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Abstract001

Detecting rumors on social media has become002
a crucial issue. Propagation structure-based003
methods have recently attracted increasing at-004
tention. When the propagation structure is rep-005
resented by the dynamic graph, temporal in-006
formation is considered. However, existing007
rumor detection models using dynamic graph008
typically focus only on coarse-grained tem-009
poral information and ignore the fine-grained010
temporal dynamics within individual snapshots011
and across snapshots. In this paper, we pro-012
pose a novel Fine-Grained Dynamic Graph013
Neural Network (FGDGNN) model, which014
can incorporate the fine-grained temporal in-015
formation of dynamic propagation graph in the016
intra-snapshot and dynamic embedding update017
mechanism in the inter-snapshots into a unified018
framework for rumor detection. Specifically,019
we firstly construct the edge-weighed propaga-020
tion graph and the edge-aware graph isomor-021
phism network is proposed. To get fine-grained022
temporal representations across snapshots, we023
propose an embedding transformation layer to024
update node embedding. Finally, we integrate025
the temporal information in the inter-snapshots026
at the graph level to enhance the effectiveness027
of the proposed model. Extensive experiments028
conducted on three public real-world datasets029
demonstrate that our FGDGNN model achieves030
significant improvements compared with the031
state-of-the-art baselines.032

1 Introduction033

Social media has become the major platform for034

information sharing among the public. However,035

the widespread of social media also brings signifi-036

cant challenges. One of the main challenges is the037

rapid spread of rumor, which can pose severe risks038

to public trust, people’s health and social stability.039

Therefore, it has become increasingly important040

to develop effective methods for identifying and041

combating rumors.042
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(a) Static graph (b) Dynamic graph

Figure 1: An example of event propagation graph on
social media. (a) Static graph. Each node represents
a post and each edge represents the response relation-
ship without temporal information. (b) Dynamic graph.
Each node represents a post and each edge represents
the response relationship with an associated temporal
information. The dynamic propagation process in the
example is divided into S snapshots.

Previous researches rely on manually designed 043

features and machine learning classifiers to iden- 044

tify rumors (Castillo et al., 2011; Yang et al., 2012; 045

Feng et al., 2012; Kwon et al., 2013). To over- 046

come the limitations of handcrafted features, deep 047

learning models such as Recurrent Neural Network 048

(RNN) and Convolutional Neural Network (CNN) 049

have been used to extract high-level representations 050

automatically from the content-based methods and 051

propagation structure-based methods for rumor de- 052

tection (Ma et al., 2016, 2018; Liu and Wu, 2018; 053

Li et al., 2019). 054

The propagation structure-based methods, which 055

have achieved superior detection performance, 056

have attracted more and more attention in re- 057

cent years (Bian et al., 2020; Min et al., 2022; 058

Nguyen et al., 2020). However, existing propa- 059

gation structure-based methods usually consider 060

the static graph structure of the final state of rumor 061

propagation, and ignore the temporal dynamics of 062

the rumor propagation. Figure 1(a) illustrates a 063

static graph structure of rumor propagation. The 064

temporal features of propagation refer to the order 065

and interval of the replied or retweeted posts along 066

the timeline, which records the timestamps of user 067

engagements. Therefore, some studies (Lao et al., 068
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2021; Chang et al., 2024; Choi et al., 2021; Song069

