ti)

h

(ρ2/16ηKH2T ). (30)

The bound for NA(ρ/2H) follows from discretizing the action space A via a covering number argument, and observing
that the covering number of an NA(ρ)-dimensional probability distribution is on the order of NA(ρ).

A.5.3. CLOSURE UNDER TRUNCATED SUMS LIMITS POLICY CLASS GROWTH (PROOF OF LEMMA 2)

Let Fρ2/16ηTH2 be a minimal ρ2/16ηTH2-net of F . Then, for all fh ∈ F , there exists some f̂h ∈ Fρ2/16ηTH2 such that

sup
s,a
|fh(s, a)− f̂h(s, a)| ≤

ρ2

16ηTH2
.

As F is closed under truncated sums, it then holds that there exists some f ′ ∈ F such that

sup
s,a

∣∣∣∣∣η
T∑

t=1

f
(t)
h (s, a)− η

T∑
t=1

f̂h(s, a)

∣∣∣∣∣ = sup
s,a

∣∣∣∣∣η
T∑

t=1

min{max{f (t)
h (s, a), 0}, H} − η

T∑
t=1

f̂h(s, a)

∣∣∣∣∣
= sup

s,a

∣∣∣ηTf ′
h(s, a)− ηT f̂h(s, a)

∣∣∣ ≤ ρ2

16H2
. (31)

The result then follows from Lemma 20 and Lemma 21. That is, Lemma 21 shows that

sup
s
||π(·|s)− π′(·|s)||1 ≤ 2

√√√√sup
s,a

∣∣∣∣∣η
T∑

t=1

f
(t)
h (s, a)− η

T∑
t=1

f̂
(t)
h (s, a)

∣∣∣∣∣ ≤ ρ

2H
, (32)

it then holds that

N
Π

(T )
h

(ρ/2H) ≤ NF (ρ
2/16ηTH2), (33)

and the result directly follows from Lemma 20.
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B. Proofs for Theorem 2
Recall the motivation for this solution:

1. Optimism allows one to perform strategic exploration, addressing the issue of exploration vs. exploitation, and
allowing us to avoid making reachability or coverage assumptions.

2. Off-policy learning avoids throwing away any samples, ensuring that no samples are wasted.

3. Do rare-switching critic updates work? A-priori, introducing rare-switching critic updates as in Xiong et al. (2023)
offers an appealing solution to the covering number issue. However, the Bellman operator with respect to π(t) has
a very limited form of optimism. Furthermore, it is difficult to control the number of rare-switching updates in the
context of general function approximation, where we make an update when the Bellman error with respect to the
current policy is large, as the current policy keeps changing and so we track a moving target.

4. Letting the critic target Q∗ and not Qπ ensures sufficient optimism, as the Bellman operator is now the same at every
iteration. Further, as the critic targets Q∗, we do not need to control logN(T Π)TF (ρ), as the Bellman operator for the
greedy policy is a contraction.

5. Rare-switching critic updates now work. However, this introduces an additional term, where we need to bound
the deviation of the current policy from its target, the greedy policy with regard to the current critic. Re-introducing
rare-switching critic updates resolves this, as now we allow the actor sufficient time to catch up to the critic updates.
Controlling the number of critic updates is not an issue when the critic targets Q∗, as the Bellman operator is now the
same at every iteration. This is reminiscent of the delayed target Q-function trick common in deep RL (Lillicrap et al.,
2019; Fujimoto et al., 2018).

6. Policy resets. However, going through the mirror descent proof to control the additional error results in an additional
term bounded by

∑Nupdates

k=1 log(1/π(tk)). This term can be controlled by resetting the policy to the uniform policy upon
every critic update. As critic updates are rare, on the order of dH log T , the additional error incurred is very small.
This trick was adopted independently by Cassel and Rosenberg (2024) for the same reason.

7. Increased learning rate. We increase the learning rate accordingly by a factor of
√
dH log T , exactly the square root

of the number of critic updates/policy resets. This is done to mitigate the increase in regret incurred by the policy resets
by a factor of

√
dH log T . This can be seen as making more aggressive updates to make up for the lost ground due to

policy resets when the critic makes a rare but large update.

Given the above, we are now in a position to continue our analysis below.

B.1. Regret decomposition

We employ the following regret decomposition below. This is a slightly different regret decomposition than that of Cai et al.
(2024) and Zhong and Zhang (2023), as our critic targets Q∗.

Lemma 8 (Regret Decomposition For Q∗-Targeting Actor-Critics).

Reg(T ) =

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h (sh, ·) , π∗

h (· | sh)− π
(t)
h (· | sh)

〉]
−

T∑
t=1

H∑
h=1

Eπ∗

[(
f
(t)
h − T

π∗

h f
(t)
h+1

)
(sh, ah)

]
+

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − Thf

(t)
h+1

)
(sh, ah)

]
+

T∑
t=1

H∑
h=1

Eπ(t)

[〈
f
(t)
h+1(sh+1, ·), πf(t)

h+1(·|sh+1)− π
(t)
h+1(·|sh+1)

〉]
.

Proof. By adding and subtracting f
(t)
1 (s

(t)
1 , π

(t)
1 (s

(t)
1 )), we obtain

Reg(T ) =
T∑

t=1

(
V ∗
1 (s

(t)
1 )− V π(t)

1 (s
(t)
1 )
)

=

T∑
t=1

(
V ∗
1 (s

(t)
1 )− f

(t)
1 (s

(t)
1 , π

(t)
1 (s

(t)
1 ))

)
+

T∑
t=1

(
f
(t)
1 (s

(t)
1 , π

(t)
1 (s

(t)
1 ))− V π(t)

1 (s
(t)
1 )
)
. (34)
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To further decompose the two terms in (34), we apply the value difference lemma/generalized policy difference lemma in
Lemma 23 (Cai et al., 2024; Efroni et al., 2020) with f (t) as the Q-function, π′ = π∗, and π = π(t) to find that the first term
can written as

T∑
t=1

(
V ∗
1 (s

(t)
1 )− f

(t)
1 (s

(t)
1 , π

(t)
1 (s

(t)
1 ))

)
=

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h (sh, ·) , π∗

h (· | sh)− π
(t)
h (· | sh)

〉]
−

T∑
t=1

H∑
h=1

Eπ∗

[(
f
(t)
h − T

π∗

h f
(t)
h+1

)
(sh, ah)

]
. (35)

Another application of Lemma 23 with π = π′ = π(t) and with f (t) as the Q-function yields
T∑

t=1

(
f
(t)
1 (s

(t)
1 , π

(t)
1 (s

(t)
1 ))− V π(t)

1 (s
(t)
1 )
)

=

T∑
t=1

H∑
h=1

Eπ(t)

[〈
f
(t)
h (sh, ·) , π(t)

h (· | sh)− π
(t)
h (· | sh)

〉]
+

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
=

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
. (36)

We now need to relate the Bellman operator with respect to the current policy T π(t)

h to the Bellman operator Th. Observe
that

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
=

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − Thf

(t)
h+1

)
(sh, ah)

]
+

T∑
t=1

H∑
h=1

Eπ(t)

[(
Thf (t)

h+1 − T
π(t)

h f
(t)
h+1

)
(sh, ah)

]
. (37)

We further decompose the second term in the following way

Eπ(t)

[(
Thf (t)

h+1 − T
π(t)

h f
(t)
h+1

)
(sh, ah)

]
= Eπ(t)

[
rh(sh, ah) + f

(t)
h+1

(
sh+1, π

f(t)

h+1(sh+1)
)
− rh(sh, ah)− f

(t)
h+1

(
sh+1, π

(t)
h+1(sh+1)

)]
= Eπ(t)

[
f
(t)
h+1

(
sh+1, π

f(t)

h+1(sh+1)
)
− f

(t)
h+1

(
sh+1, π

(t)
h+1(sh+1)

)]
= Eπ(t)

[〈
f
(t)
h+1(sh+1, ·), πf(t)

h+1(·|sh+1)− π
(t)
h+1(·|sh+1)

〉]
. (38)

Replacing the original terms in (34) by (35), (37) and (38) concludes the proof.

Each term within the regret decomposition is dealt with differently. We bound the first term via the standard mirror descent
analysis, the second term with optimism, the third term with the GOLF regret decomposition and the SEC of Xie et al.
(2022), and the fourth term via a modified mirror descent analysis.

The attentive reader will note that the Bellman error is defined as f − T f in our setup and that of Liu et al. (2023b), and
T f − f in that of Zhong and Zhang (2023).

B.2. Bounding the tracking error

Lemma 9 (Mirror Descent Tracking Error for Algorithm 2). Let tk and tk+1 be switch times within Algorithm 2, where we
use the convention that π(tk) ∝ 1 is post-policy reset and π(tk+1) ̸∝ 1 is pre-policy reset. The tracking error with respect to
the optimal policy is then bounded by:

tk+1−1∑
t=tk+1

H∑
h=1

Eπ∗

[〈
f
(t)
h (sh, ·) , π∗

h (· | sh)− π
(t)
h (· | sh)

〉]
≤ ηH3(tk+1 − tk)/2 +

H log |A|
η

+H2.
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Proof. Note that for any t such that tk + 1 ≤ t ≤ tk+1 − 1, as we do not reset the policy during these timesteps as the critic
does not change, we have

π
(t+1)
h+1 (·|s′) =

π
(t)
h+1(·|s′) exp(ηf

(t)
h+1(s

′, ·))∑
a∈A π

(t)
h+1(a|s′) exp(ηf

(t)
h+1(s

′, a))
= Z−1π

(t)
h+1(·|s

′) exp(ηf
(t)
h+1(s

′, ·)). (39)

Rearranging this yields
ηf

(t)
h+1(s

′, ·) = logZ + log π
(t+1)
h+1 (·|s′)− log π

(t)
h+1(·|s

′),

where logZ is

logZ = log

(∑
a∈A

π
(t)
h+1(a|s

′) exp(ηf
(t)
h+1(s

′, a))

)
.

