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Abstract

Building benchmarks to systemically analyze different
capabilities of video question answering (VideoQA) models
is challenging yet crucial. Existing benchmarks often
use non-compositional simple questions and suffer from
language biases, making it difficult to diagnose model
weaknesses incisively. A recent benchmark AGQA [8] poses
a promising paradigm to generate QA pairs automatically
from pre-annotated scene graphs, enabling it to measure
diverse reasoning abilities with granular control. However,
its questions have limitations in reasoning about the fine-
grained semantics in videos as such information is absent
in its scene graphs. To this end, we present ANetQA, a
large-scale benchmark that supports fine-grained compo-
sitional reasoning over the challenging untrimmed videos
from ActivityNet [4]. Similar to AGQA, the QA pairs
in ANetQA are automatically generated from annotated
video scene graphs. The fine-grained properties of ANetQA
are reflected in the following: (i) untrimmed videos with
fine-grained semantics; (ii) spatio-temporal scene graphs
with fine-grained taxonomies; and (iii) diverse questions
generated from fine-grained templates. ANetQA attains 1.4
billion unbalanced and 13.4 million balanced QA pairs,
which is an order of magnitude larger than AGQA with
a similar number of videos. Comprehensive experiments
are performed for state-of-the-art methods. The best model
achieves 44.5% accuracy while human performance tops
out at 84.5%, leaving sufficient room for improvement.

1. Introduction

Recent advances in deep learning have enabled machines
to tackle complicated video-language tasks that involve
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Figure 1. Comparisons of ANetQA and AGQA [8]. The QA
pairs in both benchmarks are automatically generated from spatio-
temporal scene graphs by using handcrafted question templates.
Benefiting from the untrimmed long videos and fine-grained
scene graphs, our questions require more fine-grained reasoning
abilities than those in AGQA when similar templates are applied.
Moreover, the newly introduced attribute annotations allow us to
design many fine-grained question templates that are not supported
in AGQA (e.g., “what color” and “what is the occupation”).

both video and language clues, e.g., video-text retrieval,
video captioning, video temporal grounding, and video
question answering. Among these tasks, video question
answering (VideoQA) is one of the most challenging tasks
as it verifies multiple skills simultaneously. Taking the
question “What is the black object that the person is
wearing before various fish are seen swimming through the
reef?” in Figure 1 as an example, it requires a synergistic
understanding of both the video and question, together with
spatio-temporal reasoning to predict an accurate answer.



To comprehensively evaluate the capabilities of existing
VideoQA models, several prominent benchmarks have been
established [11, 21, 29, 33, 38, 42, 43]. Despite their useful-
ness, they also have distinct shortcomings. Some bench-
marks use simulated environments to synthesize video con-
tents [29, 42], which provides controllable diagnostics over
different reasoning skills. However, the synthetic videos
lack visual diversity and the learned models on the bench-
marks cannot generalize to real-world scenarios directly.
Some real-world benchmarks generate QA pairs from off-
the-shelf video captions [38, 48] or human annotations [11,
21, 33, 43], which suffer from simple question expressions
and biased answer distributions. These weaknesses may be
exploited by models to make educated guesses to obtain the
correct answers without seeing video contents [24, 40].

One recent VideoQA benchmark AGQA poses a promis-
ing paradigm to address the above limitations [8]. AGQA
is built upon the real-world videos from Charades [32].
In contrast to previous benchmarks, AGQA adopts a two-
stage paradigm instead. For each video, a spatio-temporal
scene graph over representative frames is first annotated
by humans, which consists of spatially-grounded object-
relationship triplets and temporally-grounded actions. After
that, different types of questions are generated on top of
the scene graph using corresponding question templates,
enabling it to measure various reasoning abilities with
granular control. Despite the comprehensiveness of AGQA,
we argue that its foundation—the spatio-temporal scene
graph—has limitations in representing the fine-grained se-
mantics of videos. Specifically, their scene graphs encode
objects and relationships from limited taxonomies, which
are not fine-grained enough for generating questions that
require reasoning about the detailed video semantics.