et al., 2021; Sun et al., 2022a; Xu et al., 2024) have070

explored the temporal dynamics of news events and071

proposed the dynamic graphs to model the spread072

of rumors on social media. A dynamic graph of073

event propagation is shown in Figure 1(b). Those074

methods, which usually are built by Graph Neural075

Network (GNN), emphasize the transformation and076

aggregation of graph features, but fail to capture077

the detailed temporal features of propagation, such078

as the speed, depth and breadth that indicate the079

propagation effect of rumor event.080

To address this issue, the dynamic graph of081

propagation including a series of snapshots is con-082

structed to model temporal dynamics (Choi et al.,083

2021; Song et al., 2021; Sun et al., 2022a; Xu et al.,084

2024). Those works treat snapshots of dynamic085

graphs as isolated from one another or only allow086

for coarse-grained interactions between two consec-087

utive snapshots (i.e. in the inter-snapshots). Fine-088

grained temporal features are required to capture089

the details of propagation. We divide the tempo-090

ral granularity of propagation into the node-level091

and edge-aware granularity respectively. The edge-092

weighted propagation graphs, which is enabled to093

represent the speed, depth and breadth of propaga-094

tion, is used to describe edge-aware granularity in095

the intra-snapshot. As shown in Figure 1(b), the096

weighted graph is used to represent propagation097

graph and the weight on the edge indicates the time098

interval between when a post is created and when099

its responded post is created. The node-level granu-100

larity is adopted to capture the temporal dynamics101

in the inter-snapshots.102

In this paper, we propose a novel Fine-Grained103

Dynamic Graph Neural Network (FGDGNN)104

model, which can incorporate the edge-aware tem-105

poral information of dynamic propagation graph106

in the intra-snapshot and the node-level dynamic107

update in the inter-snapshots into a unified frame-108

work for rumor detection. Specifically, we firstly109

construct the edge-weighed propagation graph in110

which the time intervals are used as the edge111

weights. The propagation process is represented as112

a sequence of graph snapshots. Then, Edge-Aware113

Graph Isomorphism Network (EAGIN) is proposed114

to make full use of the edge weights to capture de-115

tailed temporal features in the intra-snapshot. To116

get fine-grained temporal representations in the117

inter-snapshots, we propose an embedding trans-118

formation layer to update node embeddings. Fi-119

nally, we integrate the temporal information in the120

inter-snapshot at the graph level with the frame- 121

work to enhance the effectiveness of the proposed 122

FGDGNN model. 123

The main contributions of this paper can be sum- 124

marized as follows: 125

• We propose a novel Fine-Grained Dynamic 126

Graph Neural Network (FGDGNN) model, 127

which integrates the edge-aware temporal in- 128

formation and the node-level dynamic update 129

mechanism in the dynamic propagation graph. 130

• We propose a method of constructing an edge- 131

weighted graph which is enabled to repre- 132

sented fine-grained temporal features, and 133

study a novel problem of temporal granularity 134

of dynamic propagation graph to explore tem- 135

poral information in the intra-snapshot and 136

inter-snapshots for rumor detection. 137

• We conduct extensive experiments on three 138

real-world datasets to demonstrate the effec- 139

tiveness of our proposed model on rumor de- 140

tection. 141

2 Related Work 142

2.1 Rumor Detection 143

Early rumor detection methods primarily rely on 144

hand-crafted feature engineering and statistical ma- 145

chine learning methods to extract features (Castillo 146

et al., 2011; Yang et al., 2012; Feng et al., 2012; 147

Kwon et al., 2013). Recently, deep learning models 148

have been proposed for rumor detection, including 149

content-based (Ma et al., 2019; Nguyen et al., 2020; 150

Dun et al., 2021; Xu et al., 2022; Min et al., 2022) 151

and propagation structure-based methods (He et al., 152

2021; Wei et al., 2021; Ma et al., 2022). Propaga- 153

tion structure-based models aim to capture struc- 154

tural characteristics to enhance rumor detection. 155

With the growing attention, a variety of models 156

leveraging propagation structures have been widely 157

explored. Some works (Bian et al., 2020; Wei et al., 158

2021; Tao et al., 2024) develop the propagation 159

graph from both top-down and bottom-up perspec- 160

tives to capture rumor propagation nature. With the 161

application of augmentation techniques and con- 162

trastive learning, (Sun et al., 2022b; He et al., 2021; 163

Liu et al., 2023; Cui and Jia, 2024) build rumor de- 164

tection models to improve the understanding of the 165

propagation process. In addition, the development 166

of static graph approaches for rumor detection have 167

also provided valuable insights for dynamic graphs. 168
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Works like (Lao et al., 2021; Chang et al., 2024)169

