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ABSTRACT

Composite degradation scenarios, in which multiple types of degradation are mixed
together, have attracted increasing interest in the development of restoration models.
Although prior knowledge of degradation types exists, the challenge of precise
image restoration persists, particularly when multiple degradations are intricately
mixed, and selectively handling individual degradations poses considerable diffi-
culty. To tackle this challenge, we propose DisIR, a novel disentangled framework
that learns controllable representations for composite image restoration through
four distinct training objectives. First, we introduce an identity embedding as a
prompt, along with an identity loss that guides the model to reproduce the input
without modification. Second, we design a ratio control mechanism where the iden-
tity embedding can be linearly combined with degradation-specific embeddings
at controllable ratios, enabling fine-grained restoration intensity control through
a dedicated ratio control loss. Third, to disentangle multiple degradations, we
incorporate an intermediate loss that supervises intermediate outputs, each aimed
at selectively removing only one type of degradation among multiple composite
degradations. Fourth, a permutation-invariant loss is applied to enforce consis-
tent restoration results, regardless of the order in which multiple degradations
are removed. By focusing on the training pipeline, our method acts as a versatile
enhancement that can be integrated into controllable architectures without requiring
their structural redesign. Experimental results demonstrate that our DisIR achieves
state-of-the-art performance on composite degradation benchmarks while enabling
flexible and selective removal of multiple degradations, either sequentially or in a
single step, through a fused embedding with user-controlled intensity ratios.

1 INTRODUCTION

In the field of low-level computer vision, the key problem of image restoration is dedicated to
rebuilding high-quality images from sources affected by various adverse degradations. This task
is critical in applications, such as autonomous driving (Shyam & Yoo, 2024; Lin et al., 2025) and
robotics (Porav et al., 2019), where maintaining reliable visual input is inherently difficult. Despite its
importance, image restoration is inherently ill-posed, as there can be infinitely many valid solutions,
making generalization across diverse conditions challenging. Earlier methods (He et al., 2010; Qu
et al., 2017; Zhang & Patel, 2018) used mainly hand-designed features tailored for particular types of
degradation. Later, attention-based models such as Uformer (Wang et al., 2022) and Restormer (Zamir
et al., 2022a) achieved strong results in restoration tasks using transformer architectures (Vaswani
et al., 2017). Although these approaches work well for single degradations, they typically handle
only one degradation type per model, requiring multiple specialized networks and reducing flexibility
for diverse restoration tasks.

In response to these shortcomings, the all-in-one restoration paradigm proposes a single model capable
of handling a wide range of restoration tasks. Representative approaches include corruption-agnostic
models like AirNet (Li et al., 2022), weather-focused architectures such as WGWS (Zhu et al., 2023)
and TKL (Chen et al., 2022b), and masked pre-training methods like RAM (Qin et al., 2024). In
particular, prompt-based models such as PromptIR (Potlapalli et al., 2023) have emerged, using
learned embeddings to guide the restoration process adaptively. However, despite these advances,
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most all-in-one restoration studies have focused on treating the types of degradation individually,
rather than handling them in complex composite settings. Recognizing this limitation, composite
degradation models such as OneRestore (Guo et al., 2024) have been developed to tackle scenarios
where multiple degradations are mixed. Although OneRestore is a significant contribution, it faces
notable challenges in separating and removing these blended corruptions effectively. In particular,
we observe that OneRestore suffers from limited controllability. (1) It lacks an explicit mechanism
to bypass the input and preserve the original content. While a prompt like "clear" can keep clean
inputs unchanged, users have no specific way to tell the model to leave degradations in place or to do
nothing at all. (2) It also does not support soft removal of degradations. For example, when a user
wants to retain a certain degree of haze for visual effect, the model does not offer a way to control the
extent of removal. Controllability issues become more pronounced in complex degradation scenarios.
(3) Selectively removing one degradation from a composite image often leads to the introduction of
new, unintended artifacts (4) Furthermore, the restoration result is highly sensitive to the order in
which degradations are removed. For example, removing haze first and then enhancing low-light
yields a noticeably different result compared to enhancing low-light first and then removing haze.
These issues arise mainly from the limited controllability of previous approaches, which becomes a
significant limitation when multiple degradations are handled.

To address these challenges and further expand controllability, we propose Disentangled Image
Restoration (DisIR) for composite degradations with disentangled learning, a novel framework that
enhances the adaptability and effectiveness of all-in-one restoration models in composite scenarios.
Our approach introduces the following components to enhance controllability and effectiveness in
image restoration: (1) Identity embedding and identity loss, which guide the model to preserve the
input when no restoration is needed, thereby preventing unnecessary modifications. (2) A ratio control
loss, which enforces proportional degradation removal by using a linear combination of identity
embedding and degradation-specific embeddings at a controllable ratio. (3) An intermediate loss
that supervises partially restored outputs, encouraging the model to learn fine-grained restoration
steps and improve overall performance. (4) A permutation-invariant loss that ensures consistent
restoration results regardless of the order in which degradations are removed. These components are
integrated into a comprehensive disentangled restoration pipeline that enables structured, adaptive,
and controllable restoration across diverse degradation scenarios. The proposed model can remove
multiple degradations either sequentially or in a single step, while providing users with flexible
control over the removal intensity of each degradation. Experimental results on benchmark datasets
for composite degradations (Guo et al., 2024) show that our DisIR achieves state-of-the-art restoration
performance while providing superior controllability. This capability is further supported by results
from ablation studies.

2 RELATED WORK

Image restoration encompasses various low-level vision tasks, including dehazing (He et al., 2009;
Chen et al., 2016; Zheng et al., 2023), deraining (Kang et al., 2012; Fu et al., 2017; Chen et al.,
2024), desnowing (Dalal & Triggs, 2005; Bossu et al., 2011; Quan et al., 2023), and low-light
enhancement (Land, 1977; Wang et al., 2013a; Zhou et al., 2023b). While the aforementioned
methods perform well on individual or at most two degradations, they require separate models for
different tasks. This paper explores a unified model that handles multiple degradations simultaneously
while allowing selective removal of specific ones.

All-in-One Image Restoration. Recent developments in image restoration have explored various
techniques to handle images affected by multiple types of degradation. One prominent approach is
the partial parameter-sharing One-to-Many strategy, which utilizes a shared backbone with multiple
input and output pathways to address different degradation factors (Li et al., 2020; Chen et al.,
2021a; Wang et al., 2023b). Beyond this, recent efforts have shifted toward fully shared-weight
architectures for universal restoration, enabling more flexible solutions. For instance, Chen et al.
(2022b) proposed a unified model for adverse weather removal using a two-stage knowledge learning
framework, while Li et al. (2022) introduced AirNet, which handles unknown corruptions without
prior knowledge. Özdenizci & Legenstein (2023) further explored a diffusion-based approach for
restoring patch-wise degradations across diverse conditions. However, as existing universal methods
struggle with interference between different degradation types in complex scenarios, prompt-based
approaches are emerging to adaptively guide restoration across multiple degradations. PromptIR (Pot-
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Figure 1: Overview of our DisIR. (a) Embedding Generation shows the construction of degradation-
specific embeddings through learned Visual/Text embedders and the ratio control mechanism. Ratio
Control Embedding enables continuous control of restoration intensity by interpolating between our
defined identity embedding and degradation embeddings. (b) The identity loss is a loss function
designed specifically for the identity input, which preserves the input without any modifications. It
serves to suppress changes in the model’s output when the model receives an identity embedding
as input. (c) Overall Pipeline of our DisIR. The restoration model handles composite images with
multiple degradations (DA and DB simultaneously, denoted as DAB) using embeddings selected from
pre-trained Visual/Text Embedder sets (a). The Half Embedding is formed by weighted combination
of Identity and DAB embeddings, and each restoration flow is processed following the guidance of
its corresponding same-colored pipeline

lapalli et al., 2023) is a prompt-based learning approach for all-in-one image restoration that encodes
degradation-specific information to dynamically guide restoration. Guo et al. (2024) recently in-
troduced OneRestore, which incorporates prompt-based control in image restoration by utilizing
versatile scene descriptors to enable adaptive and controllable restoration for diverse composite degra-
dations. While OneRestore provides a unified framework, it cannot perform selective degradation
removal and suffers from order dependency in restoration sequences. To address these limitations and
enhance fine-grained controllability, we propose a DisIR restoration framework with disentangled
learning and tailored novel loss functions.