To this end, we introduce ANetQA1, a new benchmark
that supports fine-grained compositional reasoning over
complex web videos from ActivityNet [4]. Similar to the
strategy of AGQA, the QA pairs in ANetQA are automati-
cally generated from pre-annotated scene graphs. As shown
in Figure 1, we claim that ANetQA is more fine-grained
than AGQA in terms of the following:

(i) The benchmark is built upon untrimmed long videos
with fine-grained semantics. Each video may involves
multiple indoor or outdoor scenarios, containing com-
plicated interactions between persons and objects.

(ii) The spatio-temporal scene graph consists of fine-
grained objects (e.g., “manta ray”, “diving gear”),
relationships (e.g., “jumping into”, “chasing”), at-
tributes (e.g., “swimming”, “black and white”), and
actions in natural language (e.g., “a manta ray swims
in the ocean over a reef ”).

1Note that there is a VideoQA benchmark ActivityNet-QA [43] whose
QA pairs are fully annotated by humans. To avoid confusion, we name our
benchmark ANetQA.

(iii) Benefiting from the fine-grained scene graphs, we
are able to design diverse question templates that
requires fine-grained compositional reasoning (e.g.,
“what color ...” and “what is the occupation ...”).

Benefiting from the above fine-grained characteristics,
ANetQA obtains 1.4B unbalanced and 13.4M balanced QA
pairs. To the best of our knowledge, ANetQA is the largest
VideoQA benchmark in terms of the number of questions.
Compared with the previous largest benchmark AGQA,
ANetQA is an order of magnitude larger than it with a
similar number of videos. We conduct comprehensive
experiments and intensive analyses on ANetQA for the
state-of-the-art VideoQA models, including HCRN [19],
ClipBERT [20], and All-in-One [35]. The best model
delivers 44.5% accuracy while human performance tops out
at 84.5%, showing sufficient room for future improvement.
The benchmark is available at here2.

2. Related Work
We briefly review the field of VideoQA in terms of

methods and benchmarks. Since ANetQA is built upon
ActivityNet [4], we introduce ActivityNet and its derived
benchmarks in particular.
VideoQA approaches. The research of visual question
answering lies mainly in the image domain. A number of
image question answering (ImageQA) methods have been
developed to push state-of-the-art performance on public
benchmarks successively [6, 13, 44, 45]. As a natural exten-
sion of the ImageQA task, VideoQA is more challenging
as it requires effective temporal representation modeling
and spatio-temporal reasoning. Existing studies explore
end-to-end neural networks in conjunction with hierarchical
representations [38, 49], memory networks [7, 30, 33], and
graph networks [9, 25, 37].

Motivated by the encouraging success of Transformers
[34] in various NLP [15, 31], CV [3, 26], and multimodal
tasks [1,2,27], Transformer-based approaches have become
the mainstream of recent VideoQA research. Early ap-
proaches only exploit the Transformer architecture and train
models from scratch [14, 23]. More recently, pretrained
Transformer models on large-scale datasets have shown
effectiveness when finetuned on VideoQA tasks. Some
approaches incorporate the pretrained language Transform-
ers [16,41] or multimodal Transformers on image-text pairs
[20] to improve VideoQA performance. Some other studies
perform video-language pretraining directly on massive
video-text pairs, which learn better multimodal represen-
tations and achieve state-of-the-art performance on various
VideoQA benchmarks [5, 35, 39, 47].

VideoQA benchmarks. The rapid progress in VideoQA is
inextricably related to the established benchmarks. Existing

2https://milvlg.github.io/anetqa



video question grounding taxonomy
type #videos avg. len. #QA pairs #templates #objects #relations #attributes #actions

CLEVRER [42] synth. 20K 5s 305K 5 1 2 13 3
TVQA+ [22] real 4.2K 7.2s 29.4K - 2,527 - - open
HowtoVQA69M [39] real 69M 12.1s 69M - - - - open
AGQA [8] real 9.6K 30s 192M/3.9M 28 36 44 - 157

ANetQA real 11.5K 180s 1.4B/13.4M 119 2,072 86 618 open

Table 1. Comparisons of ANetQA and other representative large-scale VideoQA benchmarks. Benefiting from the fine-grained video
and grounding annotations, ANetQA attains massive fine-grained questions and is an order of magnitude larger than the current largest
benchmarks [8, 39] in terms of the number of QA pairs. “open” indicates the grounded actions are depicted in natural language.