integrate temporal information into node features170

to model the evolving nature of rumor propaga-171

tion. Meanwhile, methods such as (Choi et al.,172

2021; Song et al., 2021; Sun et al., 2022a; Xu et al.,173

2024) treat the dynamic propagation process by174

dividing the graph into temporal snapshots, sim-175

ulating how rumors spread over time. However,176

these dynamic propagation methods only focus on177

the coarse-grained temporal information. They fail178

to effectively capture the fine-grained temporal in-179

formation. Meanwhile, existing methods either180

treat snapshots of dynamic graphs as isolated from181

one another or only allow for shallow interactions182

between them.183

2.2 Dynamic Graph Neural Networks184

In recent years, many Graph Neural Networks185

(GNNs), such as GCN (Kipf and Welling, 2016),186

GAT (Veličković et al., 2017), and GIN (Xu et al.,187

2019), have been developed to model complex re-188

lationships on graphs. These methods leverage the189

nodes and edges within the graph to model various190

real-world complex networks (Tian et al., 2022;191

He et al., 2024, 2023; Tang et al., 2023). How-192

ever, models based on static graph often neglect193

the performance variations introduced by tempo-194

ral evolution. Therefore, dynamic graph is more195

suitable for further exploring real-world applica-196

tions. Among the various methods for modeling197

dynamic graphs, Discrete-Time Dynamic Graphs198

(DTDG) stand out as one of the most widely used199

approaches (Manessi et al., 2020; Zheng et al.,200

2023; Li et al., 2024). In the DTDG framework,201

the dynamic graph is represented as a sequence of202

graph snapshots, where each snapshot corresponds203

to the state of the graph at a particular discrete time204

step. At each time step, the graph can evolve in205

terms of its structure. Among these methods, a206

substantial amount of work focuses on snapshot207

updates and fusion in dynamic graphs. Pareja et208

al. 2020 updates the weight matrices of GCNs be-209

tween snapshots. You et al. 2022 updates the node210

embeddings at different snapshot over time. Zhu et211

al. 2023 introduces a sliding window module to en-212

hance the model’s ability to capture dependencies213

over long sequences of snapshots. Different from214

the above works, we propose a FGDGNN that can215

capture fine-grained temporal information on the216

dynamic propagation graph, which fully utilizes217

the temporal information within the graph and the218

update information between graphs.219

3 Methodology 220

3.1 Problem Definition 221

The rumor detection task can be defined as a clas- 222

sification problem. Formally, for a given rumor 223

detection dataset C = {C1, C2, . . . , Cm}, where Ci 224

is the i-th event and m is the number of events. 225

For each event Ci = {ri, pi1, pi2, . . . , pini−1, Gi}, 226

ri is the source post, pij represents the j-th re- 227

sponsive post, ni is the number of posts in the 228

event Ci. All posts in event Ci are ordered chrono- 229

logically and the set of timestamps for posts is 230

denoted as Ti = {ti0, ti1, ti2, . . . , tini−1}, where 231

ti0 = 0 represents the timestamp of the source 232

post and tij represents the timestamp of the j-th 233

responsive post. Gi = ⟨Vi, Ai, Xi⟩ is the prop- 234

agation graph with the root node ri, where Vi 235

refers to the set of nodes corresponding to posts. 236

Ai ∈ {0, 1}ni×ni represents the adjacency matrix, 237

where if there is a response relationship between 238

node piu and piv, Ai(u,v) = Ai(v,u) = 1, otherwise 239

Ai(u,v) = Ai(v,u) = 0. Xi ∈ Rni×d denotes the 240

node feature matrix , where d is the node embed- 241

ding dimension. For simplicity, the subscript i is 242

omitted in the following sections. Rumor detection 243

aims to learn a function f : C → Y that classifies 244

each event into one of the categories Y ∈ {F, T} 245

(i.e., Rumor or Non-Rumor). 246

3.2 Overview 247

In this section, we propose a novel Fine-Grained 248

Dynamic Graph Neural Network (FGDGNN) 249

model for rumor detection tasks. As illustrated 250

in Figure 2, we will provide a detailed explanation 251

for classifying rumors using FGDGNN, including 252

Dynamic Graph Construction, Graph Representa- 253

tion and Graph-Level Fusion. 254