3 METHOD

We introduce a disentangled learning pipeline for selective and ratio-controlled degradation removal,
based on four novel losses in Fig. 1. First, we initialize our model using the architecture and training
strategy of OneRestore (Guo et al., 2024), then proceed to the disentangled learning pipeline once
convergence is reached. Subsequently, we jointly optimize the model with all proposed loss functions,
including identity, ratio control, intermediate, and permutation-invariant loss functions, along with
the baseline loss defined in the original training setup.

3.1 BASELINE

Inspired by OneRestore, our baseline model adopts an encoder-decoder architecture with a Scene
Descriptor-guided Transformer Block (SDTB) at its core to handle composite image degradations. To
provide degradation-specific guidance, we incorporate a separate Text/Visual embedder that generates
scene descriptors representing the types of degradations present in the input. These descriptors are
injected into the SDTB via Scene Descriptor-guided Cross-Attention (SDCA), enabling the model
to focus on the degradations to be removed. During training, the Text/Visual embedder is first
trained using a cosine cross-entropy loss. Subsequently, the baseline restoration model is trained
with the pre-trained embedder, using a combination of smooth L1 loss, MS-SSIM loss LL1-SSIM, and
composite degradation restoration loss Lc, as follows:

Lbase = LL1-SSIM(J, Ĵ) + αLc(J, Ĵ , I, {Io}), (1)
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where J and Ĵ denote the ground truth (GT) and model output, I is the input image, I0 is the set of
negative examples (i.e., images in the batch with degradations different from the current restoration
target), and α is a hyperparameter controlling the relative weights of the two loss terms.

3.2 IDENTITY EMBEDDING

The identity operation refers to the case where the model outputs the input image without any
modifications. While the baseline Text/Visual embedder is designed for restoration tasks, it does
not account for the identity operation. To support this, we assign a dedicated embedding vector that
explicitly represents the identity operation. This embedding vector is predefined as a constant filled
with ones and does not require any additional training. We refer to this constant vector as the identity
embedding. The baseline restoration model is trained to preserve the input image unchanged when
the identity embedding is fused into the SDTB through SDCA.

Ratio Control Embedding. OneRestore is designed to fully restore a clean image regardless of
the severity of degradation, as long as a corresponding degradation embedding is provided. This
observation suggests the potential for controlling the degree of restoration by adjusting the degradation
embedding vector. To enable this, we leverage an identity embedding that preserves the input without
any modification. Specifically, we linearly combine the identity embedding and the degradation
embedding ed according to the desired restoration intensity ratio, as follows:

er = (1− w) · ei + w · ed, (2)

where w is an intensity ratio control parameter ranging from identity (w = 0) to full restoration
(w = 1), and er denotes the corresponding ratio control embedding. Adjusting w enables the model
to continuously control the restoration intensity for each degradation type, allowing degradations
to be removed partially rather than entirely. Note that the ratio control embedding, like the identity
and other degradation embeddings, is integrated into the SDTB of the baseline restoration model via
SDCA, and guides the model to remove degradations proportionally to the specified ratio.

3.3 LOSS FUNCTIONS

Based on the identity embedding and ratio control embedding, we perform disentangled learning
guided by the following four loss functions.

Identity Loss. The identity loss is designed to ensure that the model preserves the original content
when no degradation needs to be removed. In other words, it enforces the model to maintain the input
unchanged when the identity embedding is used as a prompt in the restoration model, as follows:

Liden = LL1-SSIM(I, Î), (3)

where I is the input image, Î represents the model output with identity embedding. Through this loss
term, the model learns to behave as an identity function when necessary, which can be utilized for the
intermediate and permutation-invariant losses in cases involving a single degradation type.

Ratio Control Loss. The goal of the ratio control loss is to ensure that, when the ratio control
embedding is used as a prompt, the model removes degradations proportionally to the specified ratio,
rather than performing full restoration. Ideally, this would require GT images corresponding to each
value of w in equation 2, where only the w proportion of the degradation is removed. However, in
practice, constructing GT images for every possible w is infeasible. Therefore, during training, we
only generate and use GT images corresponding to w = 0.5. In the experiments, we demonstrate that
training with only the w = 0.5 case generalizes well, and the model performs seamlessly for other w
values during inference. Accordingly, the ratio control loss is defined using only the half-ratio case
during training, as follows:

Lratio = LL1-SSIM(Jh, Ĵh) + LL1-SSIM(J, Ĵhh), (4)

where Jh denotes the half-degraded GT image, Ĵh is the corresponding half-restored output, J is
the fully clean GT image, and Ĵhh is the fully restored output obtained by reapplying the restoration
model to Ĵh. Note that both Ĵh and Ĵhh are generated using the ratio control embedding for w = 0.5.
The first term supervises the half-restored output Ĵh to match the corresponding half-degraded GT
Jh, enabling the restoration model to develop fine-grained controllability by learning to remove
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Input Image PromptIR GTOneRestore OursRestormer NAFNet

Figure 2: Qualitative comparisons on the CCDD-11 dataset. From top to bottom, each row corre-
sponds to a case in which the input images are degraded by snow, low + haze+ snow, rain, and
low + haze+ rain, respectively.

approximately half of the degradation, as intended by the half-intensity ratio control embedding. The
second term applies the same half-intensity ratio control embedding, encouraging the resulting output
Ĵhh to progressively approach the fully restored clean image J . This enforces a self-consistency
constraint that reinforces the linearity of the control space.

Intermediate Loss. To improve controllability and address the challenges of sequential restoration
under multiple degradations, we propose an intermediate loss function that provides precise and
explicit supervision for removing each specific degradation at its respective stage in the restoration
process. Let DA and DB denote two independent degradations present in a composite image. If
the image is restored sequentially by first removing DA and then DB , or in reverse order, any
errors introduced in the first step are likely to propagate into the second. To mitigate this issue, the
intermediate loss is designed to help the model handle each degradation independently during the
restoration process, as follows:

Linter = LL1-SSIM(JA, ĴA) + LL1-SSIM(JB, ĴB), (5)

where JA denotes the GT image with degradation DA removed (but not completely clean), and ĴA
is the model output when restoring only DA. Similarly, JB is the GT image with degradation DB

removed, and ĴB is the corresponding output when the model restores only DB . Note that equation 5
can be easily extended to cases involving more than two degradations. Also, for single-degradation
scenarios, one of DA or DB can be treated as “clear,” and the identity embedding can be applied
accordingly.