VideoQA benchmarks can be categorized into two groups
based on whether their videos are synthesized by simulation
[29, 42] or collected from the real world [8, 17, 21, 28, 33,
36, 38, 39, 43, 46, 48]. The synthesized benchmarks can
easily obtain massive QA pairs without human annotations.
Their synthetic nature also enables granular control over
reasoning abilities and language biases. However, the
synthesized videos are often short and lack visual diversity,
making it difficult to generalize the learned models to real-
world scenarios. Establishing VideoQA benchmarks on
real-world videos requires human annotations inevitably.
Early benchmarks rely on the associated video captions
to generate QA pairs automatically [28, 38, 48, 51]. Al-
though these captions are annotated by humans, they are
often too general to cover all the fine-grained semantics
in videos. This makes these benchmarks be dominated
by simple questions that lack detailed information. To
obtain fine-grained and diverse questions, some recent
benchmarks have been established by asking annotators
to design questions of specific reasoning abilities, e.g.,
object localization [22], relationship recognition [43], and
causality analysis [36]. Nevertheless, prohibitive annotation
costs restrict the sizes of these benchmarks and free-form
question expressions lead to severe language biases. One
recent benchmark AGQA introduces a new paradigm to
automatically generate QA pairs upon video scene graphs
[8]. Through the composition of scene graph elements,
AGQA is orders of magnitude larger than its counterparts.
Similar to AGQA, our ANetQA is also built upon spatio-
temporal scene graphs. In contrast to AGQA, ANetQA
shows its fine-grained characteristics in terms of the videos,
annotated scene graphs, and generated questions. Detailed
comparisons of ANetQA and other representative large-
scale VideoQA benchmarks are shown in Table 1.

ActivityNet and its derivatives. ActivityNet (abbr. ANet)
is one of the most important video recognition benchmarks
[4]. It consists of 20K untrimmed videos from 200 activ-
ity classes, including both indoor and outdoor scenarios.
The benchmark is challenging as its videos contain rich
semantics. Therefore, some derived benchmarks are built
upon ANet to provide fine-grained annotations [18, 50].
ANet-Captions [18] annotates each video with multiple

temporally-grounded captions. ANet-Entities [50] provides
spatially-grounded bounding boxes for the noun phrases
mentioned in the captions. We establish our ANetQA based
on the annotations of these two benchmarks .

3. The ANetQA Benchmark
ANetQA is a large-scale VideoQA benchmark to mea-

sure a variety of spatio-temporal reasoning abilities at a
fine-grained level. In this section, we first provide an
overview of the construction process of our benchmark and
then introduce the key stages in detail.

3.1. Overview

The videos in ANetQA are derived from ActivityNet [4].
As mentioned above, we leverage the auxiliary annotations
on ActivityNet [18,50] to reduce the annotation costs during
the construction of our benchmark. These result in 11,525
videos in total, which are comprised of 9,155 and 2,370
videos in the train and val subsets of ActivityNet,
respectively. We keep the train subset unchanged and
further divide the val subset evenly into a new val subset
of 1,185 videos and a test subset of 1,185 videos.

Next, we annotate each video with a spatio-temporal
scene graph via crowdsourcing. Each video has been anno-
tated with temporal-grounded captions [18] and spatially-
grounded objects from a few representative frames [50],
For each frame, we first clean the mislabeled objects and
complement the omitted objects, and then annotate each
object with fine-grained relationships and attributes. The
accomplished scene graph annotations consist of 118K
objects, 83K relationships, 1M attributes, and 16K natural
language actions across 43K representative video frames.

Finally, we handcraft a variety of templates to generate
linguistically diverse QA pairs with both grammatical and
logical guarantees. By composing the elements in the scene
graphs and then filling them into proper template slots, we
obtain 1.4B unbalanced and 13.4M balanced QA pairs.

3.2. Fine-grained Video Scene Graph Annotation

Representative frames. Annotating a scene graph over all
video frames is impractical. Similar to [8], each of our
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Figure 2. Statistics of the annotated video scene graphs. We visualize the distributions of the top-15 (a) object occurrences and (b)
relationship occurrences. The attributes form a hierarchical taxonomy shown in (c), where the values in the parentheses indicate the
number of bottom-level attributes to be annotated. More details are provided in the supplementary material.

scene graph is annotated over a few representative frames
in a video. Concretely, we use the selected frames from
ANet-Entities [50] as the initialization, which cover the
key semantics of all the action segments in ANet-Captions
[18]. After that, we manually check and filter out those
frames that hamper further annotation, i.e., the frames do
not contain any meaningful objects or contain too many
objects from the same class. Finally, we obtain 43K frames
for further annotation, which indicates an average number
of 3.69 frames per video3.