3.3 Dynamic Graph Construction 255

Formally, given a propagation event C, we divide 256

C into S graph snapshots along the timestamps of 257

the source post and its responsive posts. Specif- 258

ically, each graph snapshot is divided into equal 259

time span ∆t = tn−1−t0
S . After that, the propaga- 260

tion event C can be modeled as a dynamic prop- 261

agation graph G which can be represented as a 262

sequence of graph snapshots Gs(s = 1, 2, . . . , S). 263

The later snapshot fully encompass the earlier snap- 264

shot, effectively simulating the dynamic evolution 265

of propagation events. For each snapshot, we can 266

obtain the propagation graph Gs = ⟨Vs, As, Xs⟩. 267

Vs = {Cs|Ts ≤ s∆t} is the set of vertices, where 268
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Figure 2: Overview of the proposed FGDGNN framework. The Embedding Transformation (ET) Layer represents
the transformation of the node embedding dimensions.

each node has a timestamp. The time interval269

between when a post is created and when its re-270

sponded post is created is used as edge weight.271

As ∈ {0, 1}ns×ns is the adjacency matrix. The272

node feature matrix denotes as Xs ∈ Rns×d, where273

d is the embedding vector dimension of each node.274

3.4 Graph Representation275

3.4.1 Temporal Information Encoding.276

In the process of rumor spreading, the larger the277

time interval of a responsive post, the less attention278

it is likely to receive, along with a corresponding279

decrease in its influence and importance. We utilize280

the time intervals from posts to obtain temporal281

features and employ a decay mechanism φ(t) to282

model the time interval in each snapshot.283

φ(t) =
1

1 + α× (t− tp)
(1)284

where t and tp refer to the timestamps of the cur-285

rent post and its responded post respectively. α286

represents the decay factor.287

Inspired by (Xu et al., 2020), we use the cosine288

function to encode decayed time information to289

capture the periodic variations in the time inter-290

val, and identify the propagation patterns of both291

rumors and non-rumors.292

ω(t) = cos(Wtφ(t) + bt) (2)293

where Wt and bt are learned parameters.294

3.4.2 Edge-Aware Update. 295

We aim to learn the representations of the graph 296

snapshots of dynamic propagation graph G = 297

{G1, G2, . . . , GS}. As an effective graph struc- 298

ture, the Graph Isomorphism Network (GIN) (Xu 299

et al., 2019) can capture the topological structure 300

and node features of the graph and is suitable for 301

rumor detection tasks. Given a graph snapshot Gs, 302

the GIN encoder updates l-th layer the hidden fea- 303

ture vector h(l)v for node v based on the l − 1-th 304

layer as follows: 305

h(l)v = MLP
(
(1 + ϵ(l)) · h(l−1)v +

∑
u∈N (v)

h(l−1)u

)
(3) 306

GIN can effectively construct graph representa- 307

tions, but it does not incorporate temporal informa- 308

tion (i.e., timestamps). Inspired by (Hu et al., 2019), 309

to better leverage time interval, we adapt GIN to 310

Edge-Aware GIN (EAGIN) defined in Equation (4) 311

by introducing time interval to construct temporal 312

dynamic graph. Specifically, We incorporate time 313

interval as edge weights into the EAGIN to model 314

the influence of each neighbor on the node. 315

h(l)v = MLP
(
(1 + ϵ(l)) · h(l−1)v +∑

u∈N (v)

ReLU(h(l−1)u ∗ ω(t))
) (4) 316

where ϵ is a learnable parameter, N (v) is the set 317

of neighboring nodes of node v, and h
(0)
v = xv is 318
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the initial feature vector of node v. This process is319

iterated for all nodes until the l-th layer.320

3.4.3 Node-Level Update.321

The propagation graph G changes dynamically,322

and consequently, the node embeddings at differ-323

ent snapshots will also change. To capture dy-324

namic node information in the evolving propaga-325

tion graph, we propose a node-level embedding up-326

date mechanism. A two-layer EAGIN is employed,327

with node embeddings updated hierarchically in328

each hidden layer across snapshots.329

H(1)
s = EAGIN(As, H

(0)
s ) (5)330

331

H(1)
s = βΦ1(H

(1)
s )+(1−β)Φ1(H

(1)
′

s−1)+γΦ2(Xs)
(6)332333

H(2)
s = EAGIN(As, H

(1)
s ) (7)334

335

H(2)
s = βΦ1(H

(2)
s )+(1−β)Φ1(H

(2)
′

s−1)+γΦ2(Xs)
(8)336

where337

H
(1)