We can now bound, noting that
∑

a∈A

(
π∗
h+1(·|s′)− π

(t+1)
h+1 (·|s′)

)
= 0, that〈

ηf
(t)
h+1(s

′, ·), π∗
h+1(·|s′)− π

(t+1)
h+1 (·|s′)

〉
=
〈
logZ + log π

(t+1)
h+1 (·|s′)− log π

(t)
h+1(·|s

′), π∗
h+1(·|s′)− π

(t+1)
h+1 (·|s′)

〉
=
〈
log π

(t+1)
h+1 (·|s′)− log π

(t)
h+1(·|s

′), π∗
h+1(·|s′)− π

(t+1)
h+1 (·|s′)

〉
= KL

(
π∗
h+1(·|s′) || π

(t)
h+1(·|s

′)
)
− KL

(
π∗
h+1(·|s′) || π

(t+1)
h+1 (·|s′)

)
− KL

(
π
(t+1)
h+1 (·|s′) || π(t)

h+1(·|s
′)
)
, (40)

where the last line follows from Lemma 24 with π1 = π∗
h+1(·|s′), π2 = π

(t)
h+1(·|s′) and π = π

(t+1)
h+1 (·|s′). So it must hold

that 〈
ηf

(t)
h+1(s

′, ·), π∗
h+1(·|s′)− π

(t)
h+1(·|s

′)
〉

=
〈
ηf

(t)
h+1(s

′, ·), π∗
h+1(·|s′)− π

(t+1)
h+1 (·|s′)

〉
−
〈
ηf

(t)
h+1(s

′, ·), π(t)
h+1(·|s

′)− π
(t+1)
h+1 (·|s′)

〉
≤ KL

(
π∗
h+1(·|s′) || π

(t)
h+1(·|s

′)
)
− KL

(
π∗
h+1(·|s′) || π

(t+1)
h+1 (·|s′)

)
− KL

(
π
(t+1)
h+1 (·|s′) || π(t)

h+1(·|s
′)
)

+ ηH||π(t+1)
h+1 (·|s′)− π

(t)
h+1(·|s

′)||1. (41)

Summing up t and h, we can then derive that

tk+1−1∑
t=tk+1

H∑
h=1

Eπ∗

[〈
f
(t)
h+1(s

′, ·), π∗
h+1(·|s′)− π

(t)
h+1(·|s

′)
〉]

=
1

η

tk+1−1∑
t=tk+1

H∑
h=1

Eπ∗

[〈
ηf

(t)
h+1(s

′, ·), π∗
h+1(·|s′)− π

(t)
h+1(·|s

′)
〉]

≤ 1

η

tk+1−1∑
t=tk+1

H∑
h=1

Eπ∗

[
KL
(
π∗
h+1(·|s′) || π

(t)
h+1(·|s

′)
)
− KL

(
π∗
h+1(·|s′) || π

(t+1)
h+1 (·|s′)

)
−KL

(
π
(t+1)
h+1 (·|s′) || π(t)

h+1(·|s
′)
)
+ ηH||π(t+1)

h+1 (·|s′)− π
(t)
h+1(·|s

′)||1
]
. (42)

Here, we apply Pinsker’s inequality on the last line of (42), it follows that

tk+1−1∑
t=tk+1

H∑
h=1

Eπ∗

[〈
f
(t)
h+1(s

′, ·), π∗
h+1(·|s′)− π

(t)
h+1(·|s

′)
〉]
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≤ 1

η

tk+1−1∑
t=tk+1

H∑
h=1

Eπ∗

[
KL
(
π∗
h+1(·|s′) || π

(t)
h+1(·|s

′)
)
− KL

(
π∗
h+1(·|s′) || π

(t+1)
h+1 (·|s′)

)
−||π(t+1)

h+1 (·|s′)− π
(t)
h+1(·|s

′)||21/2 + ηH||π(t+1)
h+1 (·|s′)− π

(t)
h+1(·|s

′)||1
]

≤ 1

η

tk+1−1∑
t=tk+1

H∑
h=1

Eπ∗

[
KL
(
π∗
h+1(·|s′) || π

(t)
h+1(·|s

′)
)
− KL

(
π∗
h+1(·|s′) || π

(t+1)
h+1 (·|s′)

)
+ η2H2/2

]
, (43)

where we use the fact that maxx∈R
{
−x2/2 + ηHx

}
= η2H2/2 in the last line. Continuing to simplify (43) yields

tk+1−1∑
t=tk+1

H∑
h=1

Eπ∗

[〈
f
(t)
h+1(s

′, ·), π∗
h+1(·|s′)− π

(t)
h+1(·|s

′)
〉]

≤
tk+1−1∑
t=tk+1

H∑
h=1

ηH2/2 + Eπ∗

KL
(
π∗
h+1(·|s′) || π

(t)
h+1(·|s′)

)
− KL

(
π∗
h+1(·|s′) || π

(t+1)
h+1 (·|s′)

)
η


≤ ηH3(tk+1 − tk)/2 +

H∑
h=1

KL
(
π∗
h+1(·|s′) || π

(tk+1)
h+1 (·|s′)

)
− KL

(
π∗
h+1(·|s′) || π

(tk+1)
h+1 (·|s′)

)
η

≤ ηH3(tk+1 − tk)/2 +
H log |A|

η
+H2, (44)

where the last inequality follows from the fact that the KL-divergence is non-negative as well as the policy reset of setting
π
(tk)
h back to the uniform policy after the critic update. Note that we use the convention that π(tk)

h is after the reset, and
π
(tk+1)
h is before the reset. This means that

1

|A| exp(ηH)
≤ exp(0)∑

a∈A exp(ηH)
≤ π

(tk+1)
h+1 (·|s′) =

exp(ηf
(t)
h+1(s

′, ·))∑
a∈A exp(ηf

(t)
h+1(s

′, a))
≤ exp(ηH)∑

a∈A exp(0)
=

exp(ηH)

|A|
,

and so we can conclude that

KL
(
π∗
h+1(·|s′) || π

(tk+1)
h+1 (·|s′)

)
≤ log

(
1

π
(tk+1)
h+1 (·|s′)

)
≤ log |A|+ ηH. (45)

B.3. Asserting optimism

Lemma 10 (Negative Bellman Error For Algorithm 2). Within Algorithm 2, we have that

−
T∑

t=1

H∑
h=1

Eπ∗

[
f
(t)
h − T

π∗

h f
(t)
h+1

]
≤ 0.

Proof. Applying Lemma 14, we note that f (t)
h ≥ T π∗

h f
(t)
h+1. The result then follows.

B.4. Bounding the Bellman error under the learned policies

We now turn our attention to the Bellman error with respect to Th under the current policy’s occupancy measure.
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Lemma 11 (Sum of Bellman Errors Under Algorithm 2). Within Algorithm 2, the sum of Bellman errors with respect to T
under the occupancy measure of π(t) can be bounded by:

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − Thf

(t)
h+1

)
(sh, ah)

]
≤
√
βH4TSEC(F ,Π, T ),

where β = Θ
(
log
(
HT 2NF,T F (1/T )/δ

))
.

Proof. We can now perform the same Cauchy-Schwarz and change of measure argument as in Xie et al. (2022) to find that

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − Thf

(t)
h+1

)
(sh, ah)

]
=

T∑
t=1

H∑
h=1

E
d
(t)
h

[δ
(t)
h ]

=

T∑
t=1

H∑
h=1

E
d
(t)
h

[δ
(t)
h ]

H2 ∨
∑t−1

i=1 Ed
(i)
h

[(δ
(t)
h )2]

H2 ∨
∑t−1

i=1 Ed
(i)
h

[(δ
(t)
h )2]

1/2

≤

√√√√√ T∑
t=1

H∑
h=1

E
d
(i)
h

[δ
(t)
h ]2

H2 ∨
∑t−1

i=1 Ed
(i)
h

[(δ
(t)
h )2]

√√√√ T∑
t=1

H∑
h=1

H2 ∨
t−1∑
i=1

E
d
(i)
h

[(δ
(t)
h )2].

(46)

Within the last inequality, the first term can be bounded by H times the SEC of Xie et al. (2022), by Definition 2. The
second term is bounded by Lemma 14. Therefore, (46) can be bounded as

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − Thf

(t)
h+1

)
(sh, ah)

]
≤
√
HSEC(F ,Π, T )

√
βH3T ≤

√
βH4TSEC(F ,Π, T ). (47)

Lemma 12 (Greedy Policy Tracking Error For Algorithm 2). Let tk and tk+1 be switch times within Algorithm 2, where we
use the convention that π(tk) ∝ 1 is post-policy reset and π(tk+1) ̸∝ 1 is pre-policy reset. The tracking error with respect to
the greedy policy corresponding to the current critic is then bounded by:

tk+1−1∑
t=tk+1

H∑
h=1

E
d
(t)
h

[〈
f
(t)
h+1(s

′, ·), πf(t)

h+1(·|s
′)− π

(t)
h+1(·|s

′)
〉]
≤ ηH3(tk+1 − tk)/2 +

H log |A|
η

+H2.

Proof. Again note that for any t such that tk + 1 ≤ t ≤ tk+1, we do not reset the policy during these timesteps as the critic
does not change. We therefore have

π
(t+1)
h+1 (·|s′) =

π
(t)
h+1(·|s′) exp(ηf

(t)
h+1(s

′, ·))∑
a∈A π

(t)
h+1(a|s′) exp(ηf

(t)
h+1(s

′, a))
= Z−1

t π
(t)
h+1(·|s

′) exp(ηf
(t)
h+1(s

′, ·)), (48)

and rearranging this yields
ηf

(t)
h+1(s

′, ·) = logZt + log π
(t+1)
h+1 (·|s′)− log π

(t)
h+1(·|s

′),

where logZt is

logZt = log

(∑
a∈A

π
(t)
h+1(a|s

′) exp(ηf
(t)
h+1(s

′, a))

)
= log π

(t)
h+1(·|s

′)− log π
(t+1)
h+1 (·|s′) + ηf

(t)
h+1(s

′, ·).

Noting that
∑

a∈A
(
πh+1(·|s′)− π′

h+1(·|s′)
)
= 0 for any two policies π, π′ ∈ Π, we can now bound〈

ηf
(t)
h+1(s

′, ·), πf(t)

h+1(·|s
′)− π

(t+1)
h+1 (·|s′)

〉
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=
〈
logZ + log π

(t+1)
h+1 (·|s′)− log π

(t)
h+1(·|s

′), πf(t)

h+1(·|s
′)− π

(t+1)
h+1 (·|s′)

〉
=
〈
log π

(t+1)
h+1 (·|s′)− log π

(t)
h+1(·|s

′), πf(t)

h+1(·|s
′)− π

(t+1)
h+1 (·|s′)

〉
= KL

(
πf(t)

h+1(·|s
′) || π(t)

h+1(·|s
′)
)
− KL

(
πf(t)

h+1(·|s
′) || π(t+1)

h+1 (·|s′)
)
− KL

(
π
(t+1)
h+1 (·|s′) || π(t)

h+1(·|s
′)
)
, (49)

where the last line follows from Lemma 24. So it satisfies that〈
ηf

(t)
h+1(s

′, ·), πf(t)

h+1(·|s
′)− π

(t)
h+1(·|s

′)
〉

=
〈
ηf

(t)
h+1(s

′, ·), πf(t)

h+1(·|s
′)− π

(t+1)
h+1 (·|s′)

〉
−
〈
ηf

(t)
h+1(s

′, ·), π(t)
h+1(·|s

′)− π
(t+1)
h+1 (·|s′)

〉
≤ KL

(
πf(t)

h+1(·|s
′) || π(t)

h+1(·|s
′)
)
− KL

(
πf(t)

h+1(·|s
′) || π(t+1)

h+1 (·|s′)
)
− KL

(
π
(t+1)
h+1 (·|s′) || π(t)

h+1(·|s
′)
)

+ ηH||π(t+1)
h+1 (·|s′)− π

(t)
h+1(·|s

′)||1. (50)

Sum up with t and h, we can then derive

tk+1−1∑
t=tk+1

H∑
h=1

E
d
(t)
h

[〈
f
(t)
h+1(s

′, ·), πf(t)

h+1(·|s
′)− π

(t)
h+1(·|s

′)
〉]