Objects. ANet-Entities also provides object-level annota-
tions for all the selected frames. Each object is annotated
with a bounding box and a noun phrase (e.g., “a young
woman”, “a black jacket”). To better organize the object
annotations, we first extract nouns from the noun phrases
and convert them into a set of object labels. After that, we
merge the synonymous object labels (e.g., “mountain” and
“hill”, “saxophone” and “sax”). Finally, we ask annotators
to go through all the selected frames to refine the annota-
tions, including object augmentation, label correction, and
bounding box calibration. By doing the above, we obtain
a total number of 118K objects of 2,072 classes over the
selected frames. The top most frequent classes are shown
in Figure 2a. We exclude the most frequent class “person”
for better visualization.

Relationships. Beyond recognizing objects, predicting
pairwise relationships between two objects is also important
for scene understanding. Referring to the taxonomy in
AGQA, we design a set of 86 relationships containing 81
contact relationships (e.g., “holding”, “riding”, “wearing”),

3The number of sampled frames in our ANetQA is much lower than
that of AGQA (3.69 vs. 24.4 on average). The motivation derives from our
observation that the scene graph elements barely change within an action
segment. With a limited annotation budget, we favor the annotation density
in one frame rather than the annotation scale across many frames.

4 spatial relationships (“near”, “on”, “in”, “part of ”)4,
and 1 temporal relationship (“identical”). Our contact
relationship categories are broader than AGQA (81 vs. 16),
because: (i) our videos contain both indoor and outdoor
scenarios while AGQA only contains indoor ones; (ii) our
relationships contain interactions between two arbitrary ob-
jects (i.e., human-object, human-human, and object-object
interactions) while AGQA only contains human-object in-
teractions. For each paired objects in one frame, annotators
are asked to label at most one spatial relationship and one
contact relationship, respectively. The “identical” temporal
relationship indicates the objects in different frames refer
to the same instance, which is used to provide indirect
references of objects during question generation. Unlike
other manually annotated relationships, this relationship is
automatically obtained from the annotated attributes, which
will be described below. The relationship occurrences
follow a long-tail distribution and we illustrate the top most
frequent classes in Figure 2b.

Attributes. To distinguish the fine-grained discrepancies
between two objects, especially when they share the same
object label, we need attribute annotations. Different from
the single-label object taxonomy, the attribute taxonomy
has a multi-label nature in that each object has multiple
attributes. Moreover, the attributes for different objects are
different. To address the challenges above, we handcraft a
hierarchical attribute taxonomy by taking the characteris-
tics of our annotated objects into consideration. As shown
in Figure 2c, our attribute taxonomy includes three levels.
At the top level, we categorize all the object classes into
the human and non-human groups. For each group at the
middle level, we design a set of representative attribute
types (e.g., “hair style” and “skin color“ for the human

4As the viewpoints of our videos are varied, we exclude two spatial
relationships (“in front of ” and “behind”) in AGQA to avoid ambiguity.



group, “shape” and “material” for the non-human group).
A few attribute types like “location” and “status” are shared
across the two groups. At the bottom level, we provide a set
of attribute labels for each attribute type (e.g., “long hair”
and “short hair” for the hair length attribute type). For
each object, annotators are asked to label the bottom-level
attributes thoroughly. Due to space limitations, we only
show the numbers of attributes at the bottom level in the
figure. We have annotated 1M attributes over 118K objects,
with an average number of 8.6 attributes per object.

As a by-product, the annotated attributes can facili-
tate the annotation process of the “identical” relationship.
Specifically, if two objects in different frames have the
same object label, we calculate their overlapping ratio of
the annotated attributes. The pairs that surpass a confidence
threshold are manually checked to ensure correctness.

To the best of our knowledge, our benchmark is the
first attempt to provide large-scale and hierarchical attribute
annotations for grounded objects in real-world videos.