′

s−1 = ET Layer(H(1)
s−1) (9)338

339

H
(2)

′

s−1 = ET Layer(H(2)
s−1) (10)340

and H
(0)
s = Xs. β and γ are learnable parame-341

ters. Φ1 and Φ2 represent Multi-Layer Perceptron342

(MLP). Through the ET Layer, the hidden state343

dimensions of the nodes generated by the previ-344

ous snapshot are made consistent with the hidden345

state dimensions of the nodes in the current snap-346

shot. Note that when the snapshot is the first one in347

the dynamic propagation graph, Equation (6) and348

Equation (8) do not include H
(l)
s−1.349

We apply mean-pooling operators to obtain the350

representation gs of the graph snapshot Gs. Finally,351

the dynamic propagation graph is represented as g.352

gs = MEAN(H(2)
s ) (11)353

354
g = {g1, g2, . . . , gS} (12)355

3.5 Graph-Level Fusion356

After obtaining the graph representation of the dy-357

namic propagation graph, we use Bidirectional358

Long Short-Term Memory (BiLSTM) (Hochreiter359

and Schmidhuber, 1997) to model the dependen-360

cies between snapshots. The forward and backward361

graph representation sequences are then used to362

capture the associations between snapshots. This363

process can be formally described as follows:364

→
g =

−−−−→
LSTM(g)

←
g =

←−−−−
LSTM(g)

(13)365

Then we concatenate the forward state
→
g and the 366

backward state
←
g to obtain the representations g 367

encoded by BiLSTM, where CONCAT represents 368

the concatenate operation. 369

g = CONCAT(
→
g ,
←
g) (14) 370

3.6 Training Objective 371

To calculate the labels of the rumors, we apply a 372

fully connected layer followed by a softmax layer, 373

ŷ = softmax(Wfg + bf ) (15) 374

where ŷ is the predicted probability distribution. 375

Wf and bf are weight and bias parameters. 376

Our training object aims to minimize the cross- 377

entropy loss L as follows: 378

L = − 1

N

N∑
b=1

M∑
c=1

yb,clog(ŷb,c) (16) 379

where yb,c denotes ground-truth label and ŷb,c de- 380

notes the predicted probability distribution of index 381

b ∈ {1, . . . , N} belongs to class c ∈ {1, . . . ,M}. 382

In our binary classification task, M = 2 denotes 383

the number of classes. 384

Algorithm 1 illustrates the process of training 385

propagation events using the proposed FGDGNN 386

model. 387

Algorithm 1 Rumor detection algorithm

Input: the propagation event C, the timestamps T .
Output: the predicted probability distribution ŷ.

1: model the propagation event as a dynamic
propagation graph G including a sequence of
graph snapshots Gs;

2: for each snapshot Gs do
3: obtain the temporal information ω(t) with

Eq. 1 and Eq. 2;
4: obtain the edge-ware and node-level repre-

sentation Hs with Eq. 6 and Eq. 8;
5: obtain the graph representation gs with

Eq. 11;
6: end for
7: obtain graph-level fusion g with Eq. 13;
8: producing predicted probability distribution ŷ

with Eq. 15;
9: update parameters in FGDGNN with Eq. 16;
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Statistics RumorEval TWITTER Weibo
# Events 245 1077 4310
# Posts 4145 60207 816217
# Non-Rumors 112 564 2187
# Rumors 133 513 2123
# Avg. time length 12 Hours 416 Hours 843 Hours

Table 1: Statistics of the datasets.