=
1

η

tk+1−1∑
t=tk+1

H∑
h=1

E
d
(t)
h

[〈
ηf

(t)
h+1(s

′, ·), πf(t)

h+1(·|s
′)− π

(t)
h+1(·|s

′)
〉]

≤ 1

η

tk+1−1∑
t=tk+1

H∑
h=1

E
d
(t)
h

[
KL
(
πf(t)

h+1(·|s
′) || π(t)

h+1(·|s
′)
)
− KL

(
πf(t)

h+1(·|s
′) || π(t+1)

h+1 (·|s′)
)

−KL
(
π
(t+1)
h+1 (·|s′) || π(t)

h+1(·|s
′)
)
+ ηH||π(t+1)

h+1 (·|s′)− π
(t)
h+1(·|s

′)||1
]
. (51)

When applying Pinsker’s inequality in the last line of (51), we can show that

tk+1−1∑
t=tk+1

H∑
h=1

E
d
(t)
h

[〈
f
(t)
h+1(s

′, ·), πf(t)

h+1(·|s
′)− π

(t)
h+1(·|s

′)
〉]

≤ 1

η

tk+1−1∑
t=tk+1

H∑
h=1

E
d
(t)
h

[
KL
(
πf(t)

h+1(·|s
′) || π(t)

h+1(·|s
′)
)
− KL

(
πf(t)

h+1(·|s
′) || π(t+1)

h+1 (·|s′)
)

−||π(t+1)
h+1 (·|s′)− π

(t)
h+1(·|s

′)||21/2 + ηH||π(t+1)
h+1 (·|s′)− π

(t)
h+1(·|s

′)||1
]
. (52)

Here, we use the fact that maxx∈R
{
−x2/2 + ηHx

}
= η2H2/2, and obtain that

−||π(t+1)
h+1 (·|s′)− π

(t)
h+1(·|s

′)||21/2 + ηH||π(t+1)
h+1 (·|s′)− π

(t)
h+1(·|s

′)||1 ≤ η2H2/2.

We now can continue through the following. Note that f (tk+1) = ...f (t) = ... = f (tk+1) due to rare-switching. With a direct
calculation, we obtain that

tk+1−1∑
t=tk+1

E
d
(t)
h

KL
(
πf(t)

h+1(·|s′) || π
(t)
h+1(·|s′)

)
− KL

(
πf(t)

h+1(·|s′) || π
(t+1)
h+1 (·|s′)

)
η


=

tk+1−1∑
t=tk+1

E
d
(t)
h

KL
(
πf(tk+1)

h+1 (·|s′) || π(t)
h+1(·|s′)

)
− KL

(
πf(tk+1)

h+1 (·|s′) || π(t+1)
h+1 (·|s′)

)
η


= E

d
(t)
h

KL
(
πf(tk+1)

h+1 (·|s′) || π(tk+1)
h+1 (·|s′)

)
− KL

(
πf(tk+1)

h+1 (·|s′) || π(tk+1)
h+1 (·|s′)

)
η

 . (53)
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Furthermore, there exists some a∗(s′) for each s′ such that

a∗(s) = argmax
a′∈A

f
(t)
h+1(s

′, a′) for all tk + 1 ≤ t ≤ tk+1,

hence that πf
h(a

′|s) = 1 (a′ = argmaxa∈A fh(s, a)). This yields

E
d
(t)
h

KL
(
πf(tk+1)

h+1 (·|s′) || π(tk+1)
h+1 (·|s′)

)
− KL

(
πf(tk+1)

h+1 (·|s′) || π(tk+1)
h+1 (·|s′)

)
η


=

1

η
E
d
(t)
h

[
1 · log

(
1

π
(tk+1)
h+1 (a∗(s′)|s′)

)
− 1 · log

(
1

π
(tk+1)
h+1 (a∗(s′)|s′)

)]

=
1

η
E
d
(t)
h

[
log

(
π
(tk+1)
h+1 (a∗(s′)|s′)

π
(tk+1)
h+1 (a∗(s′)|s′)

)]
. (54)

For this term, we note that π(tk)
h is back to the uniform policy after the critic update. Note that we use the convention that

π
(tk)
h is before the reset, and π

(tk+1)
h is after the reset. This means that

1

|A| exp(ηH)
≤ exp(0)∑

a∈A exp(ηH)
≤ π

(tk+1)
h+1 (·|s′) =

exp(ηf
(t)
h+1(s

′, ·))∑
a∈A exp(ηf

(t)
h+1(s

′, a))
≤ exp(ηH)∑

a∈A exp(0)
=

exp(ηH)

|A|
,

and so we can conclude that

tk+1−1∑
t=tk+1

E
d
(t)
h

KL
(
πf(t)

h+1(·|s′) || π
(t)
h+1(·|s′)

)
− KL

(
πf(t)

h+1(·|s′) || π
(t+1)
h+1 (·|s′)

)
η


=

1

η
log

(
π
(tk+1)
h+1 (a∗(s′)|s′)

π
(tk+1)
h+1 (a∗(s′)|s′)

)
≤ 1

η
log

(
1

π
(tk+1)
h+1 (a∗(s′)|s′)

)
≤ 1

η
(log |A|+ ηH) . (55)

Therefore, we obtain that

tk+1−1∑
t=tk+1

H∑
h=1

E
d
(t)
h

[〈
f
(t)
h+1(s

′, ·), πf(t)

h+1(·|s
′)− π

(t)
h+1(·|s

′)
〉]
≤ 1

η

tk+1−1∑
t=tk+1

H∑
h=1

(η2H2/2) +
1

η

H∑
h=1

(
log |A|+ ηH

)
≤ ηH3(tk+1 − tk)/2 +

H log |A|
η

+H2. (56)

B.5. Auxiliary lemmas

B.5.1. BOUND ON RARE-SWITCHING UPDATE FREQUENCY

We bound the rare-switching update frequency via an argument similar to that of Xiong et al. (2023).

Lemma 13 (Switching Costs). Consider a procedure where the critic is updated only when there exists some h such that

L(t)
h (f

(t)
h , f

(t)
h+1)− min

f ′
h∈Fh

L(t)
h (f ′

h, f
(t)
h+1) ≥ 5H2β.

This performs no more than Nupdates,h(T ) ≤ O(d log(T )) Q-function updates for each h ∈ [H], and no more than
Nupdates(T ) ≤ O(dH log(T )) Q-function updates in total.

Proof. To show this result, we control the number of switches induced by the Q-function class targeting π∗ by upper and
lower bounding the cumulative squared Bellman error under the observed states and actions. Fix some h ∈ [H] for now.
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For simplicity, write Kh = Nupdates,h(T ) for the total number of updates, and t1,h, ..., tKh,h the update times for f (t)
h , with

t0,h = 0. By definition, at every tk,h,

L(tk,h)
h

(
f
(tk,h)
h , f

(tk,h)
h+1

)
− min

f ′
h∈Fh

L(tk,h)
h

(
f ′
h, f

(tk,h)
h+1

)
≥ 5H2β. (57)

An application of Lemma 17 yields

0 ≤ L(tk,h)
h

(
Thf

(tk,h)
h+1 , f

(tk,h)
h+1

)
− min

f ′
h∈Fh

L(tk,h)
h

(
f ′
h, f

(tk,h)
h+1

)
≤ H2β,

min
f ′
h∈Fh

L(tk,h)
h

(
f ′
h, f

(tk,h)
h+1

)
≥ L(tk,h)

h

(
Thf

(tk,h)
h+1 , f

(tk,h)
h+1

)
−H2β,

L(tk,h)
h

(
f
(tk,h)
h , f

(tk,h)
h+1

)
− L(tk,h)

h

(
Thf

(tk,h)
h+1 , f

(tk,h)
h+1

)
≥ 4H2β.

From the above, one can obtain

L(tk−1,h+1:tk,h)
h

(
f
(tk,h)
h , f

(tk,h)
h+1

)
− L(tk−1,h+1:tk,h)

h

(
Thf

(tk,h)
h+1 , f

(tk,h)
h+1

)
= L(tk−1,h+1:tk,h)

h

(
f
(tk−1,h+1)
h , f

(tk−1,h+1)
h+1

)
− L(tk−1,h+1:tk,h)

h

(
Thf

(tk−1,h+1)
h+1 , f

(tk−1,h+1)
h+1

)
= L(tk,h)

h

(
f
(tk−1,h+1)
h , f

(tk−1,h+1)
h+1

)
− L(tk,h)

h

(
Thf

(tk−1,h+1)
h+1 , f

(tk−1,h+1)
h+1

)
−
(
L(tk−1,h)
h

(
f
(tk−1,h+1)
h , f

(tk−1,h+1)
h+1

)
+ L(tk−1,h)

h

(
Thf

(tk−1,h+1)
h+1 , f

(tk−1,h+1)
h+1

))
= L(tk,h)

h

(
f
(tk,h)
h , f

(tk,h)
h+1

)
− L(tk,h)

h

(
Thf

(tk,h)
h+1 , f

(tk,h)
h+1

)
−
(
L(tk−1,h)
h

(
f
(tk−1,h+1)
h , f

(tk−1,h+1)
h+1

)
+ L(tk−1,h)

h

(
Thf

(tk−1,h+1)
h+1 , f

(tk−1,h+1)
h+1

))
≥ 4H2β −H2β = 3H2β. (58)

Therefore, for any t such that tk−1,h < t ≤ tk,h, this argument and noting that f (tk−1,h+1)
h = ... = f

(t)
h = ... = f

(tk,h)
h

yields

L(tk−1,h+1:tk,h)
h

(
f
(t)
h , f

(t)
h+1

)
− L(tk−1,h+1:tk,h)

h

(
Thf (t)

h+1, f
(t)
h+1

)
≥ 3H2β. (59)

An application of Lemma 19 while noting that f (tk−1,h+1)
h = ... = f

(t)
h = ... = f

(tk,h)
h leads to

tk,h∑
i=tk−1,h+1

(
f
(i)
h − Thf

(i)
h+1

)2
(s

(i)
h , a

(i)
h ) =

tk,h∑
i=tk−1,h+1

(
f
(tk,h)
h − Thf

(tk,h)
h+1

)2
(s

(i)
h , a

(i)
h ) ≥ 2H2β. (60)

Now summing over all t1,h, ..., tK,h yields

T∑
t=1

(
f
(t)
h − Thf

(t)
h+1

)2
(s

(t)
h , a

(t)
h ) =

Kh∑
k=1

tk,h∑
i=tk−1,h+1

(
f
(i)
h − Thf

(i)
h+1

)2
(s

(i)
h , a

(i)
h ) ≥ 2(Kh − 1)H2β. (61)

By Lemma 14, we have that

t−1∑
i=1

(
f
(t)
h − Thf

(t)
h+1

)2
(s

(i)
h , a

(i)
h ) ≤ O(H2β). (62)

Invoking the squared distributional Bellman eluder dimension definition, as in (Xiong et al., 2023), yields

T∑
t=1

(
f
(t)
h − Thf

(t)
h+1

)2
(s

(t)
h , a

(t)
h ) ≤ O(dH2β log T ). (63)
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So we have established that

2(Kh − 1)H2β ≤
T∑

t=1

(
f
(t)
h − Thf

(t)
h+1

)2
(s

(t)
h , a

(t)
h ) ≤ O(dH2β log T ). (64)

The number of updates for each h must therefore be bounded as

Kh ≤ d log T, yielding Nswitch(T ) ≤ dH log T.