Actions. In contrast to the objects, attributes, and relation-
ships above, the action segments over specific time intervals
of the video often contain much richer semantics. Using a
simple label may lose the essential semantics of the action.
Therefore, we use a natural language caption to describe
each action segment in detail, which has been provided
in ANet-Captions [18]. However, some long captions are
syntactically complex and are hard to be used for question
generation. To this end, we set the maximum length of
a caption to 10 and filter out those captions exceeding
this threshold. This results in 16K temporally-grounded
captions with an average length of 8.1 words.

3.3. Compositional QA Generation

On top of the annotated spatio-temporal scene graphs,
we aim to generate massive questions for diverse reasoning
abilities. As shown in Table 2, we design a set of 21
question types to cover diverse reasoning skills in varying
degrees of complexities. Each question type is catego-
rized into one of the five structures (query, verify, choose,
compare, and logic), which refers to the intention of the
question. To fulfill the functionality of different question
types, we handcraft at least one template for each question
type, resulting in 119 grammatical and logical question tem-
plates. Similar to AGQA, we design a functional program
for each template that traverses and composes the elements
in the scene graphs, and fills them into proper template slots
to produce compositional QA pairs automatically.

Compared to the question types in AGQA, our major
improvements lie in that we introduce 6 extra types with
respect to attributes (i.e., the types starting with ‘attr’
in Table 2). The annotated rich attributes enable us to
design up to 101 question templates (e.g., “what color
is ...”, “what is the shape of ...”), resulting in 612.6M

type structure #templ. #unbal. #bal.
attrRelWhat† query 30 169.5M 2.63M
attrWhat† query 15 70.4M 1.43M
relWhat query 1 33.1M 1.01M
objRelWhere query 2 2.5M 0.55M
objRelWhat query 2 7.1M 0.56M
objWhere query 1 2.9M 0.43M
objWhat query 1 0.5M 0.14M
objExist verify 1 51.7M 1.00M
objRelExist verify 1 98.3M 0.94M
actExist verify 1 0.4M 0.08M
objRelWhatChoose choose 2 347.0M 0.57M
objWhatChoose choose 1 180.5M 0.55M
attrRelWhatChoose† choose 36 149.5M 0.42M
attrWhatChoose† choose 18 85.1M 0.40M
attrCompare† compare 1 138.0M 2.02M
attrSame† compare 1 0.09M 0.01M
actTime compare 1 0.01M 0.01M
actLongerVerify compare 1 0.01M 0.01M
actShorterVerify compare 1 0.01M 0.01M
andObjRelExist logic 1 20.2M 0.35M
xorObjRelExist logic 1 20.2M 0.35M

overall - 119 1.4B 13.4M

Table 2. Statistics of the generated questions. Each question
type belongs to a certain structure and contains at least one
template. More details are provided in the supplementary material.
†: new question types that are not supported in AGQA.

unbalanced and 6.9M balanced QA pairs. Furthermore,
the attribute annotations are also used to describe ob-
jects in almost all the rest templates (e.g., “what is the
relationship between the [attribute][object] and
[attribute][object]?”). The introduction of at-
tributes not only provides a more precise description of
the referred object but also increases the reasoning steps of
the generated questions. It is worth noting that although
we can describe an object in great detail (e.g., “a walking
young woman wearing green t-shirt and sunglasses”), this
would lead to a risk of combinational explosion and affect
the readability of the questions. Therefore, we set the
maximum number of attributes used in each question to two.

Using the above question templates, we obtain 1.4 billion
QA pairs. These QA pairs are unbalanced and have strong
language biases that models can exploit. We conduct
composite balancing strategies on both the questions and
answers. Following the question structure distribution in
balanced AGQA, our question balancing strategy adjusts
the percentages of the query/verify/choose/compare/logic
questions to 50%/15%/15%/15%/5%, as shown in Figure
3a. While maintaining these percentages above, we conduct
answer balancing within each question template to make
sure that its answers are uniformly distributed (unbiased).
In Figure 3b, we visualize the global answer distributions
of the unbalanced and balanced sets in terms of the top-50
most frequent open answers (i.e., the answers to the query



(a) question balancing (b) answer balancing

Figure 3. Distributions before and after balancing. (a)
The question balancing is performed on question structures to
adjust the percentages of the query/verify/choose/compare/logic
questions to 50%/15%/15%/15%/5%. (b) The answer balancing is
conducted on each question template to make its answers follow
a uniform distribution. Its effect to the global answer distribution
can be observed from the change in the distributions of the top 50
most frequent open answers.

structure questions). The obtained results demonstrate the
effectiveness of our balancing strategies.