Permutation-Invariant Loss. To ensure consistency in sequential restoration of composite degrada-
tions, we propose a permutation-invariant loss that enforces the final output to remain unaffected by
the order in which degradations are removed. To ensure consistent results regardless of the restoration
order, our permutation-invariant loss consists of two terms as follows:

Lper1 = LL1-SSIM(J, ˆJAB) + LL1-SSIM(J, ˆJBA), Lper2 = LL1( ˆJAB, ˆJBA), (6)

where J represents the GT image, and ĴAB represents the output when the model restores the image
in the order of DA followed by DB . Similarly, ĴBA represents the model output when the restoration
order is reversed. The Lper1 ensures that both restoration sequences produce outputs close to the GT
image J . The smooth L1 loss Lper2 enforces consistency between the two restoration outputs, ĴAB

and ĴBA.

Finally, the restoration model is trained using the baseline loss equation 1, along with the four
proposed loss functions: identity equation 3, ratio control equation 4, intermediate equation 5, and
permutation-invariant loss functions equation 6.
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Table 1: Quantitative comparisons on CCDD-11 dataset1.

Types Methods PSNR ↑ SSIM ↑ #Params
Input 16.04 0.61 -

One-to-One MIRNet (Zamir et al., 2020) 26.17 0.87 31.79M
MPRNet (Zamir et al., 2021a) 27.07 0.86 15.74M

MIRNetV2 (Zamir et al., 2022b) 24.90 0.83 15.74M
Restormer (Zamir et al., 2022a) 25.43 0.84 26.13M

DGUNet (Mou et al., 2022) 27.17 0.86 17.33M
NAFNet (Chen et al., 2022a) 26.78 0.80 17.11M
Fourmer (Zhou et al., 2023a) 24.49 0.82 0.55M

OKNet (Cui et al., 2024a) 27.54 0.87 4.72M
One-to-Many AirNet (Li et al., 2022) 26.33 0.84 8.93M

AdaIR (Cui et al., 2024b) 27.25 0.86 28.77M
PromptIR (Potlapalli et al., 2023) 28.07 0.87 38.45M
WGWSNet-WG (Zhu et al., 2023) 25.40 0.85 25.76M
WGWSNet-WS (Zhu et al., 2023) 20.20 0.74 25.76M

One-to-Composite OneRestore (Visual Embedding) (Guo et al., 2024) 27.38 0.86 5.98M
OneRestore (Text Embedding) (Guo et al., 2024) 27.74 0.87 5.98M

Ours (Visual Embedding) 27.89 0.86 5.98M
Ours (Text Embedding) 28.28 0.87 5.98M

Table 2: Ablation study on different loss functions.

Identity Ratio
control Intermediate Permutation-

invariant PSNR

✓ 27.85
✓ ✓ 27.89
✓ ✓ 28.13
✓ ✓ 28.20
✓ ✓ ✓ ✓ 28.28

Table 3: PSNR evaluation under the identity embedding. The clear prompt is used for OneRestore.

Method Low Haze Rain Snow Low+Haze Low+Rain
Guo et al. (2024) 21.31 23.87 25.04 24.94 24.45 23.89

Ours 55.27 57.31 57.35 57.44 57.58 57.24
Method Low+Snow Haze+Rain Haze+Snow Low+Haze+Rain Low+Haze+Snow Average

Guo et al. (2024) 23.34 23.60 23.80 23.72 23.67 23.78
Ours 57.00 57.32 57.59 57.66 57.73 57.05

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Implementation Details. Our DisIR uses PyTorch 1.12.0 and trains on 4 NVIDIA A100 GPUs,
requiring approximately two days per stage. During the training phase of OneRestore (Guo et al.,
2024), we use a learning rate of 1e-4. In subsequent stages, we start with a reduced learning rate of
2.5e-5, which is achieved by decreasing the initial rate by a factor of 1/4.

Evaluation Dataset and Metrics. We create Controllable Composite Degradation Dataset (CCDD-
11), which follows the pipeline introduced in CDD-11 (Guo et al., 2024) (see Appendix section B for
details) Specifically, our CCDD-11 adopts the same pipeline as CDD-11, while generating all pairs
corresponding to individual degradation removal from composite degradation images. However, due
to the limited variety of rain masks in the original CDD-11, we incorporate a more diverse range of
rain masks into our CCDD-11. Restoration performance is evaluated using PSNR and SSIM two
standard metrics.

Compared Methods. We compare our DisIR with seven one-to-one restoration models: MIRNet (Za-
mir et al., 2020), MPRNet (Zamir et al., 2021a), MIRNetV2 (Zamir et al., 2022b), Restormer (Zamir
et al., 2022a), DGUNet (Mou et al., 2022), NAFNet (Chen et al., 2022a), and Fourmer (Zhou et al.,
2023a); four one-to-many models: AirNet (Li et al., 2022), AdaIR (Cui et al., 2024b), PromptIR (Pot-

1The performance gap compared to the originally reported OneRestore (Guo et al., 2024) results is primarily
due to modifications made to all rain-related datasets. Unlike the original setup, which uses a limited variety
of rain masks in the CDD-11 dataset, our version incorporates a broader and more diverse set of rain mask
variations.
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Table 4: Embedder classification accuracy according to changes in the intensity ratio.

Intensity Ratio w 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
Accuracy 0.3 % 0.4 % 0.8 % 2.5 % 16.4 % 43.8 % 56.2 % 77.9 % 94.7 % 95.0 % 94.9 %

Table 5: PSNR evaluation of selective restoration on images with two combined degradations.

Degradation Task Guo et al. (2024) Ours Task Guo et al. (2024) Ours
Low+Haze Delow 20.89 30.61 Dehaze 22.56 35.50
Low+Rain Delow 24.67 26.74 Derain 28.76 36.37
Low+Snow Delow 23.42 26.68 Desnow 27.53 34.30
Haze+Rain Dehaze 27.73 33.01 Derain 34.69 40.30
Haze+Snow Dehaze 25.56 33.13 Desnow 31.61 37.81

Average - 24.45 30.03 - 29.03 36.86

Table 6: PSNR evaluation of selective restoration on images with three combined degradations.

Degradation Double Restoration Single Restoration
Guo et al. (2024) Ours Guo et al. (2024) Ours

Low+Haze+Rain 22.33 27.00 25.10 32.50
Low+Haze+Snow 21.29 25.42 24.27 31.48

Average 21.81 26.21 24.69 31.99

lapalli et al., 2023), and WGWS (Zhu et al., 2023); and one one-to-composite model, OneRestore (Guo
et al., 2024). All models are trained on the CCDD-11 training set. During our disentangled learning,
we exclude images containing three types of degradation due to the impractical number of possible
combinations. However, we include these samples in the test set to evaluate the generalization ability
of our DisIR. For PromptIR, since the original paper does not specify the optimal number of learnable
prompts, we train the model using both five and eleven prompts. The version with five prompts
achieves better performance and is thus reported. For WGWS, we set weather-specific parameters to
cover all degradation types in CCDD-11. WG refers to the first stage, and WS refers to the second.