B.5.2. SHOWING OPTIMISM FOR CRITICS TARGETING Q∗

The following lemma applies to Algorithms 2 and 4. As Algorithm 2 is optimistic, both properties apply to it, while only the
second applies to Algorithm 4.

Lemma 14 (Optimism and in-sample error control for critics targeting Q∗). With probability at least 1− δ, for all t ∈ [T ],
we have that for all h = 1, . . . ,H , an optimistic critic targeting Q∗ in the same way as defined in Algorithm 2 achieves

(i) T π(t)

h f
(t)
h+1 ∈ F

(t)
h , and f

(t)
h ≥ T π

h f
(t)
h+1 for all π,

Similarly, a critic targeting Q∗ as in Algorithms 2 and 4 achieves

(ii)
t−1∑
i=1

E
dπ(i)

[(
f
(t)
h − Thf

(t)
h+1

)2]
≤ O

(
H2β

)
,

by choosing β = c1 (log [HTNF,T F (ρ)/δ]) for some constant c1.

Proof. By Lemma 17 applied to the greedy policy πf(t)

, for any h ∈ [H] and t ∈ [T ], we have with probability 1− δ that

0 ≤ L(t)
h (Thf (t)

h+1, f
(t)
h+1)− min

f ′
h∈Fh

L(t)
h (f ′

h, f
(t)
h+1) ≤ H2β. (65)

We construct the confidence sets only at timesteps tk where switches occur:

F (tlast)
h :=

{
f ∈ F : L(tlast)

h (fh, fh+1)− min
f ′
h∈Fh

L(tlast)
h (f ′

h, fh+1) ≤ H2β ∀h ∈ [H]

}
.

We can now show the first result. As we defined f
(t)
h (s, a) := argmax

fh∈F(tlast)
h

fh (s, a), for all π:

T π
h f

(t)
h+1(s, a) = rh(s, a) + Es′

[
f
(t)
h+1(s

′, πh+1(s
′))
]
≤ rh(s, a) + Es′

[
max
a′∈A

f
(t)
h+1(s

′, a′)

]
= Thf (t)

h+1(s, a). (66)

We further note that Thf (t)
h+1(s, a) ≤ f

(t)
h (s, a), as Thf (t)

h+1 ∈ F
(tlast)
h and by the definition of f (t)

h (s, a).

The second result can now be shown using by Lemma 18 using a similar argument to the proof of Theorem 1 in Xiong et al.
(2023), which in turn takes inspiration from the proofs of Lemmas 39 and 40 in Jin et al. (2021). We elaborate accordingly.

Consider two cases, one where we perform an update at episode t− 1 and one where we do not. If we perform an update at
episode t− 1, then by the choice of f (t) to be near-optimal (in fact, with Algorithm 4, it is optimal and this is zero) it must
hold that

L(t−1)
h

(
f
(t)
h , f

(t)
h+1

)
− min

f ′
h∈Fh

L(t−1)
h

(
f ′
h, f

(t)
h+1

)
≤ 5H2β,

and by Lemma 17 it must also hold that

0 ≤ L(t−1)
h

(
Thf (t)

h , f
(t)
h+1

)
− min

f ′
h∈Fh

L(t−1)
h

(
f ′
h, f

(t)
h+1

)
≤ H2β.
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One can then see that

L(t−1)
h

(
f
(t)
h , f

(t)
h+1

)
− L(t−1)

h

(
Thf (t)

h , f
(t)
h+1

)
≤ 6H2β. (67)

The same holds for the other case where we do not perform an update at episode t− 1. Observe that because we did not
perform an update,

L(t−1)
h

(
f
(t−1)
h , f

(t−1)
h+1

)
− min

f ′
h∈Fh

L(t−1)
h

(
f ′
h, f

(t−1)
h+1

)
≤ 5H2β.

From Lemma 17, it also holds that

L(t−1)
h

(
Thf (t−1)

h , f
(t−1)
h+1

)
− min

f ′
h∈Fh

L(t−1)
h

(
f ′
h, f

(t−1)
h+1

)
≤ H2β.

Putting the above two statements together and using that f (t) = f (t−1) again yields

L(t−1)
h

(
f
(t)
h , f

(t)
h+1

)
− L(t−1)

h

(
Thf (t)

h , f
(t)
h+1

)
= L(t−1)

h

(
f
(t−1)
h , f

(t−1)
h+1

)
− L(t−1)

h

(
Thf (t−1)

h , f
(t−1)
h+1

)
≤ 6H2β. (68)

An application of Lemma 18 to both cases then yields in either case that

t−1∑
i=1

(
f
(t)
h − Thf

(t)
h+1

)2
(s

(i)
h , a

(i)
h ) ≤ 7H2β, (69)

and also that

t−1∑
i=1

E
d
(i)
h

[(
f
(t)
h − Thf

(t)
h+1

)2]
≤ 7H2β. (70)

C. Extension of Algorithm 2 to hybrid RL
Before we proceed, it is useful to introduce the single-policy concentrability coefficient tweaked from that of Zhan et al.
(2022) and partial all-policy concentrability coefficient from Tan and Xu (2024):

Definition 4 (Single-Policy Concentrability Coefficient).

c∗off(F ,Π) = max
h∈[H]

sup
f∈F

sup
π∈Π

Eπ∗ [fh − T π
h fh+1]

2

Eµ[(fh − T π
h fh+1)

2
]
, c∗off(F) = max

h∈[H]
sup
f∈F

Eπ∗ [fh − Thfh+1]
2

Eµ[(fh − Thfh+1)
2
]
.

Definition 5 (Partial All-Policy Concentrability Coefficient). For a function class F and a partition on the state-action
space X = S × A × [H], where we denote the offline and online partitions by Xoff and Xon, respectively, the partial
all-policy concentrability coefficient is given by:

coff(F1Xoff
) := max

h
sup
f∈F

∥(fh − Thfh+1)1(·,h)∈Xoff
∥22,dπ

h

∥(fh − Thfh+1)1(·,h)∈Xoff
∥22,µh

,

where 1Xoff
denotes the indicator variable for whether s, a ∈ Xon

We now present Algorithm 3, Algorithm 4 and Algorithm 5, which are the modified versions of Algorithm 2 for hybrid RL.

Algorithm 3 (NOAH-π) targets π(t), and follows the very natural procedure of performing a critic update via Fitted Q-
Evaluation (FQE) (Munos and Szepesvári, 2008) and an actor update in every episode. It therefore requires closure of
the critic function class under truncated sums as in Definition 3 to control the growth of the policy class as in Lemma 2.
Algorithm 4 (NOAH-∗), like NORA in Algorithm 2, circumvents this by targeting π∗ and performing a rare-switching critic
update. Both algorithms are fully off-policy, utilizing offline data and all collected online data without throwing any away.
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Algorithm 3 Non-Optimistic Actor-critic with Hybrid RL targeting π(t) (NOAH-π)
1: Input: Function class F .
2: Initialize: F (0) ← F , D(0)

h ← ∅,∀h ∈ [H], η = Θ(
√
log |A|H−2T−1), π(1) ∝ 1, confidence width β =

Θ(log(HT 2NF,T F (1/T )/δ)).
3: for episode t = 1, 2, . . . , T do
4: Play policy π(t) for one episode, obtain trajectory, update dataset D(t)

h .
5: Compute critic f (t+1) targeting π(t) via FQE:

f (t) ← argmin
f∈F

L(t,π(t))
h (fh, fh+1) for h = H − 1, ..., 1,

L(t,π(t))
h (f, f ′)←

∑
(s,a,r,s′)∈D(t)

h ∪Doff

(
f(s, a)− r − f ′(s′, π

(t)
h+1(s

′))
)2

.

6: Update π
(t+1)
h (a|s) ∝ π

(t)
h (a|s) exp(ηf (t)

h (s, a)).
7: end for

D. Proofs for Regret Guarantees of Hybrid RL
D.1. Proofs for Theorem 3, Algorithm 3

We start with the same regret decomposition as in Lemma 3:

Reg(T ) =

T∑
t=1

(
V ∗
1 (s

(t)
1 )− V π(t)

1 (s
(t)
1 )
)

=

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h (sh, ·) , π∗

h (· | sh)− π
(t)
h (· | sh)

〉]
−

T∑
t=1

H∑
h=1

Eπ∗

[(
f
(t)
h − T

π∗

h f
(t)
h+1

)
(sh, ah)

]
+

T∑
t=1

H∑
h=1

Eπ(t)

[(
f
(t)
h − T

π(t)

h f
(t)
h+1

)
(sh, ah)

]
. (71)

We control the first term with the same argument as Theorem 1, by using Lemma 4. Controlling the third term follows by
the same argument as in Lemma 6. It remains to tackle the second term, which we bound with the offline data.

First, we decompose the last term of (71) as

−
T∑

t=1

H∑
h=1

Eπ∗

[
f
(t)
h − T

π∗

h f
(t)
h+1

]
=

T∑
t=1

H∑
h=1

Eπ∗

[
T π(t)

h f
(t)
h+1 − f

(t)
h

]
+

T∑
t=1

H∑
h=1

Eπ∗

[
T π∗

h f
(t)
h+1 − T

π(t)

h f
(t)
h+1

]
. (72)

The latter term of (72) is bounded as:

T∑
t=1

H∑
h=1

Eπ∗

[
T π∗

h f
(t)
h+1 − T

π(t)

h f
(t)
h+1

]
=

T∑
t=1

H∑
h=1

Eπ∗

[
rh(sh, ah) + f

(t)
h+1

(
sh+1, π

∗
h+1(sh+1)

)
− rh(sh, ah)− f

(t)
h+1

(
sh+1, π

(t)
h+1(sh+1)

)]
=

T∑
t=1

H∑
h=1

Eπ∗

[
f
(t)
h+1

(
sh+1, π

∗
h+1(sh+1)

)
− f

(t)
h+1

(
sh+1, π

(t)
h+1(sh+1)

)]
=

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h+1(sh+1, ·), π∗

h+1(·|sh+1)− π
(t)
h+1(·|sh+1)

〉]
. (73)
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Algorithm 4 Non-Optimistic Actor-critic with Hybrid RL targeting π∗ (NOAH-∗)
1: Input: Function class F .
2: Initialize: F (0) ← F , D(0)

h ← ∅,∀h ∈ [H], η = Θ(
√
d log T log |A|H−1T−1), π(1) ∝ 1, confidence width

β = Θ(log(HT 2NF,T F (1/T )/δ)).
3: for episode t = 1, 2, . . . , T do
4: Play policy π(t) for one episode, obtain trajectory, update dataset D(t)

h .
5: if L(t)

h (f
(t)
h , f

(t)
h+1) ≥ minf ′

h∈Fh
L(t)
h (f ′

h, f
(t)
h+1) + 5H2β for some h then

6: Compute critic f (t+1) via FQE:

f (t) ← argmin
f∈F

L(t)
h (fh, fh+1) for h = H − 1, ..., 1,

L(t)
h (f, f ′)←

∑
(s,a,r,s′)∈D(t)

h ∪Doff

(
f(s, a)− r −max

a′∈A
f ′(s′, a′)

)2

.