Our final ANetQA benchmark contains 13.4M balanced
QA pairs, which consists of 10.4M train, 1.5M val,
and 1.5M test samples. We compare the question and
answer length distributions of ANetQA to existing Video-
QA benchmarks. The results in Figure 4a show that the
ANetQA questions have a wider range of lengths and
are longer on average than those of all the counterparts,
showing the diversity and fine granularity of our questions,
respectively. Moreover, according to these challenging
questions, our answer vocabulary size is much larger than
that of the counterparts (see Figure 4b), which further
increases the difficulty of our benchmark.

4. Experiments
This section contains comprehensive experiments and

intensive analyses of ANetQA. We conduct evaluations on
several state-of-the-art models and diagnose their capabil-
ities to deal with different question structures, semantic
classes, reasoning skills, and answer types, respectively.
All the models are trained on the train split, validated
on the val split, and evaluated on the test split. Fur-
thermore, we also conduct a human evaluation to see the
performance gap between the top-performing models and
humans. Finally, we investigate the effects of different
auxiliary annotations to model performance.

4.1. Experimental Setup

Compared models. We choose three state-of-the-art mod-
els for comparison, namely HCRN [19], ClipBERT [20],
and All-in-one [35]. HCRN introduces a reusable condi-
tional relation network (CRN) module and stacks multiple
CRNs in depth to integrate the motion, question, and
appearance features at different levels [19]. We use its

(a) question lengths (b) answer vocabulary sizes

Figure 4. Question lengths and answer vocabulary sizes. We
compare the (a) question lengths and (b) answer vocabulary sizes
of our ANetQA and some typical VideoQA benchmarks like
MSVD-QA [38], MSRVTT-QA [38], ActivityNet-QA [43], and
AGQA [8]. Compared to the counterparts, our questions are longer
and answer vocabulary size is larger, showing the fine granularity,
diversity, and difficulty of our benchmark.

default settings to extract 128 appearance features and 8
motion features, respectively.

Different from HCRN, ClipBERT and All-in-one are two
Transformer-based models that incorporate vision-language
pretraining (VLP) on a large-scale corpus. ClipBERT is
pretrained on massive image-text pairs, which enables end-
to-end learning by employing a sparse sampling mechanis-
m. We adopt its official pretrained model weights as initial
and then finetune the model on ANetQA using the (4× 2)
sampling strategy, which means 4 segments are sampled
(with 2 sampled frames in each segment) at each training
step. During model testing, we sample 16 frames uniformly
for each video, as recommended in [20]. All-in-one is a
current top-performing VideoQA model, which is the first
attempt to perform end-to-end video-language pretraining
using raw video and textual signals as inputs [35]. It
is pretrained directly on a large-scale video-text corpus.
We finetune its base model All-in-one-B on ANetQA by
randomly sampling 3 frames for each video at each training
step. At inference time, we also extract 3 frames uniformly
and feed them to the learned model to predict the answer.

Human evaluation. We conduct an intensive human
evaluation to quantify the errors and ambiguities induced
during the construction of ANetQA. As the labeling costs
is unaffordable to provide a thorough evaluation over all
the QA pairs, we follow [8, 10] to randomly sample 4,000
QA pairs from the test set with the following two rules:
(i) each video contains at least one sample, and (ii) each
question type contains at least 50 samples. Each sample
is assigned to five random annotators from a diverse group
to answer the question and the majority vote over their
predictions is regarded as the final human answer.