4.2 COMPARISONS

As reported in Tab. 1, our DisIR achieves the highest performance when using text-based degradation
embeddings. Even when using visual-based embeddings extracted directly from input images, our
DisIR generally outperforms existing approaches. Interestingly, although not originally designed as a
One-to-Composite model, PromptIR outperforms OneRestore on the CCDD-11 dataset. However, it
is worth noting that PromptIR relies on a much larger model (38.45M parameters vs. 5.98M) and,
by design, is not easily extended for controllability. As shown in Fig. 2, our DisIR more effectively
removes degradations compared to existing approaches in terms of visual quality. Especially, in the
second row of Fig. 2, the red box highlights a challenging case where both PromptIR and OneRestore
leave noticeable snow artifacts, whereas our DisIR achieves more effective removal under composite
degradation (low + haze+ snow). We believe our disentangled learning approach provides more
effective guidance, offering not only enhanced controllability but also superior performance in
composite degradation restoration.

4.3 ABLATION STUDIES

In this subsection, we conduct ablation studies to evaluate the effectiveness of the proposed loss
functions, identity embedding, and ratio control embedding. Detailed settings for each ablation
experiment and additional qualitative results are provided in the supplementary material.

Effect of Losses. To verify the effectiveness of the proposed loss functions, we conduct an ablation
study by excluding each component on the CCDD-11 dataset, as shown in Tab. 2. While identity loss
alone leads to improved performance compared to OneRestore, incorporating additional loss functions
results in further performance gains. The best performance is achieved when all loss components
are used together, indicating that the proposed loss functions effectively guide the one-to-composite
model to disentangle mixed degradations.

Effect of Identity Embedding. The identity embedding is designed to guide the restoration model to
preserve the input image, even in the presence of degradation. To verify its effectiveness, we measure

7
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Table 7: Classification performance after selective restoration. The top-row degradation types
represent the remaining degradations after selective restoration.

Method Low Haze Rain Snow Low+Haze Low+Rain Low+Snow Haze+Rain Haze+Snow Average
Guo et al. (2024) 76.7% 61.7% 73.8% 48.6% 76.7% 42.0% 24.5% 60.5% 15.5% 53.33%

Ours 98.6% 85.5% 93.7% 94.3% 88.7% 91.6% 98.4% 95.6% 94.6% 93.44%

Table 8: PSNR evaluation with varying restoration orders.

Degradation Task Guo et al. (2024) Ours Task Guo et al. (2024) Ours Task Guo et al. (2024) Ours
Low+Haze Delow → Dehaze 20.95 25.80 Dehaze → Delow 21.20 24.76 Dehaze + Delow 25.07 25.28
Low+Rain Delow → Derain 22.66 25.77 Derain → Delow 24.45 25.54 Derain + Delow 25.27 25.41
Low+Snow Delow → Desnow 21.63 25.26 Desnow → Delow 22.63 24.87 Desnow + Delow 24.64 24.95
Haze+Rain Dehaze → Derain 27.74 30.12 Derain → Dehaze 28.92 30.75 Derain + Dehaze 29.62 30.52
Haze+Snow Dehaze → Desnow 26.26 28.66 Desnow → Dehaze 27.13 29.59 Desnow + Dehaze 28.65 29.42

Average - 23.85 27.12 - 24.87 27.10 - 26.65 27.12

Table 9: PSNR evaluation on the Blur-Noise-JPEG composite degradation scenario.

Method Blur Noise JPEG Blur+Noise Blur+JPEG Noise+JPEG Blur+Noise+JPEG Average
Guo et al. (2024) 28.04 31.94 30.47 25.17 25.04 28.80 24.48 27.70

Ours 30.40 32.45 30.93 25.34 25.14 28.85 24.60 28.24

the PSNR between the input and the output generated using the identity embedding. OneRestore
For comparison, we evaluate OneRestore with the clear prompt, which most closely resembles the
identity condition in its framework. As shown in Tab. 3, our DisIR yields outputs with minimal
deviation from the inputs, demonstrating superior identity preservation compared to OneRestore and
validating the effectiveness of our identity embedding.

Effect of Ratio Control Embedding. The ratio control embedding is designed to guide the intensity
level of restoration, such that only a specified proportion of the degradation is removed. To achieve
this, we construct a prompt by linearly combining the identity embedding and the target degradation
embedding according to equation 2. As shown in Fig. 3, this allows for successful control over the
degree of restoration. To quantitatively evaluate controllability, we measure classification accuracy
using the ratio control embedding generated with varying values of w in equation 2. Note that
w = 1 leads to full degradation removal and low classifier accuracy, while w = 0 preserves the
degradation and yields high accuracy. As reported in Tab. 4, the classification performance varies
with w, indicating that our DisIR effectively enables intensity-level control over restoration.

Selective Restoration. Thanks to our disentangled learning pipeline, the proposed model excels at
selectively removing a target degradation from composite images while preserving other degradations,
outperforming OneRestore in this setting. For instance, in an image degraded by both haze and
snow, selective restoration involves removing only one component (e.g., haze), resulting in an
output that retains the other (e.g., snow). In Tab. 5, we report the performance of our model on
selective restoration tasks involving two degradations. Specifically, for each image containing two
degradation types, we remove only one and evaluate the output against a GT image in which only
the target degradation has been removed. For example, in the case of a composite degradation of
low + haze, the GT for the delow task is a clean image synthesized with only haze. Although
OneRestore can also apply a single degradation embedding, as shown in Tab. 5, our model consistently
achieves higher performance across all selective restoration tasks. We further extend this evaluation
to images containing three degradation types. In this setting, we test restoration by removing either
one or two degradations and compare the results with the corresponding GT images. Due to the
large number of possible restoration combinations, we report the average performance across all
single- and double-degradation removal tasks from triple-composite inputs. As reported in Tab. 6,
our model again outperforms OneRestore in all settings. To further assess whether our DisIR
effectively disentangles multiple degradations, we conduct an analysis using a classification model.
Specifically, for images containing multiple degradations, we perform selective restoration to remove
only the target degradation and then examine whether the remaining degradations are preserved in the
output. This is done by extracting degradation embeddings from the selectively restored images and
performing classification to identify the remaining degradation types. As shown in Tab. 7, our DisIR
consistently outperforms OneRestore in identifying the remaining degradations, regardless of the type
of degradation being removed. Moreover, as shown in Fig. 3, our qualitative results demonstrate that
the selective restoration closely matches the corresponding GT images. These results demonstrate
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Figure 3: (a) Ratio control embedding. (b) Selective restoration. (c) Restoration order dependency.
(d) Blur-noise-JPEG composite degradation.

that our model enables fine-grained controllability by providing disentangling guidance, allowing it
to decompose complex composite degradations into their constituent components.

Restoration Order Dependency. Under composite degradations, our model is capable of sequentially
removing each degradation individually. As shown in Tab. 8, the model trained with our disentangled
learning pipeline consistently achieves strong performance regardless of the removal order, in contrast
to OneRestore. This order-invariant behavior is attributed to the permutation-invariant loss equation 6,
and demonstrates the model’s ability to effectively disentangle and target individual degradations
in inputs affected by multiple degradation types. Notably, even when performing restoration in a
single step using the composite embedding vectors, our DisIR still outperforms OneRestore, further
validating its robustness and controllability. This can also be visually confirmed in Fig. 3.