7: Reset policy π(t) ∝ 1.
8: Set tlast ← t, N (t)

updates ← N
(t−1)
updates + 1.

9: else
10: Set N (t)

updates ← N
(t−1)
updates, f

(t+1) ← f (t).
11: end if
12: Update π

(t+1)
h (a|s) ∝ π

(t)
h (a|s) exp(ηf (t)

h (s, a)).
13: end for

This yields what is essentially a copy of the first term of (71). For the former term, we use a similar argument to that of
Theorem 4. Concretely, as long as −f ∈ F for all f ∈ F ,

T∑
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H∑
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[(
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h f
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(t)
h
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+
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(i)
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√√√√√√√
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·

√√√√ T∑
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NoffEµ
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h f
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+
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E
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h f
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·

√√√√ T∑
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(
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h f
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(t)
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+
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E
d
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[(
T π(t)

h f
(t)
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(t)
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≤
√
c∗off(F ,Π)HT/Noff

√
βH3T

≤
√
H4βc∗off(F ,Π)T 2/Noff , (74)
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Algorithm 5 No-regret Optimistic Rare-switching Actor-critic (NORA) for Hybrid RL
1: Input: Offline dataset Doff which can be the empty set, samples sizes T , Noff , function class F and confidence width

β > 0

2: Initialize: F (0) ← F , D(0)
h ← ∅,∀h ∈ [H], η = Θ(

√
d log T log |A|H−1T−1), π(1) ∝ 1.

3: for episode t = 1, 2, . . . , T do
4: Select critic f

(t)
h (s, a) := argmax

fh∈F(tlast)
h

fh (s, a) for all s, a.

5: Play policy π(t) for one episode and obtain trajectory (s
(t)
1 , a

(t)
1 , r

(t)
1 ), . . . , (s

(t)
H , a

(t)
H , r

(t)
H ).

6: Update dataset D(t)
h ← D

(t−1)
h ∪ {(s(t)h , a

(t)
h , r

(t)
h , s

(t)
h+1)},∀h ∈ [H].

7: if there exists some h such that L(t)
h (f

(t)
h , f

(t)
h+1)−minf ′

h∈Fh
L(t)
h (f ′

h, f
(t)
h+1) ≥ 5H2β then

8: Compute confidence set F (t):

F (t) ←
{
f ∈ F : L(t)

h (fh, fh+1)− min
f ′
h∈Fh

L(t)
h (f ′

h, fh+1) ≤ H2β ∀h ∈ [H]

}
,

where L(t)
h (f, f ′) :=

∑
(s,a,r,s′)∈D(t)

h ∪Doff,h

(
f(s, a)− r −max

a′∈A
f ′(s′, a′)

)2

,∀f ∈ Fh, f
′ ∈ Fh+1.

9: Reset policy π(t) ∝ 1.
10: Set tlast := t, increment number of updates N (t)

updates := N
(t−1)
updates + 1.

11: else
12: Set N (t)

updates := N
(t−1)
updates, F (t) := F (t−1).

13: end if
14: Select policy π

(t+1)
h ∝ π

(t)
h exp(ηf

(t)
h ).

15: end for

where for the penultimate line, the bound for the first term follows directly from the Definition 4 on single-policy conen-
trability coefficient, and the second bound follows directly from Lemma 15. Note that the argument is similar to that of
Theorem 4, with the exception that we can use the single-policy concentrability coefficient as the density ratio we need to
bound is

Eπ∗

[
T π(t)

h f
(t)
h+1 − f

(t)
h

]2
Eµ

[(
T π(t)

h f
(t)
h+1 − f

(t)
h

)2] ≤ max
h∈[H]

sup
f∈F

sup
π∈Π

Eπ∗ [fh − T π
h fh+1]

2

Eµ[(fh − Thfh+1)
2
]
= c∗off(F ,Π), (75)

where again the first inequality holds as long as −f ∈ F for all f ∈ F .

D.2. Proofs for Theorem 3, Algorithm 4

We start with the same regret decomposition in Lemma 8:

Reg(T ) =

T∑
t=1

(
V ∗
1 (s

(t)
1 )− V π(t)

1 (s
(t)
1 )
)

=

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h (sh, ·) , π∗

h (· | sh)− π
(t)
h (· | sh)

〉]
−

T∑
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H∑
h=1

Eπ∗

[(
f
(t)
h − T

π∗

h f
(t)
h+1

)
(sh, ah)

]
+

T∑
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H∑
h=1

Eπ(t)

[(
f
(t)
h − Thf

(t)
h+1

)
(sh, ah)

]
+

T∑
t=1

H∑
h=1

Eπ(t)
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f
(t)
h+1(sh+1, ·), πf(t)
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(t)
h+1(·|sh+1)

〉]
=

T∑
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H∑
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Eπ∗

[〈
f
(t)
h (sh, ·) , π∗

h (· | sh)− π
(t)
h (· | sh)

〉]
−

T∑
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H∑
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Eπ∗

[(
f
(t)
h − Thf

(t)
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)
(sh, ah)

]
+

T∑
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H∑
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Eπ∗

[〈
f
(t)
h+1(sh+1, ·), π∗

h+1(·|sh+1)− πf(t)

h+1(·|sh+1)
〉]
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+

T∑
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H∑
h=1

Eπ(t)

[(
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(t)
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)
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]
+
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h+1(·|sh+1)

〉]
,

(76)

where we break up the original second term corresponding to the negative Bellman error under π∗ with a similar decomposi-
tion as in the proof of Lemma 8. Now, observe that

T∑
t=1

H∑
h=2

Eπ∗

[〈
f
(t)
h (sh, ·), π(t)

h (·|sh)− πf(t)

h (·|sh)
〉]

=

T∑
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H∑
h=2

Eπ∗

[
f
(t)
h (sh, π

(t)
h (sh))−max

a∈A
f
(t)
h (sh, a)

]
≤ 0. (77)

So the remaining regret decomposition is:

Reg(T ) =

T∑
t=1

(
V ∗
1 (s

(t)
1 )− V π(t)

1 (s
(t)
1 )
)

=

T∑
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H∑
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Eπ∗
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f
(t)
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h (· | sh)− π
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h (· | sh)

〉]
−
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]
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(t)
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(t)
h+1(·|sh+1)

〉]
(78)

The proof then follows analogously to Theorem 2 for the first, third, fourth and fifth terms. Note that the proofs for Lemmas
17, 18, 19, and Lemma 13 still hold. Intuitively, this is because the first three lemmas deal with the generalization error
of the empirical TD loss under the occupancy measure of the current policy, and the switch cost proof depends only on
these lemmas and choosing some f (t) with low enough training error. Choosing the minimizer as in Algorithm 4 fulfills this
condition.

Unlike the analysis for Algorithm 2, we bound the second term with the offline data here. We use a similar argument to that
of Theorem 4. Concretely, as long as −f ∈ F for all f ∈ F ,

T∑
t=1

H∑
h=1

Eπ∗

[(
Thf (t)

h+1 − f
(t)
h

)
(sh, ah)

]

≤
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+
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+
∑t−1

i=1 Ed
(i)
h

[(
Thf (t)

h+1 − f
(t)
h

)2]


1/2
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≤
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H4βc∗off(F)T 2/Noff , (79)

where for the penultimate line, the bound for the first term follows directly from the Definition 4 on single-policy conen-
trability coefficient, and the second bound follows directly from Lemma 16. Note that the argument is similar to that of
Theorem 4, with the exception that we can use the single-policy concentrability coefficient as the density ratio we need to
bound is

Eπ∗

[
Thf (t)

h+1 − f
(t)
h

]2
Eµ

[(
Thf (t)

h+1 − f
(t)
h

)2] ≤ max
h∈[H]

sup
f∈F

Eπ∗ [fh − Thfh+1]
2

Eµ[(fh − Thfh+1)
2
]
= c∗off(F), (80)

where again the first inequality holds as long as −f ∈ F for all f ∈ F .

We further note that it is possible to have the critic target Qπ(t)

with this framework, if the sum of truncated critics is a critic.
Fortunately, there is no need to deal with a rarely-updating bonus class like in (Sherman et al., 2024; Cassel and Rosenberg,
2024), as we do not need optimism.

D.3. Proofs for Theorem 4

The proof follows analogously to that of the original online case, in line with the analysis and observations of Tan and Xu
(2024). The only difference is that we will now bound the Bellman error under the current policy’s occupancy measure as

T∑
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H∑
h=1

E
d
(t)
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E
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(t)
h 1Xon

]. (81)

For the online term, this is bounded with the same Cauchy-Schwarz and change of measure argument as in Xie et al. (2022):
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≤
√
βH4TSEC(Fon,Π, T ). (82)

Within the third-last inequality, the first term can be bounded by H times the SEC of Xie et al. (2022), almost by definition
of the SEC. The second term is bounded by Lemma 14.

The offline term is bounded by the offline data. We perform a similar Cauchy-Schwarz and change of measure argument as
Tan and Xu (2024) to see that:
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Note that the first term of the penultimate line follows directly from Definition 5 on the partial all-policy concentrability, and
the second term term follows directly from Lemma 16.

D.4. Auxiliary lemmas

We also require the following helper lemma:

Lemma 15 (Optimism and in-sample error control for critics targeting Qπ(t)

in hybrid RL). With probability at least 1− δ,
for all t ∈ [T ], we have that for all h = 1, . . . ,H , a critic targeting Qπ(t)

in the same way as defined in Algorithm 3 achieves

NoffEµh

[(
f
(t)
h − Thf

(t)
h+1

)2]
+

t−1∑
i=1

E
dπ(i)

[(
f
(t)
h − Thf

(t)
h+1

)2]
≤ O

(
H2β

)
by choosing β = c1

(
log[NHNF,(T Π)TF (ρ)/δ] +Nρ

)
for some constant c1, where N = Noff + T .

Proof. The proof is analogous to that of Lemma 1 in Tan and Xu (2024). We apply property (ii) of Lemma 7 in the following
way: we append a sequence of functions generated from offline samples 1, ..., Noff to the start of the sequence of T online
samples.

Let f (t) be a sequence of critics in F , defined as follows. Arrange the offline samples in any order. For each n ∈ [Noff ],
define f (n) to be any function in the confidence sets constructed by the first n offline episodes.

Now for each t = Noff + 1, ..., N , define f (t) := f (t−Noff ) ∈ F (t). As Lemma 7 shows that property (ii) holds for all
τ ∈ [N ], it must also hold for all τ = Noff + 1, . . . , N .