The human performance reach at 84.48% on the sampled
test set. We take a closer look into these 15.52% incon-
sistent human predictions and find that they are constituted
by 0.75% annotation errors, 1.95% answer ambiguities, and



taxnomy type prior HCRN [19] ClipBERT [20] All-in-one [35] humanw/ w/o w/ w/o w/ w/o

question structures

query 1.04 21.30 19.24 23.93 16.87 25.10 18.40 92.92
compare 49.70 55.66 50.01 55.62 50.06 54.41 50.06 81.34
choose 29.13 63.97 67.37 69.51 66.17 70.39 67.00 71.84
verify 50.00 68.56 50.02 72.57 50.00 72.35 50.00 86.69
logic 50.00 78.70 76.82 80.06 74.33 80.58 74.20 86.06

question semantics

object 17.74 55.99 49.55 58.69 48.22 59.81 48.99 84.26
relationship 22.61 39.65 33.28 40.19 30.89 40.78 32.64 90.79
attribute 14.60 35.80 34.05 39.71 32.81 40.14 33.39 82.17
action 47.83 72.50 50.29 74.96 50.99 74.39 51.14 82.33

reasoning skills

object-relationship 10.48 35.17 32.38 37.66 30.03 38.42 31.32 86.47
object-attribute 17.44 40.95 37.02 43.72 35.45 44.33 36.39 84.75
duration-comparison 50.00 49.90 49.38 49.98 50.10 51.65 54.34 76.73
exist 50.00 71.20 56.97 74.51 56.31 74.49 56.28 86.52
sequencing 10.21 31.70 31.36 34.19 28.76 35.27 30.10 87.50
superlative 30.32 47.46 39.78 49.55 38.83 50.14 39.60 90.14

answer types binary 49.96 64.36 53.91 66.19 53.55 65.65 53.54 83.72
open 6.49 29.95 29.00 33.17 26.86 34.33 28.25 84.82

overall 17.66 41.15 37.11 43.92 35.55 44.53 36.48 84.48

Table 3. A comprehensive comparison of three VideoQA methods on ANetQA. All results are evaluated on the test set. Apart from
the overall accuracy, we follow [8] to report the per-type accuracies under different taxonomies. For each method, the variant trained with
vision clues (w/) outperforms its blind counterpart without vision clues (w/o), implying that the language biases are well controlled.

12.82% human errors. These results imply that both of our
scene graphs and generated QA pairs are of high quality.
Furthermore, our benchmark contains difficult questions
that even educated humans can not answer correctly. More
analyses are provided in the supplementary material.

4.2. Main Results

We provide an intensive comparison of the state-of-the-
art methods on ANetQA In Table 3. Besides the overall ac-
curacy, we follow [8] to report the per-type accuracies under
different taxonomies, i.e., question structures, question se-
mantics, reasoning skills, and answer types. More detailed
descriptions of the taxonomies and corresponding question
templates are provided in the supplementary material. For
each type, we provide a simple baseline, type prior, that
uses the most frequent answer as the prediction.

From the results, we have the general observations as
follows: (i) The All-in-one model pretrained on large video-
text corpus achieves the overall best performance while
using the least number of sampled frames. This suggests
good video representations play a central role in VideoQA
performance; (ii) the best performing model is still far from
the human level, showing the difficulty of our benchmark
and sufficient room for further improvements; and (iii)
for each method, the variant trained with vision clues
(w/) steadily outperforms its blind counterpart without any
vision clues (w/o), indicating that the language biases are
well controlled by our balancing strategies.

The observations above are quite different from those on
AGQA, where on their benchmark all models are on par
with their corresponding blind counterparts. This can be
explained that ANetQA has more unbalanced QA samples
than AGQA, thus providing more room to perform thorough
balancing strategies. Moreover, given the same model
HCRN, its accuracy (especially the open answer type) on
ANetQA is much lower than that on AGQA, verifying the
fine-grained nature of our scene graphs elements.

Question structures and answer types. The query type
questions are the most challenging ones as they have open
answers. Among the rest four types which have limited
answer choices5, the compare type questions report the
lowest accuracy as they require more reasoning steps.

Question semantics. The attribute-oriented questions are
the most difficult ones, as they require a more fine-grained
understanding of video contents than the rest questions.

Reasoning skills. Similar to AGQA, each of our question is
associated with one or more reasoning abilities necessary to
answer the question. The questions requiring the sequenc-
ing skills deliver the lowest accuracy as they require the
temporal grounding ability. In contrast to the coarse action
labels used in AGQA, our actions are depicted in natural
language, which are more difficult to understand.

5The compare, verify, and logic type questions have binary answers.
The choose type question conducts a comparison between [A] and [B],
and the answer refers to one of the four choices: [A], [B], both, or none.