Blur-Noise-JPEG Composite Degradation. To further validate the generalizability of the proposed
disentangled learning pipeline, we conduct experiments not only on diverse weather removal but also
on a composite degradation scenario involving blur + noise+ JPEG. As reported in Tab. 9, our
DisIR consistently outperforms OneRestore across all cases. Experiments in more diverse settings,
including real-world data, are provided in the supplementary material.

5 CONCLUSION AND LIMITATIONS

In this paper, we proposed a disentangled learning pipeline for controllable all-in-one image restora-
tion under composite degradation scenarios. Our DisIR uses four objectives: (1) identity loss for
preserving input when no degradation is present, (2) ratio control loss for adjusting restoration
intensity, (3) intermediate loss for selective degradation removal, and (4) permutation-invariant loss
ensuring order-consistent results. These components collectively enable the model to effectively
disentangle and selectively restore target degradations without affecting unrelated image content. Our
method supports fine-grained intensity control and achieves state-of-the-art performance on composite
degradation benchmarks. Our findings underscore the importance of disentangled representations and
targeted guidance in building flexible and controllable restoration systems for complex real-world
scenarios. However, our approach has several limitations. First, the model may struggle to generalize
to unknown degradations not encountered during training, indicating a need to extend the framework
toward handling unseen or open-set degradation types. Second, while effective for up to three
concurrent degradations, the performance may degrade when more types are combined, especially in
the presence of spatially varying degradations. Addressing these challenges would further enhance
the robustness and scalability of controllable restoration systems in real-world applications.
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ETHICS STATEMENT

Our research aims to restore images degraded by adverse weather conditions, with the goal of positive
societal applications such as improving the safety of autonomous systems. The datasets used for
training and evaluation, including our proposed CCDD-11, were constructed using publicly available
academic benchmarks that do not contain sensitive or personal information. We do not foresee any
direct negative societal consequences or ethical concerns arising from this work, as its scope is limited
to degradation removal rather than applications that might compromise privacy or security.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide the following details. The implementation of
our proposed DisIR framework, including the architecture and the four novel loss functions (identity,
ratio control, intermediate, and permutation-invariant), is described in section 3. Our newly created
CCDD-11 is detailed in Appendix section B, which explains the generation pipeline and the inclusion
of diverse rain masks. All implementation details, such as hyperparameters, training procedures on
NVIDIA A100 GPUs, and evaluation settings, are provided in section 4.1 and Appendix section C.
The complete source code, training scripts, and the generation code for our CCDD-11 dataset will be
made publicly available upon publication.
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A SUMMARY OF APPENDIX

In this appendix, we first describe the construction of our dataset for selective restoration and
half-restoration (see Section B), and provide detailed explanations of our training settings and
configuration details (see Section C). We then present comprehensive descriptions of experimental
settings for the main experiments in Section D. Experimental results that demonstrate controllability
on the Blur–Noise–JPEG Composite Dataset are provided in Section E, and results on real-world
datasets are presented in Section F. In Section G, we present qualitative evaluation results for various
scenarios, including identity operation, ratio control restoration, selective restoration, restoration
order dependence, and composite image restoration. Finally, we provide a detailed account of Large
Language Model usage in our research and writing process in Section H.

B CONTROLLABLE COMPOSITE DEGRADATION DATASET FORMULATION

B.1 DATASET CONSTRUCTION NECESSITY

Our work addresses controllable restoration tasks that existing datasets cannot support. Specifically,
DisIR requires ground truth pairs that are absent in current public datasets: (1) variable-intensity
degradation images with identical content and context but varying degradation intensities for ratio
control training, and (2) selective restoration pairs where only specific degradations are removed from
composite images while preserving others. Without these pairs, it is impossible to train or evaluate
models on fine-grained controllability tasks. Therefore, the Controllable Composite Degradation
Dataset (CCDD-11) was created not as an optional addition, but as an essential foundation for
controllable composite image restoration research. To ensure objectivity, CCDD-11 strictly follows
the original CDD-11 synthesis methodology with transparent, reproducible extensions using fixed
random seeds and uniform parameter distributions.

B.2 CCDD-11 DATA PIPELINE

To construct CCDD-11, we generally follow the protocol of the CDD-11 (Guo et al., 2024) dataset,
with several modifications to enable controllable restoration. Specifically, we introduce selective
restoration pairs and half-restoration pairs, which allow for more flexible and targeted restoration
scenarios. To further enrich the dataset, we incorporate a wider variety of rain masks, which increases
the diversity of degradation patterns in CCDD-11. For the source images, we select 1,383 high-
resolution clean images from the RAISE (Dang-Nguyen et al., 2015) dataset and uniformly resize
them to a resolution of 1080×720 pixels. Of these, 1,183 images are used for training and the
remaining 200 for testing. The procedure for generating composite degradation images is as follows:

I(x) = Dh(Drs(Dl(J(x)))), (7)

where I(x) denotes the degraded image, J(x) is the corresponding clean image as described above,
Dh represents haze degradation, Drs represents rain or snow degradation, and Dl represents low-light
degradation. Each of Dh, Drs, and Dl can be applied independently or omitted during the degradation
process. The order and combination of these degradations follow the protocol established in CDD-11.
Note that in addition to the fully composite degraded images generated by Eq. equation 7, we also
store images degraded by only a subset of these degradations. For these subset images, we use exactly
the same degradation masks and parameters as in the composite degradations, ensuring that they
can serve as ground truth for selective restoration tasks. For example, when generating an image
with haze+ rain degradations, we also store the corresponding haze and rain images, which are
produced using the same degradation masks and parameters, following the same degradation pipeline.
We also define half-degradation images as those generated by applying the same degradation process
but with approximately half the intensity of the original parameters. These half-degradation images
are also stored alongside the fully degraded images to enable our proposed intensity ratio control
restoration.

Low-Light. According to Retinex theory, the low-light image generation pipeline is defined as
follows:

Il(x) = Dl(x) =
J(x)

L(x)
· L(x)γ + ε, (8)
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where J(x) denotes the clean image and Il(x) is the corresponding low-light image. In this formula-
tion, γ is a darkening coefficient ranging from 2 to 3, which serves as a brightness adjustment factor
for the illumination map L(x) generated by LIME (Guo et al., 2016). Gaussian noise ε with zero
mean and variance between 0.03 and 0.08 is added to better simulate low-light environments.

Ilh(x) =
J(x)

L(x)
· L(x)γ/2 + ε, (9)

where Ilh(x) denotes the half-low-light image, which is generated by applying the low-light pipeline
with the γ parameter set to half the value used in Eq. equation 8.

Rain/Snow Streaks. Following (Chen et al., 2021b), we add snow streaks to images using alpha
blending. Similarly, our rain synthesis, based on (Li et al., 2019), is modified to use alpha blending,
enabling ratio control through adjustable weighting. The pipeline for synthesizing rain and snow
streaks is as follows:

Irs(x) = Drs(Dl(x)) = Il(x)(1−RS) +RS, (10)

where Irs(x) denotes the rain/snow streak image, and RS represents rain mask or snow mask. The
rain mask is sourced from (Garg & Nayar, 2006), while the snow mask is sourced from (Liu et al.,
2018).

Irsh(x) = Il(x)(1− 0.5 · RS) + 0.5 · RS, (11)
where Irsh(x) denotes the half-intensity rain/snow streak image, generated by applying alpha blending
with the weight for rain or snow reduced to half of that used in Eq. equation 10.