Lemma 16 (Optimism and in-sample error control for critics targeting Q∗ in hybrid RL). With probability at least 1− δ,
for all t ∈ [T ], we have that for all h = 1, . . . ,H , a critic targeting Q∗ in the same way as defined in Algorithm 5 achieves

(i) T π(t)

h f
(t)
h+1 ∈ F

(t)
h , and f

(t)
h ≥ T π(t)

h f
(t)
h+1,
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(ii) NoffEµh

[(
f
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h − Thf
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)2]
+
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i=1

E
dπ(i)

[(
f
(t)
h − Thf

(t)
h+1

)2]
≤ O

(
H2β

)
,

by choosing β = c1 (log [NHNF,T F (ρ)/δ] +Nρ) for some constant c1, where N = Noff+T . If the critic is non-optimistic
as in Algorithm 4, only (ii) holds.

Proof. The proof is analogous to that of Lemma 1 in Tan and Xu (2024). We apply Lemma 14 in the following way: we
append a sequence of functions generated from offline samples 1, ..., Noff to the start of the sequence of T online samples.

Let f (t) be a sequence of critics in F , defined as follows. Arrange the offline samples in any order. For each n ∈ [Noff ],
define f (n) to be any function in the confidence sets constructed by the first n offline episodes.

Now for each t = Noff + 1, ..., N , define f (t) := f (t−Noff ) ∈ F (t). As Lemma 14 shows that (i) and (ii) hold for all
τ ∈ [N ], they must also hold for all τ = Noff + 1, . . . , N .

E. Concentration of the Empirical Loss
Lemma 17 (Modified Lemma G.1, Xiong et al. (2023)). For any f ∈ F , π ∈ Π, h ∈ [H] and t1 ≤ t2 ∈ [T ], we have with
probability 1− δ that

0 ≤ L(t1:t2,π)
h (T π

h fh+1, fh+1)− min
f ′
h∈Fh

L(t1:t2,π)
h (f ′

h, fh+1) ≤ H2β,

where β = c1 (log [NHNF,G(ρ)/δ] +Nρ) for some constant c1. Note that G = T F if π is the greedy policy with respect
to f , and G = (T Π)TF otherwise.

Proof. The proof is for the most part similar to the proof of Lemma G.1 for Xiong et al. (2023), which is in turn an analogue
of Lemma 40 in Jin et al. (2021). However, we take into account the fact that the Bellman operator we are concerned is the
Bellman operator for policy π. That is, we are concerned with T π , not T . For completeness and thoroughness, we provide
the full proof below.

Write ℓ(i)h (f, g, π) = gh(s
(i)
h , a

(i)
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(i)
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(i)
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h+1)) for the TD error at timestep h and trajectory

i for policy π, and δ
(f,g,π)
h (s

(i)
h , a

(i)
h ) = E
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Bellman error between f and g.

Now write X
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h fh+1 and fh. Note that this is bounded by O(H2). We can then show that
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where the second-last equality follows from noting that (Chen et al., 2022)
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We use this property again in the fourth equality below to show that

E
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We can then apply Freedman’s inequality (Jin et al., 2021; Chen et al., 2022) and a union bound over the value function
class V to see that for any f ∈ F and g ∈ G,∣∣∣∣∣
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holds with probability at least 1− δ, where ι = log(HT 2NF,G(1/T )/δ).

The result now holds by observing that
E
s
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(i)
h (f, g, π)] ≥ 0

and that
t2∑
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X
(i)
h (f, g, π) ≤ O(H2ι+H) ≤ H2β

for any f ∈ F and g ∈ G with probability at least 1− δ.

Lemma 18 (Modified Lemma G.2, Xiong et al. (2023)). Let t1 ≤ t2 ∈ [T ], π ∈ Π, and f ∈ F . If it holds with probability
at least 1− 2δ that

L(t1:t2,π)
h (fh, fh+1)− L(t1:t2,π)

h (T π
h fh+1, fh+1) ≤ CH2β,

then it also holds with probability at least 1− 2δ that:

t2∑
i=t1

δ
(f,f,π)
h (s

(i)
h , a

(i)
h )2 ≤ C1H

2β,

t2∑
i=t1

E
dπ(i)

h

[(
δ
(f,f,π)
h

)2]
≤ C1H

2β,

where C1 = C + 1 if C ∈ [1, 100], or 2C for all constants C ≥ 2, and β = c1 (log [NHNF,G(ρ)/δ] +Nρ) for some
constant c1. Note that G = T F if π is the greedy policy with respect to f , and G = (T Π)TF otherwise.

Proof. The proof is similar to that of Lemma G.2 in Xiong et al. (2023). By the same argument as in Lemma 17, we apply
Freedman’s inequality (Jin et al., 2021; Chen et al., 2022) and a union bound over a 1/T -net (or 1/N net in the hybrid case)
of (F ,G) to see that for any f ∈ F and g ∈ G,∣∣∣∣∣

t2∑
i=t1

X
(i)
h (f, g, π)−

t2∑
i=t1

E
s
(i)
h+1∼dπ(i) [X

(i)
h (f, g, π)]

∣∣∣∣∣ ≲ H

√√√√ι

t2∑
i=t1

E
s
(i)
h+1∼dπ(i) [X

(i)
h (f, g, π)] +H2ι (88)

holds with probability at least 1− δ.

By assumption, we have that

t2∑
i=t1

X
(i)
h (f, f, π) =

t2∑
i=t1

(
ℓ
(i)
h (f, f, π)2 − ℓ

(i)
h (f, T π

h f, π)2
)
≤ CH2β. (89)

If C ∈ [1, 100] and therefore is a relatively small bounded constant, we can choose c1 large enough in the definition of β so
that there is some f̃ , g̃ in the covering of (F ,G) such that∣∣∣∣∣

t2∑
i=t1

X
(i)
h (f, f, π)−

t2∑
i=t1

X
(i)
h (f̃ , g̃, π)

∣∣∣∣∣ ≤ O(H), and
t2∑

i=t1

X
(i)
h (f̃ , g̃, π) ≤ CH2β +O(H), (90)

39



Actor-Critics Can Achieve Optimal Sample Efficiency

and consequently that
t2∑

i=t1

X
(i)
h (f̃ , g̃, π) ≤ (C + 1/2)H2β, and

t2∑
i=t1

E
s
(i)
h+1∼dπ(i) [X

(i)
h (f, f, π)] ≤ (C + 1/2)H2β +O(H) ≤ (C + 1)H2β.

As in Xiong et al. (2023) and Jin et al. (2021), the argument for the case where C > 100 follows by accepting a

2-approximation where C1 = 2C, and the argument for
∑t−1

i=1 Edπ(i)

h

[(
δ
(t)
h

)2]
also follows analogously by taking

expectations.

Note that taking t1 = 1, t2 = t − 1, π = π(t−1), f = f (t) or t1 = 1, t2 = t − 1, π = πf , f = f (t) gives results of direct
importance to us.

Lemma 19 (Modified Lemma G.3, Xiong et al. (2023)). Let t1 ≤ t2 ∈ [T ], π ∈ Π, and f ∈ F . If it holds with probability
at least 1− 2δ that

L(t1:t2,π)
h (fh, fh+1)− L(t1:t2,π)

h (T π
h fh+1, fh+1) ≥ CH2β,

then it also holds with probability at least 1− 2δ that:
t2∑

i=t1

δ
(f,f,π)
h (s

(i)
h , a

(i)
h )2 ≥ C1H

2β,

t2∑
i=t1

E
dπ(i)

h

[(
δ
(f,f,π)
h

)2]
≥ C1H

2β,

where C1 = C + 1 if C ∈ [1, 100], or 2C for all constants C ≥ 2. , and β = c1 (log [NHNF,G(ρ)/δ] +Nρ) for some
constant c1. Note that G = T F if π is the greedy policy with respect to f , and G = (T Π)TF otherwise.

Proof. The proof is similar to that of Lemma G.3 in Xiong et al. (2023). By the same argument as in Lemma 17, we apply
Freedman’s inequality (Jin et al., 2021; Chen et al., 2022) and a union bound over a 1/T -net (or 1/N net in the hybrid case)
of (F ,G) to see that for any f ∈ F and g ∈ T πF ,∣∣∣∣∣

t2∑
i=t1

X
(i)
h (f, g, π)−

t2∑
i=t1

E
s
(i)
h+1∼dπ(i) [X

(i)
h (f, g, π)]

∣∣∣∣∣ ≲ H

√√√√ι

t2∑
i=t1

E
s
(i)
h+1∼dπ(i) [X

(i)
h (f, g, π)] +H2ι (91)

holds with probability at least 1− δ.

By assumption, we have that
t2∑

i=t1

X
(i)
h (f, f, π) =

t2∑
i=t1

(
ℓ
(i)
h (f, f, π)2 − ℓ

(i)
h (f, T π

h f, π)2
)
≥ CH2β.

If C ∈ [1, 100] and therefore is a relatively small bounded constant, we can choose c1 large enough in the definition of β so
that there is some f̃ , g̃ in the covering of (F ,G) such that∣∣∣∣∣

t2∑
i=t1

X
(i)
h (f, f, π)−

t2∑
i=t1

X
(i)
h (f̃ , g̃, π)

∣∣∣∣∣ ≤ O(H), and
t2∑

i=t1

X
(i)
h (f̃ , g̃, π) ≥ CH2β −O(H), (92)

and consequently that
t2∑

i=t1

X
(i)
h (f̃ , g̃, π) ≥ (C − 1/2)H2β, and

t2∑
i=t1

E
s
(i)
h+1∼dπ(i) [X

(i)
h (f, f, π)] ≥ (C − 1/2)β −O(H) ≥ (C − 1)H2β.

(93)

As in Xiong et al. (2023) and Jin et al. (2021), the argument for the case where C > 100 follows by accepting a

2-approximation where C1 = C/2, and the argument for
∑t−1

i=1 Edπ(i)

h

[(
δ
(t)
h

)2]
also follows analogously by taking

expectations.

Note that taking t1 = 1, t2 = t − 1, π = π(t−1), f = f (t) or t1 = 1, t2 = t − 1, π = πf , f = f (t) gives results of direct
importance to us.
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F. What If We Target Qπ(t) Instead of Q∗?

Algorithm 6 NORA-π
1: Input: Offline dataset Doff , samples sizes T , Noff , function class F and confidence width β > 0

2: Initialize: F (0) ← F , D(0)
h ← ∅,∀h ∈ [H], η = Θ(

√
log |A|H−2T−1), π(1) ∝ 1.

3: for episode t = 1, 2, . . . , T do
4: Select critic f

(t)
h (s, a) := argmax

fh∈F(tlast)
h

fh (s, a) for all s, a.

5: Play policy π(t) for one episode and obtain trajectory (s
(t)
1 , a

(t)
1 , r

(t)
1 ), . . . , (s

(t)
H , a

(t)
H , r

(t)
H ).

6: Update dataset D(t)
h ← D

(t−1)
h ∪ {(s(t)h , a

(t)
h , r

(t)
h , s

(t)
h+1)},∀h ∈ [H].

7: if there exists some h such that L(t,π(t))
h (f

(t)
h , f

(t)
h+1)−minf ′

h∈Fh
L(t,π(t))
h (f ′

h, f
(t)
h+1) ≥ 5H2β then

8: Compute confidence set for Bellman operator T π(t)

, set F (t) ← F (t,π(t)).