4 Experiments388

4.1 Datasets389

We evaluate the proposed model on three real-390

world rumor detection datasets: RumorEval (Der-391

czynski et al., 2017), TWITTER (Lin et al., 2022)392

and Weibo (Ma et al., 2016). RumorEval and393

TWITTER are English datasets collected from the394

social media platform Twitter. Weibo is a Chinese395

dataset collected from the Sina Weibo. These three396

datasets are binary classification datasets, where397

each event is labeled as either Rumor (F) or Non-398

Rumor (T). In our experiments, the data used for399

each event includes the source post, responsive400

posts and the timestamp information of each post.401

We retain events with more than 3 comments in402

these datasets. Table 1 shows the statistics of the403

datasets.404

4.2 Comparison Models405

We compare the proposed model with the following406

baselines:407

• Bi-GCN (Bian et al., 2020) is a rumor detec-408

tion framework that models the top-down and409

bottom-up bi-directional GCN propagation.410

• EBGCN (Wei et al., 2021) is an edge-411

enhanced rumor detection model that captures412

propagation structural features.413

• GACL (Sun et al., 2022b) is a rumor detec-414

tion model using adversarial and contrastive415

learning.416

• RDEA (He et al., 2021) is a rumor detection417

framework that incorporates self-supervised418

learning and contrastive learning.419

• TrustRD (Liu et al., 2023) is a rumor detec-420

tion model that utilizes self-supervised pre-421

training and adversarial training.422

• DynGCN (Choi et al., 2021) is a dynamic423

rumor detection framework that models graph424

snapshots and attention mechanisms.425

• PSGT (Zhu et al., 2024) is a rumor detection 426

framework that models graph transformer and 427

propagation graph. 428

4.3 Experimental Setup 429

We follow the evaluation method in (Bian et al., 430

2020), and conduct 10 runs of 5-fold cross- 431

validation to report the final results. The Accu- 432

racy (Acc.), Precision (Prec.), Recall (Rec.), and 433

F1-score (F1) are adopted as evaluation metrics. 434

The proposed model is implemented using PyTorch 435

(Ketkar et al., 2021). Adam algorithm (Kingma and 436

Ba, 2014) is used to optimize the parameters. The 437

size of hidden layer is set to 128. The decay factor 438

α is set to 1, 10 and 10 for RumorEval, TWITTER 439

and Weibo respectively. The number of graph snap- 440

shots S in the dynamic graph generated for each 441

event is set to 3. 442

For RumorEval, TWITTER and Weibo datasets, 443

following (Sun et al., 2022b; Ma et al., 2023), we 444

join the source post with each comment post in 445

a [CLS] Source [SEP] Comment [SEP] manner. 446

BERT (Devlin et al., 2018) is employed to encode 447

the posts and the final hidden state representation 448

of [CLS] token is used as each corresponding node 449

representation. 450

4.4 Results 451

Table 2 shows the results of rumor detection on 452

three public real-world datasets. The experimental 453

results demonstrate that the proposed FGDGNN 454

model outperforms other baselines, which vali- 455

dates the effectiveness of modeling temporal in- 456

formation in the inter-snapshots and intra-snapshot. 457

BiGCN only captures the spatial information of ru- 458

mor events, making it vulnerable to rumor attacks. 459

EBGCN uses edge weights to explore the potential 460

relationships in a propagation graph. However, our 461

proposed model, FGDGNN, employs time intervals 462

as edge weights, enabling it to accurately capture 463

the importance of nodes at different time points. 464

Compared with standalone propagation structures, 465

the performance of GACL, RDEA, and TrustRD in 466

rumor detection tasks improves significantly when 467

incorporating methods such as graph augmenta- 468

tion and contrastive learning. PSGT leverages the 469

graph transformer to capture propagation structures 470

and long-sequence dependencies. The models men- 471

tioned above focus on static graphs, whereas Dyn- 472

GCN models dynamic graphs. DynGCN uses vari- 473

ous snapshot construction methods to investigate 474

the task of rumor detection. However, the snap- 475
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Method Class RumorEval TWITTER Weibo
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Bi-GCN
F