Haze. Haze degradation is introduced into our pipeline using the atmospheric scattering model, as
follows:

t = e−β·d(x), th = e−(β/2)·d(x), (12)
where t is the transmission map, β is the haze density coefficient, and d(x) is the depth information
estimated from MegaDepth (Li & Snavely, 2018). Here, th represents the half-transmission map,
which is obtained by setting the haze density coefficient to β/2. The value of β, which controls the
haze density, is set in the range [1.0, 2.0].

Ih(x) = Dh(Drs(Dl(x))) = Irs(x)t+A(1− t), (13)

where Ih(x) is the haze-degraded image, and A is the atmospheric light, which is constrained to the
range [0.6, 0.9].

Ihh
(x) = Irs(x)th +A(1− th), (14)

where Ihh
(x) is the half-haze image, in which the haze density is approximately half that of Ih(x)

due to the use of th.

B.3 CROSS-DATASET CLASSIFICATION EVALUATION

We examine the generalization capabilities of models trained on CCDD-11 versus CDD-11 through
comprehensive cross-evaluation experiments. During our analysis, we discovered that the original
CDD-11 uses a limited and repetitive set of rain masks, while CCDD-11 addresses this limitation by
incorporating 4,723 unique rain masks, significantly increasing diversity. This fundamental difference
in dataset construction is reflected in our cross-evaluation results shown in Tab. 10. Models trained
on CCDD-11 maintain robust performance when evaluated on CDD-11, with accuracy dropping only
from 92% to 88%. In contrast, models trained on CDD-11 show performance degradation when
evaluated on CCDD-11, with accuracy dropping from 98% to 59%. This asymmetric generalization
pattern demonstrates that models trained on the limited and repetitive degradation patterns of CDD-11
fail to generalize to more diverse scenarios, whereas CCDD-11 yields models that are robust to both
simple and complex degradations. These results validate CCDD-11 as a more comprehensive and
challenging benchmark, confirming that its increased diversity provides superior training compared
to the restricted variations in CDD-11.

B.4 BLUR-NOISE-JPEG

To demonstrate the generalizability of our proposed method, we constructed not only the weather-
related CCDD-11 dataset described above, but also an additional dataset incorporating camera-related
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Table 10: Rain-related degradation classification accuracy across different training and testing
scenarios.

Degradation Type (1) Trained on CCDD-11 (2) Trained on CCDD-11 (3) Trained on CDD-11 (4) Trained on CDD-11
Test on CCDD-11 Test on CDD-11 Test on CCDD-11 Test on CDD-11

rain 98 % 96 % 75 % 99 %
low rain 99 % 86 % 58 % 97 %
haze rain 95 % 90 % 58 % 98 %
low haze rain 76 % 82 % 46 % 95 %
Average 92 % 88 % 59 % 98 %

and environment-related degradations such as blur, noise, and JPEG compression. In constructing the
Blur-Noise-JPEG dataset, degradations are applied in the order of blur, noise, and JPEG compression.
This sequence reflects the typical image formation process, in which optical blur occurs first, followed
by sensor noise and then compression, as described in recent works such as Real-ESRGAN (Wang
et al., 2021).

I(x) = DJ(Dn(Db(J(x)))), (15)
where I(x) denotes the final degraded image, J(x) is the corresponding clean image, Db represents
blur degradation, Dn denotes the addition of Gaussian noise, and DJ indicates JPEG compression.
The degradations are applied sequentially in the order of blur, noise, and JPEG compression, re-
sulting in seven types of degradation in the dataset: Blur, Noise, JPEG, Blur+Noise, Blur+JPEG,
Noise+JPEG, and Blur+Noise+JPEG. Similar to CCDD-11, the Blur-Noise-JPEG dataset also
stores both subset degradation images and half-degradation images for each sample.

Blur. Blur degradation simulates the loss of sharpness that typically results from camera defocus or
motion. The process for generating blurred images is defined as follows:

Ib(x) = J(x) ∗G(x; k, σb), Ibh(x) = J(x) ∗G(x; k, σb/2), (16)
where Ib(x) and Ibh(x) denote blurred and half-blurred images respectively, J(x) is the clean image,
∗ represents the convolution operation, and G(x; k, σb) is a 2D Gaussian kernel with kernel size k
and standard deviation σb. The half-blurred image is generated using a standard deviation of σb/2.

Noise. Noise degradation simulates random pixel fluctuations resulting from sensor imperfections
during image acquisition, and is defined as follows:

In(x) = J(x) +N (0, σ2
n), Inh

(x) = J(x) +N (0, (σn/2)
2), (17)

where In(x) and Inh
(x) denote noisy and half-noisy images, respectively. In this equation, J(x) is

the clean image, and N (0, σ2
n) denotes zero-mean Gaussian noise with standard deviation σn. The

half-noisy image is generated using a standard deviation of σn/2.

JPEG. JPEG degradation simulates compression artifacts that are typically introduced during image
encoding and storage. The process for generating JPEG-compressed images is defined as follows:

Ij(x) = JPEG(J(x); q), Ijh(x) = JPEG(J(x); q/2), (18)
where Ij(x) and Ijh(x) denote the JPEG-compressed and half-JPEG images, respectively. In this
equation, J(x) is the clean image, and JPEG(J(x); q) denotes the operation of compressing J(x)
using the JPEG algorithm with quality factor q. The half-JPEG image is generated using a quality
factor of q/2.

C TRAINING DETAILS

We first train the baseline model until its performance saturates, for up to 300 epochs. Subsequently,
training is resumed from the saturated checkpoint with the learning rate reduced to 2.5 × 10−5,
using the Adam optimizer and incorporating our proposed novel loss functions. During this phase,
the model is trained with a batch size of 6, and the learning rate is halved every 30 epochs. After
approximately two days of training (about 60 epochs), the model typically achieves a PSNR of 28.16
on the main composite image restoration task. To ensure the model fully saturates and achieves its
best possible performance, we further extend training to 200 epochs, where the PSNR saturates at
28.28. All weight hyperparameters from the baseline are kept unchanged at (0.6, 0.3, 0.1) throughout
the training process. For training, we use 1,183 images, each with 11 different degradation types and
corresponding clear images, resulting in a total of 13,013 training samples. For testing, the model is
evaluated on 200 images, each with 11 degradation types.
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Table 11: Embedder classification accuracy according to changes in the intensity ratio.

Intensity Ratio w 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
Accuracy 1.5 % 1.9 % 4.1 % 11.7 % 16.4 % 17.7 % 18.8 % 36.0 % 54.4 % 64.8 % 63.8 %

Table 12: PSNR evaluation of selective restoration on images with two combined degradations.

Degradation Task Guo et al. (2024) Ours Task Guo et al. (2024) Ours
Blur+Noise Deblur 24.87 28.56 Denoise 36.21 37.99
Blur+JPEG Deblur 24.71 26.92 DeJPEG 37.89 39.98

Noise+JPEG Denoise 27.77 30.32 DeJPEG 24.74 25.02
Average - 25.78 28.60 - 32.95 34.33

Table 13: PSNR evaluation of selective restoration on images with three combined degradations.