F (t,π(t)) ←
{
f ∈ F : L(t,π(t))

h (fh, fh+1)− min
f ′
h∈Fh

L(t,π(t))
h (f ′

h, fh+1) ≤ H2β ∀h ∈ [H]

}
,

where L(t,π(t))
h (f, f ′) :=

∑
(s,a,r,s′)∈D(t)

h ∪Doff,h

(
f(s, a)− r − f ′(s′, π

(t)
h+1(s

′))
)2

,∀f ∈ Fh, f
′ ∈ Fh+1.

9: Set tlast := t, increment number of updates N (t)
updates := N

(t−1)
updates + 1.

10: else
11: Set N (t)

updates := N
(t−1)
updates, F (t) := F (t−1).

12: end if
13: Select policy π

(t+1)
h ∝ π

(t)
h exp(ηf

(t)
h ).

14: end for

F.1. But can we bound the number of critic updates?

We attempt to show a similar result to Lemma 13 for the Q-function confidence set F (t,π(t)) targeting π(t). However, we
will later see that we run into an issue.

Fix some h ∈ [H] for now. For simplicity, write Kh = Nupdates,h(T ) for the total number of updates induced by updating
the Q-function class targeting π(t), and t1,h, ..., tKh,h the update times for f (t)

h , with t0,h = 0. By definition, at every tk,h,
we have

L(tk,h,π
(tk,h))

h

(
f
(tk,h)
h , f

(tk,h)
h+1

)
− min

f ′
h∈Fh

L(tk,h,π
(tk,h))

h

(
f ′
h, f

(tk,h)
h+1

)
≥ 5H2β (94)

An application of Lemma 17 yields

0 ≤ L(tk,h,π
(tk,h))

h

(
T π(tk,h)

h f
(tk,h)
h+1 , f

(tk,h)
h+1

)
− min

f ′
h∈Fh

L(tk,h,π
(tk,h))

h

(
f ′
h, f

(tk,h)
h+1

)
≤ H2β,

min
f ′
h∈Fh

L(tk,h,π
(tk,h))

h

(
f ′
h, f

(tk,h)
h+1

)
≥ L(tk,h,π

(tk,h))
h

(
T π(π

(tk,h)
)

h f
(tk,h)
h+1 , f

(tk,h)
h+1

)
−H2β,

L(tk,h,π
(tk,h))

h

(
f
(tk,h)
h , f

(tk,h)
h+1

)
− L(tk,h,π

(tk,h))
h

(
T π(π

(tk,h)
)

h f
(tk,h)
h+1 , f

(tk,h)
h+1

)
≥ 4H2β.

From the above, we can now establish that

L(tk−1,h+1:tk,h,π
(tk,h))

h

(
f
(tk,h)
h , f

(tk,h)
h+1

)
− L(tk−1,h+1:tk,h,π

(tk,h))
h

(
T π(tk,h)

h f
(tk,h)
h+1 , f

(tk,h)
h+1

)
= L(tk−1,h+1:tk,h,π

(tk,h))
h

(
f
(tk−1,h+1)
h , f

(tk−1,h+1)
h+1

)
− L(tk−1,h+1:tk,h,π

(tk,h))
h

(
T π(tk,h)

h f
(tk−1,h+1)
h+1 , f

(tk−1,h+1)
h+1

)
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= L(tk,h,π
(tk,h))

h

(
f
(tk−1,h+1)
h , f

(tk−1,h+1)
h+1

)
− L(tk,h,π

(tk,h))
h

(
T π(tk,h)

h f
(tk−1,h+1)
h+1 , f

(tk−1,h+1)
h+1

)
−
(
L(tk−1,h,π

(tk,h))
h

(
f
(tk−1,h+1)
h , f

(tk−1,h+1)
h+1

)
+ L(tk−1,h,π

(tk,h))
h

(
T π(tk,h)

h f
(tk−1,h+1)
h+1 , f

(tk−1,h+1)
h+1

))
= L(tk,h,π

(tk,h))
h

(
f
(tk,h)
h , f

(tk,h)
h+1

)
− L(tk,h,π

(tk,h))
h

(
T π(tk,h)

h f
(tk,h)
h+1 , f

(tk,h)
h+1

)
−
(
L(tk−1,h,π

(tk,h))
h

(
f
(tk−1,h+1)
h , f

(tk−1,h+1)
h+1

)
+ L(tk−1,h,π

(tk,h))
h

(
T π(tk,h)

h f
(tk−1,h+1)
h+1 , f

(tk−1,h+1)
h+1

))
≥ 4H2β −H2β = 3H2β (95)

We substitute f
(tk,h)
h for f (tk−1,h+1)

h in the second equality, and obtain the last inequality via the inequality established in
the previous argument and an application of Lemma 17 on t2 = tk−1,h, π = π(tk,h), f = f (tk−1,h+1).

Therefore, for any t such that tk−1,h < t ≤ tk,h, this argument and noting that f (tk−1,h+1)
h = ... = f

(t)
h = ... = f

(tk,h)
h

yields

L(tk−1,h+1:tk,h,π
(tk,h))

h

(
f
(t)
h , f

(t)
h+1

)
− L(tk−1,h+1:tk,h,π

(tk,h))
h

(
T π(tk,h)

h f
(t)
h+1, f

(t)
h+1

)
≥ 3H2β. (96)

An application of Lemma 19 while noting that f (tk−1,h+1)
h = ... = f

(t)
h = ... = f

(tk,h)
h yields

tk,h∑
i=tk−1,h+1

(
f
(i)
h − T

π(tk,h)

h f
(i)
h+1

)2
(s

(i)
h , a

(i)
h ) =

tk,h∑
i=tk−1,h+1

(
f
(tk,h)
h − T π(tk,h)

h f
(tk,h)
h+1

)2
(s

(i)
h , a

(i)
h ) ≥ 2H2β. (97)

Summing over all t1,h, ..., tK,h yields

T∑
t=1

(
f
(t)
h − T

π(tnext)

h f
(t)
h+1

)2
(s

(t)
h , a

(t)
h ) =

Kh∑
k=1

tk,h∑
i=tk−1,h+1

(
f
(i)
h − T

π(tk,h)

h f
(i)
h+1

)2
(s

(i)
h , a

(i)
h ) ≥ 2(Kh − 1)H2β. (98)

By Lemma 14, we have that

t−1∑
i=1

(
f
(t)
h − T

π(t−1)

h f
(t)
h+1

)2
(s

(i)
h , a

(i)
h ) ≤ O(H2β). (99)

Invoking the squared distributional Bellman eluder dimension definition yields

T∑
t=1

(
f
(t)
h − T

π(t−1)

h f
(t)
h+1

)2
(s

(t)
h , a

(t)
h ) ≤ O(dH2β log T ). (100)

So we have established that

2(Kh − 1)H2β ≤
T∑

t=1

(
f
(t)
h − T

π(tnext)

h f
(t)
h+1

)2
(s

(t)
h , a

(t)
h ),

and
T∑

t=1

(
f
(t)
h − T

π(t−1)

h f
(t)
h+1

)2
(s

(t)
h , a

(t)
h ) ≤ O(dH2 log T ).

However, it remains unclear how one can relate

T∑
t=1

(
f
(t)
h − T

π(tnext)

h f
(t)
h+1

)2
(s

(t)
h , a

(t)
h )
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to
T∑

t=1

(
f
(t)
h − T

π(t−1)

h f
(t)
h+1

)2
(s

(t)
h , a

(t)
h ).

We would like the former to be no greater than the latter, but that does not necessarily hold, as π(t−1) is closer to the target
by which F (t) was constructed, π(tlast), than π(tnext). So if anything, it is likely that the Bellman error under the Bellman
operator for π(tnext) is greater than that for π(t−1). It is therefore difficult to say anything with regard to the number of
updates for each h.

F.2. But can we control the negative Bellman error?

There is another obstacle. It is unclear how to control the negative Bellman error under the occupancy measure of the
optimal policy, given the far more limited form of optimism in 7. This is because the more limited form of optimism only
allows us to show:

−
T∑

t=1

H∑
h=1

Eπ∗

[
f
(t)
h − T

π(t)

h f
(t)
h+1

]
≤

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h+1(s

′, ·), π(t)
h+1(·|s

′)− π
(tlast)
h+1 (·|s

′)
〉]

. (101)

To see this, observe that by Lemma 7, T π(tlast)

h f
(t)
h+1(s, a) ≤ f

(t)
h (s, a). Therefore,

−
T∑

t=1

H∑
h=1

Eπ∗

[
f
(t)
h − T

π(t)

f
(t)
h+1

]
=

T∑
t=1

H∑
h=1

Eπ∗

[
rh(s, a) + f

(t)
h+1(s

′, π
(t)
h+1(s

′))− f
(t)
h (s, a)

]
=

T∑
t=1

H∑
h=1

Eπ∗

[
T π(t)

h f
(t)
h+1(s, a)− f

(t)
h (s, a)

]
≤

T∑
t=1

H∑
h=1

Eπ∗

[
T π(t)

h f
(t)
h+1(s, a)− T

π(tlast)

h f
(t)
h+1(s, a)

]
=

T∑
t=1

H∑
h=1

Eπ∗

[
rh(s, a) + f

(t)
h+1(s

′, π
(t)
h+1(s

′))− rh(s, a)− f
(t)
h+1(s

′, π
(tlast)
h+1 (s

′))
]

=

T∑
t=1

H∑
h=1

Eπ∗

[
f
(t)
h+1(s

′, π
(t)
h+1(s

′))− f
(t)
h+1(s

′, π
(tlast)
h+1 (s

′))
]

=

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h+1(s

′, ·), π(t)
h+1(·|s

′)− π
(tlast)
h+1 (·|s

′)
〉]

. (102)

We can now continue to go through the mirror descent argument. Recall that

π
(t+1)
h+1 (·|s′) =

π
(t)
h+1(·|s′) exp(ηf

(t)
h+1(s

′, ·))∑
a∈A π

(t)
h+1(a|s′) exp(ηf

(t)
h+1(s

′, a))
= Z−1π

(t)
h+1(·|s

′) exp(ηf
(t)
h+1(s

′, ·)),

and rearranging this yields
ηf

(t)
h+1(s

′, ·) = logZt + log π
(t+1)
h+1 (·|s′)− log π

(t)
h+1(·|s

′),

where logZt is

logZt = log

(∑
a∈A

π
(t)
h+1(a|s

′) exp(ηf
(t)
h+1(s

′, a))

)
= log π

(t)
h+1(·|s

′)− log π
(t+1)
h+1 (·|s′) + ηf

(t)
h+1(s

′, ·).