0.7115
0.7314 0.7599 0.7454

0.7591
0.7595 0.7419 0.7506

0.9103
0.9099 0.9110 0.9104

T 0.7042 0.6562 0.6794 0.7771 0.7732 0.7751 0.9147 0.9109 0.9128

EBGCN
F

0.6952
0.7100 0.7652 0.7366

0.7539
0.7449 0.7428 0.7438

0.9166
0.9151 0.9157 0.9154

T 0.6812 0.6125 0.6450 0.7657 0.7640 0.7648 0.9176 0.9173 0.9175

GACL
F

0.7250
0.7974 0.7385 0.7668

0.7609
0.7987 0.6781 0.7335

0.9367
0.9352 0.9366 0.9359

T 0.7591 0.7091 0.7332 0.7454 0.8377 0.7889 0.9386 0.9369 0.9378

RDEA
F

0.7321
0.7513 0.7890 0.7697

0.7855
0.7942 0.7496 0.7713

0.9340
0.9294 0.9378 0.9336

T 0.7434 0.6648 0.7019 0.7857 0.8181 0.8016 0.9393 0.9303 0.9348

TrustRD
F

0.7267
0.7298 0.8175 0.7712

0.7695
0.7751 0.7359 0.7550

0.9312
0.9258 0.9355 0.9306

T 0.7617 0.6195 0.6833 0.7749 0.7974 0.7860 0.9375 0.9266 0.9320

DynGCN
F

0.7377
0.7471 0.7617 0.7543

0.7693
0.7647 0.7495 0.7570

0.9274
0.9120 0.9244 0.9182

T 0.7092 0.6823 0.6955 0.7759 0.7893 0.7825 0.9203 0.9075 0.9138

PSGT
F

0.8075
0.8209 0.8361 0.8285

0.8089
0.8148 0.7814 0.7977

0.9235
0.9171 0.9295 0.9233

T 0.8152 0.7736 0.7939 0.8141 0.8332 0.8235 0.9315 0.9175 0.9244

FGDGNN
F 0.8242 0.8653 0.8054 0.8343 0.8408 0.8454 0.8181 0.8315 0.9406 0.9351 0.9451 0.9401
T 0.7905 0.8463 0.8175 0.8419 0.8617 0.8517 0.9466 0.9361 0.9413

Table 2: Rumor detection results on three datasets. Abbrev.: Rumor (F), Non-Rumor (T).
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Figure 3: Results of early rumor detection on three datasets.

shots between DynGCN are isolated and lack any476

interconnections across snapshots. In contrast, our477

model emphasizes the fine-grained temporal infor-478

mation in the inter-snapshots by leveraging em-479

bedding updates across snapshots. In a snapshot,480

the time intervals are used as edge weights, and481

EAGIN is proposed to effectively capture the edge-482

aware temporal features in the intra-snapshot. The483

embedding update across snapshots integrates the484

node-level information in the inter-snapshots and485

can effectively capture the fine-grained temporal486

dependencies of propagation graph.487

4.5 Ablation Study488

In order to analyze the contribution of each module489

of our proposed model FGDGNN, we compare it490

with the variant models: (1) w/o Edge-Aware Up-491

date: removing the temporal information (i.e. time492

intervals) used as edge weights in each snapshot.493

(2) w/o Node-Level Update: removing the embed-494

ding update mechanism across snapshots. (3) w/o495

Edge-Aware Update & Node-Level Update: remov-496

ing both time intervals and embedding update in497

dynamic graph. (4) w/o Dynamic: using static 498

graph instead of dynamic graph. Specifically, we 499

only use the last graph snapshots of the dynamic 500

graph in the whole framework. 501

Table 3 presents the experimental results of the 502

models on three datasets. Acc. refers to the over- 503

all results, while the F1-score refers specifically 504

to the results for the Rumor (F) category. The ex- 505

perimental results show that removing any of the 506

components leads to a decrease in the performance, 507

demonstrating that each component plays an essen- 508

tial role in rumor detection. Specifically, when the 509

time intervals are removed, the accuracy on Ru- 510

morEval, TWITTER and Weibo drops by 1.21%, 511

0.74% and 0.59%. Time intervals record the tem- 512

poral sequence of propagation event. When used 513

as edge weights in graph neural networks, they 514

help the model understand the importance of dif- 515

ferent responsive posts. Additionally, they capture 516

the propagation patterns of rumors and non-rumors 517

across different time periods, further aiding in the 518

identification of the veracity of news event. If the 519

embedding update mechanism is removed, the ac- 520
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Model RumorEval TWITTER Weibo
Acc. F1 Acc. F1 Acc. F1