Degradation Double Restoration Single Restoration
Guo et al. (2024) Ours Guo et al. (2024) Ours

Blur+Noise+JPEG 27.22 28.09 27.36 29.65

D EXPERIMENTAL DETAILS

This section provides a detailed description of the experiments conducted on the CCDD-11 dataset, as
presented in the main paper. The experimental procedure for Tab. 4 is as follows. For each degradation
type, we vary the ratio control embedding from 0.0 to 1.0 and perform restoration accordingly. Each
restored result is then classified using the Text/Visual Embedder, which can classify the remaining
degradation types. The reported value is the average classification accuracy across all degradation
types and intensity ratios. This setup is motivated by the fact that when w = 0.0 (i.e., identity), the
image remains unchanged from the input degradation, and thus is expected to be classified with high
accuracy as the corresponding degradation type. In contrast, when w = 1.0, the model restores the
image to be close to a clean image, which should result in low classification accuracy. This approach
is adopted because generating ground truth pairs for every possible value of w is impractical. The
experiments in Tab. 12 and Tab. 13 are designed to demonstrate that our DisIR can perform selective
restoration, accurately removing only the targeted degradations while preserving the others. In
Tab. 12, we evaluate the PSNR performance of restoring each individual degradation from composite
images containing two types of degradation, using ground-truth pairs generated according to our
dataset pipeline. Tab. 13 extends this experiment to composite images containing three types of
degradation. In this setting, we consider two tasks: double restoration, which targets restoring two
out of the three degradations (leaving one degradation in the image), and single restoration, which
targets restoring only one degradation (leaving the other two degradations in the image). Since there
are many possible combinations for each task, we report the average PSNR across all cases. The
experiment in Tab. 14 is designed to demonstrate the mitigation of order dependency by comparing
the performance of two-stage and one-stage restoration on composite images containing two types
of degradation. For the composite degradation, Blur+Noise, the notations Deblur → Denoise and
Denoise → Deblur represent two-stage restoration, where each degradation is removed sequentially
in a different order. In contrast, Denoise + Deblur refers to the one-stage restoration, where both
degradations are removed simultaneously in a single step.

E EXPERIMENTAL RESULTS ON BLUR–NOISE–JPEG COMPOSITE DATASET

The experiments summarized in Tab. 11, Tab. 12, Tab. 13, and Tab. 14 are also carried out on the Blur-
Noise-JPEG dataset using the same experimental protocols as in the main paper. The overall reduction
in accuracy observed in Tab. 11 likely results from the generally lower restoration performance on
the Blur-Noise-JPEG dataset. However, the key observation is the linear change in accuracy as the
ratio control parameter w varies. This result demonstrates that the model is capable of controlling
the restoration intensity, thereby demonstrating the contribution of our ratio control embedding and
ratio control loss. As shown in Tab. 12 and Tab. 13, our DisIR achieves superior performance in
selective restoration compared to previous approaches. The results in Tab. 14 indicate that our DisIR
suppresses quality variations caused by order dependency.
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Table 14: PSNR evaluation with varying restoration orders.

Degradation Task Guo et al. (2024) Ours Task Guo et al. (2024) Ours Task Guo et al. (2024) Ours
Blur+Noise Deblur → Denoise 21.97 26.01 Denoise → Deblur 23.95 25.99 Deblur + Denoise 25.24 25.33
Blur+JPEG Deblur → DeJPEG 22.32 25.92 DeJPEG → Deblur 23.73 25.95 Deblur + DeJPEG 25.07 25.14

Noise+JPEG Denoise → DeJPEG 27.02 29.41 DeJPEG → Denoise 26.94 29.42 Denoise + DeJPEG 28.80 28.84
Average - 23.77 27.11 - 24.87 27.12 - 26.37 26.44

Table 15: NIQE scores on four Real-world datasets.

NPE (Wang et al., 2013b) RS (Yang et al., 2017) Snow-100K-R (Liu et al., 2018) RTTS (Li et al., 2018)
Method NIQE ↓ Method NIQE ↓ Method NIQE ↓ Method NIQE ↓

Liu et al. (2021) 7.77 Zamir et al. (2021b) 3.55 Liang et al. (2022) 3.93 Dong et al. (2020) 4.77
Ma et al. (2022) 3.97 Fu et al. (2021) 3.27 Chen et al. (2022c) 3.13 Guo et al. (2022) 5.34
Xu et al. (2022) 4.49 Wang et al. (2023a) 3.32 Kulkarni et al. (2022) 3.34 Zheng et al. (2023) 5.03

Guo et al. (2024) 4.83 Guo et al. (2024) 3.67 Guo et al. (2024) 2.93 Guo et al. (2024) 4.76
Ours 4.44 Ours 3.66 Ours 2.92 Ours 4.53

F EXPERIMENTAL RESULTS ON REAL-WORLD DATASETS

We assess the robustness of our model trained on CDD-11 by conducting extensive real-world image
restoration experiments under challenging degradation scenarios. To comprehensively address four
distinct real-world degradations, we selected the following benchmarks: NPE (Wang et al., 2013b)
for low-light enhancement, RTTS (Li et al., 2018) for dehazing, RS (Yang et al., 2017) for deraining,
and Snow100k-R (Liu et al., 2018) for desnowing. Quantitative results are reported on these four
real-world benchmarks using the no-reference quality metric Natural Image Quality Evaluator (NIQE).
Tab. 15 shows that our model achieves competitive results in multiple datasets. Specifically, our DisIR
outperforms previous approaches on RTTS and Snow100k-R, and achieves marginal improvements
over OneRestore (Guo et al., 2024) on NPE and RS. The qualitative results in Fig. 4 also show that
our DisIR produces better restoration quality than the previous approach.

G QUALITATIVE EVALUATION RESULTS

G.1 IDENTITY OPERATION

To evaluate the identity operation, we present qualitative results showing that our model produces
outputs identical to the inputs by employing the proposed identity embedding and identity loss. As
shown in the qualitative results in Fig. 5 and Fig. 6, our DisIR successfully preserves the input without
introducing unwanted alterations, as intended. For comparison, following the approach described
in the main paper, we use the clear prompt in OneRestore (Guo et al., 2024), which serves as the
closest equivalent to the identity condition in its framework. In our method, we employ the proposed
identity embedding.

G.2 RATIO CONTROL RESTORATION

With the proposed ratio control embedding and ratio control loss, our model is able to control the
intensity of restoration. We present qualitative results that demonstrate ratio control across various
types of degradation. By definition, w = 0.0 corresponds to the identity embedding and produces
an output similar to the degraded input image, whereas w = 1.0 yields a fully restored image. As
shown in Fig. 7, all composite degradations are effectively controlled in a linear fashion as w varies.
Fig. 8 presents qualitative ratio control restoration results for three composite degradation types
that are excluded from ratio control loss training due to feasibility constraints, yet still demonstrate
effective performance. Fig. 9 shows qualitative results for the same experiment conducted on the
Blur-Noise-JPEG dataset. In these cases, as w decreases, the outputs gradually approach the identity
operation. Notably, our method demonstrates reliable linear control over the entire range of w from 0
to 1, despite being trained only on half-degradation without explicit supervision for every possible
value of w.
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OneRestore Ours

Figure 4: Qualitative Restoration Results on Real-World Datasets.