Noting that
∑

a∈A

(
π
(t)
h+1(·|s′)− π

(tlast+1)
h+1 (·|s′)

)
= 0, we can now bound that〈

ηf
(t)
h+1(s

′, ·), π(t)
h+1(·|s

′)− π
(tlast+1)
h+1 (·|s′)

〉
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=
〈
logZt + log π

(t+1)
h+1 (·|s′)− log π

(t)
h+1(·|s

′), π
(t)
h+1(·|s

′)− π
(tlast+1)
h+1 (·|s′)

〉
=
〈
log π

(t+1)
h+1 (·|s′)− log π

(t)
h+1(·|s

′), π
(t)
h+1(·|s

′)− π
(tlast+1)
h+1 (·|s′)

〉
= −KL

(
π
(t)
h+1(·|s

′) || π(t+1)
h+1 (·|s′)

)
+ KL

(
π
(tlast+1)
h+1 (·|s′) || π(t+1)

h+1 (·|s′)
)
− KL

(
π
(tlast+1)
h+1 (·|s′) || π(t)

h+1(·|s
′)
)
, (103)

where the last equality follows directly from Lemma 24. This establishes the following telescoping sum

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h+1(s

′, ·), π(t)
h+1(·|s

′)− π
(tlast+1)
h+1 (·|s′)

〉]
=

1

η

T∑
t=1

H∑
h=1

Eπ∗

[
−KL

(
π
(t)
h+1(·|s

′) || π(t+1)
h+1 (·|s′)

)
+ KL

(
π
(tlast+1)
h+1 (·|s′) || π(t+1)

h+1 (·|s′)
)
− KL

(
π
(tlast+1)
h+1 (·|s′) || π(t)

h+1(·|s
′)
)]

= −1

η

T∑
t=1

H∑
h=1

Eπ∗

[
KL
(
π
(t)
h+1(·|s

′) || π(t+1)
h+1 (·|s′)

)]

+
1

η

H∑
h=1

Kh∑
k=1

tk+1−1∑
t=tk

Eπ∗

[
KL
(
π
(tk+1)
h+1 (·|s′) || π(t+1)

h+1 (·|s′)
)
− KL

(
π
(tk+1)
h+1 (·|s′) || π(t)

h+1(·|s
′)
)]

= −1

η

T∑
t=1

H∑
h=1

Eπ∗

[
KL
(
π
(t)
h+1(·|s

′) || π(t+1)
h+1 (·|s′)

)]
+

1

η

H∑
h=1

Kh∑
k=1

Eπ∗

[
KL
(
π
(tk+1)
h+1 (·|s′) || π(tk+1)

h+1 (·|s′)
)]

. (104)

To see this step, consider the example where we perform switches at step 1, 3, 6, and T = 8. Note that we adopt the
convention that π(T+1) = π(T ). The telescoping sum then becomes

8∑
t=1

KL(tlast + 1||t+ 1)− KL(tlast + 1||t)

= KL(2, 2)− KL(2, 1) + KL(2, 3)− KL(2, 2) + KL(4, 4)− KL(4, 3) + KL(4, 5)− KL(4, 4)
+ KL(4, 6)− KL(4, 5) + KL(7, 7)− KL(7, 6) + KL(7, 8)− KL(7, 7) + KL(7, 9)− KL(7, 8)

= KL(2, 3) + KL(4, 6) + KL(7, 9). (105)

So the sum includes every tk where a switch occurs:

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h+1(s

′, ·), π(t)
h+1(·|s

′)− π
(tlast)
h+1 (·|s

′)
〉]

=
1

η

H∑
h=1

Kh∑
k=1

Eπ∗

[
KL
(
π
(tk+1)
h+1 (·|s′) || π(tk+1)

h+1 (·|s′)
)]
− 1

η

T∑
t=1

H∑
h=1

Eπ∗

[
KL
(
π
(t)
h+1(·|s

′) || π(t+1)
h+1 (·|s′)

)]
= H∗(π

(t)
h , tk).

The latter two terms cancel in the TV distance, or any distance where the triangle inequality holds. It is harder to see a
relation with the KL divergence, but in general, one may not be able to achieve sublinear regret.

This is because, if we merge this term with the first term in the regret decomposition of Lemma 8, we obtain

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h+1(s

′, ·), π∗
h+1(·|s′)− π

(t)
h+1(·|s

′)
〉]

+

T∑
t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h+1(s

′, ·), π(t)
h+1(·|s

′)− π
(tlast)
h+1 (·|s

′)
〉]

,

which evaluates to
T∑

t=1

H∑
h=1

Eπ∗

[〈
f
(t)
h+1(s

′, ·), π∗
h+1(·|s′)− π

(tlast)
h+1 (·|s

′)
〉]

.

44



Actor-Critics Can Achieve Optimal Sample Efficiency

G. Miscellaneous Lemmas
In this section, we collect some auxiliary lemmas that are useful in deriving our main results.

Lemma 20 (Bound on Covering Number of Value Function Class, Lemma B.1 from Zhong and Zhang (2023)). Consider
the value function class induced by a Q-function class F (t) and a class of stochastic policies Π(t), given by

V(t)
h =

{
⟨fh(s, ·), πh(·|s)⟩ | fh ∈ F (t)

h , π ∈ Π(t)
}
.

Then, the covering number of the value function class can be bounded by the product of the covering number of its
components:

NV(t)
h

(ρ) ≤ NF(t)
h

(ρ/2) · N
Π

(t)
h

(ρ/2H).

Lemma 21 (Lemma B.3, Zhong and Zhang (2023)). For π, π′ ∈ ∆(A) and Q,Q′ : A 7→ R+, if π(·) ∝ exp(Q(·)) and
π′(·) ∝ exp (Q′(·)), we have

∥π − π′∥1 ≤
√
2 · KL(π||π′) ≤ 2

√
∥Q−Q′∥∞.

Lemma 22 (Adapted Version of Lemma D.2 of Xiong et al. (2023)). Let F be a function class with low D∆-type Bellman
Eluder dimension. Then, for any policy π ∈ Π, if we have that

∑t−1
i=1(f

(t)
h − T π

h f
(t)
h+1)

2(s
(i)
h , a

(i)
h ) ≤ βH2 for any t ∈ [T ]

and β ≥ 9, then for any t′ ∈ [T ] we also have that

t∑
i=1

(f
(i)
h − T

π
h f

(i)
h+1)

2
(
s
(i)
h , a

(i)
h

)
≤ O

(
dBE(F , D∆, 1/

√
T )βH2 log T

)
.

Lemma 23 (Value Difference/Generalized Policy Difference Lemma, (Cai et al., 2024; Efroni et al., 2020)). Let π, π′ be
two policies and f ∈ F be any Q-function. Then for any t ∈ [T ] we have

f1 (s1, π1(s1))− V π′

1 (s1)

=

H∑
h=1

Eπ′ [⟨fh (sh, ·) , πh (· | sh)− π′
h (· | sh)⟩] +

H∑
h=1

Eπ′

[
fh (sh, ah)− T π′

h fh+1 (sh, ah)
]
.

Lemma 24. For any probability distributions π(·), π1(·) and π2(·) over space S. We have following relationship holds:〈
π1(·)− π(·), log π(·)− log π2(·)

〉
= −KL(π1||π) + KL(π1||π2)−KL(π||π2).

Proof. Note that for the first equality, we have〈
π1(·)− π(·), log π(·)− log π2(·)

〉
=
〈
π1(·), log π(·)− log π2(·)

〉
−
〈
π(·), log π(·)− log π2(·)

〉
=
〈
π1(·), log π(·)− log π1(·)

〉
+
〈
π1(·), log π1(·)− log π2(·)

〉
−
〈
π(·), log π(·)− log π2(·)

〉
= −KL(π1||π) + KL(π1||π2)−KL(π||π2).

Lemma 25 (Policy Optimization Difference). Let π(t), t = 1, ..., T be a sequence of policies updated by:

π
(t+1)
h+1 (· | s′) =

π
(t)
h+1 (· | s′) exp

(
ηf

(t)
h+1 (s

′, ·)
)

∑
a∈A π

(t)
h+1 (a | s′) exp

(
ηf

(t)
h+1 (s

′, a)
) = Z−1

t π
(t)
h+1 (· | s

′) exp
(
ηf

(t)
h+1 (s

′, ·)
)
,
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where f (t) ∈ F . For any t1, t2 ∈ [T ], where µ(t) is an arbitrary set of distributions,

max{t1,t2}∑
t=min{t1,t2}

Eµ(t)

[〈
f
(t)
h+1(s

′, ·), π(t2)
h+1(·|s

′)− π
(t1)
h+1(·|s

′)
〉]
≤ ηH2(|t2 − t1|+ 1).

Proof. We observe that

π
(t+1)
h+1 (· | s′)

π
(t)
h+1(· | s′)

≥ exp(0)

|A|−1
∑

a∈A exp(ηH)
≥ exp(−ηH),

π
(t+1)
h+1 (· | s′)

π
(t)
h+1(· | s′)

=
exp(ηf

(t)
h+1(s

′, ·))∑
a∈A π

(t)
h+1(a | s′) exp(ηf

(t)
h+1(s

′, a))
≤ exp(ηH)

|A|−1
∑

a∈A exp(0)
= exp(ηH).

So we can establish that since e−x ≥ 1− x for all x ∈ R,

|π(t+1)
h+1 (·|s′)− π

(t)
h+1(·|s

′)| = π
(t+1)
h+1 (·|s′) ·

∣∣∣∣∣1− π
(t)
h+1(·|s′)

π
(t+1)
h+1 (·|s′)

∣∣∣∣∣ ≤ π
(t+1)
h+1 (·|s′) (1− exp(−ηH))

≤ π
(t+1)
h+1 (·|s′) (1− (1− ηH)) ≤ ηHπ

(t+1)
h+1 (·|s′). (106)

By the triangle inequality and the fact that f ≤ H for all f ∈ F , it then follows that

max{t1,t2}∑
t=min{t1,t2}

Eµ(t)

[〈
f
(t)
h+1(s

′, ·), π(t2)
h+1(·|s

′)− π
(t1)
h+1(·|s

′)
〉]
≤

max{t1,t2}∑
t=min{t1,t2}

Eµ(t)

[〈
H, ηHπ

(t+1)
h+1 (·|s′)

〉]

≤
max{t1,t2}∑

t=min{t1,t2}

ηH2 ≤ 2ηH2(|t2 − t1|+ 1). (107)

H. Further Experiment Details
Figure 2 can be reproduced by running actor critic.ipynb within the following GitHub repository
(https://github.com/hetankevin/hybridcov). Figure 3 can be reproduced by running scripts/run antmaze.sh within
the following GitHub repository (https://github.com/nakamotoo/Cal-QL). The results for Cal-QL arise from running the
script as-is. Algorithm 2H can be reproduced by adding the flags --enable calql=False, --use cql=False, and
--online use cql=False. Algorithm 1H can be reproduced with the same flags as Algorithm 2H, but additionally
setting the config.cql max target backup argument within the ConservativeSAC() object to False.

To implement the mirror descent update in Figure 2, we store the sequence of past Q-functions fitted for Algorithm 1, and
the last Q-function for Algorithm 2. Upon receiving a query to evaluate or sample from π

(t)
h (s, a) for a given h, s, a tuple,

we compute exp(η
∑T

t=1 f
(t)
h (s, a)) for Algorithm 1, and exp(η(t− tlast)f

(t)
h (s, a)) for Algorithm 2. To generate a sample

from this density, the normalizing constant can be computed exactly in the case where there is a finite number of actions.
Otherwise a sample can be generated via MCMC, importance sampling, or rejection sampling.
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