FGDGNN 0.8242 0.8343 0.8408 0.8315 0.9406 0.9401
w/o Edge-Aware Update 0.8121 0.8283 0.8334 0.8208 0.9347 0.9342
w/o Node-Level Update 0.8163 0.8311 0.8309 0.8216 0.9311 0.9307
w/o Edge-Aware Update & Node-Level Update 0.8042 0.8237 0.8218 0.8089 0.9303 0.9295
w/o Dynamic 0.7804 0.8125 0.8129 0.7851 0.9332 0.9322

Table 3: Results of ablation study on three datasets.

curacy on three datasets drops by 0.79%, 0.99%521

and 0.95%. As time progresses, the propagation522

states of different snapshots evolve. By employing523

a embedding update mechanism across snapshots,524

the model can capture the dynamic evolution pat-525

terns of the propagation process, enabling informa-526

tion transfer across time steps and enhancing the527

model’s memory of historical data. When the time528

intervals and embedding update are removed at the529

same time, the accuracy on three datasets drops by530

2%, 1.9% and 1.03%. The time intervals within531

each snapshot, along with the dynamic embedding532

update mechanism across snapshots, effectively533

captures the fine-grained temporal dependencies534

between nodes. When dynamic graphs are replaced535

with static graphs, the accuracy on three datasets536

drops by 4.38%, 2.79% and 0.74%. Modeling the537

propagation structure as a dynamic graph enables538

more accurate capture of the temporal features and539

dynamic evolution of information spread, thereby540

improving detection accuracy. This approach offers541

a clear advantage over static graphs.542

4.6 Different GNNs Components543

Table 4 shows the experimental results of using dif-544

ferent graph neural networks as graph encoders. It545

is observed that EAGIN in our proposed FGDGNN546

model yields the best performance. EAGIN uses547

the temporal information in the inter-snapshots,548

which can better capture the graph structure and549

distinguish the spread of rumors and non-rumors550

than GIN. In contrast, GAT focuses on neighboring551

nodes via a self-attention mechanism that assigns552

weights based on local neighborhood information.553

The ability of processing global graph structure is554

limited compared with GIN. GCN tends to aggre-555

gate information from neighboring nodes in a way556

that leads to excessive smoothing, which can re-557

duce its expressive power and hinder its ability to558

capture deeper or more complex propagation pat-559

terns. The experimental results demonstrate that560

Model RumorEval TWITTER Weibo
Acc. Acc. Acc.

EAGIN 0.8242 0.8408 0.9406
GIN 0.8121 0.8334 0.9347
GAT 0.8017 0.8266 0.9339
GCN 0.7938 0.8215 0.9333

Table 4: Results of different GNN on three datasets.

EAGIN is better that others in improving the effec- 561

tiveness of the FGDGNN model. 562

4.7 Early Rumor Detection 563

This experiment aims to detect rumors on social 564

media at an early stage, facilitating early rumor de- 565

tection. To construct the detection task, we follow 566

the methodology in (Sun et al., 2022b), setting a 567

series of detection deadlines. Figure 3 illustrates 568

the performance of FGDGNN in early rumor detec- 569

tion, comparing it with RDEA, TrustRD and Dyn- 570

GCN across various deadlines on three datasets. It 571

can be observed that at time 0, all models perform 572

poorly due to the limited training data caused by 573

a lack of responsive post. Subsequently, as the 574

detection deadline rises, the accuracy of all mod- 575

els is improved. Notably, FGDGNN consistently 576

achieves higher accuracy than the other models at 577

every deadline, demonstrating its superior perfor- 578

mance in early rumor detection. 579

5 Conclusion 580

In this paper, we propose a novel Fine-Grained Dy- 581

namic Graph Neural Network (FGDGNN) model 582

for rumor detection. We construct the edge- 583

weighed propagation graph in which the time in- 584

tervals are used as edge weights each snapshot. 585

Additionally, we propose an embedding transfor- 586

mation layer to update node embeddings across 587

snapshots. Experiments on three public datasets 588

demonstrate that FGDGNN model outperforms the 589

state-of-the-art baselines. 590
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Limitations591

One limitation of our model is that the constructed592

temporal information does not account for multi-593

scale temporal encoding. If the dynamic changes594

of an event are associated with different time scales595

(such as minutes, hours, or days), it may lead to596

suboptimal performance. In the future, we will597

explore more approaches for temporal modeling598

to enhance the performance of rumor detection599

further.600
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