4.3. Effects of Auxiliary Annotations

All the comparative studies above only use the basic
annotations (i.e., the QA pairs) for model training. As all
the QA pairs are automatically generated from scene graph
annotations, it is natural to investigate whether and how
auxiliary annotations facilitate model performance. We in-
troduce two auxiliary annotations scene graph statistics and
oracle frames to see their impacts on model performance,
respectively. The results are provided in Table 4.

Scene graph statistics. The annotated scene graph of a
given video contains all the necessary information to answer
any questions on the video. Therefore, it is meaningful
to investigate the impact of this information on model
performance. The fine-grained characteristics of our scene
graphs make it nontrivial to encode each scene graph into
a feature bank like [12]. Alternatively, we introduce a
simple statistical-based strategy to approximately represent
the scene graph to a given video by extracting the top-K
high-frequency (HF) words from all the questions on this
video. The extracted HF words can be seamlessly used
in any off-the-shelf model by concatenating them with the
question words. We adopt HCRN [19] as the reference
model and extract the top-40 HF words from different
vocabularies (i.e., objects, relationships, attributes, and their
combinations). These HF words are concatenated with the
question words in both the training and testing phases.

From the results in the upper part of Table 4, we can
see that adding HF objects or relationships solely do not
bring further improvement over the reference model. This
can be explained by the fact that relationships are strongly
coupled with objects, using either of them solely can not
provide sufficient scene graph information for the model
to understand. Moreover, the model with HF attributes
results in a distinct performance gain compared to the
counterpart with HF objects. This observation verifies
that our questions requires the abilities of fine-grained
understanding and reasoning. Finally, exploiting all three
types of HF information results in the best performance due
to their complementary nature.

Oracle frames. As each question in ANetQA is generated
from the scene graph elements in specific video frames, we
denote these frames as the oracle frames for the question
and investigate whether they can facilitate model perfor-
mance. For each question, we inject the corresponding
oracle frames into its sampled frames to ensure the neces-
sary visual information to answer this question is provided.
We use All-in-one [35] as the reference model since it
uses few sampled frames and thus has a high probability
of not covering the oracle frames. We have experimented
with the oracle frames in the training, testing, and both
phases, respectively. The results in the lower part of
Table 4 show that injecting oracle frames in the training

binary open overall
(a) scene graph statistics
HRCN [19] (reference) 64.36 29.95 41.15
+ high-freq. objects (O) 65.81 29.29 41.18
+ high-freq. relationships (R) 63.84 29.21 40.48
+ high-freq. attributes (A) 67.67 32.21 43.75
+ high-freq. O+R+A 68.15 34.50 45.45
(b) oracle frames
All-in-one [35] (reference) 65.65 34.33 44.53
+ training phase injection 66.54 35.18 45.40
+ testing phase injection 66.04 34.83 44.99
+ both phases injections 66.88 36.02 46.07

Table 4. Effects of different auxiliary annotations. (a) The scene
graph statistics of a given video are represented as a set of high-
frequency words extracted from all the questions of that video. (b)
The oracle frames contain necessary visual information to answer
a given question, which are injected in different phases.

and testing phases bring 0.87 and 0.46 point improvements
over the reference model in terms of overall accuracy,
respectively. Moreover, when oracle frames are applied to
both the training and testing phases, the model performance
is further improved due to their synergistic effects.

5. Conclusion and Future Work
In this paper, we present ANetQA, a challenging Video-

QA benchmark that examines fine-grained compositional
reasoning over untrimmed real-world videos. Benefiting
from the fine-grained video scene graphs annotated by
humans, ANetQA attains 13.4M balanced QA pairs, which
is an order of magnitude larger than all previous VideoQA
benchmarks. We provide comprehensive experiments and
intensive analyses for state-of-the-art VideoQA methods,
and the best-performing model showing that a fine-grained
video understanding plays a vital role in our benchmark.
Moreover, there remains a significant gap between the
best model and humans, indicating the challenge of our
benchmark while providing room for future improvements.

We will persistently improve our benchmark. e.g., fur-
ther reducing the language biases and answer ambiguities,
and introducing more question types with diverse reasoning
skills like scene-text understanding and causality inference.
We hope that our ANetQA will serve as a cornerstone to
facilitate future research in the video-language learning.
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