G.3 SELECTIVE RESTORATION

Fig. 10 and Fig. 11 present qualitative results for selective restoration, where our model removes only
the target degradation from composite images while preserving the others. Fig. 12 shows qualitative
results for the same experiment conducted on the Blur-Noise-JPEG dataset. These results highlight
the ability of our DisIR to selectively restore specific degradations while leaving the remaining
degradations intact, in contrast to OneRestore, which struggles to provide such selective control. In
Fig. 13, we further demonstrate that our model can simultaneously perform ratio control restoration
and selective restoration on the same image, as indicated by the color of each arrow. Remarkably, this
capability emerges even though the model was not explicitly supervised for such combined operations
during training. These results underscore the fine-grained controllability of our approach in a variety
of composite degradation scenarios.

G.4 RESTORATION ORDER DEPENDENCY

Fig. 14 and Fig. 15 highlight the restoration order dependency observed in previous methods and
demonstrate that our approach effectively mitigates this issue in composite degradation scenarios. As
shown in these examples, our DisIR produces more consistent outputs regardless of the order in which
degradations are removed, demonstrating strong order-invariant behavior. In contrast, OneRestore
exhibits noticeable variations depending on the restoration sequence. These results visually confirm
the effectiveness of our approach in disentangling and restoring individual degradations, regardless of
the order in which they are removed. Furthermore, Fig. 15 presents qualitative results for the same
experiment conducted on the Blur-Noise-JPEG dataset.
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G.5 IMAGE RESTORATION

We present qualitative results for general image restoration using our proposed CCDD-11 dataset.
As discussed in the main paper, our DisIR achieves higher quantitative performance compared to
previous approaches. In addition, qualitative results for haze+ snow restoration show that our DisIR
removes the Snow component more effectively, as highlighted by the red box in Fig. 17. Fig. 18
presents the restoration of low + haze+ snow images. The red box highlights a challenging region
where OneRestore struggles to produce satisfactory results, whereas our DisIR achieves noticeably
better restoration performance. In Fig. 19, we show qualitative results for the restoration of Blur
images. In the red box region, it can be seen that our DisIR produces better restoration quality
compared to OneRestore. Our proposed method achieves performance improvements even without
additional training on three composite images. We believe this indirectly suggests that our disentangle
learning approach helps the model develop a deeper understanding of the distinct properties of each
degradation, as well as composite degradations.

H LARGE LANGUAGE MODEL USAGE

Following the conference rules about using Large Language Models (LLMs), we report how we used
LLMs while writing this paper. LLMs were used only as basic writing help tools and did not help
with research ideas, method creation, experiment planning, or data analysis.

Specifically, LLMs were used for the following purposes:

• Grammar and Style Refinement: Improving grammar, sentence structure, and ensuring
consistency in academic writing style throughout the manuscript.

• Logical Structure Enhancement: Reorganizing sentence flow and improving the logical
coherence of paragraphs to enhance readability.

All research concepts, methodological innovations, experimental designs, data collection, analysis,
and scientific conclusions presented in this work are the result of the original research efforts of
the authors. The core contributions, including the disentangled prompt learning framework, the
four novel loss functions, and the experimental validation, were conceived and developed without
the assistance of LLMs. The authors retain full responsibility for all technical content, claims, and
conclusions presented in this paper.
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OneRestore ( prompt)

Ours (Identity Embedding)

Snow (Target)

Figure 5: Qualitative comparison of identity operation for Snow image, where the Snow image serves
as both the input and the target.
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OneRestore ( prompt)

Ours (Identity Embedding)

Low Haze (Target)

Figure 6: Qualitative comparison of identity operation for Low+Haze image, where the Low+Haze
image serves as both the input and the target.
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Haze+Snow Low+Rain

Figure 7: Qualitative results of Ratio Control Embedding with varying w values for Haze+Snow and
Low+Rain.
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Low+Haze+Snow Low+Haze+Snow

Figure 8: Qualitative results of Ratio Control Embedding with varying w values for
Low+Haze+Snow and Low+Haze+Rain.
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Blur Blur+JPEG

Figure 9: Qualitative results of Ratio Control Embedding with varying w values for Blur and
Blur+JPEG.
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OneRestore Ours

Input (H Snow) Target (Snow GT)

(a) Selective Haze Restoration

Input (L Rain) Target (Low GT)

OneRestore Ours

(b) Selective Rain Restoration

Figure 10: (a) Qualitative results of selective restoration for the Haze component in Haze+Snow
images. (b) Qualitative results of selective restoration for the Rain component in Low+Rain images.
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OneRestore Ours

Input (L Snow) Target (Snow GT)

(a) Selective Low Restoration

Input (H Snow) Target (Haze GT)

OneRestore Ours

(b) Selective Snow Restoration

Figure 11: (a) Qualitative results of selective restoration for the Low component in Low+Snow
images. (b) Qualitative results of selective restoration for the Snow component in Haze+Snow
images.
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OneRestore Ours

Input (B Noise) Target (Noise GT)

(a) Selective Blur Restoration

Input (N JPEG) Target (JPEG GT)

OneRestore Ours

(b) Selective Noise Restoration

Figure 12: (a) Qualitative results of selective restoration for the Low component in Blur+Noise
images. (b) Qualitative results of selective restoration for the Snow component in Noise+JPEG
images.
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Delow Desnow

Low Snow Clear

Low Snow Snow GT

Desnow

Delow

Low Snow Snow GT

(a) Low Snow

Haze Rain Clear

Dehaze Derain

Haze Rain Rain GT

Dehaze

Derain

Haze Rain Haze GT

(b) Haze Rain

Figure 13: Example results of simultaneous Ratio Control Restoration and Selective Restoration. For
each image, different text embeddings and ratio control values are applied, as indicated by the color
of each arrow.
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Delow → Desnow Desnow→ Delow

Input (L Snow) Delow Desnow

(a) Results of OneRestore one-stage and two-stage restoration

Input (L Snow) Delow Desnow

Delow → Desnow Desnow → Delow

(b) Results of ours one-stage and two-stage restoration

Figure 14: Comparison of one-stage and two-stage restoration results for (a) OneRestore and (b) Ours
on Low+Snow images, illustrating the differences between single-stage and two-stage restoration
approaches.
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Dehaze → Derain Derain → Dehaze

Input (Haze Rain) Dehaze Derain

(a) Results of OneRestore one-stage and two-stage restoration

Input (Haze Rain) Dehaze Derain

Dehaze → Derain Derain → Dehaze

(b) Results of ours one-stage and two-stage restoration

Figure 15: Comparison of one-stage and two-stage restoration results for (a) OneRestore and (b) Ours
on Haze+Rain images, illustrating the differences between single-stage and two-stage restoration
approaches.
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Deblur → DeJPEG DeJPEG→ Deblur

Input (B JPEG) Deblur DeJPEG

(a) Results of OneRestore one-stage and two-stage restoration

Input (B JPEG) Deblur DeJPEG

Deblur → DeJPEG DeJPEG→ Deblur

(b) Results of ours one-stage and two-stage restoration

Figure 16: Comparison of one-stage and two-stage restoration results for (a) OneRestore and (b) Ours
on Blur+JPEG images, illustrating the differences between single-stage and two-stage restoration
approaches.
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OneRestore

Ours

Figure 17: Qualitative comparison of Haze+Snow image restoration results between OneRestore and
Ours.
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OneRestore

Ours

Figure 18: Qualitative comparison of Low+Haze+Snow image restoration results between OneRe-
store and Ours.
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OneRestore

Ours

Figure 19: Qualitative comparison of Blur image restoration results between OneRestore and Ours.
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